
Membership problems in finite groups
Markus Lohrey !

Universität Siegen, Germany

Andreas Rosowski !

Universität Siegen, Germany

Georg Zetzsche !

Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany

Abstract
We show that the subset sum problem, the knapsack problem and the rational subset membership
problem for permutation groups are NP-complete. Concerning the knapsack problem we obtain
NP-completeness for every fixed n ≥ 3, where n is the number of permutations in the knapsack
equation. In other words: membership in products of three cyclic permutation groups is NP-complete.
This sharpens a result of Luks [37], which states NP-completeness of the membership problem for
products of three abelian permutation groups. We also consider the context-free membership problem
in permutation groups and prove that it is PSPACE-complete but NP-complete for a restricted class
of context-free grammars where acyclic derivation trees must have constant Horton-Strahler number.
Our upper bounds hold for black box groups. The results for context-free membership problems in
permutation groups yield new complexity bounds for various intersection non-emptiness problems
for DFAs and a single context-free grammar.

2012 ACM Subject Classification CCS → Theory of computation → computational complexity and
cryptography → problems, reductions and completeness

Keywords and phrases algorithms for finite groups, intersection non-emptiness problems, knapsack
problems in groups

Digital Object Identifier 10.4230/LIPIcs.MFCS.2022.43

Related Version Full Version: https://arxiv.org/abs/2206.11756

1 Introduction

Membership problems in groups. The general problem that we study in this paper is the
following: Fix a class C of formal languages. We assume that members of C have a finite
description; typical choices are the class of regular or context-free languages, or a singleton
class C = {L}. We are given a language L ∈ C with L ⊆ Σ∗, a group G together with a
morphism h : Σ∗ → G from the free monoid Σ∗ to the group G, and a word w ∈ Σ∗. The
question that we want to answer is whether w ∈ h−1(h(L)), i.e., whether the group element
h(w) belongs to h(L). One can study this problem under several settings, and each of these
settings has a different motivation. First of all, one can consider the case where G is a
fixed finitely generated group that is finitely generated by Σ. One could call this problem
the C-membership problem for the group G. The best studied case is the rational subset
membership problem, where C is the class of regular languages. It generalizes the subgroup
membership problem for G, a classical decision problem in group theory. Other special
cases of the rational subset membership problem that have been studied in the past are the
submonoid membership problem, the knapsack problem and the subset sum problem, see
e.g. [32, 38]. It is a simple observation that for the rational subset membership problem, the
word w (which is tested for membership in h−1(h(L)) can be assumed to be the empty word,
see [28, Theorem 3.1].

In this paper, we study another setting of the above generic problem, where G is a finite
© Markus Lohrey, Andreas Rosowski, and Georg Zetzsche;
licensed under Creative Commons License CC-BY 4.0

47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022).
Editors: Stefan Szeider, Robert Ganian, and Alexandra Silva; Article No. 43; pp. 43:1–43:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lohrey@eti.uni-siegen.de
https://orcid.org/0000-0002-4680-7198
mailto:rosowski@eti.uni-siegen.de
mailto:georg@mpi-sws.org
https://orcid.org/0000-0002-6421-4388
https://doi.org/10.4230/LIPIcs.MFCS.2022.43
https://arxiv.org/abs/2206.11756
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

43:2 Membership problems in finite groups

group that is part of the input (and L still comes from a languages class C). For the rest of
the introduction we restrict to the case where G is a finite symmetric group Sm (the set of
all permutations on {1, . . . ,m}) that is represented in the input by the integer m in unary
representation, i.e., by the word $m.1 Our applications only make use of this case, but we
remark that our upper complexity bounds can be proven in the more general black box
setting [6] (in particular, one could replace symmetric groups by matrix groups over a finite
field and still obtain the same complexity bounds). Note that |Sm| = m!, hence the order of
the group is exponential in the input length.

Membership problems for permutation groups. One of the best studied membership
problems for permutation groups is the subgroup membership problem: the input is a unary
encoded number m and a list of permutations a, a1, . . . , an ∈ Sm, and it is asked whether a
belongs to the subgroup of Sm generated by a1, . . . , an. The famous Schreier-Sims algorithm
solves this problem in polynomial time [40], and the problem is known to be in NC [5].

Several generalizations of the subgroup membership problem have been studied. Luks
defined the k-membership problem (k ≥ 1) as follows: The input is a unary encoded number
m, a permutation a ∈ Sm and a list of k permutation groups G1, G2, . . . , Gk ≤ Sm (every Gi is
given by a list of generators). The question is whether a belongs to the product G1 ·G2 · · ·Gk.
It is a famous open problem whether 2-membership can be solved in polynomial time. This
problem is equivalent to several other important algorithmic problems in permutation groups:
computing the intersection of permutation groups, computing set stabilizers or centralizers,
checking equality of double cosets, see [37] for details. On the other hand, Luks has shown in
[37] that k-membership is NP-complete for every k ≥ 3. In fact, NP-hardness of 3-membership
holds for the special case where G1 = G3 and G1 and G2 are both abelian.

Note that the k-membership problem is a special case of rational subset membership
for symmetric groups. Let us define this problem again for the setting of symmetric groups
(here, 1 denotes the identity permutation and we identify a word over the alphabet Sm with
the permutation to which it evaluates):

I Problem 1.1 (rational subset membership problem for symmetric groups).
Input: a unary encoded number m and a nondeterministic finite automaton (NFA) A over
the alphabet Sm.
Question: Does 1 ∈ L(A) hold?

An obvious generalization of the rational subset membership problem for symmetric groups is
the context-free subset membership problem for symmetric groups; it is obtained by replacing
the NFA A in Problem 1.1 by a context-free grammar G.

Two restrictions of the rational subset membership problem that have been intensively
studied for infinite groups in recent years are the knapsack problem and subset sum problem,
see e.g. [4, 8, 9, 21, 22, 30, 33, 35, 38]. For symmetric groups, these problems are defined as
follows (note that the number n+ 1 of permutations is part of the input):

I Problem 1.2 (subset sum problem for symmetric groups).
Input: a unary encoded number m and permutations a, a1, . . . , an ∈ Sm.
Question: Are there i1, . . . , in ∈ {0, 1} such that a = ai11 · · · ainn ?

1 We could also consider the case where G is a subgroup of Sm that is given by a list of generators (i.e.,
G is a permutation group), but this makes no difference for our problems.

M. Lohrey, A. Rosowski, and G. Zetzsche 43:3

Note that the subset sum problem is the membership problem for cubes, which are subsets of
the form {ai11 · · · ainn | i1, . . . , in ∈ {0, 1}} [6].

I Problem 1.3 (knapsack problem for symmetric groups).
Input: a unary encoded number m and permutations a, a1, . . . , an ∈ Sm.
Question: Are there i1, . . . , in ∈ N such that a = ai11 · · · ainn ?

We will also consider the following restrictions of these problems.

I Problem 1.4 (abelian subset sum problem for symmetric groups).
Input: a unary encoded number m and pairwise commuting permutations a, a1, . . . , an ∈ Sm.
Question: Are there i1, . . . , in ∈ {0, 1} such that a = ai11 · · · ainn ?

The following problem is the special case of Luks’ k-membership problem for cyclic groups.
Note that k is a fixed constant here.

I Problem 1.5 (k-knapsack problem for symmetric groups).
Input: a unary encoded number m and k + 1 permutations a, a1, . . . , ak ∈ Sm.
Question: Are there i1, . . . , ik ∈ N such that a = ai11 · · · a

ik
k ?

Main results. Our main result for rational subset membership in symmetric groups is:

I Theorem 1.6. Problems 1.1–1.4 and Problem 1.5 for k ≥ 3 are NP-complete.

