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Abstract

The computational complexity of the word problem in HNN-extension of groups
is studied. HNN-extension is a fundamental construction in combinatorial group
theory. It is shown that the word problem for an ascending HNN-extension of
a group H is logspace reducible to the so-called compressed word problem for
H. The main result of the paper states that the word problem for an HNN-
extension of a hyperbolic groupH with cyclic associated subgroups can be solved
in polynomial time. This result can be easily extended to fundamental groups
of graphs of groups with hyperbolic vertex groups and cyclic edge groups.
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1. Introduction

The study of computational problems in group theory goes back to the be-
ginning of the 20th century. In a seminal paper from 1911, Dehn posed three
decision problems [11]: The word problem, the conjugacy problem, and the iso-
morphism problem. In this paper, we mainly deal with the word problem: It is
defined for a finitely generated group G. This means that there exists a finite
subset Σ ⊆ G such that every element of G can be written as a finite product
of elements from Σ. This allows to represent elements of G by finite words over
the alphabet Σ. For the word problem, the input consists of such a finite word
w ∈ Σ∗ and the goal is to check whether w represents the identity element of
G.

In general the word problem is undecidable. By a classical result of Boone
[8] and Novikov [38], there exist finitely presented groups (finitely generated
groups that can be defined by finitely many equations) with an undecidable
word problem; see [45] for an excellent exposition. On the positive side, there
are many classes of groups with decidable word problems. In his paper from 1912
[12], Dehn presented an algorithm that solves the word problem for fundamental
groups of orientable closed 2-dimensional manifolds. This result was extended
to one-relator groups (finitely generated groups that can be defined by a single
equation) by Dehn’s student Magnus [29]. Other important classes of groups
with a decidable word problem are:

• automatic groups [16] (including important classes like braid groups [1],
Coxeter groups [7], right-angled Artin groups [10], Artin groups of large
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type [23], and hyperbolic groups [18]),

• finitely generated linear groups, i.e., finitely generated groups that can be
faithfully represented by matrices over a field [40] (including polycyclic
groups and nilpotent groups),

• finitely generated metabelian groups (they can be embedded in direct
products of linear groups [47]), and

• finitely presented residually free groups [30, 32].

With the rise of computational complexity theory in the 1960’s, also the compu-
tational complexity of group theoretic problems moved into the focus of research.
From the very beginning, this field attracted researchers from mathematics as
well as computer science. It turned out that for many interesting classes of
groups the word problem admits quite efficient algorithms. For instance, Lipton
and Zalcstein [25] proved in 1977 that the word problem for a finitely generated
group that is linear over a field of characteristic zero can be solved in deter-
ministic logarithmic space. Simon [44] extended this result in 1979 to fields of
prime characteristic. For automatic groups, the word problem can be solved in
quadratic time [16], and for the subclass of hyperbolic groups the word problem
can be solved in linear time (even real time) [21] and belongs to the complexity
class LogCFL [26]. The latter is the closure of the context-free languages under
logspace reductions. For one-relator groups, only a non-elementary algorithm
is known for the word problem.

The complexity of the word problem is also preserved by several important
group theoretic constructions, e.g., wreath products [46] and graph products
[13], which generalize free products and direct products. Two other impor-
tant constructions in group theory are HNN-extensions and amalgamated free
products. A theorem of Seifert and van Kampen links these constructions to
algebraic topology. Moreover, HNN-extensions are used in all modern proofs
for the undecidability of the word problem in finitely presented groups; see e.g.
[45]. For a base group H with two isomorphic subgroups A and B and an
isomorphism ϕ : A→ B, the corresponding HNN-extension is the group

G = 〈H, t | t−1at = ϕ(a) (a ∈ A)〉. (1)

Intuitively, it is obtained by adjoing to H a new generator t (the stable letter)
in such a way that conjugation of A by t realizes ϕ. The subgroups A and B
are also called the associated subgroups. If H has a decidable word problem,
A and B are finitely generated subgroups of H, and the subgroup membership
problems for A and B are decidable, then also the word problem for G in (1)
is decidable via Britton reduction [9]. In Britton reduction, one applies the
following rewriting steps as long as possible:

t−1at→ ϕ(a) for a ∈ A and tbt−1 = ϕ−1(b) for b ∈ B, (2)

where a and b are represented by words over a generating set for H. For the
special case where A = B and ϕ is the identity, it is shown in [46] that the
word problem for the HNN-extension G in (1) is NC1-reducible to the following
problems: (i) the word problem for H, (ii) the word problem for the free group of
rank two, and (iii) the subgroup membership problem for A. On the other hand,
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it is not clear whether this result can be extended to arbitrary HNN-extensions
(even if we allow polynomial time Turing reductions instead of NC1-reductions).
The problem with Britton reduction is that each application of a rule from (2)
might increase the length of the word by a constant multiplicative factor. This
might accumulate to an exponential blow-up in word length in the end. Let us
consider some concrete examples:

• The Baumslag-Solitar group BS(p, q) (for p, q ≥ 1) is a one-relator group
with the presentation 〈a, t | t−1apt = aq〉 [5]. Britton-reduction might
lead to powers ak where |k| is exponential in the length of the input word
(this can only happen if one of p, q is at least 2). Still, a polynomial time
algorithm for the word problem of BS(p, q) can be obtained by storing
the exponent k in binary notation. With some more effort, Weiß [49]
proved that the word problem for a Baumslag-Solitar group and, more
generally, the word problem for a so-called generalized Baumslag-Solitar
group (a fundamental group of a graph of groups, where all vertex groups
are copies of Z) can be even solved in logspace.

• The HNN-extension 〈BS(p, q), b | b−1ab = t〉 is known as the Baumslag
group [4] (some authors call it the Baumslag-Gersten group). One can
show that it is a one-relator group. A truly remarkable fact is that the
Dehn function of the Baumslag group (which, roughly speaking, counts
the number of relators needed to show that a trivial word of length n is the
group identity) is non-elementary [39]. This is reflected in the fact that
during Britton reduction, the exponents of the letters a and t may reach
non-elementary size with respect to the input length. This fact let experts
to the conjecture that the Baumslag group is an example of a group whose
word problem cannot be solved in polynomial time. Myasnikov, Ushakov
and Wong refuted this conjecture and proved that the word problem for the
Baumslag group can be solved in polynomial time [35]. For this they used
a tailored compressed representation of integers known as power circuits
[36]. Recently, the complexity for the word problem of the Baumslag group
has been further improved to NC [31].

• Finally, consider an HNN-extension 〈F, t | t−1at = ϕ(a) (a ∈ A)〉 of a
free group F with finitely generated associated subgroups A and B. The
complexity of the word problem for this group is open. Note that the
word problem for a free group is known to be in logspace (it is a linear
group) [25] and the subgroup membership problem for finitely generated
subgroups of a free group can be solved in polynomial time [2]. Still, the
best known algorithm for the word problem of 〈F, t | t−1at = ϕ(a) (a ∈ A)〉
seems to have an exponential running time.

