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Abstract
We study deterministic and randomized streaming algorithms for word problems of finitely generated
groups. For finitely generated linear groups, metabelian groups and free solvable groups we show
the existence of randomized streaming algorithms with logarithmic space complexity for their word
problems. We also show that the class of finitely generated groups with a logspace randomized
streaming algorithm for the word problem is closed under several group theoretical constructions:
finite extensions, direct products, free products and wreath products by free abelian groups. We
contrast these results with several lower bound. An example of a finitely presented group, where the
word problem has only a linear space randomized streaming algorithm, is Thompson’s group F .
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1 Introduction

The word problem for a finitely generated group G is the following computational problem:
Fix a finite set of generators Σ for G (which means that every element of G can be written
as a finite product of elements from Σ. The input for the word problem is a finite word
a1a2 · · · an over the alphabet Σ and the question is whether this word evaluates to the group
identity of G. The word problem was introduced by Dehn in 1911 [10]. It is arguably the
most important computational problem in group theory and has been studied by group
theorists as well as computer scientists; see [29] for a good survey. In recent years, complexity
theoretic investigations of word problems moved into the focus. For many important classes
of groups it turned out that the word problem belongs to low-level complexity classes. The
first result in this direction was proved by Lipton and Zalcstein [23] (if the field F has
characteristic zero) and Simon [36] (if the field F has prime characteristic): if G is a finitely
generated linear group over an arbitrary field F (i.e., a finitely generated group of invertible
matrices over F ), then the word problem for G can be solved in deterministic logarithmic
space. Related results can be found in [20, 41].

The word problem of a group G with a finite generating set Σ can be identified with
a formal language WP(G,Σ) consisting of all words over the alphabet Σ that evaluate to
the group identity of G. Language theoretic aspects of the word problem have been studied
intensively in the past. For instance, Anissimov and Seifert [2] showed that WP(G,Σ) is
regular if and only if G is finite, and Muller and Schupp showed that WP(G,Σ) is context-free
[31] if and only if G is virtually free,1 see [18] for an overview.

1 If C is a property or class of groups, then a group is virtually C if it is a finite extension of a C-group.
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43:2 Streaming word problems

In this paper we initiate the study of streaming algorithms for word problems. These
are algorithms that do not have random access on the whole input. Instead, the k-th input
symbol is only available at time k [1]. Typically, streaming algorithms are randomized and
have a bounded error probability. Usually, one is interested in the space used by a streaming
symbol, but also update times have been investigated. Clearly, every regular language has a
streaming algorithm with constant space. Randomized streaming algorithms for context-free
languages have been studied in [4, 7, 12, 26].

Let us now explain the main results of this paper. For a finitely generated group G

with generating set Σ, the deterministic (resp., randomized) streaming space complexity of
WP(G,Σ) is the space complexity of the best deterministic (resp., randomized) streaming
algorithm for WP(G,Σ). The concrete choice of the generating set has only a minor influence
on the deterministic (resp., randomized) streaming space complexity of WP(G,Σ); see
Lemma 2 for a precise statement. In statements where the influence of the generating set
on the streaming space complexity is blurred by the Landau notation, we speak of the
deterministic/randomized streaming space complexity of the word problem of G or simply
the deterministic/randomized streaming space complexity of G.

The deterministic streaming space complexity of WP(G,Σ) is directly linked to the growth
function γG,Σ(n) of the group G. The latter is the number of different group elements of
G that can be represented by words over the generating set Σ of length at most n (also
here the generating set Σ only has a minor influence). The deterministic streaming space
complexity of the word problem for G turns out to be log2 γG,Σ(n/2) up to a small additive
constant (Theorem 3). The growth of finitely generated groups is a well investigated topic in
geometric group theory. A famous theorem of Gromov says that a finitely generated group
has polynomial growth if and only if it is virtually nilpotent; see [9, 28] for a discussion.
Theorem 3 reduces all questions about the deterministic streaming space complexity of word
problems to questions about growth functions. Due to this, we mainly study randomized
streaming algorithms for word problems in this paper.

In the randomized setting, the growth of G still yields a lower bound: The randomized
streaming space complexity of the word problem of G is lower bounded by Ω(log log γG,Σ(n/2))
(Theorem 4). A large class of groups, where this lower bound can be exactly matched by
an upper bound are finitely generated linear groups. Recall that Lipton and Zalcstein [23]
and Simon [36] showed that the word problem of a finitely generated linear group can be
solved in logarithmic space. Their algorithm can be turned into a randomized streaming
algorithm with logarithmic space complexity. In order to plug these streaming algorithms
into closure results for randomized streaming space complexity (that are discussed below)
we need an additional property that we call ε-injectivity. Roughly speaking, a randomized
streaming algorithm for a finitely generated group G with generating set Σ is ε-injective
if for all words u, v ∈ Σ∗ of length at most n we have that: (i) if u and v evaluate to the
same element of G then with probability at least 1− ε, u and v lead to the same memory
state of the streaming algorithm, and (ii) if u and v evaluate to different elements of G then
with probability at least 1 − ε, u and v lead to different memory states of the streaming
algorithm; see Section 5. We then show that for every finitely generated linear group G there
is a randomized ε-injective streaming algorithm with space complexity O(logn) (Theorem 8).
If G is moreover virtually nilpotent, then the space complexity can be further reduced to
O(log logn). In fact, using a known gap theorem for the growth of linear groups [30, 42], it
turns out that the randomized streaming space complexity of the word problem for a finitely
generated linear group G is either Θ(log logn) (if G is virtually nilpotent) or Θ(logn) (if G
is not virtually nilpotent), see Theorem 11.
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For non-linear groups the situation turns out to be more difficult. We show that the
randomized streaming space complexity of word problems is preserved by certain group
constructions including finite extensions (Theorem 10), direct products (Lemma 12), free
products (Theorem 20) and wreath products by free abelian groups (Theorem 17). For
the latter two constructions we also get an additional additive term Θ(logn) in the space
bounds. For a wreath product A o G with A free abelian (resp., a free product G ∗H) it
is also important that we start with an ε-injective randomized streaming algorithm for G
(and H). Using these transfer results we obtain also non-linear groups with a logarithmic
randomized streaming space complexity, e.g., metabelian groups (Corollary 13) and free
solvable groups (Corollary 18).