In contrast, we will show that the 2-knapsack problem can be solved in polynomial time
(Theorem 5.7). The NP upper bound for the rational subset membership problem will be
shown for black-box groups.
I Remark 1.7. The abelian variant of the knapsack problem, i.e., Problem 1.3 with the
additional restriction that the permutations s1, . . . , sn pairwise commute is of course the
abelian subgroup membership problem and hence belongs to NC.
I Remark 1.8. Analogously to the k-knapsack problem one might consider the k-subset sum
problem, where the number n in Problem 1.2 is fixed to k and not part of the input. This
problem can be solved in time 2k ·mO(1) (check all 2k assignments for exponents i1, . . . , ik)
and hence in polynomial time for every fixed k.

Finally, for the context-free subset membership problem for symmetric groups we show:

I Theorem 1.9. The context-free membership problem for symmetric groups is PSPACE-
complete.

If we restrict the class of context-free grammars in Theorem 1.9 we can improve the complexity
to NP: A derivation tree of a context-free grammar is called acyclic if no nonterminal appears
twice on a path from the root to a leaf. Hence, the height of an acyclic derivation tree
is bounded by the number of nonterminals of the grammar. The Horton-Strahler number
hs(t) of a binary tree t (introduced by Horton and Strahler in the context of hydrology
[25, 41]; see [19] for a good survey emphasizing the importance of Horton-Strahler numbers in
computer science) is recursively defined as follows: If t consists of a single node then hs(t) = 0.
Otherwise, assume that t1 and t2 are the subtrees rooted in the two children of the node. If
hs(t1) = hs(t2) then hs(t) = 1+hs(t1), and if hs(t1) 6= hs(t2) then hs(t) = max{hs(t1),hs(t2)}.
For k ≥ 1 let CFG(k) be the set of all context-free grammars in Chomsky normal form (hence,
derivation trees are binary trees if we ignore the leaves labelled with terminal symbols) such
that every acyclic derivation tree has Horton-Strahler number at most k.

MFCS 2022

43:4 Membership problems in finite groups

no CFG one CFG(k) one CFG
DFAs PSPACE-c. [31] EXPTIME-c. for k large enough EXPTIME-c. [42]

group DFAs NP-c. [11] NP-c. for all k ≥ 1 PSPACE-c.

Table 1 Complexity of various intersection non-emptiness problems

I Theorem 1.10. For every k ≥ 1, the context-free membership problem for symmetric
groups restricted to context-free grammars from CFG(k) is NP-complete.

Note that this result generalizes the statement for the rational subset membership problem
in Theorem 1.6 since every regular grammar (when brought into Chomsky normal form)
belongs to CFG(1). Linear context-free grammars belong to CFG(1) as well. Note that
Theorem 1.10 is a promise problem in the sense that coNP is the best upper bound for
testing whether a given context-free grammar belongs to CFG(k) that we are aware of; see
[34, Theorem A.2]. The upper bounds in Theorems 1.6, 1.9, and 1.10 will actually be shown
for black box groups.

Application to intersection non-emptiness problems. We can apply Theorems 1.9 and
1.10 to intersection non-emptiness problems. The intersection non-emptiness problem for
deterministic finite automata (DFAs) is the following problem:

I Problem 1.11 (intersection non-emptiness problem for DFAs).
Input: DFAs A1,A2, . . . ,An
Question: Is

⋂
1≤i≤n L(Ai) non-empty?

Kozen [31] has shown that this problem is PSPACE-complete. When restricted to group
DFAs (see Section 2) the intersection non-emptiness problem was shown to be NP-complete
by Blondin et al. [11]. Based on Cook’s characterization of EXPTIME by polynomially
space bounded AuxPDAs [13], Swernofsky and Wehar [42] showed that the intersection non-
emptiness problem is EXPTIME-complete for a list of general DFAs and a single context-free
grammar; see also [24, p. 275] and [18] for a related EXPTIME-complete problem. Using
Theorems 1.9 and 1.10 we can easily show the following new results:

I Theorem 1.12. The following problem is NP-complete for every k ≥ 1:

Input: A list of group DFAs A1,A2, . . . ,An and a context-free grammar G ∈ CFG(k).
Question: Is L(G) ∩

⋂
1≤i≤n L(Ai) non-empty?

I Theorem 1.13. The following problem is PSPACE-complete:

Input: A list of group DFAs A1,A2, . . . ,An and a context-free grammar G.
Question: Is L(G) ∩

⋂
1≤i≤n L(Ai) non-empty?

Table 1 gives an overview on the complexity of intersection non-emptiness problems. For
the intersection non-emptiness problem for arbitrary DFAs and one grammar from CFG(k)
one has to notice that the EXPTIME-hardness proof from [42] works for a fixed context-free
grammar. Moreover, every fixed context-free grammar belongs to CFG(k) for some k ≥ 1.

Related work. Computationally problems for permutation groups have a long history
(see e.g. the text book [39]), and have applications, e.g. for graph isomorphism testing
[3, 36]. A problem that is similar to subset sum is the minimum generator sequence problem

M. Lohrey, A. Rosowski, and G. Zetzsche 43:5

(MGS) [20]: The input consists of unary encoded numbers m, ` and a list of permutations
a, a1, . . . , an ∈ Sm. The question is, whether a can be written as a product b1b2 · · · bk with
k ≤ ` and b1, . . . , bk ∈ {a1, . . . , an}. The problem MGS was shown to be NP-complete in
[20]. For the case, where the number ` is given in binary representation, the problem is
PSPACE-complete [27]. This yields in fact the PSPACE-hardness in Theorem 1.9.

Intersection nonemptiness problems have been studied intensively in recent years, see
e.g. [1, 14]. The papers [10, 26] prove PSPACE-hardness of the intersection nonemptiness
problem for inverse automata (DFAs, where the transition monoid is an inverse monoid).

There are several algorithms for context-free (and other) grammars that exploit that an
input grammar is index-m, meaning that all derivation trees have Horton-Strahler number
≤ m, where m is part of the input in unary notation [17, 12, 16, 15, 7, 2] (see [19] for a
survey). This assumption, called finite-index, is incomparable to our CFG(k)-assumption: In
CFG(k), the k is fixed but one only considers acyclic derivation trees.

2 Preliminaries

Groups. Let G be a finite group and let G∗ be the free monoid of all finite words over the
alphabet G. There is a canonical morphism φG : G∗ → G that is the identity mapping on
G ⊆ G∗. Throughout this paper we suppress applications of φG and identify words over the
alphabet G with the corresponding group elements. For a subset S ⊆ G we denote with 〈S〉
the subgroup generated by S. The following folklore lemma is a straightforward consequence
of Lagrange’s theorem (if A and B are subgroups of G with A < B, then |B| ≥ 2 · |A|).

I Lemma 2.1. Let G be a finite group and S ⊆ G a generating set for G. Then, there exists
a subset S′ ⊆ S such that 〈S′〉 = G and |S′| ≤ log2 |G|.

Assume that G = 〈S〉. A straight-line program over the generating set S is a sequence of
definitions S = (xi := ri)1≤i≤n where the xi are variables and every right-hand side ri is
either from S or of the form xjxk with 1 ≤ j, k < i. Every variable xi evaluates to a group
element gi ∈ G in the obvious way: if ri ∈ S then gi = ri and if ri = xjxk then gi = gjgk.
Then, S is said to produce gn. The size of S is n. The following result is known as the
reachability theorem [6, Theorem 3.1].

I Theorem 2.2 (reachability theorem). Let G be a finite group, S ⊆ G a generating set for G,
and g ∈ G. Then there exists a straight-line program over S of size at most (1 + log2 |G|)2

that produces the element g.

For a set Q let SQ be the symmetric group on Q, i.e., the set of all permutations on Q with
composition of permutations as the group operation. If Q = {1, . . . ,m} we also write Sm for
SQ. Let a ∈ SQ be a permutation and let q ∈ Q. We also write qa for a(q). We multiply
permutations from left to right, i.e., for a, b ∈ SQ, ab is the permutation with qab = (qa)b for
all q ∈ Q. A permutation group is a subgroup of some SQ.

