
Noname manuscript No.
(will be inserted by the editor)

Subgroup Membership in GL(2,Z)

Markus Lohrey

the date of receipt and acceptance should be inserted later

Abstract It is shown that the subgroup membership problem for a virtually
free group can be decided in polynomial time when all group elements are rep-
resented by so-called power words, i.e., words of the form pz11 p

z2
2 · · · p

zk
k . Here

the pi are explicit words over the generating set of the group and all zi are
binary encoded integers. As a corollary, it follows that the subgroup member-
ship problem for the matrix group GL(2,Z) can be decided in polynomial time
when elements of GL(2,Z) are represented by matrices with binary encoded
integers. For the same input representation, it also shown that one can com-
pute in polynomial time the index of a given finitely generated subgroup of
GL(2,Z).

1 Introduction

The subgroup membership problem (also known as the generalized word prob-
lem) for a group G asks whether for given group elements g0, g1, . . . , gk ∈ G,
g0 belongs to the subgroup 〈g1, . . . , gk〉 generated by g1, . . . , gk. To make this
a well-defined computational problem, one has to fix an input representation
for elements of G. Here, a popular choice is to restrict to finitely generated
(f.g. for short) groups. In this case, group elements can be encoded by finite
words over a finite set of generators. The subgroup membership problem is
one of the best studied problems in computational group theory. Let us sur-
vey some important results on subgroup membership problems.

For symmetric groups Sn, Sims [38] has developed a polynomial time algo-
rithm for the uniform variant of the subgroup membership problem, where n
is part of the input; see also [3] for efficient parallel algorithms. Here, we only
consider the non-uniform subgroup membership problem, where we fix an infi-
nite f.g. group G. For a f.g. free group, the subgroup membership problem can

Universität Siegen, Germany
E-mail: lohrey@eti.uni-siegen.de

2 Markus Lohrey

be solved using Nielsen reduction (see e.g. [25]); a polynomial time algorithm
was found by Avenhaus and Madlener [1]. In fact, in [1] it is shown that the
subgroup membership problem for a f.g. free group is P-complete. Another
polynomial time algorithm uses Stallings’s folding procedure [39]; an almost
linear time implementation can be found in [40]. An extension of Stallings’s
folding for fundamental groups of certain graphs of groups was developed in
[17]. The folding procedure from [17] can be used to show that subgroup mem-
bership is decidable for right-angled Artin groups with a chordal independence
graph. Moreover, Friedl and Wilton [12] used the results of [17] in combination
with deep results from 3-dimensional topology in order to decide the subgroup
membership problem for 3-manifold groups. Other extensions of Stallings’s
folding and applications to subgroup membership problems can be found in
[19,27,35]. Using completely different (more algebraic) techniques, the sub-
group membership problem has been shown to be decidable for polycyclic
groups [2,26] and f.g. metabelian groups [33,34]. For f.g. nilpotent groups the
subgroup membership problem is complete for the circuit complexity class TC0

[29].

On the undecidability side, Mihăılova [28] has shown that the subgroup
membership problem is undecidable for the direct product F2 × F2 (where F2

is the free group of rank two). This implies undecidability of the subgroup
membership problem for many other groups, e.g., SL(4,Z) (the group of 4× 4
integer matrices with determinant one) or the 5-strand braid group B5. Rips
[31] constructed hyperbolic groups with an undecidable subgroup membership
problem.

Apart from the above mentioned results for free groups [1] (P-completeness)
and nilpotent groups [29] (TC0-completeness) the authors are not aware of
other precise complexity results for subgroup membership problems in infinite
groups. The completeness results from [1,29] assume that group elements are
represented by finite words over the generators of the free group. In recent
years, group theoretic decision problems have also been studied with respect
to more succinct representations of group elements. For instance, the so-called
compressed word problem, where the input group element is represented by
a straight-line program (a context-free grammar that produces exactly one
string) has received a lot of attention; see [4,22] for surveys. For the subgroup
membership problem in free groups, Gurevich and Schupp studied in [14] a
succinct variant, where input group elements are of the form az11 a

z2
2 · · · a

zk
k .

Here, the ai are from a fixed free basis of the free group and the zi are binary
encoded integers. Based on an adaptation of Stallings’s folding, they show that
this succinct membership problem can be solved in polynomial time. Then,
Gurevich and Schupp proceed in [14] by showing that their succinct folding
algorithm for free groups can be adapted so that it works for the free product
Z/2Z ∗Z/3Z. The particular interest in this group comes from the fact that it
is isomorphic to the modular group PSL(2,Z), which is the quotient of SL(2,Z)
by 〈−Id2〉 ∼= Z/2Z (Id2 is the 2× 2 identity matrix). As an application of the
succinct folding algorithm for Z/2Z ∗ Z/3Z, Gurevich and Schupp show that

Subgroup Membership in GL(2,Z) 3

the subgroup membership problem for PSL(2,Z) is decidable in polynomial
time when all matrix entries are encoded in binary notation.

A related result was shown in [29]: the subgroup membership problem for
a f.g. nilpotent group can be solved in polynomial time, when group elements
are represented by binary encoded Mal’cev coordinates.

The polynomial time algorithm for the succinct membership problem for
Z/2Z ∗ Z/3Z from [14] is tailored towards this group, and it is not clear how
to adapt the algorithm to related groups. The latter is the goal of this paper.
For this it turns out to be useful to consider a more succinct representation
of input elements for free groups. Recall that Gurevich and Schupp use words
of the form az11 a

z2
2 · · · a

zk
k , where the integers zi are given in binary notation

and the ai are generators from a free basis. Here, we represent group elements
by so-called power words which were studied in [23] in the context of group
theory. A power word has the form pz11 p

z2
2 · · · p

zk
k , where as above the integers

zi are given in binary notation but the pi are arbitrary words over the group
generators. In [23] it was shown that the so-called power word problem (does
a given power word represent the group identity?) for a f.g. free group F is
AC0-reducible to the ordinary word problem for F (and hence in logspace). In
Section 3, we prove that the power-compressed subgroup membership problem
(i.e., the subgroup membership problem with all group elements represented
by power words) for a free group can be solved in polynomial time by using a
folding procedure à la Stallings (Theorem 1). This generalizes the above men-
tioned result of Gurevich and Schupp. At first sight, the step from power words
of the form az11 a

z2
2 · · · a

zk
k (with the ai generators) to general power words as

defined above looks not very spectacular. But apart from the quite techni-
cal details, the power-compressed subgroup membership problem has a major
advantage over the restricted version of Gurevich and Schupp: we show that
if G is a f.g. group and H is a finite index subgroup of G then the power-
compressed subgroup membership problem for G is polynomial time reducible
to the power-compressed subgroup membership problem for H (Lemma 11).
Hence, the power-compressed subgroup membership problem for every f.g. vir-
tually free group (a finite extension of a f.g. free group) can be solved in poly-
nomial time (Corollary 2). This result opens up new applications to matrix
group algorithms. It is well-known that the group GL(2,Z) (the group of all
2 × 2 integer matrices with determinant ±1) is f.g. virtually free. Moreover,
given a matrix A ∈ GL(2,Z) with binary encoded entries one can compute
a power word (over a fixed finite generating set of GL(2,Z)) that represents
A. Hence, the subgroup membership problem for GL(2,Z) can be decided in
polynomial time when elements of GL(2,Z) are represented by matrices with
binary encoded integers (Corollary 3).

In Section 5 we present another application of our folding procedure for
power words: we show that the finite index problem for f.g. subgroups of
GL(2,Z) can be decided in polynomial time, when elements of GL(2,Z) are
represented as matrices with binary encoded integers (Corollary 5). In the
finite index problem for a group G the goal is to compute the index (an element
of N ∪ {∞}) of a given f.g. subgroup of G. The finite index problem has been

4 Markus Lohrey

studied in [16] (for free groups), [27] (amalgamated products of finite groups),
[37] (virtually free groups), [18] (quasiconvex subgroups of automatic groups),
[9] (direct products of free-abelian and free groups) and [8] (solvable Baumslag-
Solitar groups BS(1, q)).

Related work. Related to the subgroup membership problem is the more gen-
eral rational subset membership problem. A rational subset in a group G is
given by a finite automaton, where transitions are labelled with elements of
G. Such an automaton accepts a subset of G in the natural way. In the rational
subset membership problem for G the input consists of a rational subset L ⊆ G
and an element g ∈ G and the question is, whether g ∈ L. This problem was
shown to be decidable for free groups by Benois [6] via an automaton satura-
tion procedure that moreover can be implemented in cubic time [7]. Stallings’s
folding can be viewed as a special case of Benois’s construction.

Rational subset membership problems (and special cases) for matrix groups
are a very active research field. Some recent results can be found in [5,8,11,
21,30]. Closest to our work is [5], where it is shown that the identity problem
for SL(2,Z) (does the identity matrix belong to a finitely generated subsemi-
group of SL(2,Z)?) and the rational subset membership problem for PSL(2,Z)
are NP-complete (when matrix entries are given in binary notation). For this,
the authors of [5] use the ideas of Gurevich and Schupp [14]. In [8,11], first
steps towards GL(2,Q) are taken: in [11] the authors prove decidability of
membership in so-called flat rational subsets of GL(2,Q), whereas [8] estab-
lishes the decidability of the full rational subset membership problem for the
Baumslag-Solitar groups BS(1, q) < GL(2,Q) with q ≥ 2.

2 Preliminaries

General notations. For an integer z ∈ Z we define its signum as usual: sign(0) =
0, and for z > 0, sign(z) = 1 and sign(−z) = −1. As usual, Σ∗ denotes the
set of all finite words over an alphabet Σ, ε denotes the empty word, and
Σ+ = Σ∗ \ {ε} is the set of all non-empty words. The length of a word w is
denoted by |w|. If w = uv ∈ Σ∗ then u is called a prefix of w and v is called
a suffix of w. The word u ∈ Σ∗ is a factor of the word w ∈ Σ∗ if w = sut for
some s, t ∈ Σ∗. At one point, it will be convenient to work with ω-words. An
ω-word over the alphabet Γ is an infinite sequence a1a2a3a4 · · · with ai ∈ Γ
for all i ≥ 1. With Γω we denote the set of all ω-word over the alphabet Γ .

Groups. We assume some basic background in group theory; see [25] or [32]
for more details. For a group G and a subset A ⊆ G, we denote with 〈A〉
the subgroup of G generated by A. It is the set of all products of elements
from A ∪ A−1. We say that A generates G (or A is a generating set for G) if
G = 〈A〉. If A = A−1 then A is a symmetric generating set for G. A group G
is called finitely generated if it has a finite generating set.