The first two examples exploit compression of integer exponents in order to ob-
tain polynomial time algorithms. In order to solve the open problem from the
third point, one might use a suitable compressed representation of the (poten-
tially exponentially long) words that appear during Britton reduction. Straight-
line programs, i.e., context-free grammars that produce a single word, might be
a good candidate for this. This idea works for the word problems of automor-
phism groups and certain group extensions [28, Section 4.2]. But it is not clear
whether the words that arise from Britton reduction can be compressed down
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to polynomial size using straight-line programs. The problem arises from the
fact that in (1), both A and B might be proper subgroups of H. On the other
hand, if the associated subgroup A coincides with the base group H (G is then
called an ascending HNN-extension) then one can show that the word prob-
lem for G is logspace-reducible to the so-called compressed word problem for
H (Theorem 3.4). The latter problem has a straight-line program G as input,
and it is asked whether the word produced by G evaluates to the group identity
of H. The compressed word problem is known to be solvable in polynomial
time for nilpotent groups [28], virtually special groups [28], and groups that
are hyperbolic relative to free abelian subgroups [22]. For every linear group,
one still has a randomized polynomial time algorithm for the compressed word
problem [28]. Examples of groups with a PSPACE-complete word problem are
Thompson’s group F , the Grigorchuk group, and wreath products G oZ, where
G is either free of rank at least two or finite and non-solvable [3].

Our main result deals with HNN-extensions of the form (1), where the asso-
ciated subgroups A and B are allowed to be proper subgroups of the base group
H but are cyclic (i.e., generated by a single element) and undistored in H (the
latter is defined in Section 5). We show that in this situation the word problem
for G is polynomial time Turing-reducible to the compressed power problem for
H (Theorem 5.1). In the compressed power problem for H, the input consists of
two elements p, q ∈ H, where p is given explicitly as a word over a generating set
and q is given in compressed form by a straight-line program over a generating
set. The question is whether there exists an integer z ∈ Z such that pz = q in
H. Moreover, in the positive case we also want to compute such a z.

Our main application of Theorem 5.1 concerns hyperbolic groups. We show
that the compressed power problem for a hyperbolic group can be solved in
polynomial time (Theorem 4.1). For this, we make use of the well-known fact
that cyclic subgroups of hyperbolic groups are undistorted. As a consequence
of Theorems 4.1 and 5.1, the word problem for an HNN-extension of a hy-
perbolic group with cyclic associated subgroups can be solved in polynomial
time (Corollary 5.2). One should remark that HNN-extensions of hyperbolic
groups with cyclic associated subgroups are in general not even automatic; a
well-known example is the Baumslag-Solitar group BS(1, 2) = 〈a, t | t−1at = a2〉
[16, Section 7.4].

Corollary 5.2 can be generalized to fundamental groups of graphs of groups
(which generalize HNN-extensions and amalgamated free products) with hyper-
bolic vertex groups and cyclic edge groups (Corollary 6.2). For the special case
where all vertex groups are free, the existence of a polynomial time algorithm
for the word problem has been stated in [48, Remark 5.11] without proof.

2. Groups

For real numbers a ≤ b we denote with [a, b] = {r ∈ R | a ≤ r ≤ b} the closed
interval from a to b. For k, ` ∈ N we write [k : `] for {i ∈ N | k ≤ i ≤ `}. We use
standard notations for words (over some alphabet Σ). As usual, the empty word
is denoted with ε. A word u is a factor of a word w ∈ Σ∗ if there exist words
s, t ∈ Σ∗ such that w = sut. If s = ε (resp., t = ε) then u is called a prefix (resp.,
suffix) of w and if in addition u 6= w then u is called a proper prefix (resp., proper
suffix) of w. If w = a1a2 · · · an (where a1, a2, . . . , an ∈ Σ) then for all numbers
i, j ∈ N with 1 ≤ i ≤ j we define the factor w[i : j] = aiai+1 · · · amin{j,n}.
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For a group G and a subset Σ ⊆ G, we denote with 〈Σ〉 the subgroup of G
generated by Σ. It is the smallest subgroup of G containing Σ. If G = 〈Σ〉 then
Σ is a generating set for G. The group G is finitely generated (f.g.) if it has a
finite generating set. We mostly consider f.g. groups in this paper.

Assume that G = 〈Σ〉 and let Σ−1 = {a−1 | a ∈ Σ}. For a word w =
a1 · · · an with ai ∈ Σ ∪Σ−1 we define the word w−1 = a−1

n · · · a−1
1 . This defines

an involution on the free monoid (Σ ∪ Σ−1)∗. We obtain a surjective monoid
homomorphism π : (Σ ∪ Σ−1)∗ → G that preserves the involution: π(w−1) =
π(w)−1. We also say that the word w represents the group element π(w). For
words u, v ∈ (Σ ∪ Σ−1)∗ we say that u = v in G if π(u) = π(v). For g ∈ G
one defines |g|Σ = min{|w| : w ∈ π−1(g)} as the length of a shortest word over
Σ∪Σ−1 representing g. If Σ is clear, we also write |g| for |g|Σ. If Σ = Σ−1 then
Σ is a finite symmetric generating set for G.

We will describe groups by presentations. In general, if H is a group and
R ⊆ H is a set of so-called relators, then we denote with 〈H | R〉 the quotient
group H/NR, where NR is the smallest normal subgroup of H with R ⊆ NR.
Formally, we have NR = 〈{hrh−1 | h ∈ H, r ∈ R}〉. For group elements gi, hi ∈
H (i ∈ I) we also write 〈H | gi = hi (i ∈ I)〉 for the group 〈H | {gih−1

i | i ∈ I}〉.
In most cases, one takes a free group for the group H from the previous

paragraph. Fix a set Σ and let Σ−1 = {a−1 | a ∈ Σ} be a set of formal inverses
of the elements in Σ with Σ ∩ Σ−1 = ∅. A word w ∈ (Σ ∪ Σ−1)∗ is called freely
reduced if it neither contains a factor aa−1 nor a−1a for a ∈ Σ. For every word
w ∈ (Σ ∪ Σ−1)∗ there is a unique freely reduced word nf(w) that is obtained
from w by deleting factors aa−1 and a−1a (a ∈ Σ) as long as possible in an
arbitrary order (nf stands for normal form). The free group F (Σ) generated
by Σ consists of all freely reduced words from (Σ ∪ Σ−1)∗ together with the
multiplication defined by u · v = nf(uv) for u, v freely reduced. Note that
nf : (Σ ∪ Σ−1)∗ → F (Σ) is a monoid morphism that preserves the involution.
For a set R ⊆ F (Σ) of relators we also write 〈Σ | R〉 for the group 〈F (Σ) | R〉.
Every group G that is generated by Σ can be written as 〈Σ | R〉 for some
R ⊆ F (Σ). A group 〈Σ | R〉 with Σ and R finite is called finitely presented,
and the pair (Σ, R) is a presentation for the group 〈Σ | R〉. Given two groups
G1 = 〈Σ1 | R1〉 and G2 = 〈Σ2 | R2〉, where w.l.o.g. Σ1 ∩Σ2 = ∅, we define their
free product G1 ∗G2 = 〈Σ1 ∪ Σ2 | R1 ∪R2〉.