Quite often, the permutation groups we consider are actually direct products
∏

1≤i≤d Smi

for small numbers mi. Clearly, we have
∏

1≤i≤d Smi
≤ Sm for m =

∑
1≤i≤dmi and an

embedding of
∏

1≤i≤d Smi
into Sm can be computed in polynomial time.

Horton-Strahler number. Recall the definition of the Horton-Strahler number hs(t) of
binary trees t from the introduction. We need the following simple fact; see [34, Lemma 2.3].
Here, the height of a tree is the maximal number of edges on a path from the root to a leaf.

I Lemma 2.3. Let t be a binary tree of height d and let s = hs(t). Then, t has at most ds
many leaves and therefore at most 2 · ds many nodes.

MFCS 2022

43:6 Membership problems in finite groups

Formal languages. We assume that the reader is familiar with basic definitions from
automata theory. Our definitions of deterministic finite automata (DFA), nondeterministic
finite automata (NFA), and context-free grammars are the standard ones.

Consider a DFA A = (Q,Σ, q0, δ, F), where q0 ∈ Q is the initial state, δ : Q× Σ→ Q is
the transition mapping and F ⊆ Q is the set of final states. The transformation monoid of
A is the submonoid of QQ (the set of all mappings on Q and composition of functions as the
monoid operation) generated by all mappings q 7→ δ(q, a) for a ∈ Σ. A group DFA is a DFA
whose transformation monoid is a group.

Context-free grammars will be always in Chomsky normal form. When we speak of a
derivation tree of a context-free grammar, we always assume that the root of the tree is
labelled with the start nonterminal and every leaf is labelled with a terminal symbol. When
we talk about the Horton-Strahler number of such a tree, we remove all terminal-labelled
leaves so that the resulting tree is a binary tree (due to the Chomsky normal form). In a
partial derivation tree, we also allow leaves labelled with nonterminals (but we still assume
that the root is labelled with the start nonterminal).

3 Black box groups

More details on black box groups can be found in [6, 39]. Roughly speaking, in the black box
setting group elements are encoded by bit strings of a certain length b and there exist oracles
for multiplying two group elements, computing the inverse of a group element, checking
whether a given group element is the identity, and checking whether a given bit string of
length b is a valid encoding of a group element (the latter operation is not allowed in [6]).
As usual, each execution of an oracle operation counts one time unit, but the parameter b
enters the input length additively.

Formally, a black box is a tuple B = (b, c, valid, inv, prod, id, G, f) such that G is a finite
group (the group in the box), b, c ∈ N, and the following properties hold:

f : {0, 1}b → G] {∗} satisfies G ⊆ f({0, 1}b). Here, f−1(g) is the set of names of g ∈ G.
valid : {0, 1}b → {yes, no} is such that ∀x ∈ {0, 1}b : f(x) ∈ G⇐⇒ valid(x) = yes.
inv : {0, 1}b → {0, 1}b is such that ∀x ∈ f−1(G) : f(inv(x)) = f(x)−1.
prod : {0, 1}b × {0, 1}b → {0, 1}b is such that ∀x, y ∈ f−1(G) : f(prod(x, y)) = f(x)f(y).
id : {0, 1}b × {0, 1}c → {yes, no} is such that for all x ∈ f−1(G): f(x) = 1 iff there exists
y ∈ {0, 1}c with id(x, y) = yes (such a y is called a witness for f(x) = 1).

We call b the code length of the black box.
A black box Turing machine is a deterministic or nondeterministic oracle Turing machine

T that is equipped with oracles for the four operations valid, inv, prod, and id. The input
for T consists of two unary encoded numbers b and c and some additional problem specific
input. In order to determine the behavior of T , it must be coupled with a black box
B = (b, c, valid, inv, prod, id, G, f) (where b and c must match the first part of the input of T).
Then, given bit strings x, y ∈ {0, 1}b on a special tape of T , it can compute instantaneously
in a single computation step the bit string prod(x, y). Analogous instantaneous computations
can be done for the operations valid, inv, and id. We denote with TB the machine T coupled
with the black box B. Note that the black box B = (b, c, valid, inv, prod, id, G, f) is not part
of the input of T , only the unary encoded numbers b and c are part of the input.

Assume that P is an algorithmic problem for finite groups. The input for P is a finite
group G and some additional data X (e.g. a context-free grammar with terminal alphabet G
in the next section). We do not specify exactly, how G is represented. The additional input X
may contain elements of G. We will say that P belongs to NP for black box groups if there is

M. Lohrey, A. Rosowski, and G. Zetzsche 43:7

a nondeterministic black box Turing machine T , whose input is of the form b, c,X with unary
encoded numbers b and c, such that for every black box B = (b, c, valid, inv, prod, id, G, f)
the following holds: TB accepts the input b, c,X (where X denotes the additional input
for P and group elements in X are represented by bit strings from f−1(G)) if and only if
(G,X) belongs to P. The running time of TB is polynomial in b+ c+ |X|. Note that since
G may have order 2b, the order of G may be exponential in the input length. We will use
the analogous definition for other complexity classes, in particular for PSPACE.

In the rest of the paper we handle black box groups in a slightly more casual way. We
identify bits strings from x ∈ f−1(G) with the corresponding group elements. So, we will
never talk about bit strings x ∈ f−1(G), but instead directly deal with elements of G. The
reader should notice that we cannot directly verify whether a given element g ∈ G is the
identity. This is only possible in a nondeterministic way by guessing a witness y ∈ {0, 1}c.
The same applies to the verification of an identity g = h, which is equivalent to gh−1 = 1.
This allows to cover also quotient groups by the black box setting; see [6].

We need the following well-known fact from [6]:

I Lemma 3.1. The subgroup membership problem for black box groups (given group elements
g, g1, . . . , gn, does g ∈ 〈g1, . . . , gn〉 hold?) belongs to NP.

This is a consequence of the reachability theorem: Let b be the code length of the black box.
Hence there are at most 2b group elements. By the reachability theorem (Theorem 2.2) it
suffices to guess a straight-line program over {g1, . . . , gn} of size at most (1 + log2 2b)2 =
(b+ 1)2, evaluate it using the oracle for prod (let g′ be the result of the evaluation) and check
whether g′g−1 = 1. The later can be done nondeterministically using the oracle for id.

4 Context-free membership in black box groups

In this section, we sketch the proofs for the following two results.

I Theorem 4.1. The context-free membership problem for black box groups is in PSPACE.

I Theorem 4.2. For every k ≥ 1, the context-free membership problem for black box groups
restricted to context-free grammars from CFG(k) is in NP.

Recall the definition of the class CFG(k) from the introduction. Let us first derive some
corollaries. Theorem 4.2 directly implies Theorem 1.10. Applied to regular grammars (which
are in CFG(1) after bringing them to Chomsky normal form), it yields:

I Corollary 4.3. The rational subset membership problem for black box groups is in NP. In
particular, the rational subset membership problem for symmetric groups is in NP.

Also Theorem 1.9 can be easily obtained now: The upper bound follows directly from
Theorem 4.1. The lower bound can be obtained from a result of Jerrum [27]. In the
introduction we mentioned that Jerrum proved the PSPACE-completeness of the MGS
problem for the case where the number ` is given in binary notation. Given permutations
a1, . . . , an ∈ Sm and a binary encoded number ` one can easily construct a context-free
grammar for {1, a1, . . . , an}` ⊆ Sm. Hence, the PSPACE-hard MGS problem with ` given in
binary notation reduces to the context-free membership problem for symmetric groups. This
reduction shows that Theorem 1.9 still holds if the input grammar is index-m (see the end of
the introduction) with m being part of the input in unary notation.

The rest of the section is devoted to the upper bounds in Theorems 4.1 and 4.2. Detailed
proofs of all lemmas can be found in the long version [34].