Subgroup Membership in GL(2,Z) 5

Fix a finite set Σ of symbols and let Σ−1 = {a−1 | a ∈ Σ} be a set of formal
inverses of the symbols in Σ with Σ ∩Σ−1 = ∅. Let Γ = Σ ∪Σ−1. We define
an involution on Γ ∗ by setting (a−1)−1 = a for a ∈ Σ and (a1a2 · · · ak)−1 =
a−1k · · · a

−1
2 a−11 for a1, . . . , ak ∈ Γ . A word w ∈ Γ ∗ is called freely reduced if it

neither contains a factor aa−1 nor a−1a for a ∈ Σ. With red(Γ ∗) we denote
the set of all freely reduced words. For every word w ∈ Γ ∗ one obtains a
unique freely reduced word that is obtained from w by deleting factors aa−1

and a−1a (a ∈ Σ) as long as possible. We denote this word with red(w); it can
be computed in linear time from w.

The free group generated byΣ, denoted by F (Σ), consists of the set red(Γ ∗)
together with the multiplication · defined by u ·v = red(uv) for u, v ∈ red(Γ ∗).
The group identity of F (Σ) is the empty word ε. A group G that has a free
subgroup of finite index in G is called virtually free. Usually, we identify a
(not necessarily freely reduced) word w ∈ Γ ∗ with the group element red(w) ∈
F (Σ).

For every group G there exists a free group F (Σ) and a surjective homo-
morphism π : F (Σ)→ G. We then have G = 〈π(Σ)〉. If G is finitely generated
then we can choose Σ to be finite. In this situation, we also identify Σ with the
generating set π(Σ). We also say that the element w ∈ F (Σ) represents the
group element π(w). For u, v ∈ F (Σ) we say that u = v in G if π(u) = π(v).
Sometimes, we identify w ∈ F (Σ) (or w ∈ (Σ∪Σ−1)∗) with the corresponding
group element π(w).

Fix a f.g. group G together with a surjective morphism π : F (Σ)→ G with
Σ finite. The subgroup membership problem for G is the following decision
problem:

input: words w0, w1, . . . , wn ∈ F (Σ).
question: Does π(w0) belong to the subgroup 〈π(w1), . . . , π(wn)〉 ≤ G?

Note that we formulated the subgroup membership problem for G with respect
to a fixed surjective morphism π : F (Σ) → G. In other words, for every
such surjective morphism π : F (Σ) → G, we have another variant of the
subgroup membership problem for G. On the other hand, it is easy to see
that the computational complexity of the subgroup membership problem for
G does not depend on the concrete choice of π : F (Σ) → G, at least if we
only care about complexity classes containing polynomial time (actually, a
smaller complexity class such as deterministic logspace would be also fine, but
this is not needed for our considerations). To see this take another surjective
morphism π′ : F (Θ) → G (with Θ finite as well). Then for every generator
a ∈ Σ there is an element h(a) ∈ F (Θ) such that π(a) = π′(h(a)) in the group
G. The mapping h uniquely extends to a morphism h : F (Σ)→ F (Θ) (this is
the crucial property of free groups). We then have π(w0) ∈ 〈π(w1), . . . , π(wn)〉
if and only if π(h(w0)) ∈ 〈π(h(w1)), . . . , π(h(wn))〉. Since the morphism h
can be easily computed in polynomial time (simply replace every symbol a
by h(a)), this shows that subgroup membership problem for G with respect
to π : F (Σ) → G is polynomial time reducible to the subgroup membership
problem for G with respect to π′ : F (Θ) → G. This justifies to not mention

6 Markus Lohrey

the surjective morphism π : F (Σ)→ G in the subgroup membership problem
for G.

In this paper we are interested in a variant of the subgroup membership
problem for G where the words w0, w1, . . . , wn are given in a more succinct
way. In the next section, we define this variant.

3 Stallings’s folding for power-compressed words

In this section we present our succinct version of Stallings’s folding that was
mentioned in the introduction. We start with the definition of power words and
power-compressed graphs. These graphs are basically finite automata where
the transitions are labelled with power words. We prefer to use the term
“graph” instead of “automaton”, since the former is more common in the
literature on Stallings’s folding.

A power word over an alphabet Σ is a sequence (p1, n1)(p2, n2) · · · (pk, nk)
of pairs where p1, . . . , pk ∈ Σ+ and n1, . . . , nk ∈ N \ {0}. Such a power word
represents the ordinary word pn1

1 pn2
2 · · · p

nk

k and we usually identify a power
word with the word it represents. The difference between the sequence of
pairs (p1, n1)(p2, n2) · · · (pk, nk) and the word pn1

1 pn2
2 · · · p

nk

k comes from to
the succinctness of descriptions. When a power word is part of the input
for a computational problem, we always assume that the exponents ni are
given in binary notation, whereas the words pi (also called the periods of
the power word) are written down explicitly by listing all symbols in the
words. Therefore, we define the input length ‖w‖ of the power word w =
(p1, n1)(p2, n2) · · · (pk, nk) as

k∑
i=1

(|pi|+ log ni).

On the other hand, the length of the word pn1
1 pn2

2 · · · p
nk

k is
∑k
i=1 ni|pi|. There-

fore, a power word should be seen as a succinct representation of the word it
represents.

In the case of a power word over an alphabet Γ = Σ ∪ Σ−1 we may also
allow negative exponents. Of course, p−n stands for (p−1)n.

Consider a f.g. group G together with a surjective morphism π : F (Σ)→ G
for Σ finite. The power-compressed subgroup membership problem for G is the
following problem:

input: Power words w0, w1, . . . , wn over the alphabet Γ = Σ ∪Σ−1.1

question: Does π(w0) belong to the subgroup 〈π(w1), . . . , π(wn)〉 ≤ G?

1 We do not assume the wi to be freely reduced but as explained earlier, we identify every
wi with red(wi) ∈ F (Σ). It is not hard to show that one can compute from the power word
wi in polynomial time a power word for red(wi), but we do not need this fact (it follows
implicitly from our folding algorithm).

Subgroup Membership in GL(2,Z) 7

As for the (ordinary) subgroup membership problem, the concrete choice of
the surjective morphism π : F (Σ) → G does not influence the complexity of
the power-compressed subgroup membership problem. The reason is the same
as for the subgroup membership problem. The morphism h : F (Σ) → F (Θ)
from the previous section can be also applied to a power words: the power
word w = (p1, n1)(p2, n2) · · · (pk, nk) is mapped to

h(w) = (h(p1), n1)(h(p2), n2) · · · (h(pk), nk).

This yields a polynomial time reduction from the power-compressed subgroup
membership problem for G with respect to π : F (Σ) → G to the power-
compressed subgroup membership problem for G with respect to π′ : F (Θ)→
G.

The goal of this section is to show that the power-compressed subgroup
membership problem can be decided in polynomial time for a f.g. free group.
In Section 4 we will extend this result to f.g. virtually free groups.

Our main tool for solving the power-compressed subgroup membership
problem for f.g. free groups is an extension of Stallings’s folding procedure for
power-compressed words. First we need some combinatorial results for words.
Fix a finite alphabet Σ with the inverse alphabet Σ−1 for the rest of Section 3
and let Γ = Σ ∪Σ−1.

3.1 Combinatorics on words

We fix an arbitrary linear order < on Γ . In order to simplify notation later, it
is convenient to require that a < a−1 for every a ∈ Σ. With � we denote the
lexicographic order with respect to <. Let Ω ⊆ red(Γ ∗) denote the set of all
freely reduced words w such that

– w is non-empty,
– w is cyclically reduced (i.e, w cannot be written as aua−1 for a ∈ Γ),
– w is primitive (i.e, w cannot be written as un for some n ≥ 2),
– w is lexicographically minimal among all cyclic permutations of w and w−1

(i.e., w � uv for all u, v ∈ Γ ∗ with vu = w or vu = w−1).

Note that Σ ⊆ Ω and Σ−1 ∩ Ω = ∅ (since a < a−1 for a ∈ Σ). For every
w ∈ Ω and n ∈ Z we have wn ∈ red(Γ ∗) (since w is freely reduced and
cyclically reduced).

The set Ω was introduced in [23] in order to solve the power word problem
(that was mentioned in the introduction) for a free group in logspace. The
crucial fact about words in Ω is that if two powers px and qy (p, q ∈ Ω,
x, y ∈ Z) have a long enough common factor then p = q; see Lemma 1 below.

Example 1 Assume that a < b < a−1 < b−1. Then the word w = abab−1

belongs to Ω. It is clearly freely reduced, cyclically reduced, and primitive.

8 Markus Lohrey

Moreover, the cyclic permutations of w and w−1 = ba−1b−1a−1 are:

w = a b a b−1

b a b−1a

a b−1a b

b−1a b a

w−1 = b a−1b−1a−1

a−1b−1a−1b

b−1a−1b a−1

a−1b a−1b−1

Among those words, w is indeed the lexicographically minimal one.

The following lemma can be found in [23, Lemma 11].

Lemma 1 Let p, q ∈ Ω and x, y ∈ Z. If px and qy have a common factor of
length at least |p|+ |q| − 1 then p = q.

We also need the following statement:

Lemma 2 If p ∈ Ω, u, v ∈ Γ ∗, and upv = pp then u = ε or v = ε.

Proof Assume that upv = pp such that u 6= ε and v 6= ε. We obtain a factor-
ization p = qr such that q 6= ε, r 6= ε and p = rq = qr. Hence, q, r ∈ s∗ for
some string s ∈ Γ+ (see e.g. [24, Proposition 1.3.2]), which implies that p is
not primitive, a contradiction. ut

3.2 Power-compressed graphs

A power-compressed graph is a tuple G = (V,E, ι, τ, λ, v0), where V is the set
of vertices, E is the set of directed edges with V ∩ E = ∅, ι : E → V maps
an edge to its source vertex, τ : E → V maps an edge to its target vertex,
λ : E → Γ+ × (Z \ {0}) assigns to every edge its label, and v0 ∈ V is the
so-called base point. Moreover, for every edge e such that ι(e) = u, τ(e) = v,
and λ(e) = (p, z) there is an inverse edge e−1 6= e such that ι(e−1) = v,
τ(e−1) = u, λ(e−1) = (p,−z), and (e−1)−1 = e. In this paper, V and E will be
always finite. Note that we may have edges e, e′ ∈ E with e 6= e′, ι(e) = ι(e′),
τ(e) = τ(e′), and λ(e) = λ(e′).

