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Abstract. The computational complexity of the word problem in HNN-
extension of groups is studied. HNN-extension is a fundamental construc-
tion in combinatorial group theory. It is shown that the word problem
for an ascending HNN-extension of a group H is logspace reducible to
the so-called compressed word problem for H. The main result of the pa-
per states that the word problem for an HNN-extension of a hyperbolic
group H with cyclic associated subgroups can be solved in polynomial
time. This result can be easily extended to fundamental groups of graphs
of groups with hyperbolic vertex groups and cyclic edge groups.
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1 Introduction

The study of computational problems in group theory goes back more than 100
years. In a seminal paper from 1911, Dehn posed three decision problems [8]:
The word problem, the conjugacy problem, and the isomorphism problem. In this
paper, we mainly deal with the word problem: It is defined for a finitely generated
group G. This means that there exists a finite subset Σ ⊆ G such that every
element of G can be written as a finite product of elements from Σ. This allows
to represent elements of G by finite words over the alphabet Σ. For the word
problem, the input consists of such a finite word w ∈ Σ∗ and the goal is to check
whether w represents the identity element of G.

In general the word problem is undecidable. By a classical result of Boone
[5] and Novikov [30], there exist finitely presented groups (finitely generated
groups that can be defined by finitely many equations) with an undecidable
word problem; see [35] for an excellent exposition. On the positive side, there
are many classes of groups with decidable word problems. In his paper from 1912
[9], Dehn presented an algorithm that solves the word problem for fundamental
groups of orientable closed 2-dimensional manifolds. This result was extended
to one-relator groups (finitely generated groups that can be defined by a single
equation) by Dehn’s student Magnus [24]. Other important classes of groups
with a decidable word problem are:

– automatic groups [12] (including important classes like braid groups [1], Cox-
eter groups [4], right-angled Artin groups [7], hyperbolic groups [15]),
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– finitely generated linear groups, i.e., finitely generated groups that can be
faithfully represented by matrices over some field [31] (including polycyclic
groups and nilpotent groups), and

– finitely generated metabelian groups (they can be embedded in direct prod-
ucts of linear groups [37]).

With the rise of computational complexity theory in the 1960’s, also the compu-
tational complexity of group theoretic problems moved into the focus of research.
From the very beginning, this field attracted researchers from mathematics as
well as computer science. It turned out that for many interesting classes of groups
the word problem admits quite efficient algorithms. Lipton and Zalcstein [20] and
Simon [34] proved that deterministic logarithmic space (and hence polynomial
time) suffices to solve the word problem for a linear group. For automatic groups,
the word problem can be solved in quadratic time [12], and for the subclass of
hyperbolic groups the word problem can be solved in linear time [18] and be-
longs to the complexity class LogCFL [21]. For one-relator groups in general, only
a non-elementary algorithm is known for the word problem, but for important
subclasses polynomial time algorithms are known, see [25, 29] for recent progress.

The complexity of the word problem is also preserved by several important
group theoretic constructions, e.g. graph products (which generalize free prod-
ucts and direct products) [10] and wreath products [36]. Two other important
constructions in group theory are HNN-extensions and amalgamated free prod-
ucts. A theorem of Seifert and van Kampen links these constructions to algebraic
topology. Moreover, HNN-extensions are used in all modern proofs for the un-
decidability of the word problem in finitely presented groups. For a base group
H with two isomorphic subgroups A and B and an isomorphism ϕ : A→ B, the
corresponding HNN-extension is the group

G = 〈H, t | t−1at = ϕ(a) (a ∈ A)〉. (1)