MFCS 2022

43:8 Membership problems in finite groups

Outline. A straightforward algorithm for the context-free membership problem constructs
an exponential-sized pushdown automaton and check the latter for emptiness. This would
yield an EXPTIME upper bound. Hence, the difficulty is to achieve this in PSPACE. To this
end, we exploit the fact that every subgroup of a black box group can be stored in polynomial
space. Since context-free subsets of a finite group G are not necessarily subgroups, we need
to find a way to encode information about derivations, as subgroups. We do this as follows.
Recall that φG : G∗ → G is the canonical morphism from Section 2. For a context-free
grammar G with terminal alphabet G and a nonterminal A we define

GA = {(φG(u), φG(v)) | u, v ∈ G∗, A⇒∗G uAv}.

This is a subgroup of G× Ĝ, where Ĝ is the dual group of G: It has the same underlying
set as G and if g · h is the product in G then the multiplication ◦ in Ĝ is defined by
g ◦ h = h · g. A black box for G easily yields a black box for G × Ĝ. Thus, GA and its
subgroups have polynomial-size generating sets. When given generating sets for all GA,
one can check membership in L(G) in PSPACE. Therefore, the idea is to compute GA by
saturating underapproximating subgroups HA of GA: Initially, HA is the trivial subgroup of
G× Ĝ for each A. At each step, the groups HA yield underapproximations of the sets L(A)
of all w ∈ G∗ derivable from a nonterminal A (as usual, we identify L(A) with φG(L(A))).
The underapproximation of L(A), in turn, is used to enlarge the subgroups HA, yielding a
better underapproximation of the GA. Finally, we obtain the entire groups GA.

The operations ∆ and Γ. We fix a finite group G that is only accessed via a black
box. We now define the operations ∆ and Γ, which turn underapproximations of GA into
underapproximations of L(A) (or vice versa, resp.). Let G = (N,G, P, S) be a context-free
grammar in Chomsky normal form that is part of the input, whose terminal alphabet is the
finite group G. When we speak of the input size in the following, we refer to |G| + b + c,
where b and c are the two unary encoded numbers from the black box for G and the size |G|
is defined as the number of productions of the grammar.

Recall from the introduction that a derivation tree T is acyclic if a nonterminal does
not occur twice on a path from the root to a leaf of T . The height of an acyclic derivation
tree is at most |N |. We now define two operations ∆ and Γ. The operation ∆ maps a tuple
s = (HA)A∈N of subgroups HA ≤ G × Ĝ to a tuple ∆(s) = (LA)A∈N of subsets LA ⊆ G

(not necessarily subgroups), whereas Γ maps a tuple t = (LA)A∈N of subsets LA ⊆ G to a
tuple Γ(t) = (HA)A∈N of subgroups HA ≤ G× Ĝ.

We start with ∆. Let s = (HA)A∈N be a tuple of subgroups HA ≤ G × Ĝ. The tuple
∆(s) = (LA)A∈N of subsets LA ⊆ G is obtained as follows: Let T be an acyclic derivation
tree with root r labelled by A ∈ N . We assign inductively a set Lv ⊆ G to every inner node v:
Let B the label of v. If v has only one child it must be a leaf since our grammar is in Chomsky
normal form. Let g ∈ G be the label of this leaf. Then we set Lv = {h1gh2 | (h1, h2) ∈ HB}.
If v has two children v1, v2 (where v1 is the left child and v2 the right child), then the sets
Lv1 ⊆ G and Lv2 ⊆ G are already determined and we set

Lv = {h1g1g2h2 | (h1, h2) ∈ HB , g1 ∈ Lv1 , g2 ∈ Lv2}.

We set L(T) = Lr and finally define LA as the union of all sets L(T) where T is an acyclic
derivation whose root is labelled with A.

The second operation Γ is defined as follows: Let t = (LA)A∈N be a tuple of subsets
LA ⊆ G. Then we define the tuple Γ(t) = (HA)A∈N with HA ≤ G × Ĝ as follows: Fix
a nonterminal A ∈ N . Consider a sequence p = (Ai → Ai,0Ai,1)1≤i≤m of productions

M. Lohrey, A. Rosowski, and G. Zetzsche 43:9

(Ai → Ai,0Ai,1) ∈ P and a sequence d = (di)1≤i≤m of directions di ∈ {0, 1} such that
Ai+1 = Ai,di

for all 1 ≤ i ≤ m, A1 = A = Am,dm
. Basically, p and d define a path from A

back to A. For every 1 ≤ i ≤ m we define the sets

Mi =
{
LAi,0 × {1} if di = 1
{1} × LAi,1 if di = 0

We view Mi as a subset of G× Ĝ and define M(p, d) = M1 · . . . ·Mm, in which · refers to the
product in G×Ĝ. If p and d are the empty sequences (m = 0) thenM(p, d) = {(1, 1)}. Finally
we define HA as the set of all M(p, d), where p = (Ai → Ai,0Ai,1)1≤i≤m and d = (di)1≤i≤m
are as above (including the empty sequences). This set HA is a subgroup of G× Ĝ. To see
this, it suffices to argue that HA is a monoid. The latter follows from the fact that two pairs
of sequences (p, d) and (p′, d′) of the above form can be composed to a single pair (pp′, dd′).

I Lemma 4.4. Let t = (LA)A∈N be a tuple of subsets LA ⊆ G. If membership for every LA
is in NP (resp., PSPACE), then membership in every entry of Γ(t) is in NP (resp., PSPACE).

The main idea for the proof is to represent the entries of Γ(t) (which are subgroups of G× Ĝ)
by NFAs over the alphabet G× Ĝ (the NFA will not be given explicitly to us) and to guess
generating sets for the subgroups in Γ(t) using the so-called spanning tree approach. Finally,
one checks membership in the entries of Γ(t) using Lemma 3.1. The proofs for NP and
PSPACE are almost identical.

I Lemma 4.5. Assume that the input grammar G is restricted to the class CFG(k) for some
fixed k. Let s = (HA)A∈N be a tuple of subgroups HA ≤ G× Ĝ. If membership for every HA

is in NP then membership in every entry of ∆(s) is in NP.

To prove this lemma, we guess an acyclic derivation tree of G; by Lemma 2.3 its size is
bounded by 2|N |k. Moreover, for every internal B-labelled node v (with B ∈ N) we guess
a pair (hv,1, hv,2) ∈ G × Ĝ and verify in NP that (hv,1, hv,2) ∈ HA. Then we evaluate the
derivation tree in the right way (following the definition of ∆(s)) and check that we obtain
the the input group element that we want to test for membership.

If the input grammar G is not restricted to a class CFG(k) for some k then we can still
prove the following PSPACE-version of Lemma 4.5.

I Lemma 4.6. Let s = (HA)A∈N be a tuple of subgroups HA ≤ G× Ĝ. If membership for
every HA is in PSPACE then membership in every entry of ∆(s) is in PSPACE.

For the proof we can no longer guess an acyclic derivation tree, since it may have exponential
size. Instead, we guess the derivation tree in an incremental way and store on a stack of size
at most |N | (the maximal height of an acyclic derivation tree) the information that is needed
in order to evaluate the derivation tree.

The following lemma is a straightforward consequence of Lemma 2.1:

I Lemma 4.7. Let s = (HA)A∈N be a tuple of subgroups HA ≤ G× Ĝ. If membership for
HA is in NP (resp., PSPACE) for every A ∈ N then there is a nondeterministic machine
that works in polynomial time (resp., polynomial space) with the following properties:

On every computation path the machine outputs a tuple (SA)A∈N of subsets SA ⊆ HA.
There is at least one computation path on which the machine outputs a tuple (SA)A∈N
such that every SA generates HA.