When we describe a power-compressed graph we often specify for a pair of
edges e, e−1 only one of them and implicitly assume the existence of its inverse
edge. An edge e is called short if λ(e) ∈ Γ ×{−1, 1}, otherwise it is called long.
If G only contains short edges, then G is called an uncompressed graph, or just
graph.2 We define the input length of G as |G| =

∑
e∈E ‖λ(e)‖ (here, we view

λ(e) = (p, z) as a power word consisting of a single power).

2 Sometimes it is called a dual graph since every every edge has an inverse edge. This
definition of graphs is quite common in group theory and topology; see e.g. [36].

Subgroup Membership in GL(2,Z) 9

A path in G is a sequence

ρ = [v1, e1, v2, e2, . . . , vk, ek, vk+1],

where k ≥ 0, e1, . . . , ek ∈ E, ι(ei) = vi and τ(ei) = vi+1 for 1 ≤ i ≤ k. If vi 6=
vj for all i, j with 1 ≤ i < j ≤ k+ 1 then ρ is called a simple path. If v1 = vk+1

and k ≥ 1 then ρ is a cycle. If vi 6= vj for all i, j with 1 ≤ i < j ≤ k and v1 =
vk+1 then ρ is a simple cycle. Let ι(ρ) = v1 and τ(ρ) = vk+1. If λ(ei) = (pi, zi)
then we define λ(ρ) as the power word (p1, z1)(p2, z2) · · · (pk, zk). The path ρ
is oriented if sign(zi) = sign(zj) for all i, j. The path ρ is without backtracking
if ei+1 6= e−1i for all 1 ≤ i ≤ k−1. The power-compressed graph G is connected
if for all u, v ∈ V there is a path ρ with ι(ρ) = u and τ(ρ) = v. The power-
compressed graph G is a tree if it is connected and it does not contain a cycle
without backtracking.

In the following, we identify a pair (p, z) ∈ Γ+×(Z\{0}) with the power pz.
In particular, in an uncompressed graph every edge is labelled with a symbol
from Γ . With a power-compressed graph G we can associate an uncompressed
graph decompress(G) that is obtained by replacing in G every pz-labelled edge e
by a path ρ of short edges from ι(e) to τ(e) and such that λ(ρ) = pz. Moreover,
if ι(e) 6= τ(e) then ρ is a simple path and if ι(e) = τ(e) then ρ is a simple
cycle.

A power-compressed graph G = (V,E, ι, τ, λ, v0) can be viewed as a finite
automaton over the alphabet Γ , where transition labels are succinct words of
the form pz with z given in binary notation: V is the set of states, an edge
e corresponds to a transition from ι(e) to τ(e) with label λ(e) and v0 is the
unique initial and final state. We denote with L(G) the set of all words w ∈ Γ ∗
accepted by the automaton G. With F (G) we denote the image of L(G) in the
free group F (Σ). Since every edge of G has an inverse edge, it is easy to see
that F (G) is a subgroup of F (Σ).

3.3 Folding uncompressed graphs

Before we continue with power-compressed graphs let us first explain Stallings’s
folding procedure [39] for uncompressed graphs, which is one of the most pow-
erful techniques for analysing subgroups of free groups; see e.g. [16]. Let G and
H be two uncompressed graphs as defined in Section 3.2. We say that G can
be folded into H if there exist two edges e 6= e′ in G such that ι(e) = ι(e′) and
λ(e) = λ(e′) and H is obtained from G by merging the two vertices τ(e) and
τ(e′) (note that we may have already τ(e) = τ(e′) in G) into a single vertex
and removing the edges e and e−1 (this is an arbitrary choice; we could also

keep e and e−1 and remove e′ and e′
−1

) from the graph. One can easily show
that F (G) = F (H) holds in this situation. Every vertex of G is mapped to a
vertex of H in the natural way (τ(e) and τ(e′) are mapped to the same vertex
of H). If a graph G cannot be folded further then we say that G is folded. In
this case, G is a deterministic automaton and w ∈ L(G) implies red(w) ∈ L(G).

10 Markus Lohrey

Consider now a finite set of words A = {w1, . . . , wn} ⊆ Γ+ and let gi =
red(wi) ∈ F (Σ) be the free group element represented by wi. We construct a
so-called bouquet graph B(A) such that

F (B(A)) = 〈g1, . . . , gn〉 ≤ F (Σ)

as follows:

– First we define for a non-empty word w = a1a2 · · · ak (ai ∈ Γ) the cycle
graph

C(w) = ({v0, . . . , vk−1}, {e±1i : 1 ≤ i ≤ k}, ι, τ, v0),

where ι(ei) = vi−1, λ(ei) = ai, and τ(ei) = vi mod k for 1 ≤ i ≤ k.
– We then define the bouquet graph B(A) by taking the disjoint union of

the cycle graphs C(w1), . . . , C(wn) and then merging the base points of the
C(wi).

Let S(A) be the graph obtained by folding B(A) as long as possible. The
final graph of this procedure is in fact unique up to graph isomorphism. The
graph S(A) is sometimes called the Stallings’s graph for A. Note that as an
automaton, S(A) is deterministic. The above discussion leads to the following
crucial fact (see also [16] for a more detailed discussion):

Lemma 3 Let A and g1, . . . , gn be as above and let g ∈ red(Γ ∗) be a freely
reduced word and hence an element of F (Σ). Then g is accepted by S(A) if
and only if g ∈ 〈g1, . . . , gn〉 ≤ F (Σ).

3.4 Folding power-compressed graphs

Fix a power-compressed graph G = (V,E, ι, τ, λ, v0) for the rest of this section
and let P be the set of all words p such that λ(e) = pz for some e ∈ E and
z ∈ Z \ {0}. We will refer to the following numbers throughout this section:

– α := max{|p| : p ∈ P} ≥ 1,
– β := 2α− 1 ≥ 1,
– γ := 2(α+ β) ≥ 4.

We say that G is normalized if

– P ⊆ Ω (where Ω is defined in Section 3.1), and
– for every e ∈ E, if e is long and λ(e) = pz then |z| ≥ γ.

Let E` be the set of long edges of G.

Lemma 4 From a given power-compressed graph G we can compute in poly-
nomial time a normalized power-compressed graph G′ such that F (G) = F (G′).

Subgroup Membership in GL(2,Z) 11

Proof We first modify G such that for every edge label λ(e) = pz we have p ∈
Ω. This can be done in polynomial time by [23, Lemma 12] which states that
a given power word w over the alphabet Γ can be transformed in polynomial
time (in fact, even in logspace) into a power word w′ over the alphabet Γ such
that (i) all periods of w′ belong to Ω and (ii) w = w′ in F (Σ). We finally
replace every long edge e with λ(e) = pz and |z| < γ by a simple path (or
simple cycle) ρ of short edges such that λ(ρ) = pz. ut

We say that G is weakly folded if none of the following two conditions A and
B hold:

Condition A: There exist two (long or short) edges e1 6= e2 such that ι(e1) =
ι(e2), λ(e1) = pz1 and λ(e2) = pz2 for some p ∈ P ∪ P−1 and z1, z2 ∈ N \ {0}.

Condition B: There exist a long edge e with λ(e) = pz and a path ρ consisting
of short edges such that ι(e) = ι(ρ), λ(ρ) = p, p ∈ P ∪ P−1, and z ∈ N \ {0}.

We say that G is strongly folded if the graph decompress(G) is folded in the
sense of Section 3.3. Clearly, if G is strongly folded then G is also weakly folded.

Lemma 5 A given normalized power-compressed graph G = (V,E, ι, τ, λ, v0)
can be folded in polynomial time into a normalized and weakly folded power-
compressed graph G′. We have F (G) = F (G′).

Proof In order to estimate the complexity of our algorithm, we use two termi-
nation parameters: the number |E`| of long edges and the total number of edges
|E|. The algorithm performs a sequence of folding steps that are explained be-
low. In each step, the value |E`| will not increase. If |E`| does not change then
|E| will not increase, but if |E`| decreases then |E| may increase by at most
γ− 1. The situation becomes difficult because it may happen that in a folding
step neither |E`| nor |E| changes. We distinguish the following three types
of folding steps, where G = (V,E, ι, τ, λ, v0) is the power-compressed graph
before the folding step and G′ = (V ′, E′, ι′, τ ′, λ′, v′0) is the power-compressed
graph after the folding step.

decreasing (p-edge) fold: If condition A holds with z1 = z2 then we can merge
τ(e1) and τ(e2) into a single vertex (let us call it v) and replace the two
edges e1 and e2 by a single edge from ι(e1) = ι(e2) to v with label pz1 .
More formally: If we define≡V to be the smallest (with respect to inclusion)
equivalence relation on V with τ(e1) ≡V τ(e2) and ≡E to be the smallest
equivalence relation on E with e1 ≡E e2 then we can identify V ′ (respec-
tively, E′) with the set of equivalence classes {[v]≡V

: v ∈ V } (respectively,
{[e]≡E

: e ∈ E}). Moreover ι′([e]≡E
) = [ι(e)]≡V

, τ ′([e]≡E
) = [τ(e)]≡V

,
λ′([e]≡E

) = λ(e) (all these mappings are well-defined). The surjective map-
ping µ with µ(v) = [v]≡V

is called the merging function associated with
the merging step. Note that some of (or all) the vertices ι(e1), τ(e1), τ(e2)
can be equal.

nondecreasing (p-edge) fold: If condition A holds with (w.l.o.g.) z1 < z2 then
we can fold the two edges e1 and e2 by first setting V ′ = V , E′ = E,

12 Markus Lohrey

τ ′ = τ , ι′(e2) = τ(e1) and λ′(e2) = pz2−z1 . On all other arguments, ι′

(respectively, λ′) coincides with ι (respectively, λ). The resulting graph G′
may be not normalized, namely if e2 is long (in G′) and z2 − z1 < γ. In
this case we replace e2 by a simple path (or cycle, in case ι′(e2) = τ ′(e2))
of fresh short edges from ι′(e2) to τ ′(e2) spelling the word pz2−z1 . Note
that we have V ⊆ V ′. We define the merging function µ : V → V ′ as the
canonical inclusion mapping.

nondecreasing (p-path) fold: If the situation in condition B occurs, then we
first set V ′ = V , E′ = E, τ ′ = τ , ι′(e) = τ(ρ) and λ′(e) = pz−1. On all
other arguments, ι′ (respectively, λ′) coincides with ι (respectively, λ). If
z − 1 < γ then we replace in G′ the edge e by a simple path (or cycle)
of short fresh edges spelling the word pz−1. Again we define the merging
function µ : V → V ′ as the canonical inclusion mapping.

