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Preface

The study of computational problems in combinatorial grouptheory goes back more
than 100 years. In a seminal paper from 1911, Max Dehn posed three decision prob-
lems [46]: Theword problem(called Identitätsproblemby Dehn), theconjugacy
problem(calledTransformationsproblemby Dehn), and theisomorphism problem.
The first two problems assume a finitely generated groupG (although Dehn in his
paper requires a finitely presented group). For the word problem, the input con-
sists of a finite sequencew of generators ofG (also known as a finite word), and
the goal is to check whetherw represents the identity element ofG. For the con-
jugacy problem, the input consists of two finite wordsu andv over the generators
and the question is whether the group elements represented by u andv are conju-
gated. Finally, the isomorphism problem asks, whether two given finitely presented
groups are isomorphic.1 Dehns motivation for studying these abstract group theo-
retical problems came from topology. In a previous paper from 1910, Dehn studied
the problem of deciding whether two knots are equivalent [45], and he realized that
this problem is a special case of the isomorphism problem (whereas the question of
whether a given knot can be unknotted is a special case of the word problem). In
his paper from 1912 [47], Dehn gave an algorithm that solves the word problem for
fundamental groups of orientable closed 2-dimensional manifolds. His algorithm is
nowadays known as Dehn’s algorithm and can be applied to a larger class of groups
(so called hyperbolic groups). But Dehn also realized that his three problems seem
to be very hard in general. In [46], he wrote “Die drei Fundamentalprobleme für alle
Gruppen mit zwei Erzeugenden. . . zu lösen, scheint einstweilen noch sehr schwierig
zu sein.” (Solving the three fundamental problems for all groups with two generators
seems to be very difficult at the moment.) When Dehn wrote this sentence, a formal
definition of computability was still missing. Only in the first half of the 1930’s, the
foundations of the modern theory of computability where laid by Alonzo Church,
Kurt Gödel, Emil Post, and Alan Turing, see e.g. Chapter 1 inthe textbook [40] for a
brief historial outline. Another 20 years later, Pyotr Sergeyevich Novikov [136] and
independently William Werner Boone [22] proved that Dehn’sintuition concerning

1 Implicitly, the isomorphism problem can be also found in Tietze’s paper [161] from 1908.
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viii Preface

the difficulty of his problems was true: There exist finitely presented groups with
an undecidable word problem (and hence an undecidable conjugacy problem). The
isomorphism problem turned out to be undecidable around thesame time [1, 145].
More details on the history around Dehn’s three decision problems can be found in
[158].

Despite these negative results, for many groups the word problem is decidable.
Dehn’s result for fundamental groups of orientable closed 2-dimensional manifolds
was extended to one-relator groups by his student Wilhelm Magnus [121]. Other
important classes of groups with a decidable word problem are automatic groups
[57] (including important classes like braid groups [8], Coxeter groups, right-angled
Artin groups, hyperbolic groups [68]) and finitely generated linear groups, i.e.,
groups of matrices over a field [144] (including polycyclic groups). This makes it
interesting to study the complexity of the word problem. Computational complexity
theory is a part of computer science that emerged in the mid 1960’s and investigates
the relation between (i) the time and memory of a computer necessary to solve a
computational problem and (ii) the size of the input. For a word problem, the in-
put size is simply the length of the finite sequence of generators. Early papers on
the complexity of word problems for groups are [27, 28, 29, 144]. One of the early
results in this context was that for every givenn ≥ 0 there exist groups for which
the word problem is decidable but does not belong to then-th level of the Grze-
gorczyk hierarchy (a hierarchy of decidable problems) [27]. On the other hand, for
many prominent classes of groups the complexity of the word problem is quite low.
For finitely generated linear groups Richard Jay Lipton and Yechezkel Zalcstein
[108] proved that logarithmic working space (and hence polynomial time) suffices
to solve the word problem. The class of automatic groups is another quite large
class of groups including many classical group classes for which the word problem
can be solved in quadratic time [57]. In contrast, groups with a difficult word prob-
lem seem to be quite exotic objects. The vague statement thatfor most groups the
word problem is easy can be even made precise: Mikhail Gromovstated in [68] that
a randomly chosen (according to a certain probabilistic process) finitely presented
group is hyperbolic with probability 1, a proof was given by Alexander Olśhanskiı̆
in [137]. Moreover, for every hyperbolic group the word problem can be solved in
linear time. Hence, for most groups the word problem can be solved in linear time.