If membership for HA is in PSPACE for every A ∈ N , then we could actually compute
deterministically in polynomial space a generating set for every HA by iterating over all
elements of G× Ĝ. But we will not need this stronger fact.

MFCS 2022

43:10 Membership problems in finite groups

I Lemma 4.8. ∆((GA)A∈N) = (L(A))A∈N .

Let s0 = (HA)A∈N with HA = {(1, 1)} for all A ∈ N be the tuple of trivial subgroups of
G× Ĝ. For two tuples s1 = (HA,1)A∈N and s2 = (HA,2)A∈N of subgroups of G× Ĝ we write
s1 ≤ s2 if HA,1 ≤ HA,2 for every A ∈ N . Since Γ and ∆ are monotone w.r.t. component-wise
inclusion, we have (Γ∆)i(s0) ≤ (Γ∆)i+1(s0) for all i. We can thus define limi→∞(Γ∆)i(s0).

I Lemma 4.9. (GA)A∈N = lim
i→∞

(Γ∆)i(s0) = (Γ∆)j(s0) where j = 2 · |N | · blog2 |G|c.

Let us briefly sketch the proof of this lemma. From the definition of Γ and ∆ we easily
obtain (Γ∆)i(s0) ≤ (GA)A∈N by induction on i ≥ 0. To show (GA)A∈N ≤ limi→∞(Γ∆)i(s0),
we define (HA)A∈N = limi→∞(Γ∆)i(s0) and take a pair (g, h) ∈ GA. Hence, there exists a
derivation A⇒∗G uAv such that g = φG(u) and h = φG(v). One can prove (g, h) ∈ HA by an
induction on the length of this derivation. This shows the identity (GA)A∈N = lim

i→∞
(Γ∆)i(s0).

For the second identity in Lemma 4.8 note that since all GA are finite groups there is
a smallest number j ≥ 0 such that (Γ∆)j(s0) = (Γ∆)j+1(s0). We then have (Γ∆)j(s0) =
limi→∞(Γ∆)i(s0). It remains to show that j ≤ 2 · |N | · log2 |G|. In each component of the
|N |-tuples (Γ∆)i(s0) (0 ≤ i ≤ j) we have a chain of subgroups of G × Ĝ. By Lagrange’s
theorem, any chain {(1, 1)} = H0 < H1 < · · · < Hk−1 < Hk ≤ G× Ĝ satisfies k ≤ 2 · log2 |G|.
This shows that j ≤ 2 · |N | · log2 |G|.

Proofs of Theorem 4.1 and 4.2. We start with Theorem 4.2. By Lemmas 4.5 and 4.8 it
suffices to decide membership to GA in NP. For this, we construct a nondeterministic
polynomial time machine that computes on every computation path a subset SA ⊆ GA for
every A ∈ N such that on at least one computation path it computes a generating set for
groups GA for all A ∈ N . Then, by Lemma 3.1, membership for each 〈SA〉 is in NP.

We compute SA by initializing SA = {(1, 1)} for every A ∈ N and then performing
2 · |N | · log2 |G| iterations of the following procedure: Suppose we have already produced
the subsets (SA)A∈N . Membership in 〈SA〉 can be decided in NP by Lemma 3.1. Hence, by
Lemmas 4.4 and 4.5 one can decide membership in every entry of the tuple Γ(∆((〈SA〉)A∈N))
in NP. Finally, by Lemma 4.7 we can produce nondeterministically in polynomial time a subset
S′A ⊆ G× Ĝ for every A ∈ N such that for every computation path we have (〈S′A〉)A∈N ≤
Γ(∆((〈SA〉)A∈N)) and for at least one computation path the machine produces subsets S′A
with (〈S′A〉)A∈N = Γ(∆((〈SA〉)A∈N)). With the sets S′A we go into the next iteration. By
Lemma 4.9 there will be at least one computation path on which after 2 · |N | · log2 |G|
iterations we get a generating set for the entire groups GA. This concludes Theorem 4.2.
The proof of Theorem 4.1 only differs by using Lemma 4.6 instead of Lemma 4.5. J

5 Subset sum and knapsack in symmetric groups

In this section, we want to contrast the general upper bounds from the previous sections with
lower bounds for symmetric groups and restricted versions of the rational subset membership
problem. We start with the subset sum problem. The following result refers to the abelian
group Zm3 , for which we use the additive notation.

I Theorem 5.1. The following problem is NP-hard:
Input: unary encoded number m and a list of group elements g, g1, . . . , gn ∈ Zm3 .
Question: Are there i1, . . . , in ∈ {0, 1} such that g =

∑
1≤k≤n ik · gk?

The proof uses a straightforward reduction from the exact 3-hitting set problem (X3HS):

M. Lohrey, A. Rosowski, and G. Zetzsche 43:11

I Problem 5.2 (X3HS).
Input: a finite set A and a set B ⊆ 2A of subsets of A, all of size 3.
Question: Is there a subset A′ ⊆ A such that |A′ ∩ C| = 1 for all C ∈ B?

X3HS is the same problem as positive 1-in-3-SAT, which is NP-complete [23, Problem LO4].
The reduction of X3HS to the problem from Theorem 5.1 can be found in [34, Theorem 5.1].
Since Zm3 ≤ S3m we obtain the following corollary:

I Corollary 5.3. The abelian subset sum problem for symmetric groups is NP-hard.

Let us remark that the subset sum problem for Zm2 (with m part of the input) is equivalent
to the subgroup membership problem for Zm2 (since every element of Zm2 has order two) and
therefore can be solved in polynomial time.

We now come to the knapsack problem in permutation groups. NP-hardness of the general
version of knapsack can be easily deduced from a result of Luks: Recall from the introduction
that Luks [37] proved NP-completeness of 3-membership for the special case of membership
in a product GHG where G and H are abelian subgroups of Sm. Let g1, g2, . . . , gk be the
given generators of G and let h1, h2, . . . , hl be the given generators of H. Then s ∈ GHG is
equivalent to the solvability of the following knapsack equation:

s = gx1
1 gx2

2 · · · g
xk

k hy1
1 h

y2
2 · · ·h

yl

l g
z1
1 g

z2
2 · · · g

zk

k .

We next want to prove that already 3-knapsack is NP-hard. In other words: the k-membership
problem is NP-hard for every k ≥ 3 even if the groups are cyclic.

Let p > 0 be an integer. For the rest of the section we write [p] for the cycle (1, 2, . . . , p)
mapping p to 1 and i to i+ 1 for 1 ≤ i ≤ p− 1. The proofs of the following two lemmas can
be found in [34].

I Lemma 5.4. Let p, q ∈ N such that q is odd and p > q > 0 holds. Then the products [p][q]
and [q][p] are cycles of length p.

I Lemma 5.5. Let p, q ∈ N be primes such that 2 < q < p holds. Then

[p]−x2 [q]x1([p][q])x2 = [q] = [q]x1 [p]−x2([p][q])x2 (1)

if and only if (x1 ≡ 1 mod q and x2 ≡ 0 mod p) or (x1 ≡ 0 mod q and x2 ≡ 1 mod p).

We now come to our main result for the knapsack problem:

I Theorem 5.6. The problem 3-knapsack for symmetric groups is NP-hard.

Proof. To prove the theorem we give a log-space reduction from the NP-complete problem
X3HS (Problem 5.2) to 3-knapsack. Let A be a finite set and B ⊆ 2A such that every
C ∈ B has size 3. W.l.o.g.let A = {1, . . . ,m} and let B = {C1, C2, . . . , Cd} where Ci =
{α(i, 1), α(i, 2), α(i, 3)} for a mapping α : {1, . . . , d} × {1, 2, 3} → {1, . . . ,m}.

Let p1, . . . , pm, r1, . . . , rm, q1, . . . , qd be the first 2m+ d odd primes such that pj > rj > 2
and pj > qi > 2 for 1 ≤ i ≤ d and 1 ≤ j ≤ m hold. Moreover let P = max1≤j≤m pj .
Intuitively, the primes pj and rj (1 ≤ j ≤ m) belong to j ∈ A and the prime qi (1 ≤ i ≤ d)
belongs to the set Ci.

