
Noname manuscript No.
(will be inserted by the editor)

Derandomization for sliding window algorithms with
strict correctness?

Moses Ganardi · Danny Hucke · Markus
Lohrey

Received: date / Accepted: date

Abstract In the sliding window streaming model the goal is to compute an
output value that only depends on the last n symbols from the data stream.
Thereby, only space sublinear in the window size n should be used. Quite often
randomization is used in order to achieve this goal. In the literature, one finds
two different correctness criteria for randomized sliding window algorithms:
(i) one can require that for every data stream and every time instant t, the
algorithm computes a correct output value with high probability, or (ii) one can
require that for every data stream the probability that the algorithm computes
at every time instant a correct output value is high. Condition (ii) is stronger
than (i) and is called “strict correctness” in this paper. The main result of this
paper states that every strictly correct randomized sliding window algorithm
can be derandomized without increasing the worst-case space consumption.

1 Introduction

Sliding window streaming algorithms process an input sequence a1a2 · · · am
from left to right and receive at time t the symbol at as input. Such algorithms
are required to compute at each time instant t a value f(at−n+1 · · · at) that
depends on the n last symbols (we should assume t ≥ n here). The value n
is called the window size and the sequence at−n+1 · · · at is called the window
content at time t. In many applications, data items in a stream are outdated
after a certain time, and the sliding window model is a simple way to model
this. A typical application is the analysis of a time series as it may arise in

? A conference version of this paper appeared in [17].

The first author has been supported by the DFG research project LO 748/13-1.

Universität Siegen
Hölderlinstrasse 3
57076 Siegen, Germany
E-mail: {ganardi,hucke,lohrey}@eti.uni-siegen.de

2 M. Ganardi, D. Hucke, M. Lohrey

network monitoring, healthcare and patient monitoring, and transportation
grid monitoring [3].

A general goal in the area of sliding window algorithms is to avoid the
explicit storage of the window content, and, instead, to work in considerably
smaller space, e.g. space polylogarithmic in the window size. In the seminal
paper of Datar, Gionis, Indyk and Motwani [12], where the sliding window
model was introduced, the authors prove that the number of 1’s in a 0/1-
sliding window of size n can be maintained in space O(1

ε · log2 n) if one allows
a multiplicative error of 1±ε. Also a matching lower bound is shown. Other al-
gorithmic problems that were addressed in the extensive literature on sliding
window streams include the computation of statistical data (e.g. computa-
tion of the variance and k-median [5], and quantiles [4]), optimal sampling
from sliding windows [9], membership problems for formal languages [13–16],
computation of edit distances [10], database querying (e.g. processing of join
queries over sliding windows [18]) and graph problems (e.g. checking for con-
nectivity and computation of matchings, spanners, and minimum spanning
trees [11]). The reader can find further references in [1, Chapter 8] and [8].

Many of the above mentioned papers deal with sliding window algorithms
that only compute a good enough approximation of the exact value of interest.
In fact, even for very simple sliding window problems it is unavoidable to store
the whole window content. Examples are the exact computation of the number
of 1’s [12] or the computation of the first symbol of the sliding window for a 0/1-
data stream [14]. In this paper, we consider a general model for sliding window
approximation problems, where a (possibly infinite set) of admissible output
values is fixed for each word. To be more accurate, a specific approximation
problem is described by a relation Φ ⊆ Σ∗×Y which associates to words over
a finite alphabet Σ (the set of data values in the stream) admissible output
values from a possibly infinite set Y . A sliding window algorithm for such a
problem is then required to compute at each time instant an admissible output
value for the current window content. This model covers exact algorithms
(where Φ is a function Φ : Σ∗ → Y) as well as a wide range of approximation
algorithms. For example the computation of the number of 1’s in a 0/1-sliding
window with an allowed multiplicative error of 1± ε is covered by our model,
since for a word with k occurrences of 1, the admissible output values are the
integers between (1− ε)k and (1 + ε)k.

A second ingredient of many sliding window algorithms is randomization.
Following our recent work [13–15] we model a randomized streaming algorithm
for a given approximation problem as a probabilistic automaton over a finite
alphabet. Probabilistic automata were introduced by Rabin [23] and can be
seen as a common generalization of deterministic finite automata and Markov
chains. The basic idea is that for every state q and every input symbol a,
the next state is chosen according to some probability distribution. As an
extension to the classical model of Rabin, states in a probabilistic automaton
are not accepting or rejecting but are associated with output values from the
set Y . This allows to associate with every input word w ∈ Σ∗ and every
output value y ∈ Y the probability that the automaton outputs y on input w.

Derandomization for sliding window algorithms with strict correctness? 3

In order to solve a specific approximation problem Φ ⊆ Σ∗ × Y in the sliding
window model one should require that for a given window size n, a probabilistic
automaton Pn should have a small error probability λ (say λ = 1/3) on every
input stream. But what does the latter exactly mean? Two different definitions
can be found in the literature:

– For every input stream w = a1 · · · am, the probability that Pn outputs on
input w a value y ∈ Y with (am−n+1 · · · am, y) /∈ Φ is at most λ. Clearly
an equivalent formulation is that, for all input streams w = a1 · · · am and
all 0 ≤ t ≤ m the probability that Pn outputs on input a1 . . . at a value
y ∈ Y with (at−n+1 · · · at, y) /∈ Φ is at most λ. In this case, we say that Pn
is λ-correct for Φ and window size n.

– For every input stream w = a1 · · · am, the probability that Pn outputs at
some time instant t (n ≤ t ≤ m) a value y ∈ Y with (at−n+1 · · · at, y) /∈ Φ
is at most λ. In this case, we say that Pn is strictly λ-correct for Φ and
window size n.

One can rephrase the difference between strict λ-correctness and λ-correctness
as follows: λ-correctness means that while the randomized sliding window al-
gorithm runs on an input stream it returns at each time instant an admissible
output value with probability at least 1 − λ. In contrast, strict λ-correctness
means that while the randomized sliding window algorithm reads an input
stream, the probability that the algorithm returns an admissible output value
at every time instant is at least 1 − λ. Obviously this makes a difference:
imagine that Ω = {1, 2, 3, 4, 5, 6} and that for every input word w ∈ Σ∗ the
admissible output values are 2, 3, 4, 5, 6, then the algorithm that returns at
every time instant the output of a fair dice throw is 1/6-correct. But the prob-
ability that this algorithm returns an admissible output value at every time
instant is only (5/6)m for an input stream of length m and hence converges
to 0 for m → ∞. Of course, in general, the situation is more complex since
successive output values of a randomized sliding window algorithm are not
independent.