In the last section of the paper, we prove lower bounds for the randomized streaming
space complexity of word problems. For wreath products of the form G o S such that G is
non-abelian and S is infinite, we can show that the randomized streaming space complexity
is Θ(n) by a reduction from the randomized communication complexity of disjointness
(Theorem 21). A concrete finitely presented group with randomized streaming space
complexity Θ(n) is Thompson’s group F (Corollary 22). Thompson’s groups F (introduced
by Richard Thompson in 1965) belongs due to its unusual properties to the most intensively
studied infinite groups; see e.g. [8]. From a computational perspective it is interesting to note
that F is co-context-free (i.e., the set of all non-trivial words over any set of generators is a
context-free language) [22]. This implies that the word problem for Thompson’s group is in
LogCFL. To the best of our knowledge no better upper complexity bound is known. Finally,
we consider the famous Grigorchuk group G [14], which was the first example of a group with
intermediate word growth as well as the first example of a group that is amenable but not
elementary amenable. We show that the deterministic streaming space complexity of G is
O(n0.768), whereas the randomized streaming space complexity of G is Ω(n0.5) (Theorem 23).

Related results. In this paper, we are only interested in streaming algorithms for a
fixed infinite group. Implicitly, streaming algorithms for finite groups are studied in [13].
Obviously, every finite group has a deterministic streaming space complexity O(log |G|).2 In
[13], it is shown that for the group G = SL(2,Fp) this upper bound is matched by a lower
bound, which even holds for the randomized streaming space complexity. More precisely,
Gowers and Viola study the communication cost of the following problem: Alice receives a
sequence of elements a1, . . . , an ∈ G, Bob receives a sequence of elements b1, . . . , bn ∈ G and
they are promised that the interleaved product a1b1 · · · anbn is either 1 or some fixed element
g ∈ G \ {1} and their job is to determine which of these two cases holds. For G = SL(2,Fp)
it is shown that the randomized communication complexity of this problem is Θ(log |G| · n)
(the upper bound is trivial). From this it follows easily that the randomized streaming space
complexity of SL(2,Fp) is Ω(log |G|).

2 Streaming algorithms

For integers a < b let [a, b] = {a, a+ 1, . . . , b}. Fix a finite alphabet Σ. For a word w ∈ Σ∗ let
|w| be its length and let Σ≤n = {w ∈ Σ∗ : |w| ≤ n} be the set of words of length at most n.

In the following we introduce probabilistic finite automata [33, 34] as a model for
randomized streaming algorithms. A probabilistic finite automaton (PFA) A = (Q,Σ, ι, ρ, F )

2 In our setting, |G| would be a constant, but for the moment let us make the dependence on the finite
group G explicit.
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43:4 Streaming word problems

consists of a finite set of states Q, an alphabet Σ, an initial state distribution ι : Q→ {r ∈
R : 0 ≤ r ≤ 1}, a transition probability function ρ : Q×Σ×Q→ {r ∈ R : 0 ≤ r ≤ 1} and a set
of final states F ⊆ Q such that

∑
q∈Q ι(q) = 1 and

∑
q∈Q ρ(p, a, q) = 1 for all p ∈ Q, a ∈ Σ. If

ι and ρ map into {0, 1}, then A is a deterministic finite automaton (DFA). If only ρ is required
to map into {0, 1}, then A is called semi-probabilitistic. A run on a word a1 · · · am ∈ Σ∗ in A
is a sequence π = (q0, a1, q1, a2, . . . , am, qm) where q0, . . . , qm ∈ Q. Given such a run π in A
we define ρι(π) = ι(q0) ·

∏n
i=1 ρ(qi−1, ai, qi). For each w ∈ Σ∗ the function ρι is a probability

distribution on the set Runs(w) of all runs of A on w. A run π = (q0, a1, . . . , am, qm) is
correct with respect to a language L ⊆ Σ∗ if qm ∈ F ⇔ a1 · · · am ∈ L holds. The error
probability of A on w for L is

ε(A, w, L) =
∑
{ρι(π) : π ∈ Runs(w) is not correct w.r.t. L}.

If A is semi-probabilitistic then we can identify ρ with a mapping ρ : Q × Σ → Q, where
ρ(p, a) is the unique state q with ρ(p, a, q) = 1. This mapping ρ is extended to a mapping
ρ : Q× Σ∗ → Q in the usual way: ρ(p, ε) = p and ρ(p, aw) = ρ(ρ(p, a), w). We then obtain

ε(A, w, L) = 1−
∑
{ι(q) : q ∈ Q, δ(q, w) ∈ F ⇔ w ∈ L}.

A (non-uniform) randomized streaming algorithm is a sequence R = (An)n≥0 of PFA An
over the same alphabet Σ. If every An is deterministic (resp., semi-probabilitistic), we speak
of a deterministic (resp., semi-randomized) streaming algorithm.