Intuitively, it is obtained by adjoing to H a new generator t (the stable letter) in
such a way that conjugation of A by t realizes ϕ. The subgroups A and B are also
called the associated subgroups. If H has a decidable word problem, A and B are
finitely generated subgroups of H, and the subgroup membership problems for
A and B are decidable, then also the word problem for G in (1) is decidable via
Britton reduction [6] (iterated application of rewriting steps t−1at → ϕ(a) and
tbt−1 = ϕ−1(b) for a ∈ A and b ∈ B). For the special case where A = B and ϕ
is the identity, it is shown in [36] that the word problem for the HNN-extension
G in (1) is NC1-reducible to the following problems: (i) the word problem for
H, (ii) the word problem for the free group of rank two, and (iii) the subgroup
membership problem for A. On the other hand, it is not clear whether this result
can be extended to arbitrary HNN-extensions (even if we allow polynomial time
Turing reductions instead of NC1-reductions). A concrete open problem is the
complexity of the word problem for an HNN-extension 〈F, t | t−1at = ϕ(a) (a ∈
A)〉 of a free group F with finitely generated associated subgroups A and B. The
word problem for a free group is known to be in logspace (it is a linear group) [20]
and the subgroup membership problem for finitely generated subgroups of a free
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group can be solved in polynomial time [2]. The problem with Britton reduction
in the group 〈F, t | t−1at = ϕ(a) (a ∈ A)〉 is that every Britton reduction step
may increase the length of the word by a constant multiplicative factor. This
may lead to words of exponential length. One might try to solve this problem
by representing the exponentially long words by so-called straight-line programs
(context-free grammars that produce a single word). This idea works for the word
problems of automorphism groups and certain group extensions [22, Section 4.2].
But it is not clear whether the words that arise from Britton reduction can be
compressed down to polynomial size using straight-line programs. The problem
arises from the fact that both A and B might be proper subgroups of H. On
the other hand, if one of the associated subgroups A and B coincides with
the base group H (G is then called an ascending HNN-extension) then one
can show that the word problem for G is logspace-reducible to the so-called
compressed word problem for H (Theorem 4). The latter problem asks whether
a given straight-line program that produces a word over the generators of H
evaluates to the group identity of H. The compressed word problem is known to
be solvable in polynomial time for nilpotent groups, virtually special groups, and
hyperbolic groups. For every linear group one still has a randomized polynomial
time algorithm for the compressed word problem; see [22] for details.

Our main result deals with HNN-extensions, where the associated subgroups
A and B are allowed to be proper subgroups of the base group H but are cyclic
(i.e., generated by a single element) and undistored in H (the latter is defined in
Section 4). We show that in this situation the word problem for G is polynomial
time Turing-reducible to the compressed power problem for H (Theorem 7). In
the compressed power problem for H, the input consists of two elements p, q ∈ H,
where p is given explicitly as a word over a generating set and q is given in
compressed form by a straight-line program over a generating set. The question
is whether there exists an integer z ∈ Z such that pz = q in H. Moreover, in the
positive case we also want to compute such a z.

Our main application of Theorem 7 concerns hyperbolic groups. We show
that the compressed power problem for a hyperbolic group can be solved in
polynomial time (Theorem 6). For this, we make use of the well-known fact that
cyclic subgroups of hyperbolic groups are undistorted. As a consequence of The-
orems 6 and 7, the word problem for an HNN-extension of a hyperbolic group
with cyclic associated subgroups can be solved in polynomial time (Corollary 1).
One should remark that HNN-extensions of hyperbolic groups with cyclic asso-
ciated subgroups are in general not even automatic; a well-known example is the
Baumslag-Solitar group BS(1, 2) = 〈a, t | t−1at = a2〉 [12, Section 7.4].

Corollary 1 can be generalized to fundamental groups of graphs of groups
(which generalize HNN-extensions and amalgamated free products) with hyper-
bolic vertex groups and cyclic edge groups, see the full version [23]. For the
special case where all vertex groups are free, the existence of a polynomial time
algorithm for the word problem has been stated in [38, Remark 5.11] without
proof. For a fundamental group of a graph of groups, where all vertex groups
are copies of Z, the word problem can be even solved in logspace [39].
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2 Groups

For real numbers a ≤ b we denote with [a, b] = {r ∈ R | a ≤ r ≤ b} the closed
interval from a to b. For k, ` ∈ N we write [k : `] for {i ∈ N | k ≤ i ≤ `}. We use
standard notations for words (over some alphabet Σ). As usual, the empty word
is denoted with ε. Given a word w = a1a2 · · · an (where a1, a2, . . . , an ∈ Σ) and
numbers i, j ∈ N with 1 ≤ i ≤ j we define w[i : j] = aiai+1 · · · amin{j,n}.

For a group G and a subset Σ ⊆ G, we denote with 〈Σ〉 the subgroup of G
generated by Σ. It is the smallest subgroup of G containing Σ. If G = 〈Σ〉 then
Σ is a generating set for G. The group G is finitely generated (f.g.) if it has a
finite generating set. We mostly consider f.g. groups in this paper.

Assume that G = 〈Σ〉 and let Σ−1 = {a−1 | a ∈ Σ}. For a word w =
a1 · · · an with ai ∈ Σ ∪Σ−1 we define the word w−1 = a−1n · · · a−11 . This defines
an involution on the free monoid (Σ ∪ Σ−1)∗. We obtain a surjective monoid
homomorphism π : (Σ ∪ Σ−1)∗ → G that preserves the involution: π(w−1) =
π(w)−1. We also say that the word w represents the group element π(w). For
words u, v ∈ (Σ ∪ Σ−1)∗ we say that u = v in G if π(u) = π(v). For g ∈ G
one defines |g|Σ = min{|w| : w ∈ π−1(g)} as the length of a shortest word over
Σ∪Σ−1 representing g. If Σ is clear, we also write |g| for |g|Σ . If Σ = Σ−1 then
Σ is a finite symmetric generating set for G.