Note that each of the above folding steps simulates several folding steps in the
corresponding uncompressed graph. Figure 1 shows some folding steps:

– (a) to (b): nondecreasing p-path fold (where ρ is the path that is inverse
to the red path labelled with ab)

– (b) to (c): decreasing p-edge fold
– (c) to (d): nondecreasing q-edge fold (the q6-labelled edge coils once around

the q5-labelled loop and the remaining q-labelled edge is replaced by the
two short edges labelled with a and c).

– (d) to (e): nondecreasing q-path fold
– (e) to (f): decreasing a-edge fold

Assume we make a sequence of k folding steps, where G is the initial graph,
G′ is the final graph and µi (1 ≤ i ≤ k) is the merging function for the i-th
folding step. Then we can define the composition µ = µ1 ◦ µ2 ◦ · · · ◦ µk (where
µ1 is applied first); it maps every vertex v of G to a vertex µ(v) of G′. We then
say that vertex v is mapped to vertex µ(v) during the folding. For two vertices
u, v of G with µ(u) = µ(v) we say that u and v are merged during the folding.

Note that every folding step preserves the property of being normalized and
that |E`| never increases. Clearly, a decreasing fold decreases |E| (and possibly
|E`| in case e1 and e2 are long edges). Therefore, we can always perform
decreasing folds if possible. A nondecreasing fold can reduce the number of long
edges in which case the number of short edges increases by at most α · (γ− 1).
If a nondecreasing fold does not reduce the number of long edges then both
|E| and |E`| stay the same. Hence, the total number of decreasing folds is
bounded by |E|+α · (γ−1) · |E`|. Bounding the number of nondecreasing folds
is not so easy. If we just iteratively fold then we may obtain an exponential
running time. In order to ensure termination in polynomial time, we arrange
the folding steps as follows: Assume that P = {p1, p2, . . . , pn}. We say that the
current graph is folded with respect to pj if neither condition A nor condition
B holds with p = pj . For the following algorithm it is useful to consider the
graph Gp where the edge set of Gp contains all long edges from E that are
labelled with a power of p. In addition, Gp contains a p-labelled edge from u to
v if G contains a path ρ of short edges from u to v and such that λ(ρ) = p (note

Subgroup Membership in GL(2,Z) 13

p5

p4

b

a

q5

q6

p4

p4

a
b

q5

q6

p4

a
b

q5
q6

p4

a
b

q5

a

c

p4
a

b

q4

a

c

p4 b

q4

a

c

(a) (b) (c)

(d) (e) (f)

Fig. 1 Some folding steps, where p = ab ∈ Ω and q = ac ∈ Ω. We assume that γ = 4 and
that all inverse edges are implicitly present. The edges involved in the folding steps are red;
dotted arrows only indicate the direction of foldings and are not part of the graph. The final
graph is weakly folded; in fact it is also strongly folded.

Algorithm 1: (the main folding algorithm)

Data: normalized power-compressed graph G
1 i := 1
2 while true do
3 fold G with respect to pi /* this is explained in the main text */

4 if G is weakly folded then
5 return G
6 else
7 i := smallest j such that G is not folded with respect to pj
8 end

9 end

that Gp is in general not normalized). Such an edge should be only viewed as
an abbreviation of the corresponding path ρ (which is unique if no decreasing
folds are possible in G).

The main structure of the folding algorithm is shown in Algorithm 1. In
the following, we always perform decreasing folds when possible without men-
tioning this explicitly.

We now explain how to fold the current graph G with respect to some p =
pi (line 3 of Algorithm 1). We consider each connected component of the
graph Gp separately. For the following consideration, we can assume that Gp is
connected. We claim that Gp can be folded either into a simple oriented path

14 Markus Lohrey

or a simple oriented cycle. Moreover, if Gp is a tree then it is folded into a
simple oriented path. The case that Gp consists of a single edge is clear. If Gp
has more than one edge then we consider the following cases.

Case 1. Gp is a tree: Choose an edge e with ι(e) = u and τ(e) = v where
v is a leaf. Let G′ be the connected graph obtained from Gp by removing
e, e−1 and v. By induction, G′ can be folded into a simple oriented path ρ =
[v1, e1, v2, e2, . . . , vk, ek, vk+1], where w.l.o.g. λ(ei) = pai with ai > 0 for all i.
Let vi be the vertex to which u = ι(e) is mapped during the folding. Assume
that λ(e) = pb with b > 0 (the case b < 0 is analogous). If there exists j ≥ i
such that b = ai+ · · ·+aj then nothing has to be done (the vertex v is mapped
to vj+1 during the folding and the edges e and e−1 are removed). If there is
no such j then we have to add a vertex to the path: if there is j ≥ i such
that ai + · · · + aj−1 < b < ai + · · · + aj then we replace the edge ej by an
edge from vj to a fresh vertex v′ and an edge from v′ to vj+1. The label of the
first edge is pb−(ai+···+aj−1) and the label of the second edge is pai+···+aj−b. If
ai + · · · + ak < b then we add an edge from vk+1 to the new vertex v′ with
label pb−(ai+···+ak). In both cases the vertex v = τ(e) is mapped to the new
vertex v′ during the folding. The resulting graph is an oriented path.

Case 2. Gp is not a tree. Then we choose an edge e such that G′ := Gp \ e (the
graph obtained from Gp by removing the edges e and e−1) is still connected.
By induction, we obtain the following two cases.

Case 2.1. G′ is folded into a simple oriented path

ρ = [v1, e1, v2, e2, . . . , vk, ek, vk+1],

where w.l.o.g. λ(ei) = pai with ai > 0 for all i. Let vi (respectively, vl) be the
vertex to which ι(e) (respectively, τ(e)) is mapped during the folding and let
λ(e) = pb with b > 0. We proceed as in case 1. In case there exists j ≥ i with
b = ai+ · · ·+aj then we additionally merge vj+1 and vl. We may have already
vj+1 = vl in which case we end up with a simple oriented path. Otherwise we
obtain a simple oriented path with a simple oriented cycle attached to it. If
there is no j ≥ i with b = ai + · · · + aj then we add a new vertex v′ to the
path as in case 1 and merge v′ with vl. This yields again a simple oriented
path with a simple oriented cycle attached to it. We then fold the two ends of
the simple path onto the cycle (by coiling them around the cycle) and obtain
a simple oriented cycle.

Case 2.2. G′ is folded into a simple oriented cycle C. We proceed analogously
to case 2.1. We either obtain a single simple oriented cycle or two simple
oriented cycles ρ1 and ρ2 that are glued together in a single vertex v (to see
this, one can first remove an arbitrary edge from the cycle C, which yields
a simple oriented path, then carries out the construction from case 2.1 and
finally adds the removed edge again). Such a pair of cycles can be replaced
by a single cycle as follows: Let λ(ρ1) = pz1 and λ(ρ2) = pz2 with z1, z2 > 0.
Then one can replace the two cycles by a single cycle ρ with λ(ρ) = pz, where
z = gcd(z1, z2). Folding the cycles into a single cycle actually corresponds to

Subgroup Membership in GL(2,Z) 15

Euclid’s algorithm.3 Of course, we also have to map the vertices of ρ1 and ρ2
into the cycle ρ. For this we start with a pz-labelled loop at vertex v. If v′ 6= v
is a vertex belonging to say ρ1 and the simple path from v to v′ on the cycle
ρ1 is labelled with py, y > 0, then we compute r := y mod z and subdivide
the loop into an edge from v to v′ with label pr and an edge from v′ back to v
with label pz−r. We continue in this way with the other vertices on ρ1 and ρ2.

Let the power-compressed graph Hp be the outcome of the above procedure.
It is a disjoint union of simple oriented paths and simple oriented cycles and
hence folded with respect to p. The running time of the computations in cases
1 and 2 is polynomial in ‖Gp‖ and due to the recursion this running time
has to be charged for every edge of Gp. Recall that edges labelled with p in
Hp actually correspond to paths of short edges in the original graph G. This
concludes the description of line 3 in Algorithm 1.

It remains to argue that we make only polynomially many iterations of
the while-loop in Algorithm 1. For this assume that the current graph (call
it G′) is folded with respect to pi and that we fold the graph with respect to
some pj with j > i. Let us denote the sequence of folding steps with respect
to pj with Fj and let G′′ be the graph after the execution of Fj . Moreover,
assume that G′′ is no longer folded with respect to pi. We argue that this
implies that during the execution of Fj we made progress in the sense that
|E| or |E`| decreases. Since G′ is folded with respect to pi but G′′ is not, we
must have G′pi 6= G

′′
pi . But this implies that |E| or |E`| must decrease during

Fj . Otherwise we only make non-decreasing pj-edge and pj-path folds that do
not eliminate long edges. Such folds only change the source and target vertices
of pzj -labelled long edges, which does not modify the graph G′pi .

Since we have already bounded the number of decreasing folds by |E| +
α · (γ − 1) · |E`| and the number of long edges never increases, the index i in
Algorithm 1 can only decrease a polynomial number of times (more precisely:
|E|+α ·γ · |E`| times). This shows that Algorithm 1 works in polynomial time
and concludes the proof of Lemma 5. ut

It remains to convert a weakly folded power-compressed graph in polynomial
time into a strongly folded power-compressed graph. The general idea is the
following. Let G be a normalized and weakly folded power-compressed graph.
Recall that decompress(G) is obtained from G by replacing every long edge e
with label pz by a simple path (or simple cycle) ρ with ι(e) = ι(ρ), τ(e) = τ(ρ)
and λ(ρ) = pz. We show that any sequence of folding steps in decompress(G)
can only affect a short initial and final part of this path ρ. Hence, it suffices
to partially decompress G and then fold short edges as long as possible.

Let us be a bit more precise: We will show that in the above situation,
vertices in decompress(G) that neither belong to the prefix of ρ labelled with
pγ/2 nor to the suffix of ρ labelled with pγ/2 – later such vertices will be called

3 It is not surprising that at some point we use Euclid’s algorithm. For the special case
of the free group of rank one, which is isomorphic to Z, the power-compressed subgroup
membership problem corresponds to solving a single linear equation with binary encoded
integers. The solvability of such an equation can be checked using Euclid’s algorithm.