In the following discussion, let us fix the error probability λ = 1/3 (using
probability amplification, one can reduce λ to any constant > 0). In our re-
cent paper [15] we studied the space complexity of the membership problem
for regular languages with respect to λ-correct randomized sliding window al-
gorithms. It turned out that in this setting, one can gain from randomization.
Consider for instance the regular language ab∗ over the alphabet {a, b}. Thus,
the sliding window algorithm for window size n should output “yes”, if the
current window content is abn−1 and “no” otherwise. From our results in [13,
14], it follows that the optimal space complexity of a deterministic sliding win-
dow algorithm for the membership problem for ab∗ is Θ(log n). On the other
hand, it is shown in [15] that there is an λ-correct randomized sliding win-
dow algorithm for ab∗ with (worst-case) space complexity O(log log n) (this
is also optimal). In fact, we proved in [15] that for every regular language L,
the space optimal λ-correct randomized sliding window algorithm for L has ei-
ther constant, doubly logarithmic, logarithmic, or linear space complexity, and

4 M. Ganardi, D. Hucke, M. Lohrey

the corresponding four space classes can be characterized in terms of simple
syntactic properties.

Strict λ-correctness is used (without explicit mentioning) for instance in [7,
12].1 In these papers, the lower bounds shown for deterministic sliding-window
algorithms are extended with the help of Yao’s minimax principle [24] to
strictly λ-correct randomized sliding-window algorithms. The main result from
the first part of the paper states that this is a general phenomenon: we show
that every strictly λ-correct sliding window algorithm for an approximation
problem Φ can be derandomized without increasing the worst-case space com-
plexity (Theorem 1). To the best of our knowledge, this is the first investigation
on the general power of randomization on the space consumption of sliding
window algorithms. We emphasize that our proof does not utilize Yao’s min-
imax principle, which would require the choice of a “hard” distribution of
input streams specific to the problem. It remains open, whether such a hard
distribution exists for every approximation problem.

We remark that the proof of Theorem 1 needs the fact that the sliding
window algorithm is strictly correct on doubly exponentially long streams
with high probability in order to derandomize it. In fact, we show that for
a certain problem a restriction to polynomially long input streams yields an
advantage of strictly correct randomized algorithms over deterministic ones,
see Propositions 1 and 2. Whether such an advantage can be also obtained for
input streams of length singly exponential in the window size remains open.

In the second part of the paper we come back to the problem of count-
ing the number of 1’s in a sliding window [7,12]. Datar et al. [12] proved a
space lower bound of Ω(1

ε · log2 n) for approximating the number of 1’s in
a sliding window of size n with a multiplicative error of 1 ± ε. This lower
bound is first shown for deterministic algorithms and then, using Yao’s mini-
max principle [24], extended to strictly λ-correct randomized sliding-window
algorithms. We show that the same lower bound also holds for the wider class
of λ-correct randomized sliding-window algorithms (Theorem 2). For the proof
of this result we first show a lower bound for the one-way randomized com-
munication complexity of the following problem: Alice holds m many ` bit
numbers a1, . . . , am, and Bob holds an index 1 ≤ i ≤ m and an `-bit number
b. The goal of Bob is to find out whether ai > b holds. We show that Alice has
to transfer at least m`/3 bits to Bob if the protocol has an error probability of
at most 1/200 (Theorem 4). From this result we can derive Theorem 2 using
ideas from the lower bound proof in [12].

Let us add further remarks on our sliding window model. First of all, it is
crucial for our proofs that the input alphabet (i.e., the set of data values in the
input stream) is finite. This is for instance the case when counting the number
of 1’s in a 0/1-sliding window. On the other hand, the problem of computing
the sum of all data values in a sliding window of arbitrary numbers (a problem

1 For instance, Ben-Basat et al. write “We say that algorithm A is λ-correct on a input
instance S if it is able to approximate the number of 1’s in the last W bits, at every time
instant while reading S, to within an additive error of Wε”.

Derandomization for sliding window algorithms with strict correctness? 5

that is considered in [12] as well) is not covered by our setting, unless one puts
a bound on the size of the numbers in the input stream.

As a second remark, note that our sliding window model is non-uniform
in the sense that for every window size we may have a different streaming
algorithm. In other words: it is not required that there exists a single streaming
algorithm that gets the window size as a parameter. Clearly, lower bounds get
stronger when shown for the non-uniform model. Moreover, all proofs of lower
bounds in the sliding window setting, we are aware of, hold for the non-uniform
model.

2 Preliminaries

With [0, 1] we denote the real interval {p ∈ R : 0 ≤ p ≤ 1} of all probabilities.
With log we always mean the logarithm to the base two.

The set of all words over a finite alphabet Σ is denoted by Σ∗. The empty
word is denoted by ε. The length of a word w ∈ Σ∗ is denoted with |w|. The
sets of words over Σ of length exactly, at most and at least n are denoted by
Σn, Σ≤n and Σ≥n, respectively. In the context of streaming algorithms, we
also use the term “stream” for words.

2.1 Approximation problems

An approximation problem is a relation Φ ⊆ Σ∗×Y where Σ is a finite alphabet
and Y is a (possibly infinite) set of output values. The relation Φ associates
with each word w ∈ Σ∗ a set of admissible or correct output values in Y .
Typical examples include:

– exact computation problems ϕ : Σ∗ → Y where we identify ϕ with its graph
Φ = {(w,ϕ(w)) : w ∈ Σ∗}. A typical example is the mapping c1 : {0, 1}∗ →
N where c1(w) is the number of 1’s in w. Another exact problem is given
by the characteristic function χL : Σ∗ → {0, 1} of a language L ⊆ Σ∗

(χL(w) = 1 if and only if w ∈ L).
– approximation of some numerical value for the data stream, which can be

modeled by a relation Φ ⊆ Σ∗×N. A typical example would be the problem
{(w, k) : (1− ε) · c1(w) ≤ k ≤ (1 + ε) · c1(w)} for some 0 < ε < 1.

