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Abstract. This paper gives an informal overview over applications of
compression techniques in algorithmic group theory.

1 Algorithmic problems in group theory

The study of computational problems in group theory goes back more than
100 years. In a seminal paper from 1911, Dehn posed three decision problems
[15]: The word problem, the conjugacy problem, and the isomorphism problem.
The word and conjugacy problem are defined for a finitely generated group G.
This means that there exists a finite subset Σ ⊆ G such that every element
of G can be written as a finite product of elements from Σ. This allows to
represent elements of G by finite words over the alphabet Σ. For the word
problem, the input consists of such a finite word w ∈ Σ∗ and the goal is to check
whether w represents the identity element of G. For the conjugacy problem, the
input consists of two finite words u, v ∈ Σ∗ and the question is whether the
group elements represented by u and v are conjugated. For the isomorphism
problem the input consists of two finite group presentations (roughly speaking,
two finite descriptions of groups in terms of generators and defining relations)
and the question is whether these presentations describe isomorphic groups.
Dehn’s motivation for studying these abstract group theoretical problems came
from topology. In his paper from 1912 [16], Dehn gave an algorithm that solves
the word problem for fundamental groups of orientable closed 2-dimensional
manifolds, but also realized that his three problems seem to be very hard in
general. In [15], he wrote “Die drei Fundamentalprobleme für alle Gruppen mit
zwei Erzeugenden . . . zu lösen, scheint einstweilen noch sehr schwierig zu sein.”
(Solving the three fundamental problems for all groups with two generators seems
to be very difficult at the moment.) When Dehn wrote this sentence, a formal
definition of computability was still missing. So, it is not surprising that it took
more than 40 years until Novikov [56] and independently Boone [11] proved
that the word problem and hence also the conjugacy problem are in general
undecidable for finitely presented groups. The isomorphism problems was shown
to be undecidable by Adjan [1].

In this paper we are mainly interested in the word problem. Despite the un-
decidability results from [11,56], for many groups the word problem is decidable.
Dehn’s result for fundamental groups of orientable closed 2-dimensional mani-
folds was extended to one-relator groups (finitely generated groups that can be
defined by single defining relation) by his student Magnus [49]. Other important
classes of groups with a decidable word problem are:



– automatic groups [21] (including important classes like braid groups [4], Cox-
eter groups, right-angled Artin groups, hyperbolic groups [24]),

– finitely generated linear groups, i.e., finitely generated groups that can be
faithfully represented by matrices over a field [58] (including polycyclic groups
and nilpotent groups), and

– finitely generated metabelian groups (they can be embedded in direct prod-
ucts of linear groups [65]).

With the rise of computational complexity theory in the 1960’s, also the compu-
tational complexity of group theoretic problems moved into the focus of research.
From the very beginning, this field attracted researchers from mathematics as
well as computer science. One of the early results in this context was that for
every given n ≥ 0 there exist groups for which the word problem is decidable
but does not belong to the n-th level of the Grzegorczyk hierarchy (a hierarchy
of decidable problems) [13]. On the other hand, for many prominent classes of
groups the complexity of the word problem is quite low. For instance, for auto-
matic groups, the word problem can be solved in quadratic time [21], and for
the subclass of hyperbolic groups the word problem can be solved in linear time
(even real time) [31].

For finitely generated linear groups Lipton and Zalcstein [39] (for fields of
characteristic zero) and Simon [62] (for prime characteristic) proved in 1977
(resp., 1979) that deterministic logarithmic space (L for short) suffices to solve
the word problem. This was the first result putting the word problem for an
important class of groups into a complexity class below polynomial time. The
class L is located between the classes NC1 and NC2 (NC stands for Nick’s class
after Nicolas Pippenger). The circuit complexity class NCk consists of all prob-
lems that can be solved by uniform polynomial size boolean circuits of bounded
fan-in and depth (log n)k. The class NC =