16 Markus Lohrey

protected – cannot be merged with other vertices during a sequence of folding
steps starting in decompress(G) (recall the definition of β and γ = 2(α+β) from
the beginning of Section 3.4). For this we need the following simple lemma:

Lemma 6 Let H be an uncompressed graph and assume that H is folded into
H′ by a sequence of folding steps. If thereby two vertices u and v of H are
merged to a single vertex of H′, then there must exist a path ρ without back-
tracking in H from u to v such that λ(ρ) = ε in F (Σ).4

Proof It suffices to find a path ρ from u to v such that λ(ρ) = ε in F (Σ).
By removing subpaths [u′, e, v′, e−1, u′] from ρ we obtain a path ρ′ without
backtracking and such that λ(ρ′) = ε still holds in F (Σ). The existence of
such a path can be shown by a straightforward induction over the number of
folding steps from H to H′. Note that if two different vertices v1 and v2 of an
uncompressed graph are merged in a single folding step, then there exist two
different edges e1 6= e2 such that ι(e1) = ι(e2), τ(e1) = v1, τ(e2) = v2, and
λ(e1) = λ(e2) = a for some a ∈ Γ . Hence, the path ρ′ = [v1, e

−1
1 , ι(e1), e2, v2]

satisfies λ(ρ′) = a−1a = ε in F (Σ). ut

Due to Lemma 6 it will suffice to show that a non-empty path without back-
tracking in decompress(G) that starts in a protected vertex is labelled with a
word w such that w 6= ε in F (Σ). Since G is normalized and weakly folded, it
will turn out that this word w must be a prefix of an ω-word from the following
set L ⊆ Γω: The set L consists of all ω-words of the form

spz11 w1p
z2
2 w2p

z3
3 w3p

z4
4 w4 · · · (1)

such that the following properties hold for all i ≥ 1:

– pi ∈ Ω ∪Ω−1,
– s is a suffix of p1,
– wi ∈ red(Γ ∗) \ (p−1i Γ ∗ ∪ Γ ∗p−1i+1),
– z1 ≥ α+ β = γ/2 and zi ≥ γ if i ≥ 2,
– if wi = ε, then pi 6= p−1i+1.

By our previous discussion, the following lemma is crucial:

Lemma 7 Every non-empty prefix w of an ω-word from L satisfies w 6= ε in
F (Σ), i.e., red(w) 6= ε.

In order to prove Lemma 7, the following technical lemma turns out be use-
ful. It ensures that in a factor pα+βi wip

α+β
i+1 in (1) not too much cancellation

happens. More precisely, it allows to show that red(pα+βi wip
α+β
i+1) starts with

pi and ends with pi+1.

Lemma 8 Let p ∈ Ω ∪ Ω−1 and assume that v ∈ Γ ∗ satisfies one of the
following two conditions:

4 Recall that ε is the identity element of F (Σ).

Subgroup Membership in GL(2,Z) 17

(i) v ∈ red(Γ ∗) \ p−1Γ ∗
(ii) v = wq′, where q′ 6= ε is a prefix of qα+β for some q ∈ Ω ∪ Ω−1,

w ∈ red(Γ ∗) \ (p−1Γ ∗ ∪ Γ ∗q−1), and if w = ε then p 6= q−1.

Then p is a prefix of red(pα+βv). In addition, if case (ii) holds and q′ = qα+β

then q is a suffix of red(pα+βv).

Proof If v ∈ red(Γ ∗) \ p−1Γ ∗ then p is a prefix of red(pα+βv) (note that
α+ β ≥ 2).

Now assume that (ii) holds, i.e., v = wq′ where q′ 6= ε is a prefix of qα+β for
some q ∈ Ω∪Ω−1, w ∈ red(Γ ∗)\(p−1Γ ∗∪Γ ∗q−1), and if w = ε, then p 6= q−1.
It suffices to show that p is a prefix of red(pα+βwq′). Then by symmetry, q is
a suffix of red(pα+βwqα+β).

Since pα+β , w and q′ are freely reduced, cancellations can only occur at the
two borders between pα+β , w and q′. Let us start to reduce the word pα+βwq′.
Since p−1 is not a prefix of w and q−1 is not a suffix of w, the reductions at
the two borders can only consume |p| − 1 ≤ α− 1 symbols from the prefix of
w and |q| − 1 ≤ α − 1 symbols from the suffix of w. If w is not completely
cancelled during the reduction, we obtain a freely reduced word of the form
pα+β−1rsq′′, where r is a non-empty prefix of p, s is a non-empty factor of
w, and q′′ is a possibly empty factor of qα+β . Thus, p is indeed a prefix of
red(pα+βwq′) = pα+β−1rsq′′.

Let us now assume that w is completely cancelled during the reduction.
Since w is freely reduced, we obtain factorizations w = u−1t−1, p = ru, and q =
ts. Moreover, q′ = tq′′ and pα+βwq′ is reduced to pα+β−1rq′′. Now the word
pα+β−1rq′′ can be further reduced at the border between the freely reduced
words pα+β−1r and q′′. If |q′′| < α then the reduction can continue for at most
α − 1 steps. Then, the free reduction of pα+βwq′ consumes from pα+β only a
suffix of length at most 2(α− 1) < α+ β. Hence, the first copy of p survives.

We can therefore assume that |q′′| ≥ α. This allows us to write q′′ = sqks′

(recall that q = ts and that the prefix t of q′ was cancelled), where k ≥ 0 and
s′ is a prefix of q. We distinguish several cases:

– p 6= q−1: then by Lemma 1 the reduction of pα+β−1rsqks′ can proceed for
at most |p|+ |q| − 2 < β steps.

– p = q−1 and |r| 6= |s|: then by Lemma 2 the reduction of pα+β−1rsqks′ can
proceed for at most |p| − 1 < α ≤ β steps.

– p = q−1 and |r| = |s|: we obtain p = ru and p−1 = ts, i.e., ru = s−1t−1.
Since |r| = |s| = |s−1| we have r = s−1 and u = t−1. Therefore w =
u−1t−1 = u−1u. Since w ∈ red(Γ ∗), we must have w = ε. Together with
p = q−1 this yields a contradiction to the assumptions of the lemma.

In total, during the free reduction of pα+βwq′ only a suffix of pα+β of length
< α+β is cancelled. Hence, the first copy of p is not cancelled. This concludes
the proof of the lemma. ut

We can now prove Lemma 7.

18 Markus Lohrey

Proof (Proof of Lemma 7) Let w be a non-empty prefix of an ω-word from L.
We can write w as

w = s pn1
1

k∏
i=1

(pα+βi wip
α+β
i+1 p

ni+1

i+1) t

such that k ≥ 0 and for all i in the proper range we have

– ni ≥ 0,
– pi ∈ Ω ∪Ω−1,
– s is a suffix of p1,
– wi ∈ red(Γ ∗) \ (p−1i Γ ∗ ∪ Γ ∗p−1i+1),

– if wi = ε, then pi 6= p−1i+1.

Moreover, for the word t one of the following cases must hold:

– t is a prefix of pk+1,
– t = pα+βk+1 wk+1 with wk+1 ∈ red(Γ ∗) \ p−1k+1Γ

∗,

– t = pα+βk+1 wk+1v with v a non-empty proper prefix of a word qα+β for some

q ∈ Ω ∪ Ω−1, wk+1 ∈ red(Γ ∗) \ (p−1k+1Γ
∗ ∪ Γ ∗q−1), and if wk+1 = ε then

pk+1 6= q−1.

By Lemma 8 every word red(pα+βi wip
α+β
i+1) starts with pi and ends with pi+1.

Moreover, red(t) is a prefix of pk+1 or, by Lemma 8, starts with pk+1. This
implies that

red(w) = s pn1
1

k∏
i=1

(red(pα+βi wip
α+β
i+1) p

ni+1

i+1) red(t) 6= ε.

This concludes the proof of the lemma. ut

Consider now a normalized and weakly folded power-compressed graph G.
Recall that decompress(G) is obtained from G by replacing every long edge e
with label pz by a simple path (or simple cycle) ρ with ι(e) = ι(ρ), τ(e) = τ(ρ)
and λ(e) = λ(ρ). The vertices of decompress(G) that are not already in G (i.e.,
the inner vertices of the paths that replace the long edges) are also called the
fresh vertices of decompress(G). We say that a fresh vertex v of decompress(G)
is protected if the following hold: let e be the long edge of G such that v is
an inner vertex of the path ρ that replaces e. Let λ(e) = λ(ρ) = pz, where
p ∈ Ω ∪ Ω−1 and z ≥ γ. Then the path ρ can be split into two subpaths ρ1
and ρ2 such that ρ1 is a simple path from ι(e) to v and ρ2 is a simple path
from v to τ(e). Then v is protected if pα+β = pγ/2 is a prefix of λ(ρ1) and a
suffix of λ(ρ2). Intuitively, v is not too close to the two end points ι(e) and
τ(e).

Lemma 9 Let G be a normalized and weakly folded power-compressed graph
and let v be a fresh and protected vertex of decompress(G). Let ρ be a non-empty
path without backtracking in decompress(G) that starts in v, i.e., ι(ρ) = v. Then
λ(ρ) 6= ε in F (Σ).

Subgroup Membership in GL(2,Z) 19

Proof Let e be the edge in G such that decompressing e produces v and let ρ′ be
the simple path/cycle that replaces e. Let λ(e) = λ(ρ′) = pz with p ∈ Ω∪Ω−1
and z ≥ γ. If ρ is a simple subpath of ρ′ then λ(ρ) is a non-empty factor of pz

and therefore freely reduced.
Now assume that ρ is not a simple subpath of ρ′. By Lemma 7 it suffices

to show that λ(ρ) is a non-empty prefix of an ω-word from L. The path ρ has
to leave the path ρ′ via ι(e) or τ(e). In both cases we can factorize λ(ρ) as
λ(ρ) = spz11 w, where p1 ∈ {p, p−1}, z1 ∈ N, and spz11 is a suffix of pz or a suffix
of p−z. Moreover, since the vertex v is protected we must have z1 ≥ γ/2.

The remaining word w can be factorized as

w = w1p
z2
2 w2p

z3
3 · · ·wk−1p

zk
k wkt

where every pzii is the label of a long edge of G (hence, pi ∈ Ω ∪ Ω−1 and
zi ≥ γ) and every wi is the label of a path consisting of short edges in G. For
the word t, there are two cases:

– t = ε or
– t 6= ε arises from long edge e′ of G, in which case t is a non-empty prefix

of λ(e′). Hence, t is a non-empty prefix of a word p
zk+1

k+1 for some pk+1 ∈
Ω ∪Ω−1.