We will work in the group

G =
m∏
j=1
Vj ×

d∏
i=1
Ci,

MFCS 2022

43:12 Membership problems in finite groups

where Vj ≤ S4pj+rj
and Ci ≤ Sqi+3P . More precisely we have

Vj = Spj × Spj × Zpj × Zpj × Zrj and Ci = Zqi × SP × SP × SP .

In the following, we denote the identity element of a symmetric group Sm with id in order to
not confuse it with the generator of a cyclic group Zm.

We now define four group elements g, g1, g2, g3 ∈ G. We write g = (v1, . . . , vm, c1, . . . cd)
and gk = (vk,1, . . . , vk,m, ck,1, . . . , ck,d) with vj , vk,j ∈ Vj and ci, ck,i ∈ Ci. These elements
are defined as follows:

vj = ([rj], [rj], 0, 0, 0) ci = (1, id, id, id)
v1,j = ([rj], [pj]−1, 1, 1, 1) c1,i = (1, [qi]−1, [pα(i,2)]−1, [qi][pα(i,3)])
v2,j = ([pj]−1, [rj], −1, 0, −1) c2,i = (1, [qi][pα(i,1)], [qi]−1, [pα(i,3)]−1)
v3,j = ([pj][rj], [pj][rj], 0, −1, 0) c3,i = (1, [pα(i,1)]−1, [qi][pα(i,2)], [qi]−1)

We claim that there is a subset A′ ⊆ A such that |A′ ∩ Ci| = 1 for every 1 ≤ i ≤ d if and
only if there are z1, z2, z3 ∈ Z with g = gz1

1 g
z2
2 g

z3
3 in the group G. Due to the direct product

decomposition of G and the above definition of g, g1, g2, g3, the statement g = gz1
1 g

z2
2 g

z3
3 is

equivalent to the conjunctions of the following statements (read the above definitions of the
vj , vk,j , ci, ck,i columnwise) for all 1 ≤ j ≤ m and 1 ≤ i ≤ d:
(a) [rj] = [rj]z1 [pj]−z2([pj][rj])z3

(b) [rj] = [pj]−z1 [rj]z2([pj][rj])z3

(c) z1 ≡ z2 mod pj
(d) z1 ≡ z3 mod pj
(e) z1 ≡ z2 mod rj
(f) 1 ≡ z1 + z2 + z3 mod qi
(g) id = [qi]−z1([qi][pα(i,1)])z2 [pα(i,1)]−z3

(h) id = [pα(i,2)]−z1 [qi]−z2([qi][pα(i,2)])z3

(i) id = ([qi][pα(i,3)])z1 [pα(i,3)]−z2 [qi]−z3

Recall that by Lemma 5.4, [pj][rj] and [qi][pj] are cycles of length pj . Due to the congruences
in (c), (d), and (e), the conjunction of (a)–(i) is equivalent to the conjunction of the following
equations:
(j) z1 ≡ z2 ≡ z3 mod pj
(k) z1 ≡ z2 mod rj
(l) [pj]−z1 [rj]z2([pj][rj])z1 = [rj] = [rj]z2 [pj]−z1([pj][rj])z1

(m) 1 ≡ z1 + z2 + z3 mod qi
(n) id = [qi]−z1([qi][pα(i,1)])z1 [pα(i,1)]−z1

(o) id = [pα(i,2)]−z1 [qi]−z2([qi][pα(i,2)])z1

(p) id = ([qi][pα(i,3)])z1 [pα(i,3)]−z1 [qi]−z3

By Lemma 5.5, the conjunction of (j)–(p) is equivalent to the conjunction of the following
statements:
(q) (z1 ≡ z2 ≡ z3 ≡ 0 mod pj and z1 ≡ z2 ≡ 1 mod rj) or

(z1 ≡ z2 ≡ z3 ≡ 1 mod pj and z1 ≡ z2 ≡ 0 mod rj)
(r) 1 ≡ z1 + z2 + z3 mod qi
(s) id = [qi]−z1([qi][pα(i,1)])z1 [pα(i,1)]−z1

(t) id = [pα(i,2)]−z1 [qi]−z2([qi][pα(i,2)])z1

(u) id = ([qi][pα(i,3)])z1 [pα(i,3)]−z1 [qi]−z3

M. Lohrey, A. Rosowski, and G. Zetzsche 43:13

Let us now assume that A′ ⊆ A is such that |A′ ∩ Ci| = 1 for every 1 ≤ i ≤ d. Let
σ : {1, . . . ,m} → {0, 1} such that σ(j) = 1 iff j ∈ S′. Thus, α(i, 1) + α(i, 2) + α(i, 3) = 1 for
all 1 ≤ i ≤ d. By the Chinese remainder theorem, we can set z1, z2, z3 ∈ Z such that

z1 ≡ z2 ≡ z3 ≡ σ(j) mod pj and z1 ≡ z2 ≡ 1− σ(j) mod rj for 1 ≤ j ≤ m,
zk ≡ σ(α(i, k)) mod qi for 1 ≤ i ≤ d and 1 ≤ k ≤ 3.

Then (q) and (r) hold. For (s), one has to consider two cases: if σ(α(i, 1)) = 0, then
z1 ≡ 0 mod qi and z1 ≡ 0 mod pα(i,1). Hence, the right-hand side of (s) evaluates to

[qi]−0([qi][pα(i,1)])0[pα(i,1)]−0 = id.

On the other hand, if σ(α(i, 1)) = 1, then z1 ≡ 1 mod qi and z1 ≡ 1 mod pα(i,1) and the
right-hand side of (s) evaluates again to

[qi]−1[qi][pα(i,1)][pα(i,1)]−1 = id.

In the same way, one can show that also (t) and (u) hold.
For the other direction, assume that z1, z2, z3 ∈ Z are such that (q)–(u) hold. We define

A′ ⊆ {1, . . . ,m} such that for every 1 ≤ j ≤ m:
j /∈ S′ if z1 ≡ z2 ≡ z3 ≡ 0 mod pj and z1 ≡ z2 ≡ 1 mod rj , and
j ∈ S′ if z1 ≡ z2 ≡ z3 ≡ 1 mod pj and z1 ≡ z2 ≡ 0 mod rj .

Consider a set Ci = {α(i, 1), α(i, 2), α(i, 3)}. From the equations (s), (t), and (u) we get for
every 1 ≤ i ≤ d and 1 ≤ k ≤ 3:

if z1 ≡ 0 mod pα(i,k) then zk ≡ 0 mod qi
if z1 ≡ 1 mod pα(i,k) then zk ≡ 1 mod qi

Together with 1 ≡ z1 + z2 + z3 mod qi and qi ≥ 3, this implies that there must be exactly
one k ∈ {1, 2, 3} such that z1 ≡ 1 mod pα(i,k). Hence, for every 1 ≤ i ≤ d there is exactly
one k ∈ {1, 2, 3} such that α(i, k) ∈ A′. J

Theorem 1.6 is an immediate consequence of Corollaries 4.3 and 5.3 and Theorem 5.6.
Theorem 5.6 leads to the question what the exact complexity of the 2-knapsack problem

for symmetric groups is. Recall that the complexity of Luks’ 2-membership problem is a
famous open problem in the algorithmic theory of permutation groups. The restriction of
the 2-membership problem to cyclic groups is easier. The proof of the following theorem
uses a reduction to the membership problem for commutative subgroups of matrix groups [8]
and then applies [4, Theorem 1.4]; see [34, Theorem 5.8].

I Theorem 5.7. The 2-knapsack problem for symmetric groups belongs to P.