⋃
k≥1 NC

k is usually identified with
the class of problems that have an efficient parallel algorithm. It is a subclass of
Ptime and it is a famous open problem whether NC = Ptime. In his thesis [59]
from 1993, Robinson investigated the parallel complexity of word problems in
more detail. He proved that for several important classes of groups (nilpotent
groups, polycyclic groups, solvable linear groups) the word problem belongs to
(subclasses of) NC1. For the free group of rank two, he proved that the word
problem is hard for NC1 (and since it is linear, the word problem belongs to L).
Other groups with low complexity word problems are hyperbolic groups (NC2

due to Cai [12], which was improved to LOGCFL ⊆ NC2 in [40]), Thompson’s
group V (NC2 due to Birget [10]), Baumslag-Solitar groups1 (L due to Weiß [66])
and of course finite groups. A famous result of Barrington [7] says that for every
finite non-solvable group the word problem is NC1-complete. In recent years, also
the class TC0 ⊆ NC1 came into the focus of group theorists. Roughly speaking,
uniform TC0 captures the complexity of multiplying two binary encoded inte-
gers. It turned out that for many interesting groups the word problem belongs
to uniform TC0. This includes finitely generated solvable linear groups [37] and
all subgroups of groups that can be obtained from finitely generated solvable

1 These are the one-relator groups BS(p, q) = 〈a, t | t−1apt = aq〉.
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linear groups using direct products and wreath products [53]. This includes for
instance all metabelian groups and free solvable groups.

2 Compression with straight-line programs

In recent years, compression techniques have led to important breakthroughs
concerning the complexity of word problems. The general strategy (which is not
restricted to word problems) is to use data compression to avoid the storage of
huge intermediate data structures. For solving the word problem in automor-
phism groups and certain group extensions (in particular, semi-direct products),
so called straight-line programs turned out to be the right compressed representa-
tion. A straight-line program is a context-free grammar that produces only a sin-
gle word. A typical example is the context-free grammar S → ABA, A→ CBC,
B → CcC, C → DaD, D → bb. The nonterminal C produces the word bbabb,
hence B produces bbabb c bbabb. Then, A produces bbabb bbabbcbbabb bbabb. Fi-
nally, the start nonterminal S produces

bbabbbbabbcbbabbbbabb bbabbcbbabb bbabbbbabbcbbabbbbabb

The length of the word produced by a straight-line program G can be exponential
in the length of G, where the latter is usually defined as the sum of the lengths of
all right-hand sides of the grammar (14 in the above example). In other words,
straight-line programs allow for exponential compression rates in the best case.
Let us just mention that straight-line programs are a very active area in string
algorithms and data compression, see for instance [14,42].

Here, we are interested in group theoretical applications of straight-line pro-
grams. One of the first such applications is the so-called reachability theorem of
Babai and Szemerédi for finite groups [6]. It says that if G is a finite group of
order n and S ⊆ G is any generating set of G such that S = S−1, then every
element g ∈ G can be defined by a straight-line program with terminal alphabet
S and size O((log n)2). Babai and Szemerédi used this result for the solution of
subgroup membership problems in finite black-box groups.

2.1 Compressed word problems

Here, we are mainly interested in finitely generated infinite groups. Straight-
line programs entered this area with the so-called compressed word problem.
The compressed word problem for a finitely generated group G is the variant
of the word problem for G where the input word is represented by a straight-
line program. The compressed word problem can be also explained in terms of
circuits. Define a circuit over the group G as a directed acyclic graph, where
the nodes of indegree 0 are labelled with group generators and all other nodes
have exactly two incoming edges (they have to be ordered in the sense that there
is a left and a right incoming edge). Moreover, there is a distinguished output
node. Such a circuit computes an element of G in the natural way (every inner
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node computes the product of the two incoming group elements). Then, the
compressed word problem for G is equivalent to the problem whether a given
circuit over the group G evaluates to the group identity.

Schleimer [61] observed that the (standard) word problem for every finitely
generated subgroup of the automorphism group of a group G is polynomial time
reducible to the compressed word problem for G. Similar transfer results hold for
semi-direct products and other group extensions. For instance, the word problem
for a semi-direct product K o Q is logspace reducible to (i) the word problem
for Q and (ii) the compressed word problem for K [43]. These results make the
compressed word problem interesting for the efficient solution of standard word
problems. It has been shown before Schleimer’s work that the compressed word
problem for a free group can be solved in polynomial time (the problem is in fact
Ptime-complete) [41]. As a consequence, the word problem for the automorphism
group of a free group (which is finitely generated) can be solved in polynomial
time [61]. This solved an open problem from [36]. Schleimer’s result has drawn
interest on the compressed word problem in the combinatorial group theory
community. In general, the complexity of the compressed word problem is higher
than the complexity of the standard word problem, since the input is given in
a more succinct way (we will see concrete examples later). Nevertheless, there
are, in addition to free groups, many groups with a polynomial time compressed
word problem:

(i) finite groups. It is easy to see that the compressed word problem for a finite
group can be solved in polynomial time. Less trivial is the fact that for every
finite non-solvable group the compressed word problem is Ptime-complete
[9].