Since G is weakly folded, the following conditions hold:

– wi ∈ red(Γ ∗) (since ρ is without backtracking and the situation from con-
dition A on page 11 does not occur in G),

– wi /∈ p−1i Γ ∗ and wi /∈ Γ ∗p−1i+1 if pi+1 exists (since the situation from con-
dition B on page 11 does not occur in G),

– if wi = ε and pi+1 exists, then pi 6= p−1i+1 (since ρ is without backtracking
and the situation from condition A on page 11 does not occur in G).

This shows that λ(ρ) is a prefix of an ω-word from L. ut

Lemma 10 A given normalized and weakly folded power-compressed graph G
can be folded in polynomial time into a strongly folded power-compressed graph
G′. We have F (G) = F (G′).

Proof We first construct a power-compressed graph H by partially decom-
pressing G. Consider a long edge e in G. Let ι(e) = u, τ(e) = v and λ(e) = pz

with p ∈ Ω ∪Ω−1 and z ≥ γ. We then replace e by

– a simple path ρ1 of new short edges going from u to a new vertex u′ and
such that λ(ρ1) = pγ/2 = pα+β ,

– a new edge from u′ to another new vertex v′ with label pz−γ (if z = γ then
u′ = v′ and the new edge is not needed), and

– a simple path ρ2 of new short edges going from v′ to v and such that
λ(ρ2) = pγ/2 = pα+β .

The power-compressed graph H is not necessarily normalized (this is not
needed).

20 Markus Lohrey

We next fold short edges in H as long as possible. Thereby, the number
of edges decreases in each step (folding two short edges is a special case of
a decreasing fold). Hence, the process stops after polynomially many folding
steps. Let H′ be the resulting power-compressed graph. We show that H′ is
strongly folded, which proves the lemma.

Assume the contrary. Then there exist two edges e1 6= e2 in decompress(H′)
such that ι(e1) = ι(e2) and λ(e1) = λ(e2). If e1 and e2 are already edges of H′,
then e1 and e2 are two short edges of H′ that can be folded, which is a contra-
diction. Therefore, w.l.o.g. e1 and τ(e1) must arise from decompressing a long
edge of H′, i.e., from replacing a long edge in H′ by a simple path of new short
edges. Hence τ(e1) is a fresh vertex of decompress(H′) and τ(e1) 6= τ(e2). We
clearly can also fold decompress(H) (which is the same as decompress(G)) into
decompress(H′). There are vertices u1 6= u2 in decompress(H) such that ui is
mapped to τ(ei) while folding decompress(H) into decompress(H′). Moreover,
also u1 must be a fresh vertex of decompress(H). Due to the partial decom-
pression of G into H, u1 is a fresh and protected vertex of decompress(G). By
Lemma 6 there must exist a non-empty path ρ in decompress(G) from u1 to
u2 without backtracking such that λ(ρ) = ε in F (Σ). But this contradicts
Lemma 9. ut

Lemmas 4, 5 and 10 finally yield the main technical result of Section 3.4:

Corollary 1 A given power-compressed graph G can be folded in polynomial
time into a strongly folded power-compressed graph G′. We have F (G) = F (G′).

3.5 Power-compressed subgroup membership problem for free groups

We can now show the main result of Section 3:

Theorem 1 The power-compressed subgroup membership problem for a f.g. free
group can be solved in polynomial time.

Proof Let w0, w1, . . . , wn be the input power words and let A = {w1, . . . , wn}.
We construct from A a power-compressed bouquet graph in the same way
as in Section 3.3 for uncompressed graphs: to a non-empty power word w =
pz11 p

z2
2 · · · p

zk
k we associate the power-compressed cycle graph

C(w) = ({v0, . . . , vk−1}, {e±1i : 1 ≤ i ≤ k}, ι, τ, v0),

where ι(ei) = vi−1, λ(ei) = pzii , and τ(ei) = vi mod k. We then construct
the power-compressed bouquet graph B(A) by taking the disjoint union of
C(w1), . . . , C(wn) and then merging their base points. Using Corollary 1 we
can fold B(A) in polynomial time into a strongly folded power-compressed
graph S(A). Let v0 be its base point. As explained at the end of Section 3.2
we can view S(A) as a finite automaton, where transitions are labelled with
succinct words of the form pz with z given in binary notation. By Lemma 3,
S(A) accepts a freely reduced word g ∈ red(Γ ∗) = F (Σ) if and only if g belongs

Subgroup Membership in GL(2,Z) 21

to the subgroup 〈red(w1), . . . , red(wn)〉 ≤ F (Σ). Since S(A) is strongly folded,
it is a deterministic automaton in the sense that the labels of two outgoing
transitions of a state do not have a non-empty common prefix.

For the rest of the proof it is convenient to switch from power words to
straight-line programs. A straight-line program is a context-free grammar P
that produces exactly one word that is denoted with val(P). By repeated
squaring, our given power word w0 can be easily transformed in polynomial
time into an equivalent straight-line program. Moreover, from a given straight-
line program P over the alphabet Γ = Σ∪Σ−1 one can compute in polynomial
time a new straight-line program Q such that val(Q) = red(val(P)); see [22,
Theorem 4.11]. Hence, we can compute in polynomial time a straight-line
program Q for red(w0). The transition labels of the automaton S(A) can be
also transformed into equivalent straight-line programs; such automata with
straight-line compressed transition labels were investigated in [15]. It remains
to check in polynomial time whether the deterministic automaton S(A) accepts
val(Q). This is possible in polynomial time by [15, Theorem 1]. ut

4 Power-compressed subgroup membership for virtually free
groups

A main advantage of the power-compressed subgroup membership problem is
that its complexity is preserved under finite index group extensions. The proof
of the following lemma follows [13], where it is shown that the complexity of the
(ordinary) subgroup membership problem is preserved under finite index group
extensions. In order to extend this result to the power-compressed setting,
we make use of the conjugate collection process for power words from [23,
Theorem 6].

Lemma 11 Let G be a fixed f.g. group and H a fixed subgroup of finite index in
G.5 The power-compressed subgroup membership problem for G is polynomial
time reducible to the power-compressed subgroup membership problem for H.

Proof Using the following standard trick we can assume that H is a normal
subgroup of finite index in G: Let N be the intersection of all conjugate sub-
groups g−1Hg. Then N is a normal subgroup of G and has still finite index in
G (the latter is a well-known fact). Since N ≤ H, the power-compressed sub-
group membership problem for N is polynomial time reducible to the power-
compressed subgroup membership problem for H. Hence, it suffices to show
that the power-compressed subgroup membership problem for G is polynomial
time reducible to the power-compressed subgroup membership problem for N .

By the above consideration, we can assume that H is a normal subgroup of
finite index in G. Let us fix a symmetric generating Θ for H and let R ⊆ G be a
(finite) set of coset representatives for H with 1 ∈ R. Then Σ := Θ∪ (R \{1})
generates G. On R we can define the structure of the quotient group G/H

5 It is well-known that in this situation H must be f.g. as well; see e.g. [32, 1.6.11].

22 Markus Lohrey

by defining r · r′ ∈ R and r ∈ R for r, r′ ∈ R such that rr′ ∈ H(r · r′) and
r−1 ∈ Hr. Recall that G and H are fixed groups, hence r · r′ and r can be
computed in constant time. In [23, Theorem 6] it is shown that the power
word problem for G can be reduced in polynomial time (in fact, in NC1) to
the power word problem for H. The proof shows the following fact:

Fact 1. Given a power word w over the alphabet Σ we can compute in polyno-
mial time a power word w′ over the alphabet Θ and r ∈ R such that w = w′r
in G.

Let us now take a finite list of power words w0, w1, . . . , wn over the alphabet
Σ and let gi ∈ G be the group element represented by wi. We want to check
whether g0 ∈ A := 〈g1, . . . , gn〉.

First we use Fact 1 and rewrite in polynomial time each power word wi
as w′iri with w′i ∈ Θ∗ a power word and ri ∈ R. Let w′i represent g′i ∈ H. By
computing the closure of {r1, r1, . . . , rn, rn} with respect to the multiplication
· on R we obtain in constant time the set of all coset representatives r ∈ R
such that Hr ∩A 6= ∅. Let us denote this closure with V ⊆ R. Clearly, 1 ∈ V .
If r0 /∈ V then we have g0 = g′0r0 /∈ A and we are done.

Claim 1. In polynomial time we can compute a finite list of generators for
H ∩A written as power words over Θ.

For the proof of Claim 1 we follow [13]: we compute a power-compressed graph
G (in the sense of Section 3.2) as follows. All coset representatives from V are
vertices of G. Moreover, we add a simple path from r ∈ V to r′ ∈ V labelled
with the power word wi iff r · ri = r′ (1 ≤ i ≤ n). The corresponding inverse
path (that consists of the inverse edges) is of course labelled with w−1i and we
have r′ · ri = r. The label of a path from 1 ∈ V back to 1 ∈ V in the graph G
belongs to {w1, w

−1
1 , . . . , wn, w

−1
n }∗ and hence can be viewed as a power word

over the alphabet Σ. As such, it represents an element of the group H ∩A.
Fix a spanning tree of G, let E be the set of edges of G and let T ⊆ E

be those edges that belong to the fixed spanning tree. We then obtain a set
of generators for H ∩ A by taking for every edge e ∈ E \ T the circuit in G
obtained by following the unique simple path in T from 1 to ι(e), followed by
the edge e, followed by the unique simple path in T from τ(e) back to 1. Let
xe ∈ {w1, w

−1
1 , . . . , wn, w

−1
n }∗ be the label of this circuit. Every xe represents

an element of H ∩ A and the set of all these elements (for e ∈ E \ T) is a
generating set of H ∩A; see [13] for details. Moreover, every xe can be written
as a power word over the alphabet Σ of polynomial length. Using Fact 1 we
can rewrite this power word in polynomial time into x′ere where x′e is a power
word over the alphabet Θ and re ∈ R. But since xe represents an element of
H, we must have re = 1. Hence the power words x′e represent a generating set
of H ∩A.

Now we can finish the proof of the lemma. We use the graph G defined above.
Since r0 ∈ V , there is a path from 1 to r0. Let x ∈ {w1, w

−1
1 , . . . , wn, w

−1
n }∗

be the label of this path. It is a power word over Σ and by Fact 1, x can be
rewritten into the form yr for a power word y over Θ and r ∈ R. Clearly, we

Subgroup Membership in GL(2,Z) 23

must have r = r0. In the group G we have g0x
−1 = g′0r0r

−1
0 y−1 = g′0y

−1 (here,
the words x and y are identified with the corresponding elements of G). Note
that g′0y

−1 is represented by the power word w′0y
−1 over the alphabet Θ. Since

the word x represents an element of A we have g0 ∈ A if and only if g0x
−1 ∈ A

if and only if g′0y
−1 ∈ A if and only if g′0y

−1 ∈ H ∩A. The latter is an instance
of the power-compressed subgroup membership problem for H since we have
power-compressed generators for H ∩A. This concludes the proof. ut

From Theorem 1 and Lemma 11 we immediately obtain the following corollary:

Corollary 2 The power-compressed subgroup membership problem for a fixed
f.g. virtually free group can be solved in polynomial time.