We will describe groups by presentations. In general, if H is a group and
R ⊆ H is a set of so-called relators, then we denote with 〈H | R〉 the quotient
group H/NR, where NR is the smallest normal subgroup of H with R ⊆ NR.
Formally, we haveNR = 〈{hrh−1 | h ∈ H, r ∈ R}〉. For group elements gi, hi ∈ H
(i ∈ I) we also write 〈H | gi = hi (i ∈ I)〉 for the group 〈H | {gih−1i | i ∈ I}〉.

In most cases, one takes a free group for the group H from the previous
paragraph. Fix a set Σ and let Σ−1 = {a−1 | a ∈ Σ} be a set of formal inverses
of the elements in Σ with Σ ∩ Σ−1 = ∅. A word w ∈ (Σ ∪ Σ−1)∗ is called
freely reduced if it neither contains a factor aa−1 nor a−1a for a ∈ Σ. For every
word w ∈ (Σ ∪ Σ−1)∗ there is a unique freely reduced word that is obtained
from w by deleting factors aa−1 and a−1a (a ∈ Σ) as long as possible. The
free group generated by Σ consists of all freely reduced words together with
the multiplication defined by u · v = nf(uv) for u, v freely reduced. For a set
R ⊆ F (Σ) of relators we also write 〈Σ | R〉 for the group 〈F (Σ) | R〉. Every
group G that is generated by Σ can be written as 〈Σ | R〉 for some R ⊆ F (Σ).
A group 〈Σ | R〉 with Σ and R finite is called finitely presented, and the pair
(Σ,R) is a presentation for the group 〈Σ | R〉. Given two groups G1 = 〈Σ1 | R1〉
and G2 = 〈Σ2 | R2〉, where w.l.o.g. Σ1 ∩ Σ2 = ∅, we define their free product
G1 ∗G2 = 〈Σ1 ∪Σ2 | R1 ∪R2〉.

Consider a group G with the finite symmetric generating set Σ. The word
problem for G w.r.t. Σ is the following decision problem:

input: a word w ∈ Σ∗.
question: does w = 1 hold in G?

It is well known that if Σ′ is another finite symmetric generating set for G, then
the word problem for G w.r.t. Σ′ is logspace many-one reducible to the word
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problem for G w.r.t. Σ. This justifies one to speak just of the word problem for
the group G.

HNN-extensions. HNN-extension is an extremely important operation for
constructing groups that arises in all parts of combinatorial group theory. Take
a group H and a generator t 6∈ H, from which we obtain the free product
H∗〈t〉 ∼= H∗Z. Assume that A,B ≤ H are two isomorphic subgroups ofH and let
ϕ : A→ B be an isomorphism. Then, the group 〈H ∗ 〈t〉 | t−1at = ϕ(a) (a ∈ A)〉
is called the HNN-extension of A with associated subgroups A and B (usually,
the isomorphism ϕ is not mentioned explicitly). The above HNN-extension is
usually written as 〈H, t | t−1at = ϕ(a) (a ∈ A)〉. Britton [6] proved the following
fundamental result for HNN-extensions. Let us fix a finite symmetric generating
set Σ for H.

Theorem 1 (Britton’s lemma [6]). Let G = 〈H, t | t−1at = ϕ(a) (a ∈ A)〉
be an HNN-extension. If a word w ∈ (Σ ∪ {t, t−1})∗ represents the identity of
G then w contains a factor of the form t−1ut (resp., tut−1), where u ∈ Σ∗

represents an element of A (resp., B).

A subword of the form t−1ut (resp., tut−1), where u ∈ Σ∗ represents an element
of A (resp., B) is also called a pin.

A simple corollary of Britton’s lemma is that H is a subgroup of the HNN-
extension 〈H, t | t−1at = ϕ(a) (a ∈ A)〉. Britton’s lemma can be also used to
solve the word problem for an HNN-extension 〈H, t | t−1at = ϕ(a) (a ∈ A)〉. For
this we need several assumptions:

– The word problem for H is decidable.

– There is an algorithm that decides whether a given word u ∈ Σ∗ represents
an element of A (resp., B).

– Given a word u ∈ Σ∗ that represents an element a ∈ A (resp., b ∈ B), one
can compute a word v ∈ Σ∗ that represents the element ϕ(a) (resp., ϕ−1(b)).
Let us denote this word v with ϕ(u) (resp., ϕ−1(u)).