For a window length n ≥ 0 and a stream w ∈ Σ∗ we define lastn(w) to be
the suffix of �nw of length n where � ∈ Σ is a fixed alphabet symbol. The
word lastn(ε) = �n is also called the initial window. To every approximation
problem Φ ⊆ Σ∗ × Y we associate the sliding window problem

SWn(Φ) = {(x, y) ∈ Σ∗ × Y : (lastn(x), y) ∈ Φ}

for window length n.

6 M. Ganardi, D. Hucke, M. Lohrey

2.2 Probabilistic automata with output

In the following we will introduce probabilistic automata [22,23] as a model of
randomized streaming algorithms which produce an output after each input
symbol. A randomized streaming algorithm or a probabilistic automaton P =
(Q,Σ, ι, ρ, o) consists of a (possibly infinite) set of states Q, a finite alphabet
Σ, an initial state distribution ι : Q→ [0, 1], a transition probability function
ρ : Q×Σ ×Q→ [0, 1] and an output function o : Q→ Y such that

–
∑
q∈Q ι(q) = 1,

–
∑
q∈Q ρ(p, a, q) = 1 for all p ∈ Q, a ∈ Σ.

The space of the randomized streaming algorithm P (or the number of bits
used by P) is given by s(P) = log |Q| ∈ R≥0 ∪ {∞}.

If ι and ρ map into {0, 1}, then P is a deterministic automaton; in this
case we write P as P = (Q,Σ, q0, δ, o), where q0 ∈ Q is the initial state and
δ : Q × Σ → Q is the transition function. A run on a word a1 · · · am ∈ Σ∗

in P is a sequence π = (q0, a1, q1, a2, . . . , am, qm) where q0, . . . , qm ∈ Q and
ρ(qi−1, ai, qi) > 0 for all 1 ≤ i ≤ m. If m = 0 we obtain the empty run (q0)
starting and ending in q0. We write runs in the usual way

π : q0
a1−→ q1

a2−→ · · · am−−→ qm

or also omit the intermediate states: π : q0
a1···am−−−−−→ qm. We extend ρ to runs

in the natural way: if π : q0
a1−→ q1

a2−→ · · · am−−→ qm is a run in P then ρ(π) =∏m
i=1 ρ(qi−1, ai, qi). Furthermore we define ρι(π) = ι(q0) · ρ(π). We denote by

Runs(P, w) the set of all runs on w in P and denote by Runs(P, q, w) those
runs on w that start in q ∈ Q. If P is clear from the context, we simply
write Runs(w) and Runs(q, w). Notice that for each w ∈ Σ∗ the function ρι
is a probability distribution on Runs(P, w) and for each q ∈ Q the restriction
of ρ to Runs(P, q, w) is a probability distribution on Runs(P, q, w). If Π is
a set of runs (which will often be defined by a certain property of runs),
then Prπ∈Runs(w)[π ∈ Π] denotes the probability

∑
π∈Runs(w)∩Π ρι(π) and

Prπ∈Runs(q,w)[π ∈ Π] denotes
∑
π∈Runs(q,w)∩Π ρ(π).

2.3 Correctness definitions

Let P = (Q,Σ, ι, ρ, o) be a randomized streaming algorithm with output
function o : Q → Y , let Φ ⊆ Σ∗ × Y be an approximation problem and let
w = a1a2 · · · am ∈ Σ∗ be an input stream. Furthermore let 0 ≤ λ ≤ 1 be an
error probability.

– A run π : q0
w−→ qm in P is correct for Φ if (w, o(qm)) ∈ Φ. We say that P

is λ-correct for Φ if for all w ∈ Σ∗ we have

Pr
π∈Runs(w)

[π is correct for Φ] ≥ 1− λ.

Derandomization for sliding window algorithms with strict correctness? 7

– A run π : q0
a1−→ q1

a2−→ · · · qm−1
am−−→ qm in P on w is strictly correct for Φ

if (a1 · · · at, o(qt)) ∈ Φ for all 0 ≤ t ≤ m. We say that P is strictly λ-correct
for Φ if for all w ∈ Σ∗ we have

Pr
π∈Runs(w)

[π is strictly correct for Φ] ≥ 1− λ.

A (strictly) λ-correct randomized streaming algorithm Pn for SWn(Φ) is also
called a (strictly) λ-correct randomized sliding window algorithm for Φ and
window size n. If Pn is deterministic and (strictly) 0-correct, we speak of a
deterministic sliding window algorithm for Φ and window size n. The reader
might think of having for every window size n a sliding window algorithm Pn.
We do not assume any uniformity here in the sense that the sliding window
algorithms for different window sizes do not have to follow a common pattern.
This is the same situation as in non-uniform circuit complexity, where one has
for every input length n a circuit Cn and it is not required that the circuit Cn
can be computed from n.

Remark 1 The trivial sliding window algorithm stores for window size n the
window content with dlog |Σ|e · n bits. Hence every approximation problem
has a deterministic sliding window algorithm Dn with s(Dn) ≤ dlog |Σ|e ·n. In
particular, for every (strictly) λ-correct randomized sliding window algorithm
Pn for Φ and window size n, there exists a (strictly) λ-correct randomized
sliding window algorithm P ′n for Φ and window size n such that

s(P ′n) ≤ min{s(Pn), dlog |Σ|e · n}.

3 Derandomization of strictly correct algorithms

In this section we prove the main result of this paper, which states that strictly
correct randomized sliding window algorithms can be completely derandom-
ized:

Theorem 1 Let Φ ⊆ Σ∗ × Y be an approximation problem, n ∈ N be a
window size and 0 ≤ λ < 1 be an error probability. For every randomized
sliding window algorithm Pn which is strictly λ-correct for Φ and window size
n there exists a deterministic sliding window algorithm Dn for Φ and window
size n such that s(Dn) ≤ s(Pn).

The proof idea is to successively construct a (doubly exponentially long)
strictly correct run which reads all possible windows of length n from a certain
subset of memory states. This strictly correct run then defines a deterministic
algorithm which is always correct.