Consider a group G with the finite symmetric generating set Σ. The word
problem for G w.r.t. Σ is the following decision problem:

Input: a word w ∈ Σ∗.

Question: does w = 1 hold in G?

It is well known that if Σ′ is another finite symmetric generating set for G, then
the word problem for G w.r.t. Σ′ is logspace many-one reducible to the word
problem for G w.r.t. Σ. This justifies one to speak just of the word problem for
the group G.

HNN-extensions. HNN-extension is an extremely important operation for
constructing groups that arises in all parts of combinatorial group theory. Take
a group H and a generator t 6∈ H, from which we obtain the free product
H ∗ F (t) ∼= H ∗ Z (we write here F (t) for F ({t})). Assume that A ≤ H
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and B ≤ H are two isomorphic subgroups of H and let ϕ : A → B be an
isomorphism. Then, the group

〈H ∗ F (t) | t−1at = ϕ(a) (a ∈ A)〉

is called the HNN-extension of A with associated subgroups A and B (usually,
the isomorphism ϕ is not mentioned explicitly). The above HNN-extension is
usually written as

〈H, t | t−1at = ϕ(a) (a ∈ A)〉.

Britton [9] proved the following fundamental result for HNN-extensions. Let us
fix a symmetric generating set Σ for H.

Theorem 2.1 (Britton’s lemma [9]). Let G = 〈H, t | t−1at = ϕ(a) (a ∈ A)〉 be
an HNN-extension and let w ∈ (Σ ∪ {t, t−1})∗ \ Σ∗ be a word such that w = 1
in G. Then w contains a factor of the form t−1ut (resp., tut−1), where u ∈ Σ∗

represents an element of A (resp., B).

A subword of the form t−1ut (resp., tut−1), where u ∈ Σ∗ represents an
element of A (resp., B) is also called a pin.

A simple corollary of Britton’s lemma is that H is a subgroup of the HNN-
extension 〈H, t | t−1at = ϕ(a) (a ∈ A)〉. Britton’s lemma can be also used to
solve the word problem for an HNN-extension 〈H, t | t−1at = ϕ(a) (a ∈ A)〉.
For this we need several assumptions:

• The word problem for H is decidable.

• There is an algorithm that decides whether a given word u ∈ Σ∗ represents
an element of A (resp., B).

• Given a word u ∈ Σ∗ that represents an element a ∈ A (resp., b ∈ B),
one can compute a word v ∈ Σ∗ that represents the element ϕ(a) (resp.,
ϕ−1(b)). Let us denote this word v with ϕ(u) (resp., ϕ−1(u)).

Then, given a word w ∈ (Σ∪{t, t−1})∗ one replaces pins t−1ut (resp., tut−1) by
ϕ(u) (resp., ϕ−1(u)) in any order, until no more pins occur. If the final word
does not belong to Σ∗ then we have w 6= 1 in the HNN-extension. If the final
word belongs to Σ∗ then one uses the algorithm for the word problem of H
to check whether it represents the group identity. This algorithm is known as
Britton reduction.

If the subgroups A and B are finitely generated, say A = 〈{a1, . . . , an}〉
and B = 〈{b1, . . . , bn}〉, where ϕ(ai) = bi, then the assumption from the third
point concerning the computability of ϕ (resp., ϕ−1) is automatically satisfied:
Assume that ai (resp., bi) is represented by the word ui ∈ Σ∗ (resp., vi ∈ Σ∗).
Assume that the word u ∈ Σ∗ represents an element a ∈ A. We then start
to enumerate all words w ∈ {u1, u

−1
1 , . . . , un, u

−1
n }∗ and check (using the word

problem for H) whether u = w holds in H (it is guaranteed that we will find such
a word w). If this is true and w = uε1i1 · · ·u

εk
ik

with εi ∈ {−1, 1} for 1 ≤ i ≤ k,
then ϕ(a) is represented by the word vε1i1 · · · v

εk
ik

. The inverse isomorphism ϕ−1

can be computed analogously.
An HNN-extension G = 〈H, t | t−1at = ϕ(a) (a ∈ A)〉 with ϕ : A → B is

called ascending if A = H (it is also called the mapping torus of ϕ). Note that
we do not require B = H. Ascending HNN-extensions play an important role in
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many group theoretical results. For instance, Bieri and Strebel [6] proved that
if N is a normal subgroup of a finitely presented group G such that G/N ∼= Z
then G is an ascending HNN-extension of a finitely generated group or contains
a free subgroup of rank two.

Hyperbolic groups. Let G be a f.g. group with the finite symmetric generat-
ing set Σ. The Cayley-graph of G (with respect to Σ) is the undirected graph
Γ = Γ(G) with node set G and all edges (g, ga) for g ∈ G and a ∈ Σ. We view
Γ as a geodesic metric space, where every edge (g, ga) is identified with a unit-
length interval. It is convenient to label the directed edge from g to ga with the
generator a. The distance between two points p, q is denoted with dΓ(p, q). Note
that |g|Σ = dΓ(1, g) for g ∈ G. For r ≥ 0, let Br(1) = {g ∈ G | dΓ(1, g) ≤ r} be
the ball of radius r around the group identity.

Paths can be defined in a very general way for metric spaces, but we only
need paths that are induced by words over Σ. Given a word w ∈ Σ∗ of length
n, one obtains a unique path P [w] : [0, n] → Γ, which is a continuous mapping
from the real interval [0, n] to Γ. It maps the subinterval [i, i+ 1] ⊆ [0, n] with
i ∈ N isometrically onto the edge (gi, gi+1) of Γ, where gi (resp., gi+1) is the
group element represented by the word w[1 : i] (resp., w[1 : i + 1]). The path
P [w] starts in 1 = g0 and ends in gn (the group element represented by w). We
also say that P [w] is the unique path that starts in 1 and is labelled with the
word w. More generally, for g ∈ G we denote with g · P [w] the path that starts
in g and is labelled with w. When writing u · P [w] for a word u ∈ Σ∗, we mean
the path g · P [w], where g is the group element represented by u.

Let λ, ζ > 0, ε ≥ 0 be real constants. A path P : [0, n] → Γ of the above
form is geodesic if dΓ(P (0), P (n)) = n; it is a (λ, ε)-quasigeodesic if for all points
p = P (a) and q = P (b) with a, b ∈ [0, n] we have |a − b| ≤ λ · dΓ(p, q) + ε; and
it is ζ-local (λ, ε)-quasigeodesic if for all points p = P (a) and q = P (b) with
a, b ∈ [0, n] and |a− b| ≤ ζ we have |a− b| ≤ λ · dΓ(p, q) + ε.