One of the starting points for the work in this book was a question from the 2003
paper [94] by Ilya Kapovich, Alexei Myasnikov, Paul Eugene Schupp, and Vladimir
Shpilrain: Is there a polynomial time algorithm for the wordproblem for the auto-
morphism group of a finitely generated free groupF? For every groupG the set
of all automorphisms ofG together with the composition operation is a group, the
automorphism groupAut(G) of G. Clearly, if G is finite, then alsoAut(G) is finite.
But if G is only finitely generated, thenAut(G) is not necessarily finitely gener-
ated, see [105] for a counterexample. In a seminal paper [135] from 1924, Jakob
Nielsen proved that the automorphism group of a finitely generated free groupF is
finitely generated (and in fact finitely presented). This makes it interesting to study
the word problem forAut(F). The straightforward algorithm for this problem has an
exponential running time. Saul Schleimer [151] realized in2006 that one can easily
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reduce the word problem forAut(F) to a variant for the word problem forF , where
the input sequence is given in a succinct form by a so called straight-line program.
A straight-line program can be seen as a hierarchical description of a string. From a
formal language theory point of view it is a context-free grammarG that generates
exactly one string that we denote withval(G). The length of this string can be ex-
ponential in the size of the grammarG. In this sense,G can be seen as a succinct
description ofval(G). The variant of the word problem for a groupG, where the
input sequence is given by a straight-line program is thecompressed word problem
for G, which is the main topic of this book. Explicitly this problem was first studied
in my paper [110] (a long version appeared as [112]). My motivation for this work
came from two other papers: In 1994, Wojciech Plandowski [139] proved that one
can decide in polynomial time whether two straight-line programs produce the same
words; implicitly this result can be also found in papers by Kurt Mehlhorn, Raja-
mani Sundar, and Christian Uhrig [127, 128] and Yoram Hirshfeld, Mark Jerrum
and Faron Moller [79, 80] that were both published the same year as Plandowski’s
work. One could also rephrase this result by saying that the compressed word prob-
lem for a free monoid can be solved in polynomial time. My second motivation
for studying the compressed word problem is the paper [15] byMartin Beaudry,
Pierre McKenzie, Pierre Péladeau and Denis Thérien, where the authors studied the
problem whether a given circuit over a finite monoid evaluates to a given monoid
element. This problem can be seen as the compressed word problem for a finite
monoid.2

Let me come back to the word problem for the automorphism group of a free
group. In my paper [110] I proved that the compressed word problem for a finitely
generated free group can be solved in polynomial time; the proof builds on the above
mentioned result by Plandowski. Using this result, Schleimer was able to show that
the word problem forAut(F) (with F a finitely generated free group) can be solved
in polynomial time [151], which answered the question from [94] positively.

After Schleimer’s work, it turned out that the compressed word problem has
applications not only for the word problem of automorphism groups, but also for
semidirect products and certain group extensions. This motivated the study of the
compressed word problem as a topic of its own interest. The aim of this book is
to give an extensive overview of known results on the compressed word problem.
Some of the results in this book can be found in published articles while others ap-
pear to be new. As a computer scientist with a strong interestin group theory, I tried
to make this book accessible to both mathematicians and computer scientists. In
particular, I tried to explain all necessary concepts from computer science (mainly
computational complexity theory) and group theory. On the other hand, to keep the
book focused on the compressed word problem I had to stop at a certain point. I
hope that I could find the right balance.

I want to thank my former supervisor Volker Diekert for his scientific influence.
During my time in Stuttgart, he drew my interest to group theoretical decision prob-

2 At this point the reader might wonder why this book is about the compressed word problems for
groups only and not monoids. This is more a matter of personaltaste, and the fact that so far there
exist more results for groups than for monoids
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lems and the work of Plandowski on compression. This was the starting point for my
work on the compressed word problem. Many results from this book were discov-
ered with my collaborators Niko Haubold, Christian Mathissen, and Saul Schleimer.
Without their contributions, this work would not exist in its present form. I have to
thank Daniel König for his thorough proof reading. Many thanks to the referees for
their numerous useful comments that helped to improve this book. Finally, I am
grateful to Benjamin Steinberg for encouraging me to write this book.