Let Φ ⊆ Σ∗ × Y , n ∈ N be a window size and 0 ≤ λ < 1 as in Theorem 1.
Let Pn be a strictly λ-correct sliding window algorithm for Φ and window size
n. By Remark 1, we can assume that Pn has a finite state set. Consider a run

π : q0
a1−→ q1

a2−→ · · · am−−→ qm

8 M. Ganardi, D. Hucke, M. Lohrey

in Pn. The run π is simple if qi 6= qj for 0 ≤ i < j ≤ m. A subrun of π is a run

qi
ai+1−−−→ qi+1

ai+2−−−→ · · · qj−1
aj−→ qj

for some 0 ≤ i ≤ j ≤ m. Consider a nonempty subset S ⊆ Q and a function
δ : Q × Σ → Q such that S is closed under δ, i.e., δ(S × Σ) ⊆ S. We say
that the run π is δ-conform if δ(qi−1, ai) = qi for all 1 ≤ i ≤ m. We say
that π is (S, δ)-universal if for all q ∈ S and x ∈ Σn there exists a δ-conform

subrun π′ : q
x−→ q′ of π. Finally, π is δ-universal if it is (S, δ)-universal for some

nonempty subset S ⊆ Q which is closed under δ.

Lemma 1 Let π be a strictly correct run in Pn for Φ, let S ⊆ Q be a nonempty
subset and let δ : Q×Σ → Q be a function such that S is closed under δ. If π
is (S, δ)-universal, then there exists q0 ∈ S such that Dn = (Q,Σ, q0, δ, o) is a
deterministic sliding window algorithm for Φ and window size n.

Proof Let q0 = δ(p,�n) ∈ S for some arbitrary state p ∈ S and define Dn =

(Q,Σ, q0, δ, o). Let w ∈ Σ∗ and consider the run σ : p
�n

−−→ q0
w−→ q in Dn

of length ≥ n. We have to show that (lastn(w), o(q)) ∈ Φ. We can write
�nw = x lastn(w) for some x ∈ Σ∗. Hence, we can rewrite the run σ as

σ : p
x−→ q′

lastn(w)−−−−−→ q. We know that q′ ∈ S because S is closed under δ. Since

π is (S, δ)-universal, it contains a subrun q′
lastn(w)−−−−−→ q. Strict correctness of π

implies (lastn(w), o(q)) ∈ Φ. ut

For the rest of this section we fix an arbitrary function δ : Q×Σ → Q such
that for all q ∈ Q, a ∈ Σ,

ρ(q, a, δ(q, a)) = max{ρ(q, a, p) : p ∈ Q}.

Thus, we choose δ(q, a) as a most likely a-successor of q. Note that

ρ(q, a, δ(q, a)) ≥ 1

|Q|
(1)

for all q ∈ Q, a ∈ Σ. Furthermore, let Dn = (Q,Σ, q0, δ, o) where the initial
state q0 will be defined later. We inductively define for each i ≥ 1 a state pi,
a run π∗i in Dn on some word wi ∈ Σ∗, and a non-empty set Si ⊆ Q, which is
closed under δ. For m ≥ 0, we abbreviate Runs(Pn, w1 · · ·wm) by Rm. Note
that R0 = Runs(Pn, ε). For 1 ≤ i ≤ m let Hi denote the event that for a
random run π = π1 · · ·πm ∈ Rm, where each πj is a run on wj , the subrun πi
is (Si, δ)-universal. Notice that Hi is independent of m ≥ i.

First, we choose for pi (i ≥ 1) a state that maximizes the probability

Pr
π∈Ri−1

[π ends in pi | ∀1 ≤ j ≤ i− 1 : Hj],

which is at least 1/|Q|. Note that p1 is a state such that ι(p1) is maximal,
since R0 only consists of empty runs (q). For Si we take any maximal strongly
connected component of Dn (viewed as a directed graph) which is reachable

Derandomization for sliding window algorithms with strict correctness? 9

from pi. As usual, strongly connected component means that for all p, q ∈ Si
the state p is reachable from q and vice versa. Maximality means that for every
q ∈ Si and every a ∈ Σ, also δ(q, a) belongs to Si, i.e., Si is closed under δ.
Note that such a δ-closed strongly connected component must exist since Q is
finite. Finally, we define the run π∗i and the word wi. The run π∗i starts in pi.
Then, for each pair (q, x) ∈ Si×Σn the run π∗i leads from the current state to
state q via a simple run and then reads the word x from q. The order in which
we go over all pairs (q, x) ∈ Si × Σn is not important. Since Si is a maximal
strongly connected component of Dn such a run π∗i exists. Hence, π∗i is a run
on a word

wi =
∏
q∈Si

∏
x∈Σn

yq,x x,

where yq,x is the word that leads from the current state via a simple run to
state q. Since we choose the runs on the words yq,x to be simple, we have
|yq,x| ≤ |Q| and thus |wi| ≤ |Q| · |Σ|n · (|Q|+ n). Let us define

µ =
1

|Q||Q|·|Σ|n·(|Q|+n)+1
. (2)

Note that by construction, the run π∗i is (Si, δ)-universal. Inequality (1) yields

Pr
π∈Runs(pi,wi)

[π = π∗i] ≥ 1

|Q||wi|
≥ µ · |Q|. (3)

Lemma 2 For all m ≥ 0 we have Prπ∈Rm [Hm | ∀i ≤ m− 1 : Hi] ≥ µ.

Proof In the following, let π be a random run from Rm and let πi be the
subrun on wi. Under the assumption that the event [πm−1 ends in pm] holds,
the events [πm = π∗m] and [∀i ≤ m − 1 : Hi] are conditionally independent.2

Thus, we have

Pr
π∈Rm

[πm = π∗m | πm−1 ends in pm ∧ ∀i ≤ m− 1 : Hi]

= Pr
π∈Rm

[πm = π∗m | πm−1 ends in pm].

2 Two events A and B are conditionally independent assuming event C if Pr[A∧B | C] =
Pr[A | C] · Pr[B | C], which is equivalent to Pr[A | B ∧ C] = Pr[A | C].

10 M. Ganardi, D. Hucke, M. Lohrey

Since the event [πm = π∗m] implies the event [πm−1 ends in pm] (recall that
π∗m starts in pm) and π∗m is (Sm, δ)-universal, we obtain:

Pr
π∈Rm

[Hm | ∀i ≤ m− 1 : Hi]

≥ Pr
π∈Rm

[πm = π∗m | ∀i ≤ m− 1 : Hi]

= Pr
π∈Rm

[πm = π∗m ∧ πm−1 ends in pm | ∀i ≤ m− 1 : Hi]

= Pr
π∈Rm

[πm = π∗m | πm−1 ends in pm ∧ ∀i ≤ m− 1 : Hi] ·

Pr
π∈Rm

[πm−1 ends in pm | ∀i ≤ m− 1 : Hi]

= Pr
π∈Rm

[πm = π∗m | πm−1 ends in pm] ·

Pr
π∈Rm

[πm−1 ends in pm | ∀i ≤ m− 1 : Hi]

≥ Pr
πm∈Runs(pm,wm)

[πm = π∗m] · 1

|Q|
≥ µ,

where the last inequality follows from (3). This proves the lemma. ut

Lemma 3 Prπ∈Rm
[π is δ-universal] ≥ Prπ∈Rm

[∃i ≤ m : Hi] ≥ 1− (1− µ)m.