Then, given a word w ∈ (Σ ∪ {t, t−1})∗ one replaces pins t−1ut (resp., tut−1)
by ϕ(u) (resp., ϕ−1(u)) in any order, until no more pins occur. If the final word
does not belong to Σ∗ then we have w 6= 1 in the HNN-extension. If the final
word belongs to Σ∗ then one uses the algorithm for the word problem of H
to check whether it represents the group identity. This algorithm is known as
Britton reduction.

An HNN-extension G = 〈H, t | t−1at = ϕ(a) (a ∈ A)〉 with ϕ : A → B is
called ascending if A = H (it is also called the mapping torus of ϕ). Note that
we do not require B = H. Ascending HNN-extensions play an important role in
many group theoretical results. For instance, Bieri and Strebel [3] proved that
if N is a normal subgroup of a finitely presented group G such that G/N ∼= Z
then G is an ascending HNN-extension of a finitely generated group or contains
a free subgroup of rank two.
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Fig. 1. The shape of a geodesic triangle in a hyperbolic group

Hyperbolic groups. Let G be a f.g. group with the finite symmetric generating
set Σ. The Cayley-graph of G (with respect to Σ) is the undirected graph Γ =
Γ (G) with node set G and all edges (g, ga) for g ∈ G and a ∈ Σ. We view Γ
as a geodesic metric space, where every edge (g, ga) is identified with a unit-
length interval. It is convenient to label the directed edge from g to ga with the
generator a. The distance between two points p, q is denoted with dΓ (p, q). Note
that |g|Σ = dΓ (1, g) for g ∈ G. For r ≥ 0, let Br(1) = {g ∈ G | dΓ (1, g) ≤ r}.

Paths can be defined in a very general way for metric spaces, but we only need
paths that are induced by words over Σ. Given a word w ∈ Σ∗ of length n, one
obtains a unique path P [w] : [0, n]→ Γ , which is a continuous mapping from the
real interval [0, n] to Γ . It maps the subinterval [i, i+1] ⊆ [0, n] isometrically onto
the edge (gi, gi+1) of Γ , where gi (resp., gi+1) is the group element represented
by the word w[1 : i] (resp., w[1 : i+ 1]). The path P [w] starts in 1 = g0 and ends
in gn (the group element represented by w). We also say that P [w] is the unique
path that starts in 1 and is labelled with the word w. More generally, for g ∈ G
we denote with g · P [w] the path that starts in g and is labelled with w. When
writing u · P [w] for a word u ∈ Σ∗, we mean the path g · P [w], where g is the
group element represented by u.

Let λ, ζ > 0, ε ≥ 0 be real constants. A path P
colon[0, n] → Γ of the above form is geodesic if dΓ (P (0), P (n)) = n; it is a
(λ, ε)-quasigeodesic if for all points p = P (a) and q = P (b) we have |a − b| ≤
λ · dΓ (p, q) + ε; and it is ζ-local (λ, ε)-quasigeodesic if for all points p = P (a) and
q = P (b) with |a− b| ≤ ζ we have |a− b| ≤ λ · dΓ (p, q) + ε.

A word w ∈ Σ∗ is geodesic if the path P [w] is geodesic, which means that
there is no shorter word representing the same group element from G. Similarly,
we define the notion of (ζ-local) (λ, ε)-quasigeodesic words. A word w ∈ Σ∗ is
shortlex reduced if it is the length-lexicographically smallest word that represents
the same group element as w. For this, we have to fix an arbitrary linear order
on Σ. Note that if u = xy is shortlex reduced then x and y are shortlex reduced
too. For a word u ∈ Σ∗ we denote with shlex(u) the unique shortlex reduced



Complexity of word problems for HNN-extensions 7
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Fig. 2. Paths that asynchronously K-fellow travel

word that represents the same group element as u (the underlying group G will
be always clear from the context).

A geodesic triangle consists of three points p, q, r ∈ G and geodesic paths
P1 = Pp,q, P2 = Pp,r, P3 = Pq,r (the three sides of the triangle), where Px,y
is a geodesic path from x to y. We call a geodesic triangle δ-slim for δ ≥ 0,
if for all i ∈ {1, 2, 3}, every point on Pi has distance at most δ from a point
on Pj ∪ Pk, where {j, k} = {1, 2, 3} \ {i}. The group G is called δ-hyperbolic,
if every geodesic triangle is δ-slim. Finally, G is hyperbolic, if it is δ-hyperbolic
for some δ ≥ 0. Figure 1 shows the shape of a geodesic triangle in a hyperbolic
group. Finitely generated free groups are for instance 0-hyperbolic. The property
of being hyperbolic is independent of the chosen generating set Σ. The word
problem for every hyperbolic group can be decided in real time [18].