Let 0 ≤ ε ≤ 1 be an error probability. A randomized streaming algorithm R = (An)n≥0
is ε-correct for a language L ⊆ Σ∗ if for every n ≥ 0 and every word w ∈ Σ≤n we have
ε(An, w, L) ≤ ε. We say that R is a randomized streaming algorithm for L if it is 1/3-correct
for L. The choice of 1/3 for the error probability is not important. Using a standard
application of the Chernoff bound one can reduce the error probability from 1/3 to every
constant. If R is deterministic and 0-correct for L then we say that R is a deterministic
streaming algorithm for L. The space complexity of the randomized streaming algorithm
R = (An)n≥0 is the function s(R, n) = dlog2 |Qn|e, where Qn is the state set of An. The
motivation for this definition is that states of Qn can be encoded by bit strings of length at
most dlog2 |Qn|e. The deterministic/randomized streaming space complexity of the language
L is the smallest possible function s(R, n), where R is a deterministic/randomized streaming
algorithm for L. By a result of Rabin [34, Theorem 3], the deterministic streaming space
complexity of a language L is bounded by 2O(S(n)), where S(n) is the randomized streaming
space complexity of L.

The deterministic streaming space complexity of a language L is directly linked to the
automaticity of L. The automaticity of L ⊆ Σ∗ is the the function AL(n) that maps n
to the number of states of a smallest DFA An such that for all words w ∈ Σ≤n we have:
w ∈ L if and only if w is accepted by An. Hence, the deterministic streaming space
complexity of L is exactly dlog2AL(n)e. The automaticity of languages was studied in [35].
Interesting in our context is the following result of Karp [19]: if L is a non-regular language
then AL(n) ≥ (n + 3)/2 for infinitely many n. Hence, for every non-regular language the
deterministic streaming space complexity of L is at least log2(n) − c for a constant c and
infinitely many n. Another related measure is the online space complexity from [11], which
is defined by the growth function of an infinite automaton for a language L.

Note that our concept of streaming algorithms is non-uniform in the sense that for every
input length n we have a separate streaming algorithm An. This makes lower bounds stronger.
On the other hand, the streaming algorithms that we construct for concrete groups will
be uniform in the sense that the streaming algorithms An follow a common pattern. The
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following result uses non-uniformity in a crucial way; its proof (see [25, Theorem 3.1]) is
similar to Newman’s theorem on public versus private coins in communication complexity,
see e.g. [21].

I Theorem 1. Let R be a randomized streaming algorithm such that s(R, n) ≥ Ω(logn) and
R is ε-correct for a language L. Then there exists a semi-randomized streaming algorithm S
such that s(S, n) = Θ(s(R, n)) and S is 2ε-correct for the language L.

3 Groups and word problems

For a group G and a subset Σ ⊆ G, we denote with 〈Σ〉 the subgroup of G generated by Σ.
It is the set of all products of elements from Σ ∪ Σ−1. We only consider finitely generated
(f.g.) groups G, for which there is a finite set Σ ⊆ G such that G = 〈Σ〉; such a set Σ is called
a finite generating set for G. If Σ = Σ−1 then we say that Σ is a finite symmetric generating
set for G. In the following we assume that all finite generating sets are symmetric. Every
word w ∈ Σ∗ evaluates to a group element πG(w) in the natural way; here πG : Σ∗ → G is
the canonical morphism from the free monoid Σ∗ to G. Instead of πG(u) = πG(v) we also
write u ≡G v.

Let C(G,Σ) be the Cayley graph of G with respect to the finite symmetric generating
set Σ. It is the edge-labelled graph whose vertex set is G and that has an a-labelled edge
from πG(u) to πG(ua) for all u ∈ Σ∗ and a ∈ Σ. Let WP(G,Σ) = {w ∈ Σ∗ | πG(w) = 1} be
the word problem for G with respect to the generating set Σ.

We are interested in streaming algorithms for words problems WP(G,Σ). The following
lemma is easy to prove; see [25, Lemma 4.1].

I Lemma 2. Let Σ1 and Σ2 be finite symmetric generating sets for the group G and let si(n)
be the deterministic/randomized streaming space complexity of WP(G,Σi). Then there exists
a constant c that depends on G, Σ1 and Σ2 such that s1(n) ≤ s2(c · n).

By Lemma 2, the dependence of the streaming space complexity from the generating
set is often blurred by the use of the O-notation. In such situations we will speak of
the deterministic/randomized streaming space complexity for the group G (instead of the
deterministic/randomized streaming space complexity of the language WP(G,Σ)).

4 Streaming algorithms for word problems and growth

Let G be a finitely generated group and let Σ be a finite symmetric generating set for G. For
n ∈ N let BG,Σ(n) = πG(Σ≤n) ⊆ G be the ball of radius n in the Cayley-graph of G with
center 1. The growth function γG,Σ : N→ N is the function with γG,Σ(n) = |BG,Σ(n)|. The
deterministic streaming space complexity of G is completely determined by the growth of G:

I Theorem 3. Let G be a finitely generated infinite group and let Σ be a finite symmetric
generating set for G. Define the function S(n) by S(n) = γG,Σ(bn/2c) + (n mod 2). Then,
the deterministic streaming space complexity of WP(G,Σ) is dlog2 S(n)e.

Proof. We start with the upper bound in case n is even. In the following we identify
the ball BG,Σ(n/2) with its induced subgraph of the Cayley graph C(G,Σ). We define a
deterministic finite automaton An by taking the edge-labelled graph BG,Σ(n/2) with the
initial and unique final state 1. It can be viewed as a partial DFA in the sense that for
every g ∈ BG,Σ(n/2) and every a ∈ Σ, g has at most one outgoing edge labelled with a (that
leads to g · a if g · a ∈ BG,Σ(n/2)). In order to add the missing transitions we choose an
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43:6 Streaming word problems

element gf ∈ BG,Σ(n/2) \ BG,Σ(n/2 − 1) (here, we set BG,Σ(−1) = ∅). Such an element
exists because G is infinite. If g ∈ BG,Σ(n/2) has not outgoing a-labelled edge in BG,Σ(n/2)
then we add an a-labelled edge from g to gf . We call those edges spurious. The resulting
DFA is An.