Proof The first inequality follows from the definition of the eventHi. Moreover,
with Lemma 2 we get

Pr
π∈Rm

[∃i ≤ m : Hi] = Pr
π∈Rm

[∃i ≤ m− 1 : Hi] +

Pr
π∈Rm

[Hm | ∀i ≤ m− 1 : Hi] · Pr
π∈Rm

[∀i ≤ m− 1 : Hi]

= Pr
π∈Rm−1

[∃i ≤ m− 1 : Hi] +

Pr
π∈Rm

[Hm | ∀i ≤ m− 1 : Hi] · Pr
π∈Rm−1

[∀i ≤ m− 1 : Hi]

≥ Pr
π∈Rm−1

[∃i ≤ m− 1 : Hi] + µ · Pr
π∈Rm−1

[∀i ≤ m− 1 : Hi].

Thus, rm := Prπ∈Rm [∃i ≤ m : Hi] satisfies rm ≥ rm−1 + µ · (1 − rm−1) =
(1− µ) · rm−1 + µ. Since r0 = 0, we get rm ≥ 1− (1− µ)m by induction. ut

We can now show our main theorem:

Proof (Theorem 1.) We use the probabilistic method in order to show that
there exists q0 ∈ Q such that Dn = (Q,Σ, q0, δ, o) is a deterministic sliding

Derandomization for sliding window algorithms with strict correctness? 11

window algorithm for Φ. With Lemma 3 we get

Pr
π∈Rm

[π is strictly correct for SWn(Φ) and δ-universal]

= 1− Pr
π∈Rm

[π is not strictly correct for SWn(Φ) or is not δ-universal]

≥ 1− Pr
π∈Rm

[π is not strictly correct for SWn(Φ)]− Pr
π∈Rm

[π is not δ-universal]

≥ Pr
π∈Rm

[π is δ-universal]− λ

≥ 1− (1− µ)m − λ.

We have 1− (1− µ)m − λ > 0 for m > log(1− λ)/ log(1− µ) (note that λ < 1
and 0 < µ < 1 since we can assume that |Q| ≥ 2). Hence there are m ≥ 0 and
a strictly correct δ-universal run π ∈ Rm. We can conclude with Lemma 1. ut

4 Polynomially long streams

The word w1w2 · · ·wm (with m > log(1 − λ)/ log(1 − µ)) from the previous
section, for which there exists a strictly correct and δ-universal run has a
length that is doubly exponential in the window size n. To see this note that
0 > ln(1− x) ≥ x/(x− 1) for 0 ≤ x < 1, which implies

m >
log(1− λ)

log(1− µ)
=

ln(1− λ)

ln(1− µ)
≥ ln(1− λ)(µ− 1) · 1

µ
.

Here, ln(1−λ) is a negative constant and µ− 1 is very close to −1. Moreover,
1/µ grows doubly exponential in n by (2).

In other words: We need the fact that the sliding window algorithm is
strictly correct on doubly exponentially long streams with high probability in
order to derandomize the algorithm. In this section we show that at least we
cannot reduce the length to poly(n): if we restrict to inputs of length poly(n)
then strictly λ-correct sliding window algorithms can yield a proper space
improvement over deterministic sliding window algorithms.

For a word w = a1 · · · an let wR = an · · · a1 denote the reversed word.
Take the language Kpal = {wwR : w ∈ {a, b}∗} of all palindromes of even
length, which belongs to the class DLIN of deterministic linear context-free
languages [6], and let L = $Kpal. As explained in Section 2.1 we identify L with
the (exact) approximation problem χL : {a, b, $}∗ → {0, 1} where χL(w) = 1
if and only if w ∈ L. We write Ln for SWn(χL). Note that the following
proposition holds for arbitrarily long input streams.

Proposition 1 Any deterministic sliding window algorithm for L and window
size 2n+ 1 uses Ω(n) space.

Proof Let D2n+1 be a deterministic sliding window algorithm for L and win-
dow size 2n + 1, and take two distinct words $x and $y where x, y ∈ {a, b}n.
Since D2n+1 accepts $xxR and rejects $yxR, the algorithm D2n+1 reaches two
different states on the inputs $x and $y. Therefore, D2n+1 must have at least
|{a, b}n| = 2n states and hence Ω(n) space. ut

12 M. Ganardi, D. Hucke, M. Lohrey

Proposition 2 Fix a polynomial p(n) and let n ∈ N be a window size. If n
is large enough, there is a randomized streaming algorithm Pn with s(Pn) ≤
O(log n) such that

Pr
π∈Runs(Pn,w)

[π is strictly correct for Ln] ≥ 1− 1/n

for all input words w ∈ Σ∗ with |w| ≤ p(n).

Proof Babu et al. [6] have shown that for every language K ∈ DLIN there
exists a randomized streaming algorithm using space O(log n) which, given an
input v of length n,

– accepts with probability 1 if v ∈ K,
– and rejects with probability at least 1− 1/n if v /∈ K.

We use this statement for the language Kpal ∈ DLIN. We remark that the
algorithm needs to know the length of v in advance. To stay consistent with
our definition, we view the above algorithm as a family (Sn)n≥0 of randomized
streaming algorithms Sn. Furthermore, the error probability 1/n can be further
reduced to 1/(n + 1)d where d is chosen such that p(n) ≤ nd for sufficiently
large n (by picking random primes of size Θ(nd+1) in the proof from [6]).

Now we prove our claim for L = $Kpal. The streaming algorithm Pn for
window size n works as follows: After reading a $-symbol, the algorithm Sn−1
from above is simulated on the longest factor from {a, b}∗ that follows (i.e.
Sn−1 is simulated until the next $ arrives). Simultaneously we maintain the
length ` of the maximal suffix over {a, b}, up to n, using O(log n) bits. If `
reaches n−1, then Pn accepts if and only if Sn−1 accepts. Notice that Pn only
errs if the stored length is n−1, which happens at most once in every n steps.
Therefore the number of time instants where Pn errs on an input stream w of
length |w| ≤ p(n) ≤ nd is at most |w|/n ≤ nd/n = nd−1 (if n is large enough).
Moreover, at each of these time instants the error probability is at most 1/nd.
By the union bound we have for every stream w ∈ {$, a, b}≤p(n):

Pr
π∈Runs(Pn,w)

[π is not strictly correct for Ln] ≤ nd−1 · 1

nd
= 1/n.