(ii) hyperbolic groups [32] and, more generally, groups that are hyperbolic rel-
ative to a collection of free abelian subgroups [33]

(iii) fully residually free groups [48],
(iv) right-angled Artin groups [28,45], and, more generally, virtually special

groups (finite extensions of subgroups of graph groups) [43]. By the work
of Agol, Haglund and Wise [2,26,67], virtually special groups are tightly
connected to low dimensional topology and contain many other important
classes of groups (Coxeter groups, one-relator groups with torsion, fully
residually free groups, and fundamental groups of hyperbolic 3-manifolds).

The polynomial time algorithms from (ii), (iii) and (iv) are all based on the
following important result: for two straight-line programs one can check in poly-
nomial time whether they produce the same word. This result has been shown
independently in [30,52,57].

For finitely generated virtually nilpotent groups, the compressed word prob-
lem belongs to the parallel complexity class NC2 [37]. Finitely generated virtually
nilpotent groups are in fact the larges class of infinite groups, for which the com-
pressed word problem is known to be in NC.

If we allow randomization, we find further examples of groups where the
compressed word problem can be parallelized efficiently: for finitely generated
free metabelian groups and wreath products of the form

(∏k
i=1Ai

)
o Zn, where
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every Ai is either Z or a cyclic group of prime order, the compressed word
problem belongs to the class coRNC2 (the complement of the randomized version

of NC2) [38]. To show this result, the compressed word problem for
(∏k

i=1Ai

)
oZn

is reduced to a special case of polynomial identity testing (PIT for short). This is
the question, whether a given algebraic circuit over a polynomial ring evaluates
to the zero polynomial [60]. It is known that for polynomials over the rings Z
and Zn, PIT belongs to coRP (the complement of randomized polynomial time)
[3,34]. In [38] it was shown that a special case of PIT, where the input circuit
is a so-called powerful skew circuit over a polynomial ring Z[x] or Fp[x] (p a

prime), belongs to coRNC2. The compressed word problem for
(∏k

i=1Ai

)
oZn is

logspace reducible to this special case of PIT.
Using a reduction to the general PIT problem, the compressed word problems

for the following groups were shown to be in coRP:

– finitely generated linear groups (which contain the above mentioned virtually
special groups), [45,43]

– wreath products of the form G oH, where G is finitely generated abelian and
H is finitely generated virtually abelian [38].

PIT is a famous problem in complexity theory. Proving PIT ∈ Ptime would
imply spectacular progress on circuit complexity lower bounds [35]. Therefore,
complexity theorists believe that proving PIT ∈ Ptime will be extremely difficult.
In [43] it was shown that PIT can be reduced in logspace to the compressed
word problem for the linear group SL(3,Z) (all (3×3)-matrices over the integers
with determinant 1), showing that the two problems are equivalent with respect
to logspace reductions. Hence, proving that the compressed word problem for
SL(3,Z) belongs to Ptime seems to be very difficult.

Besides specific classes of groups, also constructions that allow to build new
groups from existing groups are important in group theory. For the following
important group theoretical constructions the compressed word problem for the
constructed group is polynomial time Turing-reducible to the compressed word
problems for the constitutent groups: finite group extensions [45,43], HNN ex-
tensions with finite associated subgroups [27], amalgamated free products with
finite amalgamated subgroups [27], graph products [28].

Another important construction in group theory is the wreath product. We
have already seen some positive results for wreath products of abelian groups
(at least if we allow randomization). It turns out that the wreath product does
not preserve the complexity of the compressed word problem in general. Based
on a characterization of the class PSPACE in terms of so-called leaf languages
[29], it was shown in [8] that for many groups G the compressed word problem
for the wreath product G o Z is PSPACE-complete. Concrete examples of such
groups G are finite non-solvable groups and free groups of rank at least two.2

2 In fact, PSPACE-hardness of the compressed word problem for G oZ holds for a quite
large class of non-solvable groups, namely all so-called uniformly SENS groups G
[8], whereas for every non-abelian group G, the compressed word problem for G o Z
is already coNP-hard [43].
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Since the compressed word problem for these groups as well as for Z belongs
to L, one obtains two important consequences: (i) wreath products may strictly
increase the complexity of the compressed word problem (L is a proper subclass
of PSPACE) and (ii) there exist groups for which the compressed word problems
is strictly more difficult than the standard word problem (for this one needs the
fact that the word problem for a wreath product G oH is logspace reducible to
the word problems for G and H [63]).