We claim that for every word w ∈ Σ≤n, w is accepted by An if and only if w ∈WP(G,Σ).
This is clear, if no spurious edge is traversed while reading w into An. In this case, after
reading w, we end up in state πG(w). Now assume that a spurious edge is traversed while
reading w into An and let x be the shortest prefix of w such that a spurious edge is traversed
while reading the last symbol of x. Let us write w = xy. We must have |x| > n/2 and
πG(x) /∈ BG,Σ(n/2). Moreover, |y| < n − n/2 = n/2. Since πG(x) /∈ BG,Σ(n/2), we have
w = xy /∈WP(G,Σ). Moreover, w is rejected by An, because x leads in An from the initial
state 1 to state gf and there is no path of length at most n/2− 1 from gf back to the final
state 1.

For the case that n is odd, we take the ball BG,Σ(bn/2c). Instead of adding spurious edges
we add a failure state f . If g ∈ BG,Σ(bn/2c) has no outgoing a-labelled edge in BG,Σ(bn/2c),
then we add an a-labelled edge from g to f . Moreover, for every a ∈ Σ we add an a-labelled
loop at state f . As for the case n even, one can show that the resulting DFA accepts a word
w ∈ Σ≤n if and only if w ∈WP(G,Σ).

For the lower bound, let A = (Q,Σ, q0, δ, F ) be a smallest DFA such that for every
word w ∈ Σ≤n, w is accepted by A if and only if w ∈ WP(G,Σ). We have to show
that |Q| ≥ S(n). Let us consider two words u, v ∈ Σ∗ of length at most bn/2c such that
u 6≡G v and δ(q0, u) = δ(q0, v). We then have uv−1 6∈ WP(G,Σ) and vv−1 ∈ WP(G,Σ).
On the other hand, we have δ(q0, uv

−1) = δ(q0, vv
−1), which is a contradiction (note that

|uv−1|, |vv−1| ≤ n). Hence, if δ(q0, u) = δ(q0, v) for two words u, v ∈ Σ∗ of length at most
bn/2c, then u ≡G v.

Let Q′ = {δ(q0, w) | w ∈ Σ∗, |w| ≤ bn/2c} ⊆ Q. The previous paragraph shows that
|Q′| ≥ γG,Σ(bn/2c). If n is even then bn/2c = n/2 and we are done. So, let us assume that
n is odd.

If |Q| > γG,Σ(bn/2c) then we are again done. So, let us assume that Q = Q′ and
|Q| = γG,Σ(bn/2c). Then, to every state q ∈ Q we can assign a unique group element
gq ∈ BG,Σ(bn/2c) such that for every word w ∈ Σ∗ with |w| ≤ bn/2c we have δ(q0, w) = q if
and only if πG(w) = gq. The mapping q 7→ gq is a bijection between Q and BG,Σ(bn/2c).

Let us now take a state q ∈ Q and a generator a ∈ Σ such that gq · a /∈ BG,Σ(bn/2c).
Such a state and generator must exist since G is infinite. Let u, v ∈ Σ∗ be words of length at
most bn/2c such that δ(q0, u) = q and δ(q0, v) = δ(q, a) = δ(q0, ua). We obtain δ(q0, vv

−1) =
δ(q0, uav

−1). But vv−1 ∈WP(G,Σ) and uav−1 /∈WP(G,Σ) since πG(uav−1) = gq ·a·πG(v−1)
and gq · a /∈ BG,Σ(bn/2c), πG(v−1) ∈ BG,Σ(bn/2c). This is a contradiction since vv−1 and
uav−1 both have length at most n. J

The growth of f.g. groups is well-studied and Theorem 3 basically closes the chapter on
deterministic streaming algorithms for word problems. Hence, in the rest of the paper we
focus on randomized streaming algorithms. Here, we can still prove a lower bound (that
will turn out to be sharp in some cases but not always) using the randomized one-way
communication complexity of the equality problem; see [25, Theorem 5.2] for details.

I Theorem 4. Let G be a finitely generated group and let Σ be a finite symmetric generating
set for G. The randomized streaming space complexity of WP(G,Σ) is Ω(log log γG,Σ(bn/2c)).

I Remark 5. Since every f.g. infinite group has growth at least n, Theorem 4 has the following
consequence: If G is a f.g. infinite group, then the randomized streaming space complexity of
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G is Ω(log logn).
I Remark 6. Later in this paper, we will make use of the following two famous results on the
growth of groups, see also [9, 28]:

Gromov’s theorem [16]: A f.g. group has polynomial growth iff it is virtually nilpotent.
Wolf-Milnor theorem [30, 42]; see also [9, p. 202]: A f.g. solvable group G is either virtually
nilpotent (and hence has polynomial growth) or there is a constant c > 1 such that G has
growth cn (i.e., G has exponential growth). It is well known that the same dichotomy also
holds for f.g. linear groups. This is a consequence of Tits alternative [37]: A f.g. linear
group G is either virtually solvable or contains a free group of rank at least two (in which
case G has exponential growth).

The dichotomy theorem of Milnor and Wolf does not generalize to all f.g. groups. Grigorchuk
[14] constructed a f.g.group whose growth is lower bounded by exp(n0.515) [6] and upper
bounded by exp(n0.768) [5]. The streaming space complexity of this remarkable group will
be studied in Theorem 23.

5 Injective randomized streaming algorithms

For a semi-probabilistic finite automaton A = (Q,Σ, ι, ρ, F ) and some boolean condition E(q)
that depends on the state q ∈ Q, we define the probability

Prob
q∈Q

[E(q)] =
∑

q∈Q,E(q)=1

ι(q).