Siegen, January 2014 Markus Lohrey
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Chapter 1
Preliminaries from Theoretical Computer
Science

In this chapter, we briefly recall basic definitions from theoretical computer science.
We start with several general notations from formal language theory (words, finite
automata, word rewriting systems). The main part of the chapter is a brief introduc-
tion into basic concepts from complexity theory. The goal isto enable readers that
are not familiar with complexity theory to understand the results and proofs in this
book. But this chapter cannot replace a thorough introduction into the broad field of
complexity theory. For this, we refer the reader to the text books [7, 138].

1.1 Preliminaries from Formal Language Theory

LetΓ be a set, called analphabetin the following. We do not assume thatΓ is finite,
although most of the time it will be finite. Elements ofΓ will be calledsymbols.

Definition 1.1 (finite words, length and alphabet of a word, factor, empty word).
A finite wordoverΓ is just a sequence of alphabet symbolss= a1a2 · · ·an with n≥ 0
anda1,a2, . . . ,an ∈ Γ . We can haveai = a j for i 6= j. The length of this words is
|s|= n. Fora∈Γ let |s|a = |{i | 1≤ i ≤ n,ai = a}| be the number of occurrences of
a in s. With alph(s) = {a∈ Γ | |s|a > 0} we denote the set of symbols that occur in
s, also called thealphabet of s. For 1≤ i ≤ n we writes[i] = ai. For 1≤ i ≤ j ≤ n let
s[i : j] = ai · · ·a j . If 1 ≤ i ≤ j ≤ n does not hold, then we sets[i : j] = ε. Any word of
the forms[i : j] is called afactorof s. We also use the abbreviationss[: j] = s[1 : j]
ands[i :] = s[i : |s|]. The unique word of length 0 is denoted byε (theempty word).

Definition 1.2 (Γ ∗, Γ +, concatenation of words, free monoid, languages).The
set of all finite words overΓ is denoted withΓ ∗. Moreover, letΓ + = Γ ∗ \
{ε}. The concatenationof wordss = a1 · · ·an and t = b1 · · ·bm is the wordst =
a1 · · ·anb1 · · ·bm. This is an associative operation with identity elementε. Hence,
Γ ∗ has the structure of a monoid, called thefree monoidgenerated byΓ . A lan-
guageis a subset ofΓ ∗ for some finite alphabetΓ .

1



2 1 Preliminaries from Theoretical Computer Science

An important class of languages are regular languages whichare defined by finite
automata:

Definition 1.3 (nondeterministic finite automaton).A nondeterministic finite au-
tomaton(briefly NFA), is a tupleA = (Q,Σ ,δ ,q0,F), where

• Q is a finite set of states,
• Σ is the (finite) input alphabet,
• δ ⊆ Q×Σ ×Q is the set of transitions
• q0 ∈ Q is the initial state, and
• F ⊆ Q is the set of final states.

We defineδ̂ as the smallest subset ofQ×Σ∗×Q such that:

• (q,ε,q) ∈ δ̂ for all q∈ Q,
• δ ⊆ δ̂ , and
• If (q,u, p),(p,v, r) ∈ δ̂ , then also(q,uv, r) ∈ δ̂ .

The language accepted byA is L(A ) = {w ∈ Σ∗ | ∃q ∈ F : (q0,w,q) ∈ δ̂}; it is
the set of all words that label a path from the initial stateq0 to a final state. A
deterministic finite automaton(briefly DFA), is anA = (Q,Σ ,δ ,q0,F) such that
for every pair(q,a)∈ Q×Σ there is at most one statep∈ Q such that(q,a, p) ∈ δ .

By a famous theorem of Rabin and Scott, for every NFAA there exists a DFAA ′

such thatL(A ) = L(A ′). There is family of NFAAn such thatAn hasn states but
the smallest DFA acceptingL(An) has 2n states. When we only talk about finite
automata, we refer to nondeterministic finite automaton. A languageL ⊆ Σ∗ is reg-
ular if there is a finite automaton withL(A ) = L. The book [82] is an excellent
introduction into the wide area of automata theory.

1.2 Rewriting Systems

Rewriting systems are a formalism for manipulating words orother data structures.
Before we formally define word rewriting systems, we first introduce some abstract
properties of binary relations, see [21, Chapter 1] for moredetails.