The group GL(2,Z) consists of all (2 × 2)-matrices over the integers with de-
terminant −1 or 1. It is a well-known example of a f.g. virtually free group
[36]. We are interested in the situation where group elements of GL(2,Z) are
represented by 4-tuples of binary encoded integers. Testing whether such a
4-tuple belongs to GL(2,Z) is of course possible in polynomial time.

Lemma 12 From a given matrix A ∈ GL(2,Z) with binary encoded entries
one can compute in polynomial time a power word over a fixed finite generating
set of GL(2,Z), which evaluates to the matrix A.

Proof For the group SL(2,Z) of all (2 × 2)-matrices over the integers with
determinant 1 the result is shown in [14], see also [10, Proposition 15.4]. Now,
SL(2,Z) is a normal subgroup of index two in GL(2,Z). Fix an arbitrary matrix
B ∈ GL(2,Z) with determinant −1. Given a matrix A ∈ GL(2,Z) with binary
encoded entries and determinant −1 we first compute the matrix AB−1 ∈
SL(2,Z). Using [14] we can compute in polynomial time a power word w for
AB−1. Hence, wB (where B is taken as an additional generator) is a power
word for A. ut

Corollary 3 The subgroup membership problem for GL(2,Z) can be solved in
polynomial time when matrix entries are given in binary encoding.

Proof Since GL(2,Z) is f.g. virtually free, the power-compressed subgroup
membership problem for GL(2,Z) can be solved in polynomial time by Corol-
lary 2. By Lemma 12 this shows Corollary 3. ut

5 The finite index problem

For a f.g. group G with the finite generating set Σ we define the finite index
problem as follows, where as usual Γ = Σ ∪Σ−1.

input: words w1, . . . , wn over the alphabet Γ .
output: the index (an element of N ∪ {∞}) of the subgroup 〈g1, . . . , gn〉 ≤ G,
where gi is the group element represented by wi.

If the words w1, . . . , wn are represented as power words then we speak of the
power-compressed finite index problem.

24 Markus Lohrey

Theorem 2 The power-compressed finite index problem for a f.g. free group
can be solved in polynomial time.

Proof We use the following criterion from [16]. Consider a f.g. subgroup 〈A〉 ≤
F (Σ) with A ⊆ Γ+ finite. We compute the folded (uncompressed) graph S(A)
as described before Lemma 3. Let v0 be the base point of S(A). We define the
core of S(A), denoted with core(S(A)), by removing from S(A) all vertices
v 6= v0 and edges e that do not belong to a cycle without backtracking that
contains the base point v0; see also [16, Definitions 3.5 and 5.3]. This means
that we delete as long as possible vertices v 6= v0 for which there is a unique
edge e with τ(e) = v together with the edges e and e−1.6 For instance, the
core of the graph in Figure 1(f), where the origin of the p4-labelled edge is the
base point, is obtained by removing the b-labelled edge and its target vertex.
On the other hand, if the base point is the target of the p4-labelled edge, then
the core is obtained by removing the b-labelled edge and its target vertex as
well as the p4-labelled edge and its source vertex.

Assume that core(S(A)) = (V,E, ι, τ, λ, v0). It is shown in [16, Proposi-
tion 8.3] that 〈A〉 has finite index in F (Σ) if and only if core(S(A)) is a
Γ -regular graph in the sense that for every v ∈ V and every a ∈ Γ there is a
(necessarily unique) edge e ∈ E with ι(e) = v and λ(e) = a.

Let us now consider the case where the words in A are power words. We
then compute in polynomial time the power-compressed and strongly folded
graph S(A) as described in the proof of Theorem 1. We compute the core of
this graph in the same way as above by removing vertices v 6= v0 of degree one
together with the adjacent edges; let us denote this core with C(A). It remains
to check whether decompress(C(A)) is Γ -regular. The case |Σ| = 1 is trivial.
So, let us assume that |Σ| ≥ 2 (and hence |Γ | ≥ 4). But then decompress(C(A))
has vertices of degree two if C(A) contains long edges. To see this note that
since C(A) is strongly folded, every edge label pz of a long edge must be a
freely reduced word. Hence, if C(A) contains long edges then 〈A〉 has infinite
index in F (Σ). On the other hand, if C(A) only contains short edges, then we
can directly apply the above criterion from [16] in order to compute the index
[F (Σ) : 〈A〉]. ut

Lemma 13 Let G be a fixed f.g. group and H a fixed subgroup of finite index
in G (thus, H must be f.g. as well). The power-compressed finite index problem
for G is polynomial time reducible to the power-compressed finite index problem
for H.

Proof As in the proof of Lemma 13 we can restrict to the case where H is
a normal subgroup of G. Otherwise we define N as the intersection of all
conjugate subgroups g−1Hg. Then N is a normal subgroup of finite index
in G. Let d = [H : N] be the index of N in H, which is a fixed constant.
Assume that we can reduce in polynomial time the power-compressed finite
index problem for G to the power-compressed finite index problem for N . The

6 If A ⊆ red(Γ ∗) then S(A) is its own core; see the proof of [16, Proposition 3.8].

Subgroup Membership in GL(2,Z) 25

power-compressed finite index problem for N is polynomial time reducible to
the power-compressed finite index problem for H (for a f.g. subgroup A ≤ N
we have [N : A] = [H : A]/d). Hence, the power-compressed finite index
problem for G is polynomial time reducible to the power-compressed finite
index problem for H.

Let us now assume that H is normal subgroup of G and assume that we
can solve the power-compressed index problem for H in polynomial time. We
take over all notations from the proof of Lemma 13. Hence, A ≤ G is the
f.g. subgroup whose index [G : A] we want to compute and the generators of
A are given as power words.

Recall that V ⊆ R is the set of coset representatives of H such that r ∈ V
if and only if Hr ∩ A 6= ∅. We claim that |V | = [A : H ∩ A]. To see this
choose for every r ∈ V an arbitrary element gr ∈ Hr ∩ A. We then have
Hr ∩ A = (H ∩ A)gr 6= ∅. Moreover, the sets Hr ∩ A (r ∈ V) are pairwise
disjoint; hence also the sets (H ∩ A)gr (r ∈ V) are pairwise disjoint. Since
A =

⋃
r∈V Hr∩A =

⋃
r∈V (H∩A)gr, it follows that the sets (H∩A)gr (r ∈ V)

are the right cosets of H ∩A in A. This shows that |V | = [A : H ∩A] <∞. In
particular, we can compute [A : H ∩A] <∞ in constant time.

By Claim 1 from the proof of Lemma 13 we can compute in polynomial
time a finite list of generators for H ∩ A written as power words. Hence, we
can compute the index [H : H ∩A] in polynomial time. We now have

[G : H ∩A] = [G : H] · [H : H ∩A] = [G : A] · [A : H ∩A]

and thus

[G : A] =
[G : H] · [H : H ∩A]

[A : H ∩A]
.

Here, [G : H] is a fixed constant, and [H : H ∩ A] and [A : H ∩ A] can be
computed in polynomial time. Hence, [G : A] can be computed in polynomial
time. ut

Theorem 2 and Lemma 13 yield:

Corollary 4 The power-compressed finite index problem for a fixed f.g. vir-
tually free group can be solved in polynomial time.

With Lemma 12 and Corollary 4 we finally obtain:

Corollary 5 The finite index problem for GL(2,Z) can be solved in polynomial
time when matrix entries are given in binary encoding.

6 Future work

There is not much hope to generalize Corollary 3 to higher dimensions. For
SL(4,Z) the subgroup membership problem is undecidable and decidability
of the subgroup membership problem for SL(3,Z) is a long standing open
problem [20].

26 Markus Lohrey

A more feasible problem concerns the rational subset membership problem
for free groups when transitions are labelled with power words. It is easy to see
that this problem is NP-hard (reduction from subset sum) and we conjecture
that it belongs to NP. As a consequence this would show that the rational sub-
set membership problem for GL(2,Z) is NP-complete when the transitions of
the automaton are labelled with binary encoded matrices. The corresponding
statement for PSL(2,Z) was shown in [5].

Another interesting problem is whether the subgroup membership problem
for a free group can be solved in polynomial time, when all group elements are
represented by straight-line programs (which can be more succinct than power
words). One might try to show this using an adaptation of Stallings’s folding,
but controlling the size of the graph during the folding seems to be more
difficult when the transition labels are represented by straight-line programs
instead of power words.

Acknowledgments. This work was funded by the DFG project LO 748/12-1.

References

1. Jürgen Avenhaus and Klaus Madlener. The Nielsen reduction and P-complete prob-
lems in free groups. Theoretical Computer Science, 32(1-2):61–76, 1984. doi:10.1016/

0304-3975(84)90024-0.
2. Jürgen Avenhaus and Dieter Wißmann. Using rewriting techniques to solve the gener-

alized word problem in polycyclic groups. In Proceedings of the ACM-SIGSAM 1989
International Symposium on Symbolic and Algebraic Computation, ISSAC 1989, pages
322–337. ACM Press, 1989. doi:10.1145/74540.74579.

3. László Babai, Eugene M. Luks, and Ákos Seress. Permutation groups in NC. In Pro-
ceedings of the 19th Annual ACM Symposium on Theory of Computing, STOC 1987,
pages 409–420. ACM, 1987. doi:10.1145/28395.28439.

4. Frédérique Bassino, Ilya Kapovich, Markus Lohrey, Alexei Miasnikov, Cyril Nicaud,
Andrey Nikolaev, Igor Rivin, Vladimir Shpilrain, Alexander Ushakov, and Pascal Weil.
Compression techniques in group theory. In Complexity and Randomness in Group
Theory, chapter 4. De Gruyter, 2020. doi:10.1515/9783110667028.

5. Paul C. Bell, Mika Hirvensalo, and Igor Potapov. The identity problem for matrix
semigroups in SL2(Z) is NP-complete. In Proceedings of the 28th Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2017, pages 187–206. SIAM, 2017. doi:

10.1137/1.9781611974782.13.
6. Michèle Benois. Parties rationnelles du groupe libre. Comptes rendus hebdomadaires

des séances de l’Académie des sciences, Séries A, 269:1188–1190, 1969.
7. Michèle Benois and Jacques Sakarovitch. On the complexity of some extended word

problems defined by cancellation rules. Information Processing Letters, 23(6):281–287,
1986. doi:10.1016/0020-0190(86)90087-6.