Let G be a f.g. group G with the finite generating set Σ. A randomized streaming algorithm
(An)n≥0 with An = (Qn,Σ, ιn, ρn, Fn) is called ε-injective for G (with respect to Σ) if the
following properties hold for all n ≥ 0 and all words u, v ∈ Σ≤n:
An is semi-randomized.
If u ≡G v then Probq∈Qn [ρn(q, u) = ρn(q, v)] ≥ 1− ε.
If u 6≡G v then Probq∈Qn

[ρn(q, u) 6= ρn(q, v)] ≥ 1− ε.
Note that the set Fn of final states of An is not important and we will just write An =
(Qn,Σ, ιn, ρn) in the following if we talk about an ε-injective randomized streaming algorithm
(An)n≥0. The easy proof of the following lemma can be found in [25, Lemma 6.1].

I Lemma 7. If R is an ε-injective randomized streaming algorithm for G w.r.t. Σ, then
WP(G,Σ) has an ε-correct semi-randomized streaming algorithm with space complexity
2 · s(R, n).

Due to Lemma 7, our goal in the rest of the paper will the construction of space efficient
ε-injective randomized streaming algorithms for groups. We will need ε-injectivity for wreath
products and free products; see Sections 7.2 and 7.3.

6 Randomized streaming algorithms for linear groups

For every f.g. linear group, the word problem can be solved in logarithmic space. This
was shown by Lipton and Zalcstein [23] (if the underlying field has characteristic zero) and
Simon [36] (if the underlying field has prime characteristic). The idea is to carry out all
computations modulo sufficiently many small prime numbers. This idea can be easily turned
into a randomized streaming algorithm by randomly choosing a small prime number. With
some care, one can turn their idea into an ε(n)-injective randomized streaming algorithm
with ε(n) = 1/nc for a constant c and space complexity O(logn); see [25, Theorem 7.1] for
details.

MFCS 2022



43:8 Streaming word problems

I Theorem 8. For every f.g. linear group G and every c > 0 there exists an ε(n)-injective
randomized streaming algorithm with ε(n) = 1/nc and space complexity O(logn).

Every nilpotent group is linear. For nilpotent groups we can improve the algorithm from
the proof of Theorem 8, at least if we sacrifice the inverse polynomial error probability. The
proof of the following theorem (see [25, Theorem 7.2]) uses the fact that every f.g. nilpotent
group is a finite extension of a nilpotent group that can be embedded in the group UTd(Z)
of d-dimensional unitriangular matrices over Z. The entries in a product of n such matrices
A1, . . . , An can be bounded by O(nd−1), provided all entries in the Ai are of size O(1) (in
absolute value). This allows to compute modulo a random prime number with O(log logn)
bits.

I Theorem 9. For every f.g. nilpotent group G and every constant c > 0 there exists an
ε(n)-injective randomized streaming algorithm with ε(n) = 1/ logc n and space complexity
O(log logn).

Note that if G is infinite, the upper bound from Theorem 9 is sharp up to constant factors
even if we allow a constant error probability; see Remark 5.

7 Closure properties for streaming space complexity

In this section, we will show that many group theoretical constructions preserve randomized
streaming space complexity.

7.1 Easy cases: finite extensions and direct products
For many algorithmic problems in group theory, the complexity is preserved by finite
extensions. This is also true for the streaming space complexity of the word problem; see
also [25, Theorem 8.1]:

I Theorem 10. Assume that H is a f.g. group and G is a subgroup of H of finite index
(hence, also G must be finitely generated). Assume that R is an ε-injective randomized
streaming algorithm for G. Then H has an ε-injective randomized streaming algorithm with
space complexity s(R, c · n) +O(1) for some constant c.

Recall that Gromov proved that a finitely generated group has polynomial growth if and
only if it is virtually nilpotent.

I Corollary 11. Let G be an infinite finitely generated linear group.
If G is virtually nilpotent then the randomized streaming space complexity of G is
Θ(log logn).
If G is not virtually nilpotent then the randomized streaming space complexity of G is
Θ(logn).

Proof. The upper bounds follow from Theorems 8 and 9. Since G is infinite, the randomized
streaming space complexity of the word problem of G is Ω(log logn) (see Remark 5), which
yields the lower bound for the virtually nilpotent case. If G is not virtually nilpotent, then
G has growth cn for some constant c > 1 (see Remark 6), which yields the lower bound
Θ(logn) by Theorem 4. J

It is conjectured that for every f.g. group G that is not virtually nilpotent the growth is lower
bounded by exp(n0.5). This is known as the gap conjecture [15]. It would imply that for
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every f.g. group that is not virtually nilpotent the randomized streaming space complexity is
lower bounded by Ω(logn).

Also direct products preserve the streaming space complexity of the word problem (simply
run the streaming algorithms for the two factor groups in parallel):

I Lemma 12. Let G and H be f.g. groups for which there exist ε(n)-injective randomized
streaming algorithms R and S, respectively. Then there exists a 2ε(n)-injective randomized
streaming algorithm for G×H with space complexity s(R, n) + s(S, n).

Recall that a group G is metabelian if it has an abelian normal subgroup A ≤ G such that
the quotient G/A is abelian as well. Every f.g. metabelian group can be embedded into a
direct product of linear groups (over fields of different characteristics) [40]. Hence, with
Lemma 12 and Theorem 8 we obtain:

I Corollary 13. For every f.g. metabelian group and every c > 0 there exists an ε(n)-injective
randomized streaming algorithm with ε(n) = 1/nc and space complexity O(logn).