Let → be a binary relation on a setA. With →∗ we denote the reflexive and
transitive closure of→, and↔∗ denotes the smallest equivalence relation containing
→. Formally, we havea ↔∗ b, if there existi ≥ 1 and elementsa1,a2, . . . ,an ∈ A
such thata1 = a, an = b, and (ai → ai+1 or ai+1 → ai) for all 1≤ i ≤ n−1.

Definition 1.4 (Noetherian/locally confluent/confluent relation). We say that→
is Noetherian(or terminating) if there does not exist an infinite sequencea0 →
a1 → a2 → ··· in A. The relation→ is confluentif for all a,b,c∈ A with a→∗ b and
a→∗ c there existsd ∈ A such thatb→∗ d andc→∗ d. The relation→ is locally
confluentif for all a,b,c ∈ A with a → b anda → c there existsd ∈ A such that
b→∗ d andc→∗ d.
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Clearly, every confluent relation is also locally confluent.Moreover, Newman’s
Lemma [134] states that a Noetherian and locally confluent relation is also con-
fluent. Furthermore, if→ is confluent then for alla,b ∈ A, a ↔∗ b if and only if
there existsd ∈ A with a→∗ d andb→∗ d.

Definition 1.5 (set of irreducible words IRR(→), normal form NF→(a)). Let
IRR(→) be the set of alla ∈ A such that there does not existb ∈ A with a → b
(“ IRR” stands for “irreducible’). Assume that→ is Noetherian and confluent.
Then for every worda∈ A there exists a unique elementNF→(a) ∈ IRR(→) with
a →∗ NF→(a) (“NF” stands for “normal form”). Moreover,a ↔∗ b if and only if
NF→(a) = NF→(b).

Definition 1.6 (semi-Thue system).A semi-Thue system1 (or word rewriting sys-
tem) over the alphabetΓ is just a (possibly infinite) setR⊆ Γ ∗×Γ ∗, see [21] for
more details. We associate withR a binary relation→R on Γ ∗, also called the , as
follows: For allu,v∈ Γ ∗, u→R v if and only if there existx,y ∈ Γ ∗ and(ℓ, r) ∈ R
such thatu = xℓy andv= xry. Elements(ℓ, r) are calledrulesand usually written as
ℓ → r.

Definition 1.7 (Noetherian/confluent/locally confluent semi-Thue system, irre-
ducible words).The semi-Thue systemR is Noetherian (confluent, locally conflu-
ent) if →R is Noetherian (confluent, locally confluent). LetIRR(R) = IRR(→R)
(the set ofirreducible wordswith respect toR) andNFR(w) = NF→R(w) (if R is
Noetherian and confluent). Thus, we have

IRR(R) = Γ ∗ \
⋃

(ℓ,r)∈R

Γ ∗ℓΓ ∗.

Definition 1.8 (quotient monoidΓ ∗/R). Let [u]R = {v∈Γ ∗ | u↔∗
R v} be the equiv-

alence class with respect to↔∗
R containingu. Note that↔∗

R is a congruence relation
on the free monoidΓ ∗: If u1 ↔

∗
R v1 andu2 ↔

∗
R v2, thenu1u2 ↔

∗
R v1v2. Hence, we

can define the quotient monoidΓ ∗/R as follows: The set of elements ofΓ ∗/R is
the set of equivalence classes[u]R (u∈Γ ∗) and the monoid multiplication is defined
by [u]R[v]R = [uv]R.

If R is Noetherian and confluent, then every equivalence class[u]R contains a unique
irreducible wordNFR(u). Hence, one can identifyΓ ∗/R with the set of irreducible
wordsIRR(R), where the product ofu,v∈ IRR(R) is defined byNFR(uv).

Example 1.9.The semi-Thue systemR = {ba→ ab,ca→ ac} is Noetherian and
confluent. We haveIRR(R) = a∗{b,c}∗. The monoid{a,b,c}∗/R is isomorphic to
N×{a,b}∗ (where we take the monoid operation+ onN).

For a finite Noetherian semi-Thue systemR one can check whetherR is locally
confluent (and hence confluent by Newman’s Lemma) by verifying confluence of
so called critical pairs that result from overlapping left-hand sides ofR, see [21]
for more details. A survey on string rewriting systems emphasizing applications in
group theory can be found in [37].