6 Application to intersection problems

It remains to show Theorems 1.12 and 1.13. We obtain the upper bound in Theorem 1.12
from Theorem 1.10: Let G be a grammar from CFG(k) and let Ai = (Qi,Σ, qi,0, δi, Fi)
be be a group DFA for 1 ≤ i ≤ n. W.l.o.g. assume that the Qi are pairwise disjoint and
let Q =

⋃
1≤i≤nQi. To every a ∈ Σ we can associate a permutation πa ∈ SQ by setting

πa(q) = δi(q, a) if q ∈ Qi. Let G′ ∈ CFG(k) be the context-free grammar over the terminal
alphabet SQ obtained by replacing in G every occurence of a ∈ Σ by πa. Then, we have
L(G) ∩

⋂
1≤i≤n L(Ai) 6= ∅ if and only if there exists a permutation π ∈ L(G′) such that

π(qi,0) ∈ Fi for every 1 ≤ i ≤ n. We can nondeterministically guess such a permutation and
check π ∈ L(G′) in NP using Theorem 1.10. This proves the upper bound from Theorem 1.12.

The upper bound from Theorem 1.13 can be obtained in the same way from Theorem 1.9.
For the lower bounds in Theorems 1.12 and 1.13, a simple reduction from the lower bounds
in Theorems 1.10 and 1.9 can be employed; see [34, Section 6] for details.

MFCS 2022

43:14 Membership problems in finite groups

References
1 Emmanuel Arrighi, Henning Fernau, Stefan Hoffmann, Markus Holzer, Ismaël Jecker, Mateus

de Oliveira Oliveira, and Petra Wolf. On the complexity of intersection non-emptiness
for star-free language classes. In Proceedings of the 41st IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2021, volume
213 of LIPIcs, pages 34:1–34:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.
doi:10.4230/LIPIcs.FSTTCS.2021.34.

2 Mohamed Faouzi Atig and Pierre Ganty. Approximating petri net reachability along context-
free traces. In Proceedings of the 31st IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science, FSTTCS 2011, volume 13 of LIPIcs, pages
152–163. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2011. doi:10.4230/LIPIcs.
FSTTCS.2011.152.

3 László Babai. Graph isomorphism in quasipolynomial time [extended abstract]. In Proceedings
of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, pages
684–697. ACM, 2016. doi:10.1145/2897518.2897542.

4 László Babai, Robert Beals, Jin-Yi Cai, Gábor Ivanyos, and Eugene M. Luks. Multiplicative
equations over commuting matrices. In Proceedings of the 7th Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 1996, pages 498–507. ACM/SIAM, 1996.

5 László Babai, Eugene M. Luks, and Ákos Seress. Permutation groups in NC. In Proceedings
of the 19th Annual ACM Symposium on Theory of Computing, STOC 1987, pages 409–420.
ACM, 1987. doi:10.1145/28395.28439.

6 László Babai and Endre Szemerédi. On the complexity of matrix group problems I. In
Proceedings of the 25th Annual Symposium on Foundations of Computer Science, FOCS 1984,
pages 229–240. IEEE Computer Society, 1984. doi:10.1109/SFCS.1984.715919.

7 Georg Bachmeier, Michael Luttenberger, and Maximilian Schlund. Finite automata for the sub-
and superword closure of CFLs: Descriptional and computational complexity. In Proceedings
of the 9th International Conference on Language and Automata Theory and Applications,
LATA 2015, volume 8977 of Lecture Notes in Computer Science, pages 473–485. Springer,
2015. doi:10.1007/978-3-319-15579-1_37.

8 Paul Bell, Vesa Halava, Tero Harju, Juhani Karhumäki, and Igor Potapov. Matrix equations
and Hilbert’s tenth problem. International Journal of Algebra and Computation, 18(8):1231–
1241, 2008. doi:10.1142/S0218196708004925.

9 Pascal Bergsträßer, Moses Ganardi, and Georg Zetzsche. A characterization of wreath products
where knapsack is decidable. In Proceeding of the 38th International Symposium on Theoretical
Aspects of Computer Science, STACS 2021, volume 187 of LIPIcs, pages 11:1–11:17. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.STACS.2021.11.

10 Jean-Camille Birget, Stuart Margolis, John Meakin, and Pascal Weil. PSPACE-complete
problems for subgroups of free groups and inverse finite automata. Theoretical Computer
Science, 242(1-2):247–281, 2000. doi:10.1016/S0304-3975(98)00225-4.

11 Michael Blondin, Andreas Krebs, and Pierre McKenzie. The complexity of intersecting
finite automata having few final states. Computational Complexity, 25(4):775–814, 2016.
doi:10.1007/s00037-014-0089-9.

12 Michal Chytil and Burkhard Monien. Caterpillars and context-free languages. In Proceedings
of the 7th Annual Symposium on Theoretical Aspects of Computer Science, STACS 1990,
volume 415 of Lecture Notes in Computer Science, pages 70–81. Springer, 1990. doi:10.1007/
3-540-52282-4_33.

13 Stephen A. Cook. Characterizations of pushdown machines in terms of time-bounded computers.
Journal of the Association for Computing Machinery, 18(1):4–18, 1971. doi:10.1145/321623.
321625.

14 Mateus de Oliveira Oliveira and Michael Wehar. On the fine grained complexity of finite
automata non-emptiness of intersection. In Proceedings of the 24th International Conference

https://doi.org/10.4230/LIPIcs.FSTTCS.2021.34
https://doi.org/10.4230/LIPIcs.FSTTCS.2011.152
https://doi.org/10.4230/LIPIcs.FSTTCS.2011.152
https://doi.org/10.1145/2897518.2897542
https://doi.org/10.1145/28395.28439
https://doi.org/10.1109/SFCS.1984.715919
https://doi.org/10.1007/978-3-319-15579-1_37
https://doi.org/10.1142/S0218196708004925
https://doi.org/10.4230/LIPIcs.STACS.2021.11
https://doi.org/10.1016/S0304-3975(98)00225-4
https://doi.org/10.1007/s00037-014-0089-9
https://doi.org/10.1007/3-540-52282-4_33
https://doi.org/10.1007/3-540-52282-4_33
https://doi.org/10.1145/321623.321625
https://doi.org/10.1145/321623.321625

M. Lohrey, A. Rosowski, and G. Zetzsche 43:15

Developments in Language Theory, DLT 2020, volume 12086 of Lecture Notes in Computer
Science, pages 69–82. Springer, 2020. doi:10.1007/978-3-030-48516-0_6.

15 Javier Esparza, Andreas Gaiser, and Stefan Kiefer. Computing least fixed points of probabilistic
systems of polynomials. In 27th International Symposium on Theoretical Aspects of Computer
Science, STACS 2010, volume 5 of LIPIcs, pages 359–370. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2010. doi:10.4230/LIPIcs.STACS.2010.2468.

16 Javier Esparza, Pierre Ganty, Stefan Kiefer, and Michael Luttenberger. Parikh’s theorem: A
simple and direct automaton construction. Information Processing Letters, 111(12):614–619,
2011. doi:10.1016/j.ipl.2011.03.019.

17 Javier Esparza, Pierre Ganty, and Rupak Majumdar. Parameterized verification of asynchron-
ous shared-memory systems. In Proceedings of the 25th International Conference on Computer
Aided Verification, CAV 2013, volume 8044 of Lecture Notes in Computer Science, pages
124–140. Springer, 2013. doi:10.1007/978-3-642-39799-8_8.

18 Javier Esparza, Antonín Kucera, and Stefan Schwoon. Model checking LTL with regular
valuations for pushdown systems. Information and Computation, 186(2):355–376, 2003.
doi:10.1016/S0890-5401(03)00139-1.

19 Javier Esparza, Michael Luttenberger, and Maximilian Schlund. A brief history of Strahler
numbers. In Proceedings of the 8th International Conference on Language and Automata
Theory and Applications, LATA 2014, volume 8370 of Lecture Notes in Computer Science,
pages 1–13. Springer, 2014. doi:10.1007/978-3-319-04921-2_1.