A word w ∈ Σ∗ is geodesic if the path P [w] is geodesic, which means that
there is no shorter word representing the same group element from G. Similarly,
we define the notion of (ζ-local) (λ, ε)-quasigeodesic words. A word w ∈ Σ∗ is
shortlex reduced if it is the length-lexicographically smallest word that represents
the same group element as w. For this, we have to fix an arbitrary linear order
on Σ. Note that if u = xy is shortlex reduced then x and y are shortlex reduced
too. For a word u ∈ Σ∗ we denote with shlex(u) the unique shortlex reduced
word that represents the same group element as u (the underlying group G will
be always clear from the context).

A geodesic triangle in G consists of three points p, q, r ∈ G and geodesic paths
P1 = Pp,q, P2 = Pp,r, P3 = Pq,r (the three sides of the triangle), where Px,y is
a geodesic path from x to y. We call a geodesic triangle δ-slim for δ ≥ 0, if for
all i ∈ {1, 2, 3}, every point in im(Pi) (the image of the path Pi : [0, n]→ Γ) has
distance at most δ from a point in im(Pj)∪ im(Pk), where {j, k} = {1, 2, 3}\{i}.
The group G is called δ-hyperbolic, if every geodesic triangle is δ-slim. Finally, G
is hyperbolic, if it is δ-hyperbolic for some δ ≥ 0. Finitely generated free groups
are for instance 0-hyperbolic. The property of being hyperbolic is independent
of the chosen generating set Σ. Hyperbolic groups were introduced by Gromov
[18].

Fix a δ-hyperbolic group G with the finite symmetric generating set Σ for
the rest of the section, and let Γ be the corresponding geodesic metric space. Let
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P1

P2

Figure 1: Paths that asynchronously κ-fellow travel

us write |g| for |g|Σ. The word problem for G can be decided in real time [21].
Moreover, for a given word u ∈ Σ∗, shlex(u) can be computed in polynomial
time [16, Theorem 2.3.10]. We also need the following lemma:

Lemma 2.2 (c.f. [17, Proposition 8.21]). Let g ∈ G be of infinite order and let
n ≥ 0. Let u be a geodesic word representing g. Then the word un is (λ, ε)-
quasigeodesic, where λ = N |g|, ε = 2N2|g|2 + 2N |g| and N = |B2δ(1)|.

Consider two paths P1 : [0, n1] → Γ, P2 : [0, n2] → Γ and let κ ∈ R, κ ≥ 0.
The paths P1 and P2 asynchronously κ-fellow travel if there exist two contin-
uous non-decreasing mappings ϕ1 : [0, 1] → [0, n1] and ϕ2 : [0, 1] → [0, n2] such
that ϕ1(0) = ϕ2(0) = 0, ϕ1(1) = n1, ϕ2(1) = n2 and for all 0 ≤ t ≤ 1,
dΓ(P1(ϕ1(t)), P2(ϕ2(t))) ≤ κ. Intuitively, this means that one can travel along
the paths P1 and P2 asynchronously with variable speeds such that at any
time instant the current points have distance at most κ. If P1 and P2 asyn-
chronously κ-fellow travel, then by slightly increasing κ one obtains a subset
E ⊆ [0 : n1] × [0 : n2] with (i) (0, 0), (n1, n2) ∈ E, dΓ(P1(i), P2(j)) ≤ κ for all
(i, j) ∈ E and (iii) if (i, j) ∈ E \ {(n1, n2)} then (i+ 1, j) ∈ E or (i, j + 1) ∈ E.
We write P1 ≈κ P2 in this case. Intuitively, this means that a ladder graph as
shown in Figure 1 exists, where the edges connecting points from the paths P1

and P2 represent paths of length at most κ that connect elements from G.

Lemma 2.3 (c.f.[34, Lemma 1]). Let P1 and P2 be (λ, ε)-quasigeodesic paths in
Γ and assume that Pi starts in gi, ends in hi, and dΓ(g1, g2), dΓ(h1, h2) ≤ h.
Then there is a constant κ = κ(δ, λ, ε, h) ≥ h such that P1 ≈κ P2.

For the following lemmas we fix two further constants:

L = 34δ + 2 and K = |B4δ(1)|2. (3)

Lemma 2.4 (c.f. [15, Lemma 3.1]). Let u = u1u2 be shortlex reduced, where
|u1| ≤ |u2| ≤ |u1|+1. Let ũ = shlex(u2u1). If |ũ| ≥ 2L+1 then for every n ≥ 0,
the word ũn is L-local (1, 2δ)-quasigeodesic.

The following lemma is not stated explicitly in [15] but is shown in [15,
Section 3.2] (where the main argument is attributed to Delzant).

Lemma 2.5 (c.f. [15, Section 3.2]). Let u be geodesic such that |u| ≥ 2L + 1
and for every n ≥ 0, the word un is L-local (1, 2δ)-quasigeodesic. Then, in
time O(|u|) one can compute c ∈ B4δ(1) and an integer 1 ≤ m ≤ K such that
(shlex(c−1umc))n is geodesic for all n ≥ 0.
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3. Compressed words and the compressed word problem

Straight-line programs offer succinct representations of long words that con-
tain many repeated substrings. We review here the basics, referring to [28] for
a more in-depth introduction.

Fix a finite alphabet Σ. A straight-line program G (SLP for short) is a
context-free grammar that generates exactly one word val(G) ∈ Σ∗. More for-
mally, an SLP over Σ is a triple G = (V, S, ρ) where

• V is a finite set of variables, disjoint from Σ,

• S ∈ V is the start variable, and

• ρ : V → (V ∪ Σ)∗ is the right-hand side mapping, which is acyclic in the
sense that the binary relation {(A,B) ∈ V × V | B appears in ρ(A)} is
acyclic.

We define the size |G| of G as
∑
A∈V |ρ(A)|. The evaluation function

valG : (V ∪ Σ)∗ → Σ∗

is the unique homomorphism between free monoids such that

• valG(a) = a for all a ∈ Σ and

• valG(A) = valG(ρ(A)) for all A ∈ V .

Note that valG is well-defined since ρ is acyclic. We also write val for valG if G
is clear from the context. We finally take val(G) = val(S). We call val(G) the
word defined by the SLP G.

Example 3.1. Let Σ = {a, b} and fix n ≥ 0. We define

Gn = ({A0, . . . , An}, An, ρ),

where ρ(A0) = ab and ρ(Ai+1) = AiAi for 0 ≤ i ≤ n − 1. It is an SLP of size

2(n + 1). We have val(A0) = ab and more generally val(Ai) = (ab)2i

. Thus
val(Gn) = val(An) = (ab)2n

.

Example 3.1 shows that an SLP can define a word whose length is exponen-
tial in the size of the SLP. In this sense, an SLP can be seen as a compressed
representation of a word. Indeed, SLPs have been intensively studied in the
context of data compression; see [27] for more details.