1 Named by Axel Thue, who introduced semi-Thue systems in his paper [160] from 1914.
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1.3 Preliminaries from Complexity Theory

We assume some familiarity with algorithms and the very basic concepts of com-
putability, see e.g. [7, 138] for an introduction. In this section we will only outline
the basic concepts from computational complexity theory that are needed for this
book.

This book is concerned with algorithmic problems in combinatorial group the-
ory, and their inherent computational difficulty. In order to make precise statements
about the computational difficulty (or computational complexity) of problems, we
need an abstract mathematical model of a computer. The basiccomputational model
in computability theory and complexity theory is the Turingmachine. Turing ma-
chines were introduced in Turing’s seminal work [162] as an abstract model of a
universal computer. There are several variants for the definition of a Turing ma-
chine. All these variants lead to the same definition of complexity classes. Here, we
choose the variant of (nondeterministic and deterministic) Turing machines with a
read-only input tape, a read-write working tape, and optionally a write-only output
tape.

1.3.1 Turing Machines

Definition 1.10 (nondeterministic Turing machine). A nondeterministic Turing
machineis a tupleM = (Q,Σ ,Γ ,δ ,q0,qf ,�) where

• Q is a finite set of states,
• q0 ∈ Q is the initial state,
• qf ∈ Q is the final state,
• Γ is a finite tape alphabet,
• Σ is the finite input alphabet withΣ ∩{⊳,⊲} = /0,
• � ∈ Γ is the blank symbol, and
• δ ⊆ (Q\{qf})× (Σ ∪{⊳,⊲})×Γ ×Q× (Γ \{�})×{−1,0,1}2 is the transition

relation. We call its elements instructions, and require that (q,⊲,a, p,b,d1,d2) ∈
δ impliesd1 ≥ 0 and(q,⊳,a, p,b,d1,d2) ∈ δ impliesd1 ≤ 0.

The nondeterministic Turing machineM is deterministic, if for all intructions
(q,a,b, p,c,d1,d2),(q,a,b, p′,c′,d′

1,d
′
2) ∈ δ we havep = p′, c = c′, d1 = d′

1, and
d2 = d′

2.

The idea is that the machineM has an input tape, where the input wordw =
a1a2 · · ·an ∈ Σ∗ is stored in cell 1 to celln. Moreover, cell 0 (respectively,n+ 1)
of the input tape contains the left (respectively, right) end marker⊲ (respectively,
⊳). The content of the input tape is not modified byM. Moreover, the machine has
a work tape, whose cells are indexed by the integersZ. Each of these cells con-
tains a symbol fromΓ . At the beginning all cells contain the blank symbol�, and
at every step, all but finitely many cells contain the blank symbol. The machine
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has two heads: An input head, which is scanning a cell of the input tape, and a
work head, which is scanning a cell of the work tape. Finally,the Turing machine
is equipped with a finite state unit, whose current state is from Q. An instruction
(q,a,b, p,c,d1,d2) ∈ δ has the following intuitive meaning: If theM is currently in
stateq, the input head is scanning a cell containing the symbola, and the work tape
is scanning a cell containing the symbolb, then the machineM can do the following
action: Overwrite theb in the current cell on the work tape with the non-blank sym-
bol c (we may haveb= c), move the input head one cell in directiond1 (where “−1”
means “one cell to the left”, “0” means “stay at the same cell”, and “1” means “one
cell to the right”), move the work head one cell in directiond2, and enter stateq.
Let us now define formally configurations and transitions of Turing machines. The
following definitions all refer to the Turing machineM = (Q,Σ ,Γ ,δ ,q0,qf ,�).

Definition 1.11 (configuration).A configurationα of the Turing machineM is a
5-tupleα = (x,q, i,w, j), where:

• x∈ Σ∗ is the input word,
• q∈ Q is the current state of the Turing machine,
• 0≤ i ≤ |x|+1 is the cell scanned by the input head,
• w : Z → Γ is the current content of the work tape, and there exist only finitely

manyk∈ Z with w(k) 6= �,
• j ∈ Z is the current cell scanned by the work head.

The length|α| of the configurationα = (x,q, i,w, j) is |α| = |{k∈ Z | w(k) 6= �}|.
Let init(x) = (x,q0,0,w�,0) be theinitial configurationof M for input x, where
w�(k) = � for all k ∈ Z. With accept (the set of allaccepting configurations) we
denote the set of all configurations of the form(x,qf , i,w, j).