This concludes the proof. ut

5 Lower bound for basic counting

For an approximation error ε > 0 let us define the basic counting problem

C1,ε = {(w,m) ∈ {0, 1}∗ × N : (1− ε) · c1(w) ≤ m ≤ (1 + ε) · c1(w)}

where c1(w) denotes the number of 1’s in w. In [12] Datar, Gionis, Indyk
and Motwani prove that any strictly λ-correct randomized sliding window
algorithm for C1,ε and window size n must use k

64 log2 n
k − log(1−λ) bits where

k = b1/εc. We adapt their proof to show that the lower bound also holds for
the weaker notion of λ-correct randomized sliding window algorithms.

Derandomization for sliding window algorithms with strict correctness? 13

group

subblock

Fig. 1 A single block consisting of B = 12 subblocks divided into k/4 = 3 groups. The
groups encode the numbers 2, 1, and 3 (from left to right).

Theorem 2 Let ε > 0 and k = b1/εc. Every 1/200-correct randomized sliding
window algorithm for C1,ε and window size n ≥ 4k must use k

48 log2(nk) many
bits.

In the statement above we can assume any algorithm with error probability
λ < 1/2 using the median trick, see e.g. [2]: We run m copies of the algorithm
in parallel and output the median of their outputs. Using the Chernoff bound
we can choose m such that the median is a correct ε-approximation with error
probability 1/200. This reduces the space lower bound only by a constant.

For the rest of the section let us fix n ∈ N and 0 < ε < 1. Furthermore
set k = b1/εc. For the proof we use a reduction from a suitable communi-
cation problem. Let f : A × B → {0, 1} be a function. A (one-round com-
munication public-coin) protocol P = (mA,mB) with cost c consists of two
functions mA : A × R → {0, 1}c and mB : {0, 1}c × B × R → {0, 1}. Here
R is a finite set of random choices equipped with a probability distribution.
Given inputs a ∈ A and b ∈ B the protocol computes the random output
P (a, b) = mB(mA(a, r), b, r) where r ∈ R at random. It computes f with error
probability λ < 1/2 if

Pr
r∈R

[P (a, b) 6= f(a, b)] ≤ λ

for all a ∈ A, b ∈ B. If |R| = 1 then P is deterministic.
We define the communication problem GT`,m where Alice is given m many

`-bit numbers a(1), . . . , a(m), Bob is given a single `-bit number b and an index
1 ≤ p ≤ m, and the goal is to decide whether a(p) > b. Formally, we view
GT`,m as a function

GT`,m : ({0, 1}`)m × ({0, 1}` × {1, . . . ,m})→ {0, 1}.

If m = 1 we write GT` = GT`,1.

Proposition 3 Let B =
√
nk such that n ≥ 4k, and j = blog n

B c. If Pn is a
λ-correct sliding window algorithm for C1,ε and window size n then there exists
a one-round protocol for GTlog 4B

k , jk4
with cost s(Pn) and error probability λ.

Proof In the following we ignore rounding issues. The idea is that Alice encodes
her jk/4 many numbers by a bit stream consisting of jk/4 groups and feeding

14 M. Ganardi, D. Hucke, M. Lohrey

it into the sliding window algorithm. Then Bob can compare his number b
with any of Alice’s numbers a(i) with high probability, by sliding the window
to the appropriate position.

As in [12] we partition the window of length n into j blocks of size

B, 2B, 4B, . . . , 2j−1B

from right to left where j = blog n
B c. Notice that j ≥ 1 by our assumption

that n ≥ 4k. The blocks are numbered 0 to j − 1 from right to left. The i-th
block of length 2iB is divided into B many subblocks of length 2i. Each block
is divided into k/4 groups consisting of 4B/k contiguous subblocks. In the
following we choose from every group exactly one subblock which is filled with
1’s; the remaining subblocks in the group are filled with 0’s. An example is
shown in Figure 1.

Let M = {1, . . . , 4B/k}. We will encode a tuple a = (a(1), . . . , a(jk/4)) ∈
M jk/4 as a bit string of length n in unary encoding fashion as follows: For
a ∈M and 0 ≤ i ≤ j − 1 define the bit string

ui(a) = (02
i

)4B/k−a12
i

(02
i

)a−1

of length 2i · 4B/k. For a tuple a = (a(1), . . . , a(jk/4)) over M of length jk/4
we define the arrangement w(a) ∈ {0, 1}n by

w(a) =

j−1∏
i=0

k/4∏
r=1

ui(a
(ik/4+r))

where both concatenations are interpreted from right to left.

Datar et al. [12] argue that for any two distinct tuples a and b, the ar-
rangements w(a) and w(b) must be distinguished by a deterministic sliding
window algorithm for C1,ε and window length n.

We will present a communication protocol for GTlog 4B
k , jk4

based on a λ-

correct sliding window algorithm Pn for C1,ε. Notice that log 4B
k ≥ 1 by the as-

sumption that n ≥ 4k. Suppose that Alice holds the tuple a = (a(1), . . . , a(jk/4))
of numbers from M , Bob holds b ∈M and an index 1 ≤ p ≤ jk/4. Their goal
is to determine whether ap > b. The protocol is defined as follows: Alice simu-
lates Pn on w(a) and sends the reached state to Bob, using s(Pn) bits. Suppose
that p = ik/4 + r for some 0 ≤ i ≤ j − 1 and 1 ≤ r ≤ k/4. Bob then insert a
suitable number of 0’s in the stream such that the length-n window starts with
the b-th subblock from the r-th group in the i-th block of w(a). Notice that
this is possible without knowing the tuple a because of the regular structure
of arrangements which is known to Bob. The number of 1-bits in the obtained
window is precisely

– r · 2i + k
4 (2i−1 + · · ·+ 21 + 20) if ap ≤ b, and

– (r − 1) · 2i + k
4 (2i−1 + · · ·+ 21 + 20) if ap > b.