The SLP G = (V, S, ρ) is trivial if S is the only variable and ρ(S) = ε =
val(G). An SLP is in Chomsky normal form if it is either trivial or all right-hand
sides ρ(A) are of the form a ∈ Σ or BC with B,C ∈ V . There is a linear-time
algorithm that transforms a given SLP G into an SLP G′ in Chomsky normal
such that val(G) = val(G′); see [28, Proposition 3.8].

The following theorem is the technical main result from [24]:

Theorem 3.2 (c.f. [24]). Let G be a hyperbolic group with the finite symmetric
generating set Σ. Given an SLP G over Σ one can compute in polynomial time
an SLP H over Σ such that val(H) = shlex(val(G)).
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If G is a f.g. group with the finite and symmetric generating set Σ, then we
define the compressed word problem of G as the following decision problem:

Input: an SLP G over Σ.

Question: does val(G) represent the group identity of G?

An immediate consequence of Theorem 3.2 is the following result:

Theorem 3.3 (c.f. [24]). The compressed word problem for a hyperbolic group
can be solved in polynomial time.

The compressed word problem turns out to be useful for the solution of the
word problem for an ascending HNN-extension. The following result has been
stated by Schleimer [42, Remark 4.2] for the case that H is a f.g. free group,
but the proof can be generalized to an arbitrary f.g. group H.

Theorem 3.4. Let H be a f.g. group. The word problem for an ascending
HNN-extension G = 〈H, t | t−1at = ϕ(a) (a ∈ H)〉 is logspace-reducible to the
compressed word problem for H.

Proof. The proof is similar to corresponding results for automorphism groups
and semi-direct products [28, Section 4.2]. Let us fix a finite and (w.l.o.g.)
symmetric generating set Σ for H and a homomorphism ϕ̃ : Σ∗ → Σ∗ such that
for every a ∈ Σ, the word ϕ̃(a) represents the group element ϕ(a) ∈ G.

Consider an input word w ∈ (Σ ∪ {t, t−1})∗ and write

w = w0t
ε1w1t

ε2w2 · · · tεnwn,

where wi ∈ Σ∗ for 0 ≤ i ≤ n and εi ∈ {−1, 1} for 1 ≤ i ≤ n. Let sk =
∑k
i=1 εi

for 0 ≤ k ≤ n (in particular, s0 = 0). Clearly, w = 1 in G if and only if
t−nwtn = 1 in G if and only if

t−n
( n∏
i=0

tsiwit
−si
)
tsn+n =

( n∏
i=0

tsi−nwit
n−si

)
tsn =

( n∏
i=0

ϕ̃n−si(wi)

)
tsn = 1

(4)
in G. By Britton’s lemma, (4) is equivalent to sn = 0 (this can be checked
in logspace) and

∏n
i=0 ϕ

n−si(wi) = 1 in H. The latter is an instance of the
compressed word problem. We can easily (in logspace) compute an SLP for the
word

∏n
i=0 ϕ̃

n−si(wi), see e.g. [28, Lemma 3.12].

We will also need a generalization of straight-line programs, known as com-
position systems [19, Definition 8.1.2] (in [28] they are called cut straight-line
programs). A composition system over Σ is a tuple G = (V, S, ρ), with V and S
as for an SLP, and where we also allow, as right-hand sides for ρ, expressions
of the form B[i : j], with B ∈ V and i, j ∈ N, 1 ≤ i ≤ j. The numbers i
and j are stored in binary encoding. We again require ρ to be acyclic. When
ρ(A) = B[i : j] we define val(A) = val(B)[i : j]. We define the size |G| of the
composition system G as the total number of occurrences of symbols from V ∪Σ
in all right-hand sides. Hence, a right-hand B[i : j] contributes 1 to the size,
and we ignore the numbers i, j. Adding the bit lengths of the numbers i and j
to the size |G| would only lead to a polynomial blow-up for |G|. To see this, first
normalize the composition system so that all right-hand sides have the form
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a, BC or B[i : j] with a ∈ Σ and B,C ∈ V . Analogously to the Chomsky
normal form for SLPs, this can be achieved in linear time. If n is the number
of variables of the resulting composition system, then every variable produces
a string of length at most 2n. Hence, we can assume that all numbers i, j that
appear in a right-hand side B[i : j] are of bit length O(n).

We can now state an important result of Hagenah; see [19, Algorithmus 8.1.4]
as well as [28, Theorem 3.14].

Theorem 3.5 (c.f. [19]). There is a polynomial-time algorithm that, given a
composition system G, computes an SLP G′ such that val(G) = val(G′).

It will be convenient to allow in composition systems also more complex
right-hand sides. For instance (ABC)[i : j]D would first concatenate the strings
produced from A, B, and C. From the resulting string the substring from
position i to position j is cut out and this substring is concatenated with the
string produced by D.

4. The compressed power problem

In Section 5 we will study the word problem in HNN-extensions with cyclic
associated subgroups. For this, the following computational problem turns out
to be important. Let G be a f.g. group with the finite symmetric generating set
Σ. We define the compressed power problem for G as the following problem:

Input: a word w ∈ Σ∗ and an SLP G over Σ.

Output: the binary encoding of an integer z ∈ Z such that wz = val(G) in G
if such an integer exists, and no otherwise.

The main result of this section is:

Theorem 4.1. For every hyperbolic group G, the compressed power problem
can be solved in polynomial time.

Proof. Assume that G is δ-hyperbolic. Fix the word w ∈ Σ∗ and the SLP
G = (V, ρ, S) over Σ. W.l.o.g. assume that G is in Chomsky normal form. We
have to check whether the equation

wz = val(G) (5)

has a solution in G, and compute in the positive case a solution z ∈ Z. Let g
be the group element represented by w.

In a hyperbolic group G, the order of torsion elements is bounded by a fixed
constant that only depends on G, see also the proof of [37, Theorem 6.7]. Since
the word problem for G can be decided in linear time, we can check also in
linear time whether g has finite order in G. If g has finite order, say d, then
it remains to check for all 0 ≤ i ≤ d − 1 whether wi = val(G) in G, which can
be done in polynomial time by Theorem 3.3. This solves the case where g has
finite order in G.