Hence, the length|α| is the number of non-blank cells on the work tape. Note that
the length of the input wordx does not count for the length ofα. This is crucial for
our later definition of logspace computations. Note that|init(x)| = 0.

For an instructiont ∈ δ and configurationsα,β of M, we write α ⊢t β , if in-
structiont can be applied to configurationα and yields configurationβ . Here is the
formal definition:

Definition 1.12 (relation⊢M). For configurationsα,β of M we writeα ⊢t β if and
only if the following conditions are satisfied:α = (x,q, i1,v, i2), β = (x, p, j1,w, j2)
t = (q,a1,a2, p,b,d1,d2), (⊲x⊳)[i1 + 1] = a1, v(i2) = a2, v( j) = w( j) for all j 6=
i2, w(i2) = b, j1 = i1 + d1, and j2 = i2 + d2. We write α ⊢M β if there exists an
instructiont ∈ δ with α ⊢t β .

Clearly, for a nondeterministic Turing machineM, there may exist several (or no)
configurationsβ with α ⊢t β , but the number of successor configurations ofα is
bounded by a constant that only depends onM. If M is deterministic, then every
configuration has at most one successor configuration.

Note that ifα ∈ accept, then there is no configurationβ with α ⊢M β . Moreover,
α ⊢M β implies that|β | − |α| ∈ {0,1} for all configurationsα and β (sinceM
cannot write� into a work tape cell).
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Definition 1.13 (computation,L(M), computably enumerable language).A com-
putation of M on input xis a sequence of configurations(α0,α1, . . . ,αm) with
init(x) = α0 and αi−1 ⊢M αi for all 1 ≤ i ≤ m. The computation issuccessfulif
αm ∈ accept. The set

L(M) = {x∈ Σ∗ | ∃ successful computation ofM on inputx}

is the language accepted (or solved) byM. A languageL is calledcomputably
enumerable(or recursively enumerable) if there exists a Turing machineM with
L = L(M).

In the above definition of computably enumerable languages,we can restrict the
Turing machineM to be deterministic. In other words: Nondeterministic and deter-
ministic Turing machines recognize the same class of languages, namely the com-
putably enumerable languages.

Example 1.14.Consider the deterministic Turing machine

M = (Q,Σ ,Γ ,δ ,q0,qf ,�),

whereQ= {q0,q1,q2,q3,qf }, Σ = {a,b}, Γ = {a,b,#}, andδ contains the follow-
ing tuples:

(1) (q0,⊲,�,q1,#,1,1)
(2) (q1,x,�,q1,x,1,1) for x∈ {a,b}
(3) (q1,⊳,�,q2,#,0,−1)
(4) (q2,⊳,x,q2,x,0,−1) for x∈ {a,b}
(5) (q2,⊳,#,q3,#,−1,+1)
(6) (q3,x,x,q3,#,−1,+1)
(7) (q3,⊲,#,qf ,#,0,0)

This machine accepts the set of all palindromes over the alphabet{a,b}, i.e., the
set of wordsw∈ {a,b}∗ such thatw[i] = w[|w|− i +1] for all 1≤ i ≤ |w|. With the
first two types of instructions, we copy the input word onto the work tape. At the
end of this first stage, the input head scans the right end marker ⊳. Then, with the
instructions of type (3) and (4), we move the work tape head back to the beginning of
the copy of the input word. The input head stays on the right end marker⊳. The main
work is done with the instructions of type (6), which comparefor every 1≤ i ≤ n
the symbolsw[i] andw[|w|− i +1] of the input wordw.

So far, we used Turing machines only as language acceptors, similar to finite
automata in automata theory. But in many contexts we want to use Turing machines
to compute some possibly complex output word from the input word. For instance,
we might want to output the sum or product of two input numbers. For this, we need
Turing machines with output. Since such a machine should produce a single output
word for a given input word, the machine should be deterministic.