Fix a δ-hyperbolic group G with the finite symmetric generating set Σ for
the rest of the section, and let Γ be the corresponding geodesic metric space.
Consider two paths P1 : [0, n1] → Γ , P2 : [0, n2] → Γ and let K ∈ R, K ≥ 0.
The paths P1 and P2 asynchronously K-fellow travel if there exist two contin-
uous non-decreasing mappings ϕ1 : [0, 1] → [0, n1] and ϕ2 : [0, 1] → [0, n2] such
that ϕ1(0) = ϕ2(0) = 0, ϕ1(1) = n1, ϕ2(1) = n2 and for all 0 ≤ t ≤ 1,
dΓ (P1(ϕ1(t)), P2(ϕ2(t))) ≤ K. Intuitively, this means that one can travel along
the paths P1 and P2 asynchronously with variable speeds such that at any
time instant the current points have distance at most K. If P1 and P2 asyn-
chronously K-fellow travel, then by slightly increasing K one obtains a subset
E ⊆ [0 : n1] × [0 : n2] with (i) (0, 0), (n1, n2) ∈ E, dΓ (P1(i), P2(j)) ≤ K for all
(i, j) ∈ E and (iii) if (i, j) ∈ E \ {(n1, n2)} then (i+ 1, j) ∈ E or (i, j + 1) ∈ E.
We write P1 ≈K P2 in this case. Intuitively, this means that a ladder graph
as shown in Figure 2 exists, where the edges connecting the horizontal P1- and
P2-labelled paths represent paths of length ≤ K that connect elements from G.

Lemma 1 (c.f. [27, Lemma 1]). Let P1 and P2 be (λ, ε)-quasigeodesic paths
in Γ and assume that Pi starts in gi, ends in hi, and dΓ (g1, g2), dΓ (h1, h2) ≤ h.
Then there is a constant K = K(δ, λ, ε, h) ≥ h such that P1 ≈K P2.

2.1 Compressed words and the compressed word problem

Straight-line programs offer succinct representations of long words that contain
many repeated substrings. We here review the basics, referring to [22] for a more
in-depth introduction.
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Fix a finite alphabetΣ. A straight-line program G (SLP for short) is a context-
free grammar that generates exactly one word val(G) ∈ Σ∗. More formally, an
SLP over Σ is a triple G = (V, S, ρ) where

– V is a finite set of variables, disjoint from Σ,

– S ∈ V is the start variable, and

– ρ : V → (V ∪Σ)∗ is the right-hand side mapping, which is acyclic in the sense
that the binary relation {(A,B) ∈ V × V | B appears in ρ(A)} is acyclic.

We define the size |G| of G as
∑
A∈V |ρ(A)|. The evaluation function val =

valG : (V ∪ Σ)∗ → Σ∗ is the unique homomorphism between free monoids such
that (i) val(a) = a for a ∈ Σ, and (ii) val(A) = val(ρ(A)) for A ∈ V . We finally
take val(G) = val(S). We call val(G) the word defined by the SLP G.

Example 1. Let Σ = {a, b} and fix n ≥ 0. We define Gn = ({A0, . . . , An}, An, ρ),
where ρ(A0) = ab and ρ(Ai+1) = AiAi for 0 ≤ i ≤ n − 1. It is an SLP of

size 2(n + 1). We have val(A0) = ab and more generally val(Ai) = (ab)2
i

. Thus
val(Gn) = val(An) = (ab)2

n

.

The SLP G = (V, S, ρ) is trivial if S is the only variable and ρ(S) = ε = val(G).
An SLP is in Chomsky normal form if it is either trivial or all right-hand sides
ρ(A) are of the form a ∈ Σ or BC with B,C ∈ V . There is a linear-time
algorithm that transforms a given SLP G into an SLP G′ in Chomsky normal
such that val(G) = val(G′); see [22, Proposition 3.8].

The following theorem is the technical main result from [19]:

Theorem 2 (c.f. [19]). Let G be a hyperbolic group with the finite symmetric
generating set Σ. Given an SLP G over Σ one can compute in polynomial time
an SLP H over Σ such that val(H) = shlex(val(G)).

If G is a f.g. group with the finite and symmetric generating set Σ, then we
define the compressed word problem of G as the following problem:

input: an SLP G over Σ.

question: does val(G) represent the group identity of G?

An immediate consequence of Theorem 2 is the following result:

Theorem 3 (c.f. [19]). The compressed word problem for a hyperbolic group
can be solved in polynomial time.