Derandomization for sliding window algorithms with strict correctness? 15

Since the absolute approximation error is bounded by

ε
k

4
(2i + · · ·+ 21 + 20) <

2i+1

4
= 2i−1,

the two cases above can be distinguished by Pn with probability 1− λ. ut

It remains to prove a lower bound for the one-round communication com-
plexity of GT`,m. We start by showing that the one-round communication
complexity of GTn is Ω(n). This was already proven by Yao [25, Theorem 5].
More generally, Miltersen et al. showed that any r-round protocol for GTn
requires Ω(n1/r) bits using the round elimination technique [21]. We will first
reprove the Ω(n) lower bound for GTn, by directly plugging in r = 1 and GTn
into the proof of [21, Lemma 11]. Afterwards we adapt the proof to show the
Ω(`m) lower bound for GT`,m.

Theorem 3 Every one-round randomized protocol for GTn with error proba-
bility 1/200 has cost at least n/3 bits.

Proof We follow the proof of [21, Lemma 11]. Consider a randomized one-
round protocol for GTn with error probability 1/200. The goal is to prove
that the protocol must use n/3 bits.

By Yao’s minimax principle [24] it suffices to exhibit a “hard” input dis-
tribution D on the set of inputs {0, 1}n × {0, 1}n and to prove that every
deterministic protocol P with PrD[P (x, y) 6= GTn(x, y)] ≤ 1/200 must have
cost Ω(n). See [20] for similar applications of Yao’s minimax principle in the
area of communication complexity.

For a bit string x = x1 · · ·xn and an index 1 ≤ i ≤ n we define the bit
string τi(x) = x1 · · ·xi−101n−i of length n. Interpreted as binary numbers, we
have the property

x > τi(x) ⇐⇒ xi = 1. (4)

The “hard” input distribution D is the uniform distribution on

{(x, τi(x)) | x ∈ {0, 1}n, 1 ≤ i ≤ n}.

In other words, Alice holds a uniformly random string x ∈ {0, 1}n and Bob
holds τi(x) where the index 1 ≤ i ≤ n is also chosen uniformly at random
and independently from x. By property (4) Bob needs to determine the value
of xi. Intuitively, the prefix x1 · · ·xi−1 of τi(x) does not help Bob, so this is
basically the “index”-function, for which every one-round randomized protocol
with error probability 1/3 has cost Ω(n) [19, Theorem 3.7].

Consider any deterministic protocol P with communication cost c such
that

Pr
D

[P errs on (x, τi(x))] ≤ 0.005.

Call an index i in x bad if P errs on (x, τi(x)), and otherwise good. A uniformly
random string x ∈ {0, 1}n has at most 0.005n bad indices in expectation. By
the Markov inequality we know

Pr
x∈{0,1}n

[number of bad indices of x ≥ 0.01n] ≤ 0.005n

0.01n
=

1

2
.

16 M. Ganardi, D. Hucke, M. Lohrey

Hence the set

R = {x ∈ {0, 1}n | x has at most 0.01n bad indices}

must contain at least 2n−1 bit strings. Since Alice sends at most c bits, she
partitions R into at most 2c subsets according to the bit string send to Bob.
Let T be one of these subsets that has maximum cardinality. We have |T | ≥
|R|/2c = 2n−1−c, i.e.,

c ≥ n− 1− log |T |. (5)

To prove c ≥ n/3 we derive an upper bound on |T |.
In the following we successively construct a sequence of bits a1, . . . , an and

a sequence of nonempty sets T = T1 ⊇ T2 ⊇ · · · ⊇ Tn+1 of n-bit strings such
that all strings in Ti have the prefix a1 · · · ai−1 (in particular, |Tn+1| = 1).

1. Set T1 := T and repeat the following for i = 1, . . . , n:
2. Set T−i := {x ∈ Ti | i is bad in x} and T+

i := {x ∈ Ti | i is good in x}.
3. If |T−i | ≥ 0.05 · |Ti| choose ai ∈ {0, 1} such that |{x ∈ T−i | xi = ai}| is

maximal. Then set Ti+1 := {x ∈ T−i | xi = ai}.
4. Otherwise we have |T+

i | ≥ 0.95 · |Ti|. All strings x ∈ T+
i must have the

same i-th bit, say xi = ai, since for a string x ∈ T+
i Bob outputs correctly

the bit xi on input (x, τi(x)). But since all strings in T+
i have the same

prefix of length i− 1 (and hence yield the same value under τi) and Alice
communicates by definition of T the same message to Bob, Bob outputs
the same bit for all x ∈ T+

i . Set Ti+1 := T+
i .

Observe that all subsets T1, . . . , Tn+1 are nonempty. If point 3 is satisfied then
|Ti+1| ≥ 0.5 · 0.05|Ti| = 0.025|Ti|, and the index i is bad in all strings of Ti+1.
Hence, point 3 can only be satisfied at most 0.01n times by definition of R. If
point 4 is satisfied then |Ti+1| ≥ 0.95|Ti|. We can therefore bound

1 = |Tn+1| ≥ 0.0250.01n · 0.950.99n · |T | > 0.916n · |T |,

and thus |T | ≤ 1.0917n. By (5) we have established

c ≥ (1− log 1.0917)n− 1 ≥ 0.8735n− 1 ≥ n/3.

for all n ≥ 2. Clearly in the case n = 1 there is no zero-message randomized
protocol for GT1. ut

Theorem 4 Every one-round protocol for GT`,m with error probability 1/200
has cost at least `m/3 bits.

Proof We adapt the proof above to GT`,m. To keep the notation consistent
we view Alice’s input as a single bit string x = x(1) · · ·x(m) ∈ {0, 1}`m where
x(1), . . . , x(m) ∈ {0, 1}`. We can write an index 1 ≤ i ≤ `m uniquely as i =
(p(i) − 1)` + r(i) where 1 ≤ p(i) ≤ m and 1 ≤ r(i) ≤ `. For 1 ≤ i ≤ `m we
define the bit string

τi(x) = x
(p(i))
1 . . . x

(p(i))
r(i)−101`−r(i)

Derandomization for sliding window algorithms with strict correctness? 17

of length `. We have the property that

GT`,m(x, τi(x), p(i)) = 1 ⇐⇒ x
(p(i))
r(i) = 1.

The hard input distribution is the uniform distribution D over

{(x, τi(x), p(i)) : x ∈ {0, 1}`m, 1 ≤ i ≤ `m}.