Now assume that g has infinite order in G. Then (5) has at most one
solution. By considering also the equation (w−1)z = val(G), it suffices to search
for a solution z ∈ N. We can also assume that w is shortlex-reduced. Using
techniques from [15] one can further ensure that for every n ∈ N, wn is (λ, ε)-
quasigeodesic for fixed constants λ and ε that only depend on the group G:
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Reduction to the case with wn (λ, ε)-quasigeodesic for all n. Let us fix the two
constants L and K from (3) and define further constants:

N = |B2δ(1)|, λ = N(2L+ 1), and ε = 2N2(2L+ 1)2 + 2N(2L+ 1). (6)

We factorize w uniquely as w = uv where |u| ≤ |v| ≤ |u| + 1, and let w̃ =
shlex(vu). Note that |w̃| ≤ |w|. Let g̃ be the group element represented by w̃.
Since g̃ is conjugated to g, also g̃ has infinite order. By Lemma 2.2, for every
n ≥ 0, the word w̃n is (λ′, ε′)-quasigeodesic for λ′ = N |w̃|, ε′ = 2N2|w̃|2+2N |w̃|.
If |w̃| < 2L + 1 then w̃n is (λ, ε)-quasigeodesic for the constants λ and ε from
(6). We then replace the equation wz = val(G) in (5) by the equivalent equation
uw̃zu−1 = val(G) (or w̃z = u−1val(G)u). To see the equivalence of these two
equations, note that for every n ≥ 0, uw̃nu−1 = u(vu)nu−1 = (uv)n = wn in G.

Now assume that |w̃| ≥ 2L+1. By Lemma 2.4, w̃n is L-local (1, 2δ)-quasigeo-
desic for every n ≥ 0. By Lemma 2.5, one can compute in timeO(|w|) an element
c ∈ B4δ(1) and an integer 1 ≤ m ≤ K such that (shlex(c−1w̃mc))n is geodesic
(and hence (1, 0)-quasigeodesic) for all n ≥ 0. We then produce for every
number 0 ≤ d ≤ m− 1 a new equation uw̃dc(shlex(c−1w̃mc))zc−1u−1 = val(G),
or, equivalently, (shlex(c−1w̃mc))z = c−1w̃−du−1val(G)uc. Let us denote this
equation with Ed. Then the following holds:

• if wn = val(G) in G for n ∈ N then bn/mc is a solution of Ed, where
d = n mod m, and

• if n is a solution of Ed for some 0 ≤ d ≤ m − 1, then wn·m+d = val(G) in
G.

Hence, it suffices to check for each of the constantly many equations Ed (0 ≤
d ≤ m− 1) whether it has a solution and to compute the solution if it exists.

The above consideration shows that we can restrict to the case of an equation
wz = val(G), where w represents a group element of infinite order and for every
n ∈ N, wn is (λ, ε)-quasigeodesic for fixed constants λ and ε.

Finally, by Theorem 3.2 we can also assume that the word val(G) (and hence
every word val(X) for X a variable of G) is shortlex-reduced. Hence, if wz =
val(G) for some z ∈ N, then by Lemma 2.3 we have P [wz] ≈κ P [val(G)] for a
fixed constant κ that only depends on G. We proceed in two steps.

Step 1. We compute in polynomial time for all variables X ∈ V of the SLP G,
all group elements a, b ∈ Bκ(1) (there are only constantly many), and all factors
w′ of w a bit β[X, a, b, w′] ∈ {0, 1} which is defined by:

β[X, a, b, w′] =

{
1 if val(X) = aw′b in G and P [val(X)] ≈κ a · P [w′]

0 otherwise

We compute these bits β[X, a, b, w′] in a bottom-up process where we begin with
variables X such that ρ(X) is a terminal symbol and end with the start variable
S. So, let us start with a variable X such that ρ(X) = c ∈ Σ and let a, b, w′ as
above. Then we have to check whether c = aw′b in G and P [c] ≈κ a ·P [w′]. The
former can be checked in linear time (it is an instance of the word problem) and
the latter can be done in polynomial time as well: we have to check whether
the path a · P [w′] splits into two parts, where all vertices in the first (resp.,
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Figure 2: Situation in the proof of Lemma 4.1.

second) part belong to Bκ(1) (resp., Bκ(c)). This can be reduced to O(|w′|)
many instances of the word problem.

Let us now consider a variable X with ρ(X) = Y Z such that all bits
β[Y, a, b, w′] and β[Z, a, b, w′] have been computed. Let us fix a, b ∈ Bκ(1) and a
factor w′ of w. We have β[X, a, b, w′] = 1 if and only if there exists a factorization
w′ = w′1w

′
2 and c ∈ Bκ(1) such that β[Y, a, c, w′1] = 1 and β[Z, c−1, b, w′2] = 1.

This allows us to compute β[X, a, b, w′] in polynomial time.

Step 2. We compute in polynomial time for all variables X ∈ V , all group
elements a, b ∈ Bκ(1), all proper suffixes w2 of w, and all proper prefixes w1 of
w the unique number z = z[X, a, b, w2, w1] ∈ N (if it exists) such that

• val(X) = aw2w
zw1b in G and

• P [val(X)] ≈κ a · P [w2w
zw1].

If such an integer z does not exist we set z[X, a, b, w2, w1] = ∞. Note that
the integers z[X, a, b, w2, w1] are unique since w represents a group element of
infinite order. We represent z[X, a, b, w2, w1] in binary encoding. As in step 1,
the computation of the numbers z[X, a, b, w2, w1] begins with variables X such
that ρ(X) is a terminal symbol and ends with the start variable S. The bits
β[X, a, b, w′] from step 1 are needed in the computation.

Let us start with a variable X such that ρ(X) = c ∈ Σ and let a, b, w2, w1 as
above. We have to consider the equation c = aw2w

zw1b, or, equivalently, wz = u
where u = shlex(w−1

2 a−1cb−1w−1
1 ). We can compute the word u in polynomial

time. Since wn is (λ, ε)-quasigeodesic for all n ∈ N, every n ∈ N with wn = u
in G has to satisfy n · |w| ≤ λ · |u|+ ε, i.e., n ≤ |w|−1(λ · |u|+ ε). Hence, we can
check for all 0 ≤ n ≤ |w|−1(λ · |u|+ ε) whether wn = u in G. If we do not find a
solution, we set z[X, a, b, w1, w2] =∞. If we find a (unique) solution n, we can
check in polynomial time whether P [val(X)] = P [c] ≈κ a · P [w2w

nw1] as above
for P [val(X)] ≈κ a · P [w′] in step 1.

Now, letX be a variable with ρ(X) = Y Z such that all values z[Y, a, b, w2, w1]
and z[Z, a, b, w2, w1] have been computed. Let us fix a, b ∈ Bκ(1), a proper suffix
w2 of w and a proper prefix w1 of w. Note that if val(X) = aw2w

zw1b in G and
P [val(X)] ≈κ a · P [w2w

zw1] for some z ∈ N, then there must exist c ∈ Bκ(1)
and a factorization w2w

zw1 = uv such that

• val(Y ) = auc and val(Z) = c−1vb in G,

• P [val(Y )] ≈κ a · P [u], and

• P [val(Z)] ≈κ c−1 · P [v]; see Figure 2.
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For the factorization w2w
zw1 = uv, one of the following cases has to hold:

• There is a factorization w2 = uw′2 such that v = w′2w
zw1. We then have

β[Y, a, c, u] = 1 and z = z[Z, c−1, b, w′2, w1]. Vice versa, if β[Y, a, c, u] = 1,
z[Z, c−1, b, w′2, w1] <∞ and w2 = uw′2 then

z[X, a, b, w2, w1] = z[Z, c−1, b, w′2, w1].