The compressed word problem turns out to be useful for the solution of the word
problem for an ascending HNN-extension:

Theorem 4. Let H be a finitely generated group. The word problem for an as-
cending HNN-extension G = 〈H, t | t−1at = ϕ(a) (a ∈ H)〉 is logspace-reducible
to the compressed word problem for H.
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The proof is similar to corresponding results for automorphism groups and semi-
direct products [22, Section 4.2]; see the full version [23] for details.

We will also need a generalization of straight-line programs, known as com-
position systems [16, Definition 8.1.2] (in [22] they are called cut straight-line
programs). A composition system over Σ is a tuple G = (V, S, ρ), with V and S
as for an SLP, and where we also allow, as right-hand sides for ρ, expressions
of the form B[i : j], with B ∈ V and i, j ∈ N, 1 ≤ i ≤ j. The numbers i
and j are stored in binary encoding. We again require ρ to be acyclic. When
ρ(A) = B[i : j] we define val(A) = val(B)[i : j]. We define the size |G| of the
composition system G as the total number of occurrences of symbols from V ∪Σ
in all right-hand sides. Hence, a right-hand B[i : j] contributes 1 to the size, and
we ignore the numbers i, j. Adding the bit lengths of the numbers i and j to
the size |G| would only lead to a polynomial blow-up for |G|. To see this, first
normalize the composition system so that all right-hand sides have the form a,
BC or B[i : j] with a ∈ Σ and B,C ∈ V ; analogously to the Chomsky normal
form of SLPs this can be achieved in polynomial time. If n is the number of
variables of the resulting composition system, then every variable produces a
string of length at most 2n. Hence, we can assume that all numbers i, j that
appear in a right-hand side B[i : j] are of bit length O(n).

We can now state an important result of Hagenah; see [16, Algorithmus 8.1.4]
as well as [22, Theorem 3.14].

Theorem 5. There is a polynomial-time algorithm that, given a composition
system G, computes an SLP G′ such that val(G) = val(G′).
It will be convenient to allow in composition systems also more complex right-
hand sides. For instance (ABC)[i : j]D would first concatenate the strings pro-
duced from A, B, and C. From the resulting string the substring from position
i to position j is cut out and this substring is concatenated with the string
produced by D.

3 The compressed power problem

In the next section we want to study the word problem in HNN-extensions with
cyclic associated subgroups. For this, the following computational problem turns
out to be important. Let G be a f.g. group with the finite symmetric generating
set Σ. We define the compressed power problem for G as the following problem:

input: a word w ∈ Σ∗ and an SLP G over Σ.
output: the binary coding of an integer z ∈ Z such that wz = val(G) in G if

such an integer exists, and no otherwise.

Theorem 6. For every hyperbolic group G, the compressed power problem can
be solved in polynomial time.

Proof. Fix the word w ∈ Σ∗ and the SLP G = (V, ρ, S) over Σ, w.l.o.g. in
Chomsky normal form. We have to check whether the equation

wz = val(G) (2)
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has a solution in G, and compute in the positive case a solution z ∈ Z. Let g be
the group element represented by w.

In a hyperbolic group G the order of torsion elements is bounded by a fixed
constant that only depends on G, see also the proof of [28, Theorem 6.7]. This
allows to check in polynomial time whether g has finite order in G. If g has finite
order, say d, then it remains to check for all 0 ≤ i ≤ d− 1 whether wi = val(G)
in G, which can be done in polynomial time by Theorem 3. This solves the case
where g has finite order in G.

Now assume that g has infinite order in G. Then (2) has at most one solution.
By considering also the equation (w−1)z = val(G), it suffices to search for a
solution z ∈ N. We can also assume that w is shortlex-reduced. Using techniques
from [13] one can further ensure that for every n ∈ N, wn is (λ, ε)-quasigeodesic
for fixed constants λ and ε that only depend on the group G; see [23] for details.
Finally, by Theorem 2 we can also assume that the word val(G) (and hence every
word val(X) for X a variable of G) is shortlex-reduced. Hence, if wz = val(G) for
some z ∈ N, then by Lemma 1 we have P [wz] ≈K P [val(G)] for a fixed constant
K that only depends on G. We proceed in two steps.

Step 1. We compute in polynomial time for all variables X ∈ V of the SLP G, all
group elements a, b ∈ BK(1) (there are only constantly many), and all factors w′

of w a bit β[X, a, b, w′] ∈ {0, 1} which is set to 1 if and only if (i) val(X) = aw′b
in G and (ii) P [val(X)] ≈K a · P [w′].