Let P be a deterministic protocol with communication cost c such that

Pr
D

[P errs on (x, τi(x), p(i))] ≤ 0.005.

We call an index 1 ≤ i ≤ `m bad if P errs on (x, τi(x), p(i)). Again we can
find a set T ⊆ {0, 1}`m such that

– |T | ≥ 2`m−1−c,
– all x ∈ T have at most 0.01`m bad indices,
– and Alice sends the same message on all x ∈ T .

Using precisely the same arguments as in the previous proof we obtain |T | ≤
1.0917`m and thus c ≥ `m/3 whenever `m ≥ 2. If `m = 1 then Alice must
also send at least one bit in any communication protocol for GT`,m with error
probability 1/200. ut

Theorem 2 now follows from Proposition 3 and Theorem 4: Let B =
√
nk

and j = blog n
B c ≥ 1. Then, any randomized 1/200-correct sliding window

algorithm for C1,ε and window size n must use at least

1

3
log

(
4B

k

)
· jk

4
=

1

3
log

(
4

√
n

k

)
·
⌊

log

(√
n

k

)⌋
· k

4
≥ k

48
· log2

(
n

k

)
many bits.

6 Open problems

In the proof of Theorem 1 we need the fact that the sliding window algorithm is
strictly correct on doubly exponentially long streams with high probability. We
pose the question whether this can be reduced to exponentially long streams.

Another open problem is whether one can extend Theorem 4 to arbitrary
communication problems. For any function f : A×B → {0, 1} one can define
an “indexed” version f (m) : Am × B × {1, . . . ,m} → {0, 1} where Alice holds
a tuple (a1, . . . , am) ∈ Am, Bob holds b ∈ B and 1 ≤ i ≤ m and their goal
is to compute f(ai, b). The question is whether the one-round communication
complexity of f (m) must be m times as large as the complexity of f , as it is
the case for GTn.

18 M. Ganardi, D. Hucke, M. Lohrey

References

1. C. C. Aggarwal. Data Streams - Models and Algorithms. Springer, 2007.
2. N. Alon, Y. Matias, and M. Szegedy The Space Complexity of Approximating the

Frequency Moments. Journal of Computer and System Sciences, 58(1):137–147, 1999.
3. H. C. M. Andrade, B. Gedik, and D. S. Turaga Fundamentals of Stream Processing:

Application Design, Systems, and Analytics. Cambridge University Press, 2014.
4. A. Arasu and G. S. Manku. Approximate counts and quantiles over sliding windows.

In Proceedings of PODS 2004, pages 286–296. ACM, 2004.
5. B. Babcock, M. Datar, R. Motwani, and L. O’Callaghan. Maintaining variance and

k-medians over data stream windows. In Proceedings of PODS 2003, pages 234–243.
ACM, 2003.

6. A. Babu, N. Limaye, J. Radhakrishnan, and G. Varma. Streaming algorithms for lan-
guage recognition problems. Theoretical Computer Science, 494:13–23, 2013.

7. R. Ben-Basat, G. Einziger, R. Friedman, and Y. Kassner. Succinct Summing over
Sliding Windows. Algorithmica 81(5): 2072–2091, 2019.

8. V. Braverman. Sliding window algorithms. In Encyclopedia of Algorithms, pages 2006–
2011. Springer, 2016.

9. V. Braverman, R. Ostrovsky, and C. Zaniolo. Optimal sampling from sliding windows.
Journal of Computer and System Sciences, 78(1):260–272, 2012.

10. H. Chan, T. W. Lam, L. Lee, J. Pan, H. Ting, and Q. Zhang. Edit distance to mono-
tonicity in sliding windows. In Proceedings of ISAAC 2011, volume 7074 of Lecture
Notes in Computer Science, pages 564–573. Springer, 2011.

11. M. S. Crouch, A. McGregor, and D. Stubbs. Dynamic graphs in the sliding-window
model. In Proceedings of ESA 2013, volume 8125 of Lecture Notes in Computer Science,
pages 337–348. Springer, 2013.

12. M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining stream statistics over
sliding windows. SIAM Journal on Computing, 31(6):1794–1813, 2002.

13. M. Ganardi, D. Hucke, D. König, M. Lohrey, and K. Mamouras. Automata theory on
sliding windows. In Proceedings of STACS 2018, volume 96 of LIPIcs, pages 31:1–31:14.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. to appear.

14. M. Ganardi, D. Hucke, and M. Lohrey. Querying regular languages over sliding win-
dows. In Proceedings of FSTTCS 2016, volume 65 of LIPIcs, pages 18:1–18:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2016.

15. M. Ganardi, D. Hucke, and M. Lohrey. Randomized sliding window algorithms for
regular languages. In Proceedings of ICALP 2018, volume 107 of LIPIcs, pages 127:1–
127:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

16. M. Ganardi, A. Jez, and M. Lohrey. Sliding windows over context-free languages. In
Proceedings of MFCS 2018, volume 117 of LIPIcs, pages 15:1–15:15. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2018.

17. M. Ganardi, D. Hucke, and M. Lohrey. Derandomization for Sliding Window Algorithms
with Strict Correctness. In Proceedings of CSR 2019, volume 11532 of Lecture Notes
in Computer Science, pages 237–249. Springer International Publishing, 2019.

18. L. Golab and M. T. Özsu. Processing sliding window multi-joins in continuous queries
over data streams. In Proceedings of VLDB 2003, pages 500–511. Morgan Kaufmann,
2003.

19. Ilan Kremer, Noam Nisan, and Dana Ron. On randomized one-round communication
complexity. Computational Complexity, 8(1):21–49, 1999.

20. Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge University
Press, 1997.

21. P. B. Miltersen, N. Nisan, S. Safra, and A. Wigderson On data structures and asym-
metric communication complexity. In Proceedings of STOC 1995, pages 103–111. ACM,
1995.

22. A. Paz. Introduction to Probabilistic Automata. Academic Press, 1971.
23. M. O. Rabin. Probabilistic automata. Information and Control, 6(3):230–245, 1963.
24. A. C. Yao. Probabilistic computations: Toward a unified measure of complexity. In

Proceedings of FOCS 1977, pages 222–227. IEEE Computer Society, 1977.
25. A. C. Yao. Lower Bounds by Probabilistic Arguments (Extended Abstract). In Pro-

ceedings of FOCS 1983, pages 420–428. IEEE Computer Society, 1983.