• There is a factorization w1 = w′1v such that u = w2w
zw′1. We then have

z = z[Y, a, c, w2, w
′
1] and β[Z, c−1, b, v] = 1. Vice versa, if z[Y, a, c, w2, w

′
1] <

∞, β[Z, c−1, b, v] = 1 and w1 = w′1v then

z[X, a, b, w2, w1] = z[Y, a, c, w2, w
′
1].

• There are z1, z2 ∈ N such that u = w2w
z1 , v = wz2w1, and z = z1 +

z2. We then have z = z[Y, a, c, w2, ε] + z[Z, c−1, b, ε, w1]. Vice versa, if
z[Y, a, c, w2, ε] <∞ and z[Z, c−1, b, ε, w1] <∞ then

z[X, a, b, w2, w1] = z[Y, a, c, w2, ε] + z[Z, c−1, b, ε, w1].

• There are z1, z2 ∈ N and a factorization w = w′1w
′
2 such that w′1 6= ε 6= w′2,

u = w2w
z1w′1, v = w′2w

z2w1, and z = z1 + z2 + 1. We then have z =
z[Y, a, c, w2, w

′
1] + z[Z, c−1, b, w′2, w1] + 1. Vice versa, if z[Y, a, c, w2, w

′
1] <

∞, z[Z, c−1, b, w′2, w1] <∞ and w = w′1w
′
2 then

z[X, a, b, w2, w1] = z[Y, a, c, w2, w
′
1] + z[Z, c−1, b, w′2, w1] + 1.

From these observations it is straightforward to compute in polynomial time
all values z[X, a, b, w2, w1] from the values z[Y, a, c, w2, w

′
1], z[Z, c−1, b, w′2, w1],

β[Y, a, c, u], β[Z, c−1, b, v], where c ∈ Bκ(1), w′1 is a proper prefix of w, w′2 is a
proper suffix of w, and u and v are factors of w.

Finally, if z[S, 1, 1, ε, ε] = ∞ then equation (5) has no solution, otherwise
z[S, 1, 1, ε, ε] is the unique solution of equation (5). This completes the proof of
the theorem.

5. HNN-extensions with cyclic associated subgroups

Let H be a f.g. group and fix a generating set Σ for H. We say that a cyclic
subgroup 〈g〉 ≤ H is undistorted in H if there exists a constant δ such that for
every h ∈ 〈g〉 there exists z ∈ Z with h = gz and |z| ≤ δ · |h|Σ. This definition
does not depend on the choice of Σ.1 Clearly, every finite cyclic subgroup 〈g〉
of H is undistorted.

Note that if g, h ∈ H are elements of the same order then the group 〈H, t |
t−1gt = h〉 is the HNN-extension 〈H, t | t−1at = ϕ(a) (a ∈ 〈g〉)〉, where ϕ : 〈g〉 →
〈h〉 is the isomorphism with ϕ(gz) = hz for all z ∈ Z. In the following theorem
we consider a slight extension of the word problem for such an HNN-extension
G = 〈H, t | t−1gt = h〉 which we call the semi-compressed word problem forG. In

1The concept of undistorted subgroups is defined for arbitrary finitely generated subgroups
but we will need it only for the cyclic case.
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this problem the input is a sequence G0t
ε1G1t

ε2G2 · · · tεnGn where every Gi (0 ≤
i ≤ n) is an SLP (or a composition system) over the alphabet Σ and εi ∈ {−1, 1}
for 1 ≤ i ≤ n. The question is whether val(G0)tε1val(G1)tε2val(G2) · · · tεnval(Gn) =
1 in G.

Theorem 5.1. Let H be a fixed f.g. group and let g, h ∈ H be elements with
the same order in H (so that the cyclic subgroups 〈g〉 and 〈h〉 are isomorphic)
such that 〈g〉 and 〈h〉 are undistorted. Then the semi-compressed word problem
for the HNN-extension 〈H, t | t−1gt = h〉 is polynomial-time Turing-reducible to
the compressed power problem for H.

Proof. The case where 〈g〉 and 〈h〉 are both finite is easy. In this case, by the
main result of [20], even the compressed word problem for 〈H, t | t−1gt = h〉 is
polynomial time Turing-reducible to the compressed word problem for H, which
is a special case of the compressed power problem.

Let us now assume that 〈g〉 and 〈h〉 are infinite. Fix a symmetric finite
generating set Σ for H. Let W = G0t

ε1G1t
ε2G2 · · · tεnGn be an input for the

semi-compressed word problem for 〈H, t | t−1gt = h〉, where Gi is a composition
system over Σ for 0 ≤ i ≤ n and εi ∈ {−1, 1} for 1 ≤ i ≤ n. Basically, we do Brit-
ton reduction in any order on the word val(G0)tε1val(G1)tε2val(G2) · · · tεnval(Gn).
The number of Britton reduction steps is bounded by n/2. After the i-th step
we have a sequence

U = H0t
ζ1H1t

ζ2H2 · · · tζmHm,

where m ≤ n, Hi = (Vi, Si, ρi) is a composition system over Σ, and ζi ∈ {−1, 1}.
Let ui = val(Hi), si = |Hi| and define

s(U) = m+

m∑
i=0

si,

which is a measure for the encoding length of U . We then search for an 1 ≤ i ≤
m− 1 such that one of the following two cases holds:

(i) ζi = −1, ζi+1 = 1 and there is an ` ∈ Z such that ui = g` in H.

(ii) ζi = 1, ζi+1 = −1 and there is an ` ∈ Z such that ui = h` in H.

Using oracle access to the compressed power problem for H we can check in
polynomial time whether one of these cases holds and compute the correspond-
ing integer `. We then replace the subsequence Hi−1t

ζiHitζi+1Hi+1 by a com-
position system H′i where val(H′i) is ui−1h

`ui+1 in case (i) and ui−1g
`ui+1 in

case (ii). Let U ′ be the resulting sequence. It remains to bound s(U ′). For
this we have to bound the size of the composition system H′i. Assume that
ζi = −1, ζi+1 = 1, and ui = g` in H (the case where ζi = 1, ζi+1 = −1 and
ui = h` in H is analogous). It suffices to show that h` can be produced by a
composition system H′′i of size si + O(1). Then we can easily bound the size
of H′i by si−1 + si + si+1 + O(1), which yields s(U ′) ≤ s(U) + O(1). This
shows that every sequence V that occurs during the Britton reduction satisfies
S(V ) ≤ S(W )+O(n) (recall that W is the initial sequence and that the number
of Britton reductions is bounded by n/2).