7.2 Randomized streaming algorithms for wreath products
Let G andH be groups. Consider the direct sumK =

⊕
g∈GHg, whereHg is a copy ofH. We

view K as the set H(G) of all mappings f : G→ H such that supp(f) := {g ∈ G | f(g) 6= 1}
is finite, together with pointwise multiplication in H as the group operation. The set
supp(f) ⊆ G is called the support of f . The group G has a natural left action on H(G) given
by gf(a) = f(g−1a), where f ∈ H(G) and g, a ∈ G. The corresponding semidirect product
H(G) oG is the (restricted) wreath product H oG. In other words:

Elements of H oG are pairs (f, g), where g ∈ G and f ∈ H(G).
The multiplication in H o G is defined as follows: Let (f1, g1), (f2, g2) ∈ H o G. Then
(f1, g1)(f2, g2) = (f, g1g2), where f(a) = f1(a)f2(g−1

1 a) for all a ∈ G.
Intuitively, the mapping a 7→ f2(g−1

1 a) is the mapping f2 shifted by g1.
Clearly, G is a subgroup of H oG. We also regard H as a subgroup of H oG by identifying

H with the set of all f ∈ H(G) with supp(f) ⊆ {1}. This copy of H together with G generates
H oG. In particular, if G = 〈Σ〉 and H = 〈Γ〉 with Σ∩Γ = ∅ then H oG is generated by Σ∪Γ.
In [32] it was shown that the word problem of a wreath product H oG is TC0-reducible to
the word problems for G and H.

In this section, we study streaming algorithms for wreath products. The case of a wreath
product H oG with G finite is easy:

I Proposition 14. Let H be a f.g. group for which there exists an ε-injective randomized
streaming algorithm R = (An)n≥0 and let G be a finite group of size c. Then, there exists an
(c · ε)-injective randomized streaming algorithm for H oG with space complexity O(s(R, n)).

Proof. We run c independent copies of An (for the direct product of c copies of H). In
addition we have to store an element of G. J

The case of a wreath product H o G with G infinite turns out to be more interesting. In
Section 8 we will prove a lower bound for the case that H is non-abelian. In this section, we
consider the case where H is abelian. Our construction will start with ε-injective randomized
streaming algorithms for G and uses the following simple fact.

I Lemma 15. Let (An)n≥0 be an ε-injective randomized streaming algorithm for the finitely
generated group G with respect to the generating set Σ. Let An = (Qn,Σ, ι, ρ). Consider a
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set S ⊆ Σ≤n. For every state q of An consider the equivalence relation ≡q on S with u ≡q v
if and only if ρn(q, u) = ρn(q, v). Then

Prob
q∈Qn

[≡q coincides with ≡G on S] ≥ 1− ε ·
(
|S|
2

)
.

Proof. For all u, v ∈ S, the probability that either u ≡G v and u 6≡q v or u 6≡G v and
u ≡q v is bounded by ε. The lemma follows from the union bound since there are

(|S|
2
)
many

unordered pairs. J

We start with the case of a wreath product Z oG. Note that the following theorem makes
only sense if ε < 1/2n2. On the other hand, such an inverse polynomial error probability can
be achieved for linear groups by Theorem 8.

I Theorem 16. Let G be a f.g. infinite group and R = (An)n≥0 an ε-injective randomized
streaming algorithm for G. Let d be a fixed constant and ζ = 2εn2 + max{ε, 1/nd}. Then
there exists an ζ-injective randomized streaming algorithm S = (Bn)n≥0 for Z oG with space
complexity 2 · s(R, n) + Θ(logn).

Proof sketch. A complete proof of the theorem can be found in [25, Theorem 8.9]. Fix a
symmetric generating set Σ for G and let a be a generator of Z. Let An = (Qn,Σ, ιn, ρn).
W.l.o.g. we can assume that Qn = [0, |Qn| − 1]. Fix an input length n. For an input word
w ∈ (Σ∪{a, a−1})≤n our randomized streaming algorithm for Z oG runs An on the projection
πΣ(w) of the word w to the subalphabet Σ. Initially, the algorithm guesses a state q ∈ Qn
according to the initial state distribution ιn and (independently from q) a prime number
p ∈ [2, α]. The number α will be fixed latter. For the moment, let us only mention that p
will have at most s(R, n) + Θ(logn) bits. Apart from the current state of An the algorithm
also stores a number z ∈ [0, p− 1] which initially is set to zero.

Assume that at some time instant the algorithm reads the letter aγ , where γ ∈ {−1, 1}.
Let q be the current An-state, which is a number in the range [0, |Qn| − 1]. The above prime
number p has to be chosen uniformly from the set of all primes of size Θ(|Qn| · nd+1). Then
the algorithm updates z ∈ [0, p− 1] as follows:

z := (z + γ · (n+ 1)q) mod p.

With our input word w and a state q of An we associate a polynomial Pq,w(x) ∈ Z[x] as
follows: Let Rw be the set of all prefixes of w that end with a letter aγ and for s ∈ Rw define
σ(s) = γ ∈ {−1, 1} if s ends with aγ . Moreover, for every s ∈ Rw consider the An-state
qs = ρn(q, πΣ(s)) ∈ [0, |Qn| − 1]. We then define the polynomial

Pq,w(x) :=
∑
s∈Rw

σ(s) · xqs .

Note that this polynomial has degree at most |Qn| − 1 and all its coefficients have absolute
value at most n. Moreover, the number z = z(p, q, w) computed by the algorithm on input
w for the random choice p ∈ [2, α], q ∈ [0, |Qn| − 1] is

z(p, q, w) = Pq,w(n+ 1) mod p. (1)

This concludes the description of the streaming algorithm. It remains to show for all words
u, v ∈ (Σ ∪ {a, a−1})≤n the following:
(a) If u ≡ZoG v then Prob

p∈[2,α],q∈Qn

[ρn(q, πΣ(u)) = ρn(q, πΣ(v)) ∧ z(p, q, u) = z(p, q, v)] ≥ 1− ζ.
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(b) If u 6≡ZoG v then Prob
p∈[2,α],q∈Qn

[ρn(q, πΣ(u)) 6= ρn(q, πΣ(v)) ∨ z(p, q, u) 6= z(p, q, v)] ≥ 1− ζ.