We compute these bits β[X, a, b, w′] in a bottom-up process where we begin
with variables X such that ρ(X) is a terminal symbol and end with the start
variable S. So, let us start with a variable X such that ρ(X) = c ∈ Σ and let
a, b, w′ as above. Then we have to check whether c = aw′b in G and P [c] ≈K
a ·P [w′]. The former can be checked in linear time (it is an instance of the word
problem) and the latter can be done in polynomial time as well: we have to check
whether the path a · P [w′] splits into two parts, where all vertices in the first
(resp., second) part belong to BK(1) (resp., BK(c)).

Let us now consider a variable X with ρ(X) = Y Z such that all bits
β[Y, a, b, w′] and β[Z, a, b, w′] have been computed. Let us fix a, b ∈ BK(1) and a
factor w′ of w. We have β[X, a, b, w′] = 1 if and only if there exists a factorization
w′ = w′1w

′
2 and c ∈ BK(1) such that β[Y, a, c, w′1] = 1 and β[Z, c−1, b, w′2] = 1.

This allows us to compute β[X, a, b, w′] in polynomial time.

Step 2. We compute in polynomial time for all variables X ∈ V , all group
elements a, b ∈ BK(1), all proper suffixes w2 of w, and all proper prefixes w1

of w the unique number z = z[X, a, b, w2, w1] ∈ N (if it exists) such that (i)
val(X) = aw2w

zw1b in G and (ii) P [val(X)] ≈K a · P [w2w
zw1]. If such an

integer z does not exist we set z[X, a, b, w2, w1] = ∞. Note that the integers
z[X, a, b, w2, w1] are unique since w represents a group element of infinite order.
We represent z[X, a, b, w2, w1] in binary encoding. As in step 1, the computation
of the numbers z[X, a, b, w2, w1] begins with variables X such that ρ(X) is a
terminal symbol and ends with the start variable S; see [23] for details. The bits
β[X, a, b, w′] from step 1 are needed in the computation. Finally, z[S, 1, 1, ε, ε] is
the unique solution of equation (2) if z[S, 1, 1, ε, ε] <∞. ut
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4 HNN-extensions with cyclic associated subgroups

Let H be a f.g. group and fix a generating set Σ for H. We say that a cyclic
subgroup 〈g〉 ≤ H is undistorted in H if there exists a constant δ such that for
every h ∈ 〈g〉 there exists z ∈ Z with h = gz and |z| ≤ δ · |h|Σ (this definition
does not depend on the choice of Σ).1 This is clearly the case if 〈g〉 is finite.

Note that if g, h ∈ H are elements of the same order then the group 〈H, t |
t−1gt = h〉 is the HNN-extension 〈H, t | t−1at = ϕ(a) (a ∈ 〈g〉)〉, where ϕ : 〈g〉 →
〈h〉 is the isomorphism with ϕ(gz) = hz for all z ∈ Z. In the following theorem we
consider a slight extension of the word problem for such an HNN-extension G =
〈H, t | t−1gt = h〉 which we call the semi-compressed word problem for G. In this
problem the input is a sequence G0tε1G1tε2G2 · · · tεnGn where every Gi (0 ≤ i ≤ n)
is an SLP (or a composition system) over the alphabet Σ and εi ∈ {−1, 1} for
1 ≤ i ≤ n. The question is whether val(G0)tε1val(G1)tε2val(G2) · · · tεnval(Gn) = 1
in G.

Theorem 7. Let H be a fixed f.g. group and let g, h ∈ H be elements with the
same order in H (so that the cyclic subgroups 〈g〉 and 〈h〉 are isomorphic) such
that 〈g〉 and 〈h〉 are undistorted. Then the semi-compressed word problem for
the HNN-extension 〈H, t | t−1gt = h〉 is polynomial-time Turing-reducible to the
compressed power problem for H.

Proof. The case where 〈g〉 and 〈h〉 are both finite is easy. In this case, by the
main result of [17], even the compressed word problem for 〈H, t | t−1gt = h〉 is
polynomial time Turing-reducible to the compressed word problem for H, which
is a special case of the compressed power problem.