Fix the constant δ such that for every g′ ∈ 〈g〉 the unique (since g has infinite
order) z ∈ Z with g′ = gz satisfies |z| ≤ δ · |g′|Σ. Hence, we have |`| ≤ δ · |ui|.
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W.l.o.g. we can assume that δ ∈ N. The variables of H′′i are the variables of Hi
plus two new variables Ah and S′i. Define a morphism η by η(a) = Ah for all
a ∈ Σ and η(A) = A for every variable A of Hi. We define the right-hand side
mapping ρ′′i of H′′i as follows:

• ρ′′i (Ah) = h if ` ≥ 0 and ρ′′i (Ah) = h−1 if ` < 0 (here, we identify h and
h−1 with words over the alphabet Σ that represent the group elements h
and h−1, respectively),

• ρ′′i (S′i) = (Sδi )[1 : |`| · |h|], and

• ρ′′i (A) = η(ρi(A)) for all variables A of Hi.

Note that Sδi derives to hδ·|ui| if ` ≥ 0 and to h−δ·|ui| if ` < 0. Since |`| ≤ δ · |ui|,
(Sδi )[1 : |`| · |h|] derives to h`. The start variable of H′′i is S′i. The size of H′′i is
si + |h|+ δ = si +O(1), since |h| and δ are constants. This concludes the proof
of the theorem.

A subgroup of a hyperbolic group is undistorted if and only if it is quasicon-
vex [33, Lemma 1.6]. That cyclic subgroups in hyperbolic groups are quasicon-
vex was shown by Gromov [18, Corollary 8.1.D]. Hence, cyclic subgroups of a
hyperbolic group are undistorted. Together with Theorems 4.1 and 5.1 we get:

Corollary 5.2. Let H be a hyperbolic group and let g, h ∈ H have the same
order. Then the word problem for 〈H, t | t−1gt = h〉 can be solved in polynomial
time.

6. Generalization to graph of groups

We can slightly generalize Corollary 5.2. For this we need the definition of
a graph of groups and its fundamental group; a detailed introduction can be
found in [43].

By a graph Y , we mean a graph in the sense of Serre [43]. So Y consists of
a set V of vertices, a set E of edges, a function α : E → V selecting the initial
vertex of an edge, a function ω : E → V selecting the terminal vertex of an edge,
and a fixed-point-free involution on E written e 7→ e−1 (thus, (e−1)−1 = e and
e 6= e−1 for all edges e) such that α(e) = ω(e−1) for all e ∈ E. A path in Y
is a sequence of edges e1e2 · · · ek such that ω(ei) = α(ei+1) for all 1 ≤ i < k.
This path starts in α(e1) and ends in ω(ek). The graph Y is connected if for all
v, v′ ∈ V there is a path starting in v and ending in v′. The involution e 7→ e−1

extends to paths in the natural way: (e1e2 · · · ek)−1 = e−1
k · · · e

−1
2 e−1

1 .
A graph of groups (G, Y ) consists of a connected graph Y = (V,E) and

(i) for each vertex v ∈ V , a group Gv,

(ii) for each edge e ∈ E, a group Ge such that Ge = Ge−1 ,

(ii) for each edge e ∈ E, monomorphisms αe : Ge → Gα(e) and ωe : Ge → Gω(e)

such that αe = ωe−1 for all e ∈ E.

We assume that the groups Gv intersect only in the identity, and that they are
disjoint from the edge set E. For each v ∈ V , let 〈Σv | Rv〉 be a presentation
for Gv with pairwise disjoint generating sets Σv. Let ∆ be a set containing
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exactly one edge from each set {e, e−1}. We identify E and ∆ ∪ ∆−1 when
convenient. Let Σ be the (disjoint) union of all the sets Σv and ∆. We define a
group F (G, Y ) by the presentation

F (G, Y ) = 〈Σ | Rv (v ∈ V ), e−1αe(g)e = ωe(g) (e ∈ E, g ∈ Ge)〉.

Fix a vertex v0 ∈ V . A word in w ∈ (Σ ∪ Σ−1)∗ is of cycle type at v0 if it is of
the form w = w0e1w1e2w2 . . . enwn where:

(i) ei ∈ E for all 1 ≤ i ≤ n,

(ii) e1 · · · en is a path in Y starting and ending at v0,

(iii) w0 ∈ (Σv0 ∪ Σ−1
v0 )∗, and

(iv) for 1 ≤ i ≤ n, wi ∈ (Σω(ei) ∪ Σ−1
ω(ei)

)∗.

The images in F (G, Y ) of the words of cycle type at v0 form a subgroup
π1(G, Y, v0) of F (G, Y ), called the fundamental group of (G, Y ) at v0. Since
Y is connected, one can show that (up to isomorphism) π1(G, Y, v0) is indepen-
dent of the choice of vertex v0; hence we simply write π1(G, Y ). It can be also
defined via a spanning tree of Y , but we do not need this. An HNN-extension
〈H, t | t−1at = ϕ(a) (a ∈ A)〉 can be obtained as the fundamental group of a
graph of groups (G, Y ), where Y consists of a single vertex v, a loop e and its
inverse edge e−1, and Gv = H, Ge = A. Similarly, amalgamated free products
are special cases of fundamental groups.

The word problem for the fundamental group π1(G, Y ) can be solved using
a generalized form of Britton reduction [14]. This consists of applying the
rewriting steps e−1αe(g)e→ ωe(g) and eωe(g)e−1 → αe(g) for e ∈ E, g ∈ Ge as
long as possible. The proof of the following theorem is completely analogous to
the proof of Theorem 5.1.

Theorem 6.1. Let (G, Y ) be a graph of groups such that Y = (V,E) is finite
and every edge group Ge, e ∈ E, is cyclic and the image αe(Ge) is undistorted
in Gα(e).

2 Then the semi-compressed word problem for the fundamental group
π1(G, Y ) is polynomial time Turing-reducible to the compressed power problems
for the vertex groups Gv, v ∈ V .

Corollary 6.2. Let G be a fundamental group of a graph of groups such that
all vertex groups are hyperbolic and all edge groups are cyclic. Then the word
problem for G can be solved in polynomial time.

7. Future work

There is no hope to generalize Corollary 5.2 to the case of arbitrary finitely
generated associated subgroups (there exists a finitely generated subgroup A of
a hyperbolic group G such that the membership problem for A is undecidable
[41]). On the other hand, it is known that the membership problem for quasi-
convex subgroups of hyperbolic groups is decidable. What is the complexity of

2Then also ωe(Ge) is undistorted in Gω(e).
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the word problem for an HNN-extension of a hyperbolic group H with finitely
generated quasiconvex associated subgroups? Even for the case where H is
free (where all subgroups are quasiconvex) the existence of a polynomial time
algorithm is not clear (this problem was discussed in the introduction).

The best known complexity bound for the word problem of a hyperbolic
group is LogCFL [26] , which is contained in the circuit complexity class NC2.
This leads to the question whether the complexity bound in Corollary 5.2 can
be improved to NC. Also the complexity of the compressed word problem for
an HNN-extension of a hyperbolic group H with cyclic associated subgroups
is open (even in the case where the base group H is free). Recall that the
compressed word problem for a hyperbolic group can be solved in polynomial
time [24].
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