8. Michaël Cadilhac, Dmitry Chistikov, and Georg Zetzsche. Rational subsets of Baumslag-
Solitar groups. In Proceedings of the 47th International Colloquium on Automata,
Languages, and Programming, ICALP 2020, volume 168 of LIPIcs, pages 116:1–116:16.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.ICALP.

2020.116.
9. Jordi Delgado and Enric Ventura. Algorithmic problems for free-abelian times free

groups. Journal of Algebra, 391:256–283, 2013. doi:10.1016/j.jalgebra.2013.04.033.
10. Volker Diekert and Murray Elder. Solutions of twisted word equations, EDT0L

languages, and context-free groups. In Proceedings of the 44th International Col-
loquium on Automata, Languages, and Programming, ICALP 2017, volume 80 of

https://doi.org/10.1016/0304-3975(84)90024-0
https://doi.org/10.1016/0304-3975(84)90024-0
https://doi.org/10.1145/74540.74579
https://doi.org/10.1145/28395.28439
https://doi.org/10.1515/9783110667028
https://doi.org/10.1137/1.9781611974782.13
https://doi.org/10.1137/1.9781611974782.13
https://doi.org/10.1016/0020-0190(86)90087-6
https://doi.org/10.4230/LIPIcs.ICALP.2020.116
https://doi.org/10.4230/LIPIcs.ICALP.2020.116
https://doi.org/10.1016/j.jalgebra.2013.04.033

Subgroup Membership in GL(2,Z) 27

LIPIcs, pages 96:1–96:14. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2017.
doi:10.4230/LIPIcs.ICALP.2017.96.

11. Volker Diekert, Igor Potapov, and Pavel Semukhin. Decidability of membership prob-
lems for flat rational subsets of GL(2, Q) and singular matrices. In Proceedings of the
45th International Symposium on Symbolic and Algebraic Computation, ISSAC 2020,
pages 122–129. ACM, 2020. doi:10.1145/3373207.3404038.

12. Stefan Friedl and Henry Wilton. The membership problem for 3-manifold groups is
solvable. Algebraic & Geometric Topology, 16(4):1827–1850, 2016. doi:10.2140/agt.

2016.16.1827.
13. Zeph Grunschlag. Algorithms in Geometric Group Theory. PhD thesis, University of

California at Berkley, 1999.
14. Yuri Gurevich and Paul E. Schupp. Membership problem for the modular group. SIAM

Journal on Computing, 37(2):425–459, 2007. doi:10.1137/050643295.
15. Artur Jeż. The complexity of compressed membership problems for finite automata.

Theory of Computing Systems, 55(4):685–718, 2014. doi:10.1007/s00224-013-9443-6.
16. Ilya Kapovich and Alexei Myasnikov. Stallings foldings and subgroups of free groups.

Journal of Algebra, 248(2):608–668, 2002. doi:10.1006/jabr.2001.9033.
17. Ilya Kapovich, Richard Weidmann, and Alexei Myasnikov. Foldings, graphs of groups

and the membership problem. International Journal of Algebra and Computation,
15(1):95–128, 2005. doi:10.1142/S021819670500213X.

18. Olga Kharlampovich, Alexei Miasnikov, and Pascal Weil. Stallings graphs for quasi-
convex subgroups. Journal of Algebra, 488:442–483, 2017. doi:10.1016/j.jalgebra.

2017.05.037.
19. Olga G. Kharlampovich, Alexei G. Myasnikov, Vladimir N. Remeslennikov, and Denis E.

Serbin. Subgroups of fully residually free groups: algorithmic problems. In Group theory,
Statistics, and Cryptography, volume 360 of Contemporary Mathematics, pages 63–101.
AMS, Providence, RI, 2004. doi:10.1090/conm/360.

20. Evgeny I. Khukhro and Victor D. Mazurov. Unsolved problems in group theory. the
Kourovka notebook. CoRR, arXiv:1401.0300v19, 2020. Problem 12.50. URL: https:
//arxiv.org/abs/1401.0300v19.

21. Sang-Ki Ko, Reino Niskanen, and Igor Potapov. On the identity problem for the spe-
cial linear group and the Heisenberg group. In Proceedings of the 45th International
Colloquium on Automata, Languages, and Programming, ICALP 2018, volume 107 of
LIPIcs, pages 132:1–132:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.
doi:10.4230/LIPIcs.ICALP.2018.132.

22. Markus Lohrey. The Compressed Word Problem for Groups. SpringerBriefs in Mathe-
matics. Springer, 2014. doi:10.1007/978-1-4939-0748-9.

23. Markus Lohrey and Armin Weiß. The power word problem. In Proceedings of the 44th
International Symposium on Mathematical Foundations of Computer Science, MFCS
2019, volume 138 of LIPIcs, pages 43:1–43:15. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2019. doi:10.4230/LIPIcs.MFCS.2019.43.

24. M. Lothaire. Combinatorics on Words. Cambridge University Press, 1997. doi:10.

1017/CBO9780511566097.
25. Roger C. Lyndon and Paul E. Schupp. Combinatorial Group Theory. Springer, 1977.

doi:10.1007/978-3-642-61896-3.
26. Anatolij I. Mal’cev. On homomorphisms onto finite groups. American Mathematical

Society Translations, Series 2, 119:67–79, 1983. Translation from Ivanov. Gos. Ped.
Inst. Ucen. Zap. 18 (1958) 49–60. doi:10.1090/trans2/119.

27. Luda Markus-Epstein. Stallings foldings and subgroups of amalgams of finite groups.
International Journal of Algebra and Compution, 17(8):1493–1535, 2007. doi:10.1142/
S0218196707003846.

28. K. A. Mihăılova. The occurrence problem for direct products of groups. Math. USSR
Sbornik, 70:241–251, 1966. English translation.

29. Alexei G. Myasnikov and Armin Weiß. Parallel complexity for nilpotent groups. In-
ternational Journal of Algebra and Computation, 32(5):895–928, 2022. doi:10.1142/

S0218196722500382.
30. Igor Potapov and Pavel Semukhin. Decidability of the membership problem for 2 × 2

integer matrices. In Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete

https://doi.org/10.4230/LIPIcs.ICALP.2017.96
https://doi.org/10.1145/3373207.3404038
https://doi.org/10.2140/agt.2016.16.1827
https://doi.org/10.2140/agt.2016.16.1827
https://doi.org/10.1137/050643295
https://doi.org/10.1007/s00224-013-9443-6
https://doi.org/10.1006/jabr.2001.9033
https://doi.org/10.1142/S021819670500213X
https://doi.org/10.1016/j.jalgebra.2017.05.037
https://doi.org/10.1016/j.jalgebra.2017.05.037
https://doi.org/10.1090/conm/360
https://arxiv.org/abs/1401.0300v19
https://arxiv.org/abs/1401.0300v19
https://doi.org/10.4230/LIPIcs.ICALP.2018.132
https://doi.org/10.1007/978-1-4939-0748-9
https://doi.org/10.4230/LIPIcs.MFCS.2019.43
https://doi.org/10.1017/CBO9780511566097
https://doi.org/10.1017/CBO9780511566097
https://doi.org/10.1007/978-3-642-61896-3
https://doi.org/10.1090/trans2/119
https://doi.org/10.1142/S0218196707003846
https://doi.org/10.1142/S0218196707003846
https://doi.org/10.1142/S0218196722500382
https://doi.org/10.1142/S0218196722500382

28 Markus Lohrey

Algorithms, SODA 2017, pages 170–186. SIAM, 2017. doi:10.1137/1.9781611974782.
12.

31. Eliyahu Rips. Subgroups of small cancellation groups. Bulletin of the London Mathe-
matical Society, 14:45–47, 1982. doi:10.1112/blms/14.1.45.

32. Derek J.S. Robinson. A Course in the Theory of Groups, 2nd edition. Springer, 1996.
doi:10.1007/978-1-4419-8594-1.

33. Nikolai S. Romanovskĭı. Some algorithmic problems for solvable groups. Algebra and
Logic, 13:13–16, 1974. English translation. doi:10.1007/BF01462922.

34. Nikolai S. Romanovskĭı. The occurrence problem for extensions of Abelian groups by
nilpotent groups. Siberian Mathematical Journal, 21:273–276, 1980. English translation.
doi:10.1007/BF00968275.

35. Paul E. Schupp. Coxeter groups, 2-completion, perimeter reduction and subgroup sep-
arability. Geometriae Dedicata, 96:179–198, 2003. doi:10.1023/A:1022155823425.

36. Jean-Pierre Serre. Trees. Springer, 1980. doi:10.1007/978-3-642-61856-7.
37. Pedro V. Silva, Xaro Soler-Escrivà, and Enric Ventura. Finite automata for Schreier

graphs of virtually free groups. Journal of Group Theory, 19(1):25–54, 2016. doi:

10.1515/jgth-2015-0028.
38. Charles C. Sims. Computation with permutation groups. In Proceedings of the 2nd

ACM Symposium on Symbolic and Algebraic Manipulation, SYMSAC 1971, pages 23–
28. Association for Computing Machinery, 1971. doi:10.1145/800204.806264.

39. John R. Stallings. Topology of finite graphs. Inventiones Mathematicae, 71(3):551–565,
1983. doi:10.1007/BF02095993.

40. Nicholas W. M. Touikan. A fast algorithm for Stallings’ folding process. Interna-
tional Journal of Algebra and Computation, 16(6):1031–1045, 2006. doi:10.1142/

S0218196706003396.

https://doi.org/10.1137/1.9781611974782.12
https://doi.org/10.1137/1.9781611974782.12
https://doi.org/10.1112/blms/14.1.45
https://doi.org/10.1007/978-1-4419-8594-1
https://doi.org/10.1007/BF01462922
https://doi.org/10.1007/BF00968275
https://doi.org/10.1023/A:1022155823425
https://doi.org/10.1007/978-3-642-61856-7
https://doi.org/10.1515/jgth-2015-0028
https://doi.org/10.1515/jgth-2015-0028
https://doi.org/10.1145/800204.806264
https://doi.org/10.1007/BF02095993
https://doi.org/10.1142/S0218196706003396
https://doi.org/10.1142/S0218196706003396

	Introduction
	Preliminaries
	Stallings's folding for power-compressed words
	Power-compressed subgroup membership for virtually free groups
	The finite index problem
	Future work