Let (fu, gu) ∈ Z oG (resp., (fv, gv) ∈ Z oG) be the group element represented by the word u
(resp., v). First assume that u ≡ZoG v, i.e., fu = fv and gu = gv. From gu = gv we get

Prob
q∈Qn

[ρn(q, πΣ(u)) = ρn(q, πΣ(v))] ≥ 1− ε. (2)

Moreover, from fu = fv and Lemma 15 one can deduce

Prob
p∈[2,α],q∈Qn

[z(p, q, u) = z(p, q, v)] ≥ Prob
q∈Qn

[Pq,u(x) = Pq,v(x)] ≥ 1− 2εn2. (3)

Finally, (2) and (3) easily yield the conclusion of point (a). Now assume that u 6≡ZoG v. If
gu 6= gv, i.e., then we get

Prob
q∈Qn

[ρn(q, πΣ(u)) 6= ρn(q, πΣ(v))] ≥ 1− ε ≥ 1− ζ.

On the other hand, if the mappings fu and fv differ, then from Lemma 15 we obtain

Prob
q∈Qn

[Pq,u(n+ 1) 6= Pq,v(n+ 1)] ≥ Prob
q∈Qn

[Pq,u(x) 6= Pq,v(x)] ≥ 1− 2εn2.

The first inequality follows from Cauchy’s bound. This, together with (1) and some stand-
ard bounds on the number of different prime factors of |Pq,u(n + 1) − Pq,v(n + 1)| yields
Probp∈[2,α],q∈Qn

[z(p, q, u) 6= z(p, q, v)] ≥ 1− ζ and finally the conclusion of point (b). J

It is easy to extend Theorem 16 to a wreath product Zp o G with p prime. For a wreath
product Zpk oG with p a prime and k ≥ 2 we can only prove the following weaker statement
using a polynomial identity testing algorithm for local rings from [3]. Putting it all together
we can show the following result; see [25, Section 8.3] for details.

I Theorem 17. Let G be a f.g. group for which there exists an ε-injective randomized
streaming algorithm R. Let A be a finitely generated abelian group. Then for all constants
ε ≤ ε′ < 1 and d ≥ 1 there exists a ζ-injective randomized streaming algorithm S for A oG
with the following properties:

ζ ≤ O(ε′ + εn2) and s(S, n) ≤ O(s(R, n)2 + logn)
ζ ≤ O(1/nd + εn2) and s(S, n) ≤ O(s(R, n) + logn) if A is a direct product of copies of
Z and Zp with p prime.

I Corollary 18. Every free solvable group has randomized streaming space complexity Θ(logn).

Proof. Magnus’ embedding theorem [27] says that every free solvable group can be embedded
into an iterated wreath product Zm o (Zm o (Zm o · · · )). Since Zm is linear, we can, using
Theorem 8, obtain an ε(n)-injective randomized streaming algorithm for Zm with space
complexity O(logn) for every inverse polynomial ε(n). We then apply the second statement
of Theorem 17 a constant number of times and obtain a randomized streaming algorithm with
space complexity O(logn). The lower bound follows from Theorem 4 and the Milnor-Wolf
theorem (see Remark 6). J

In [38] it is shown that the word problem of a free solvable group can be solved with a
randomized algorithm running in time O(n · logk n) for some constant k. Our algorithm
achieves the same running time (because for every new input symbol, only numbers of bit
length O(logn) have to be manipulated). In contrast to our algorithm, the algorithm from
[38] is non-streaming and does not work in logarithmic space.
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7.3 Randomized streaming algorithms for free products
In [39], Waack proved that the word problem of a free product G ∗H of two f.g. groups G
and H can be solved in logspace if the word problems of G and H can be solved in logspace.
Here, we show that Waack’s reduction can be also used for randomized streaming algorithms.

For a group G and two subgroups A,B ≤ G, the commutator subgroup [A,B] ≤ G is the
group generated by all commutators [a, b] = a−1b−1ab with a ∈ A and b ∈ B. Let us denote
with F (Σ) the free group generated by the set Σ. A free group F is freely generated by the
set A ⊆ F if F is isomorphic to F (A). It is well known that the free group F2 = F ({a, b}) of
rank 2 contains a copy of the free group F (N) of countable infinite rank. For instance, the
mapping φ : N→ F2 with φ(n) = a−nban defines an injective homomorphism φ : F (N)→ F2.
The following group theoretic lemma underlies Waack’s reduction:

I Lemma 19 (c.f. [39, Proposition 4.2]). Let G and H be groups. Then [G,H] is a normal
subgroup of the free product G ∗H such that (G ∗H)/[G,H] ∼= G×H. Moreover, [G,H] is a
free group that is freely generated by the set of commutators {[g, h] | g ∈ G\{1}, h ∈ H \{1}}.

I Theorem 20. Let G and H be a f.g. groups for which there exist ε-injective randomized
streaming algorithms R = (An)n≥0 and S = (Bn)n≥0, respectively. Then, there exists a
(4n2 + 1)ε-injective randomized streaming algorithm (Cn)n≥0 for G ∗H with space complexity
s(R, n) + s(S, n) +O(logn).