20 Shimon Even and Oded Goldreich. The minimum-length generator sequence problem is
NP-hard. Journal of Algorithms, 2(3):311–313, 1981. doi:10.1016/0196-6774(81)90029-8.

21 Michael Figelius, Moses Ganardi, Markus Lohrey, and Georg Zetzsche. The complexity of
knapsack problems in wreath products. In Proceedings of the 47th International Colloquium
on Automata, Languages, and Programming, ICALP 2020, volume 168 of LIPIcs, pages
126:1–126:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.
ICALP.2020.126.

22 Elizaveta Frenkel, Andrey Nikolaev, and Alexander Ushakov. Knapsack problems in products
of groups. Journal of Symbolic Computation, 2015. doi:10.1016/j.jsc.2015.05.006.

23 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP–completeness. Freeman, 1979.

24 Alexander Heußner, Jérôme Leroux, Anca Muscholl, and Grégoire Sutre. Reachability analysis
of communicating pushdown systems. In Proceedings of the 13th International Conference
on Foundations of Software Science and Computational Structures, FOSSACS 2010, volume
6014 of Lecture Notes in Computer Science, pages 267–281. Springer, 2010. doi:10.1007/
978-3-642-12032-9_19.

25 Robert E. Horton. Erosional development of streams and their drainage basins: hydro-physical
approach to quantitative morphology. Geological Society of America Bulletin, 56(3):275–370,
1945. doi:https://doi.org/10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2.

26 Trevor Jack. On the complexity of properties of partial bijection semigroups, 2021. doi:
10.48550/ARXIV.2101.00324.

27 Mark Jerrum. The complexity of finding minimum-length generator sequences. Theoretical
Computer Science, 36:265–289, 1985. doi:10.1016/0304-3975(85)90047-7.

28 Mark Kambites, Pedro V. Silva, and Benjamin Steinberg. On the rational subset problem for
groups. Journal of Algebra, 309(2):622–639, 2007. doi:10.1016/j.jalgebra.2006.05.020.

29 Ilya Kapovich and Alexei Myasnikov. Stallings foldings and subgroups of free groups. Journal
of Algebra, 248(2):608–668, 2002. doi:10.1006/jabr.2001.9033.

30 Daniel König, Markus Lohrey, and Georg Zetzsche. Knapsack and subset sum problems in
nilpotent, polycyclic, and co-context-free groups. In Algebra and Computer Science, volume
677 of Contemporary Mathematics, pages 138–153. American Mathematical Society, 2016.
doi:10.1090/conm/677.

MFCS 2022

https://doi.org/10.1007/978-3-030-48516-0_6
https://doi.org/10.4230/LIPIcs.STACS.2010.2468
https://doi.org/10.1016/j.ipl.2011.03.019
https://doi.org/10.1007/978-3-642-39799-8_8
https://doi.org/10.1016/S0890-5401(03)00139-1
https://doi.org/10.1007/978-3-319-04921-2_1
https://doi.org/10.1016/0196-6774(81)90029-8
https://doi.org/10.4230/LIPIcs.ICALP.2020.126
https://doi.org/10.4230/LIPIcs.ICALP.2020.126
https://doi.org/10.1016/j.jsc.2015.05.006
https://doi.org/10.1007/978-3-642-12032-9_19
https://doi.org/10.1007/978-3-642-12032-9_19
https://doi.org/https://doi.org/10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2
https://doi.org/10.48550/ARXIV.2101.00324
https://doi.org/10.48550/ARXIV.2101.00324
https://doi.org/10.1016/0304-3975(85)90047-7
https://doi.org/10.1016/j.jalgebra.2006.05.020
https://doi.org/10.1006/jabr.2001.9033
https://doi.org/10.1090/conm/677

43:16 Membership problems in finite groups

31 Dexter Kozen. Lower bounds for natural proof systems. In Proceedings of the 18th Annual
Symposium on Foundations of Computer Science, FOCS 1977, pages 254–266. IEEE Computer
Society, 1977. doi:10.1109/SFCS.1977.16.

32 Markus Lohrey. The rational subset membership problem for groups: a survey, page 368–389.
London Mathematical Society Lecture Note Series. Cambridge University Press, 2015. doi:
10.1017/CBO9781316227343.024.

33 Markus Lohrey. Knapsack in hyperbolic groups. Journal of Algebra, 545(1):390–415, 2020.
doi:https://doi.org/10.1016/j.jalgebra.2019.04.008.

34 Markus Lohrey, Andreas Rosowski, and Georg Zetzsche. Membership problems in finite groups,
2022. doi:10.48550/ARXIV.2206.11756.

35 Markus Lohrey and Georg Zetzsche. Knapsack in graph groups. Theory of Computing Systems,
62(1):192–246, 2018. doi:10.1007/s00224-017-9808-3.

36 Eugene M. Luks. Isomorphism of graphs of bounded valence can be tested in polynomial time.
Journal of Computer and System Sciences, 25(1):42–65, 1982. doi:10.1016/0022-0000(82)
90009-5.

37 Eugene M. Luks. Permutation groups and polynomial-time computation. In Groups And
Computation, Proceedings of a DIMACS Workshop, New Brunswick, New Jersey, USA, October
7-10, 1991, volume 11 of DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, pages 139–175. DIMACS/AMS, 1991. doi:10.1090/dimacs/011/11.

38 Alexei Myasnikov, Andrey Nikolaev, and Alexander Ushakov. Knapsack problems in groups.
Mathematics of Computation, 84:987–1016, 2015. doi:10.1090/S0025-5718-2014-02880-9.

39 Ákos Seress. Permutation Group Algorithms. Cambridge Tracts in Mathematics. Cambridge
University Press, 2003. doi:10.1017/CBO9780511546549.

40 Charles C. Sims. Computational methods in the study of permutation groups. In Com-
putational Problems in Abstract Algebra, pages 169–183. Pergamon, 1970. doi:10.1016/
B978-0-08-012975-4.50020-5.

41 Arthur N. Strahler. Hypsometric (area-altitude) analysis of erosional topology. Geolo-
gical Society of America Bulletin, 63(11):1117–1142, 1952. doi:https://doi.org/10.1130/
0016-7606(1952)63[1117:HAAOET]2.0.CO;2.

42 Joseph Swernofsky and Michael Wehar. On the complexity of intersecting regular, context-free,
and tree languages. In Proceedings of the 42nd International Colloquium Automata, Languages,
and Programming, Part II, ICALP 2015, volume 9135 of Lecture Notes in Computer Science,
pages 414–426. Springer, 2015. doi:10.1007/978-3-662-47666-6_33.

https://doi.org/10.1109/SFCS.1977.16
https://doi.org/10.1017/CBO9781316227343.024
https://doi.org/10.1017/CBO9781316227343.024
https://doi.org/https://doi.org/10.1016/j.jalgebra.2019.04.008
https://doi.org/10.48550/ARXIV.2206.11756
https://doi.org/10.1007/s00224-017-9808-3
https://doi.org/10.1016/0022-0000(82)90009-5
https://doi.org/10.1016/0022-0000(82)90009-5
https://doi.org/10.1090/dimacs/011/11
https://doi.org/10.1090/S0025-5718-2014-02880-9
https://doi.org/10.1017/CBO9780511546549
https://doi.org/10.1016/B978-0-08-012975-4.50020-5
https://doi.org/10.1016/B978-0-08-012975-4.50020-5
https://doi.org/https://doi.org/10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO;2
https://doi.org/https://doi.org/10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO;2
https://doi.org/10.1007/978-3-662-47666-6_33

	1 Introduction
	2 Preliminaries
	3 Black box groups
	4 Context-free membership in black box groups
	5 Subset sum and knapsack in symmetric groups
	6 Application to intersection problems