Using the same technique as for wreath products, it was also shown in [8] that
the compressed word problem is PSPACE-complete for the Grigorchuk group and
Thompson’s group F . These groups are famous for their quite unusual proper-
ties. Let us just mention that the Grigorchuk group was the first example of a
group of intermediate growth. The Grigorchuk group belongs to the rich class
of automaton groups (which should not be confused with the class of auto-
matic groups). Recently, examples of automaton groups with an EXPSPACE-
complete compressed word problem (and PSPACE-complete word problem) were
constructed in [64].

2.2 Power words

In some group theoretical applications, the straight-line programs that appear
have a very restricted form: a power word has the form wn1

1 wn2
2 · · ·w

nk

k , where
the exponents n1, . . . , nk are integers that are given in binary encoding and the
words w1, . . . , wk are given explicitly (uncompressed). Using the iterated squar-
ing trick, one can translate a power word into an equivalent straight-line program
in logspace. Power words were used in order to solve algorithmic problems for
(2 × 2)-matrix groups. Consider the group GL(2,Z) of all (2 × 2)-matrices over
the integers with determinant ±1. The natural representation of elements in this
group consists of 4-tuples of binary encoded integers. In [44] it was shown that
for this input representation the subgroup membership problem (does a given
element of GL(2,Z) belong to a given finitely generated subgroup of GL(2,Z)?)
can be solved in polynomial time. An analogous result was shown in [25] for
the modular group PSL(2,Z). Let us briefly sketch the proof for GL(2,Z). It is
a well-known fact that GL(2,Z) is virtually-free, i.e., it has a free subgroup of
finite index. The connection to power words is made by the observation that a
matrix A ∈ GL(2,Z) can be translated into a power word wn1

1 wn2
2 · · ·w

nk

k over a
fixed (but arbitrarily chosen) finite generating set of GL(2,Z). Thus, evaluating
wn1

1 wn2
2 · · ·w

nk

k in the group GL(2,Z) yields the matrix A. Therefore, it suffices to
show that for every virtually-free group G, the so called power subgroup member-
ship problem for G belongs to Ptime. The power subgroup membership problem
for G is the subgroup membership problem for G, where all input elements of G
are represented by power words. One can easily get rid off the finite extension,
which leaves the power subgroup membership problem for a free group. This
problem is finally solved in polynomial using an adaptation of Stallings folding
procedure. The ordinary subgroup membership problem for a free group, where
all group elements are given by finite words, is known to the Ptime-complete [5].
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The proof for PSL(2,Z) [25] follows the same strategy as for GL(2,Z). Due to
the simpler algebraic structure of PSL(2,Z) (it is isomorphic to the free product
Z2∗Z3), it suffices to solve the power subgroup membership problem for a finitely
generated free group, where the input power words have the form an1

1 an2
2 · · · a

nk

k

for free generators a1, . . . , ak, in polynomial time.
Power words have been also studied in the context of the word problem. The

power word problem for a finitely generated group G is the word problem for G,
where the input word is given as a power word. In [46] it was shown that the
power word problem for a finitely generated free group Fk is logspace reducible
to the standard word problem for Fk. Since Fk is a finitely generated linear
group, the result of Lipton and Zalcstein [39] implies that the word problem,
and hence also the power word problem, for every finitely generated free group
can be solved in logspace.

For the following groups, the power word problem even belongs to TC0:

– wreath products of the form G o Z with G finitely generated nilpotent [22],
– right iterated wreath products of the form Zn1 o (Zn2 o (Zn3 o · · · o Znk)) and,

as a consequence of the Magnus embedding [50], free solvable groups [22],
– solvable Baumslag-Solitar groups BS(1, q) [47].

Interestingly, it was shown in [46] that the power word problems for Thompson’s
group F and all wreath products G oZ with G free of rank at least two or finite
non-solvable are coNP-complete.3 Recall that the compressed word problems
for these groups are PSPACE-complete [8]. For the Grigorchuk group the power
word problem belongs to L [46], whereas the compressed word problem is again
PSPACE-complete [8]. This yields an example of a group, where the compressed
word problem is strictly more difficult than the power word problem.