The proof of Theorem 20 is a bit technical and can be found in [25, Section 8.2]. In order
to test whether a word w is trivial in G ∗H, Waack checks whether the image of w in the
quotient (G ∗H)/[G,H] ∼= G×H is trivial (for which algorithms for G and H can be used).
If this holds, then w represents an element of the free group [G,H], which by the above
remark can be embedded into F2. Waack then computes from w the corresponding image
in F2. Basically, we follow the same strategy but only obtain the image in F2 with high
probability using Lemma 15. For F2 (a linear group) we can then apply Theorem 8.

8 Lower bounds

In this section, we will construct groups with a large randomized streaming space complexity.
We will make use of the disjointness problem from communication complexity. The disjoint-
ness problem is defined as follows: Alice (resp., Bob) has a bit string u ∈ {0, 1}n (resp.,
v ∈ {0, 1}n) and their goal is to determine whether there is a position 1 ≤ i ≤ n such that
u[i] = v[i] = 1 (u[i] and v[i] are the bits at position i). It is well known that the randomized
communication complexity for the disjointness problem is Θ(n), see e.g. [21, Section 4.6].

I Theorem 21. Let H be a f.g. non-abelian group and G be a f.g. infinite group. The
randomized streaming space complexity of H oG is Θ(n).

Proof. Let R = (An)n≥0 be a randomized streaming algorithm for the word problem of
H oG. We show that we obtain a randomized communication protocol for the disjointness
problem with communication cost 3 · s(R, 12n− 8).

Fix n ≥ 1 and two elements g, h ∈ H with [g, h] 6= 1. We can assume that g and h

are generators of H. We also fix a finite generating set for G. Let s := t1t2 · · · tn−1 be a
word over the generators of G such that t1t2 · · · ti and t1t2 · · · tj represent different elements
whenever i 6= j. Such a word exists since the Cayley graph of G is an infinite locally finite
graph and hence contains an infinite ray. For a word w = a0a1 · · · an−1 ∈ {0, 1}n and an
element x ∈ {g, h, g−1, h−1} define the word w[x] = xa0t1x

a1t2 · · ·xan−2tn−1x
an−1s−1. It



M. Lohrey and L. Lück 43:13

represents the element (fw,x, 1) ∈ H oG with supp(fw,x) = {t1 . . . ti | i ∈ [0, n− 1], w[i] = 1}
and fw,x(t) = x for all t ∈ supp(fw,x). Therefore, for two words u, v ∈ {0, 1}n we have
u[g]v[h]u[g−1]v[h−1] = 1 in H o G if and only if there is a position i ∈ [0, n − 1] with
u[i] = v[i] = 1. Note that the length of the word u[g]v[h]u[g−1]v[h−1] is 4(3n− 2) = 12n− 8.

Our randomized communication protocol for the disjointness problem works as follows,
where u ∈ {0, 1}n is the input for Alice and v ∈ {0, 1}n is the input for Bob.

Alice reads the word u[g] into A12n−8 and sends the resulting state to Bob.
Bob continues the run in the state he received from Alice, reads the word v[h] into the
automaton and sends the resulting state back to Alice.
Alice continues the run with the word u[g−1] and sends the resulting state of Bob.
Bob continues the run with v[h−1] and finally accepts if the resulting state is accepting.

Both Alice and Bob use their random coins in order to make the random decisions in the
PFA A12n−8. Clearly, the protocol is correct and its communication cost is 3 · s(R, 12n− 8).
We hence must have 3 · s(R, 12n− 8) ∈ Ω(n) which implies s(R,m) ∈ Ω(m). J

In 1965, Thompson introduced three finitely presented groups F < T < V acting on the unit-
interval, the unit-circle and the Cantor set, respectively. Of these three groups, F received
most attention (the reader should not confuse F with a free group). This is mainly due to the
still open conjecture that F is not amenable. The group F consists of all homeomorphisms
of the unit interval that are piecewise affine, with slopes a power of 2 and dyadic breakpoints.
It is a finitely presented group. Important for us is the fact that F contains a copy of F o Z
[17, Lemma 20]. Since F is non-abelian, Theorem 21 implies:

I Corollary 22. The randomized streaming space complexity of Thompson’s group F is Θ(n).

Grigorchuk’s group was introduced by Grigorchuk in [14]. It is a f.g. group of automorphisms
of the infinite binary tree; the generators are usually denoted a, b, c, d and satisfy the identities
a2 = b2 = c2 = d2 = 1 and bc = cb = d, bd = db = c, dc = cd = b. Grigorchuk’s group is a f.g.
infinite torsion group and was the first example of a group with intermediate growth and the
first example of a group that is amenable but not elementary amenable.

I Theorem 23. Let G be the Grigorchuk group. Then the following hold:
The deterministic streaming space complexity of G is O(n0.768).
The randomized streaming space complexity of G is Ω(n0.5).

Proof sketch. The first statement follows from Theorem 3 and the upper growth bound
exp(n0.768) for the Grigorchuk group; see [5]. For the second statement we use a non-abelian
subgroup K ≤ G such that K contains a copy of K×K, see [9, p. 262]. This allows a similar
reduction from the disjointness problem as in the proof of Theorem 21; see [25, Theorem 9.3]
for details. J

9 Open problems

We conclude with some open problems.
Can the space bound O(s(R, n)2 +logn) in Theorem 17 be reduced to O(s(R, n)+logn)?
What is the space complexity of randomized streaming algorithms for hyperbolic groups?
The best complexity bound for the word problem for a hyperbolic group is LogCFL, which
is contained in DSPACE(log2 n) [24].
Is there a group that is not residually finite and for which there exists a randomized
streaming algorithm with space complexity o(n)? An example of group that is not
residually finite is the Baumslag-Solitar group BS(2, 3). The word problem for every
Baumslag-Solitar group BS(p, q) can be solved in logarithmic space [41].
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