Let us now assume that 〈g〉 and 〈h〉 are infinite. Fix a symmetric finite
generating set Σ for H. Let W = G0tε1G1tε2G2 · · · tεnGn be an input for the
semi-compressed word problem for 〈H, t | t−1gt = h〉, where Gi is a composition
system over Σ for 0 ≤ i ≤ n and εi ∈ {−1, 1} for 1 ≤ i ≤ n. Basically, we do Brit-
ton reduction in any order on the word val(G0)tε1val(G1)tε2val(G2) · · · tεnval(Gn).
The number of Britton reduction steps is bounded by n/2. After the i-th step we
have a sequence U = H0t

ζ1H1t
ζ2H2 · · · tζmHm where m ≤ n, Hi = (Vi, Si, ρi) is

a composition system over Σ, and ζi ∈ {−1, 1}. Let ui = val(Hi), si = |Hi| and
define s(U) = m+

∑m
i=0 si, which is a measure for the encoding length of U . We

then search for an 1 ≤ i ≤ m− 1 such that one of the following two cases holds:

(i) ζi = −1, ζi+1 = 1 and there is an ` ∈ Z such that ui = g` in H.
(ii) ζi = 1, ζi+1 = −1 and there is an ` ∈ Z such that ui = h` in H.

Using oracle access to the compressed power problem for H we can check in
polynomial time whether one of these cases holds and compute the corresponding
integer `. We then replace the subsequenceHi−1tζiHitζi+1Hi+1 by a composition
system H′i where val(H′i) is ui−1h

`ui+1 in case (i) and ui−1g
`ui+1 in case (ii).

Let U ′ be the resulting sequence. It remains to bound s(U ′). For this we have to

1 The concept of undistorted subgroups is defined for arbitrary finitely generated sub-
groups but we will need it only for the cyclic case.
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bound the size of the composition systemH′i. Assume that ζi = −1, ζi+1 = 1, and
ui = g` in H (the case where ζi = 1, ζi+1 = −1 and ui = h` in H is analogous).
It suffices to show that h` can be produced by a composition system H′′i of size
si +O(1). Then we can easily bound the size of H′i by si−1 + si + si+1 +O(1),
which yields s(U ′) ≤ s(U)+O(1). This shows that every sequence V that occurs
during the Britton reduction satisfies S(V ) ≤ S(W )+O(n) (recall that W is the
initial sequence and that the number of Britton reductions is bounded by n/2).

Fix the constant δ such that for every g′ ∈ 〈g〉 the unique (since g has infinite
order) z ∈ Z with g′ = gz satisfies |z| ≤ δ · |g′|Σ . Hence, we have |`| ≤ δ · |ui|.
W.l.o.g. we can assume that δ ∈ N. The variables of H′′i are the variables of
Hi plus two new variables Ah and S′i. Define a morphism η by η(a) = Ah for
all a ∈ Σ and η(A) = A for every variable A of Hi. We define the right-hand
side mapping ρ′′i of H′′i by: ρ′′i (Ah) = h if ` ≥ 0 and ρ′′i (Ah) = h−1 if ` < 0,
ρ′′i (S′i) = (Sδi )[1 : |`| · |h|] and ρ′′i (A) = η(ρi(A)) for all variables A of Hi. Note
that Sδi derives to hδ·|ui| if ` ≥ 0 and to h−δ·|ui| if ` < 0. Since |`| ≤ δ · |ui|,
(Sδi )[1 : |`| · |h|] derives to h`. The start variable of H′′i is S′i. The size of H′′i is
si + |h|+ δ = si +O(1), since |h| and δ are constants. ut

A subgroup of a hyperbolic group is undistorted if and only if it is quasiconvex
[26, Lemma 1.6]. That cyclic subgroups in hyperbolic groups are quasiconvex
was shown by Gromov [15, Corollary 8.1.D]. Hence, infinite cyclic subgroups of
a hyperbolic group are undistorted. Together with Theorems 6 and 7 we get:

Corollary 1. Let H be a hyperbolic group and let g, h ∈ H have the same order.
Then the word problem for 〈H, t | t−1gt = h〉 can be solved in polynomial time.

5 Future work

There is no hope to generalize Corollary 1 to the case of finitely generated
associated subgroups (there exists a finitely generated subgroupA of a hyperbolic
group G such that the membership problem for A is undecidable [32]). On the
other hand, it is known that the membership problem for quasiconvex subgroups
of hyperbolic groups is decidable. What is the complexity of the word problem for
an HNN-extension of a hyperbolic group H with finitely generated quasiconvex
associated subgroups? Even for the case where H is free (where all subgroups
are quasiconvex) the existence of a polynomial time algorithm is not clear.

The best known complexity bound for the word problem of a hyperbolic group
is LogCFL, which is contained in the circuit complexity class NC2. This leads to
the question whether the complexity bound in Corollary 1 can be improved
to NC. Also the complexity of the the compressed word problem for an HNN-
extension of a hyperbolic group H with cyclic associated subgroups is open (even
in the case where the base group H is free). Recall that the compressed word
problem for a hyperbolic group can be solved in polynomial time [19].
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