In the commutative setting, power words can be traced back to work from
the 1990’s. Ge [23] showed that one can verify in polynomial time an identity
αn1
1 αn2

2 · · ·αnn
n = 1, where the αi are elements of an algebraic number field and

the ni are binary encoded integers.

3 Compression beyond straight-line programs

Recall that straight-line programs were applied to word problems for automor-
phism groups (and certain group extensions) and yield in some cases polynomial
time algorithms. This is achieved by representing long words that appear as in-
termediate results in computations succinctly by straight-line programs. In the
best case, a straight-line program allows to represent a word of length n in space
log n. For some word problems, this exponential compression is not enough. This
holds in particular for groups with extremely fast growing Dehn functions like
the Baumslag group or Higman’s group. The Dehn functions for these groups
have recursive but non-elementary growth. If one tries to solve the word problem
naively, one obtains intermediate words of non-elementary length. Therefore, it

3 coNP-hardness holds for every uniformly SENS group G.
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was conjectured that these groups may have very hard word problems. But this
turned out to be wrong. For both the Baumslag group [54] as well as Higman’s
group [17], the word problem can be solved in polynomial time. To prove these
results, power circuits were introduced in [55]. Power circuits allow to represent
huge integers, which arise as exponent towers, succinctly. Moreover, comparison
and the arithmetic operations x+ y and x · 2y on numbers that are represented
by power circuits can be carried out in polynomial time. Recently, the power
circuit technique has been further developed in [51], where it was shown that
the word problem for the Baumslag group belongs to NC. Further work on power
circuits in the context of group theory can be found in [18].

An even more extreme integer compression is used in [19]. Using the so-
called hydra groups, a family of groups Gk (k ≥ 1) was constructed in [20] such
that the Dehn functions of the groups Gk are arbitrarily high in the Ackermann
hierarchy. Nevertheless, the word problem for every group Gk can be solved in
polynomial time [19].

4 Open problems

Let us conclude with some open problems related to compression in algorithmic
group theory:

Linear groups. Recall that the compressed word problem for a finitely gener-
ated linear group belongs to coRP. Showing that the compressed word problem
for finitely generated linear groups belongs to Ptime seems to be very difficult
(it would imply that polynomial identity testing belongs to Ptime). But what
about restricted classes of linear groups? Braid groups and solvable linear groups
might be good candidates to look at. Within the class of solvable linear groups
one might first investigate polycyclic groups or solvable Baumslag-Solitar groups
BS(1, q). Also the power word problem for linear groups might be interesting to
look at. The author is not aware of any better upper bound than coRP (the same
upper bound as for the compressed word problem for linear groups). Recall that
for the solvable and linear Baumslag-Solitar groups BS(1, q) the power word
problem belongs to TC0 [47]. Is it possible to extend this result to all solvable
linear groups?

Baumslag-Solitar groups. Weiß [66] showed that the word problem for every
Baumslag-Solitar group BS(p, q) can be solved in logspace by reducing it in
logspace to the word problem for a free group. The same reduction does not work
in logspace for the compressed word problem. Currently, the best upper bound
for the compressed word problem of a non-solvable Baumslag-Solitar group is
PSPACE.

Right iterated wreath products of free abelian groups. Recall that for
right iterated wreath products of free abelian groups the power word problem
belongs to TC0 [22]. This gives hope that the compressed word problem for these
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groups should be not too difficult. Since the word problem belongs to TC0, a
standard argument shows that the compressed word problem for every right
iterated wreath product of free abelian groups lies in the counting hierarchy.
This makes PSPACE-hardness quite unlikely. The compressed word problem for
a wreath product of two free abelian groups belongs to coRP [38]. It would be
interesting to see whether this result can be extended to all right iterated wreath
products of free abelian groups.

Subgroup membership problems. In [44] it is shown that the subgroup
membership problem for a free group can be solved in polynomial time, when all
group element are specified by power words. Is it possible to extend this result
to the case where all group element are specified by straight-line programs.
Straight-line programs are strictly more succinct than power words. On could
try to come up with an extension of Stallings’ folding procedure to the case
where edges are labelled with straight-line programs (the same strategy with
power words instead of straight-line programs was successful in [44]).
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