Definition 1.15 (Turing machine with output). A deterministic Turing machine
with output(also called atransducer) is a tupleM = (Q,Σ ,Γ ,∆ ,δ ,q0,qf ,�) where
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• Q, Σ , Γ , q0, qf , and� have the same meaning as for ordinary Turing machines,
• ∆ is the output alphabet, and
• δ ⊆ (Q\ {qf})× (Σ ∪ {⊳,⊲})× Γ × Q× Γ × {−1,0,1}2 × (∆ ∪ {ε}) is the

transition relation. We require that(q,⊲,a, p,b,d1,d2,c) ∈ δ implies d1 ≥ 0
and(q,⊳,a, p,b,d1,d2,c) ∈ δ impliesd1 ≤ 0. Moreover, we require that for all
instructions(q,a,b, p,c,d1,d2,o),(q,a,b, p′,c′,d′

1,d
′
2,o

′) ∈ δ we havep = p′,
c = c′, d1 = d′

1, d2 = d′
2, ando = o′ (i.e.,M is deterministic).

The intuition behind an instruction(q,a,b, p,c,d1,d2,o) ∈ δ is the same as for or-
dinary Turing machines, where in additiono ∈ ∆ ∪{ε} is the output symbol. The
idea is that the output is generated sequentially from left to right. If o∈ ∆ theno is
appended to the prefix of the output that has been already produced. Ifo = ε, then
the output is not extended in the current computation step. Formally, a configura-
tion of M is a 6-tupleα = (x,q, i,w, j,y), wherex,q, i,w, j have the same meaning
as in Definition 1.11 andy∈ ∆∗ is the partial output that has been produced so far.
For configurationsα, β and an instructiont ∈ δ we write α ⊢t β if and only if
α = (x,q, i1,v, i2,y), β = (x, p, j1,w, j2,yo) t = (q,a1,a2, p,b,d1,d2,o), and all con-
ditions from Definition 1.12 hold. Computations are defined analogously to ordinary
Turing machines.

A Turing machine with outputM = (Q,Σ ,Γ ,∆ ,δ ,q0,qf ,�) computes a partial
function fM : Σ∗ → ∆∗ in the natural way:

Definition 1.16 (function fM computed byM). For a wordx∈Σ∗ we havefM(x) =
y if and only if there exists an accepting configurationα = (x,qf , i,w, j,y) such that
init(x) ⊢∗

M α.

In general, the functionfM is only partially defined, sinceM is not guranteed to
finally reach an accepting configuration frominit(x).

Recall that a languageL is computably enumerable if there exists a (deterministic
or nondeterministic) Turing machineM with L = L(M). Alternatively, one can say
thatL is recursively enumerable if there exists a Turing machine with outputM such
thatL is the domain offM.

Definition 1.17 (computable language).A languageL is computable(or recursive
or decidable) if and only if there exists a Turing machine with outputM such that
for all inputsx: If x∈ L, then fM(x) = 1 and ifx 6∈ L, then fM(x) = 0 (in particular,
fM is total). A language, which is not computable is calledundecidable.

Intuitively, a languageL is computable, if there exists an algorithm such that for
every input wordx, the algorithm either terminates with the answer “yes,x belongs
to L” or “no, x does not belong toL”. It is well-known thatL is computable if and
only if L and the complement ofL are both computably enumerable.

In the following, we use the termcomputational problemor just problemas a
synonym for language. Hence, Turing machines are devices for solving computa-
tional problems. When describing a computational problem that corresponds to a
languageL ⊆ Σ∗ we use a description of the following form:

input: A word x over the alphabetΣ .
question:Doesx belong toL?
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1.3.2 Time and Space Classes

In this section, we define several important complexity classes.

Definition 1.18 (time and space needed by a Turing machine).Let M be a Turing
machine and letc = (α0,α1, . . . ,αm) be a computation ofM (for a certain inputx).
We say thatcneedstime m, and we say thatcneedsspacemax{|αi | | 0≤ i ≤m}. The
Turing machineM needs time (respectively, space) at mostN∈N on inputx if every
computation (not only accepting ones) ofM on inputx needs time (respectively,
space) at mostN.

Definition 1.19 (f -time bounded, f -space bounded).Let f : N → N be a mono-
tonically increasing function. We say thatM is f -time bounded, if for every inputx,
M needs time at mostf (|x|). We say thatM is f -space bounded, if for every input
x, M needs space at mostf (|x|).

For example, the Turing machine from Example 1.14 is(3n+4)-time bounded.
Of course, the above definitions can be also used for Turing machines with out-

put.

Definition 1.20 (DTIME, NTIME, DSPACE, NSPACE). We define the following
complexity classes:

DTIME( f ) = {L(M) | M is deterministic andf -time bounded}

NTIME( f ) = {L(M) | M is nondeterministic andf -time bounded}

DSPACE( f ) = {L(M) | M is deterministic andf -space bounded}

NSPACE( f ) = {L(M) | M is nondeterministic andf -space bounded}

For a classC of monotonically increasing functions onN we writeDTIME(C ) for⋃
f∈C DTIME( f ) and similarly forNTIME, DSPACE, andNSPACE.

Trivially, DTIME( f ) ⊆ NTIME( f ) andDSPACE( f ) ⊆ NSPACE( f ). Some other
inclusions are:

• DSPACE(O( f )) = DSPACE( f ) andNSPACE(O( f )) = NSPACE( f )
• NTIME( f ) ⊆ DSPACE( f )
• NSPACE( f ) ⊆ DTIME(2O( f )) if f ∈ Ω(logn).

Moreover, a famous theorem of Savitch states thatNSPACE( f ) ⊆ DSPACE( f 2) if
f ∈ Ω(logn). Hence, nondeterministic Turing machines can be simulatedby deter-
ministic Turing machines with a quadratic blow up in space.

Definition 1.21 (L, P, NP, PSPACE).Some important abbreviations are the follow-
ing, where as usualN[x] denotes the class of all polynomials with coefficients from
N:
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L = DSPACE(log(n)) (1.1)

NL = NSPACE(log(n)) (1.2)

P =
⋃

f∈N[n]

DTIME( f ) (1.3)

NP =
⋃

f∈N[n]

NTIME( f ) (1.4)

PSPACE=
⋃

f∈N[n]

DSPACE( f )
∗
=

⋃

f∈N[n]

NSPACE( f ) (1.5)

The identity (*) in (1.5) is a consequence of Savitch’s theorem. In (1.1) and (1.2)
we do not have to specify the base of the logarithm, since changing the base only
involves a multiplicative factor. So,L (respectively,NL ) is the class of all problems
that can be decided by a deterministic (respectively, nondeterministic) Turing ma-
chine in logarithmic space,P (respectively,NP) is the class of all problems that can
be decided by a deterministic (respectively, nondeterministic) Turing machine in
polynomial time, andPSPACE is the class of all problems that can be decided by a
(deterministic or nondeterministic) Turing machine in polynomial space. The class
P is often identified with the class of those problems that can be solved efficiently.
The following inclusions hold:

L ⊆ NL ⊆ P⊆ NP⊆ PSPACE. (1.6)

But none of these inclusions is known to be strict (and the strictness of each inclu-
sion is a major open problem in complexity theory), althoughthe so called space
hierarchy theorem impliesNL ( PSPACE; hence one of the inclusions must be
proper.

Definition 1.22 (coC).For a complexity classC we denote withcoC the set of all
complements of languages fromC.

Hence,C = coC means thatC is closed under complement. It is easy to show that
deterministic time and space classes (likeL , P, PSPACE) are closed under com-
plement. A famous result shown independently by Immerman and Szelepcsényi in
1985 states thatNL = coNL. WhetherNP= coNPis a major open problem in com-
plexity theory.

1.3.3 Reductions and Completeness

In this section we will introduce the important notions of reductions and com-
pleteness for a complexity class. Via completeness, one canidentify the most diffi-
cult problems within a complexity class. First we have to introduce some resource
bounded classes of transducers:
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Definition 1.23 (polynomial time transducer, logspace transducer). A polyno-
mial time transduceris a Turing machineM with output that computes a total func-
tion fM and that isp(n)-time bounded for a polynomialp(n). A logspace transducer
is a Turing machineM with output that computes a total functionfM and that is
log(n)-space bounded.

Example 1.24.The binary representation of the sum of two natural numbers that
are given in binary representation can be computed with a logspace transducer that
follows the standard school method for addition. Ifu andv are the binary represen-
tations of the two input numbers (let us assume that the leastsignificant bit is left),
then the machine has to store a position 1≤ p ≤ max{|u|, |v|}. This position can
be stored in binary representation and hence needs only logarithmically many bits.
Moreover, a carry bit is stored. In each step, the bits at position p in u andv and the
carry bit is added , a new output bit is produced and a new carrybit is stored. More-
over, the positionp is incremented. Incrementing a number in binary representation
is possible in logarithmic space.

Also the product of two binary encoded natural numbers can becomputed by a
logspace transducer; this requires a little bit more work than for sum. Finally, also
the integer part of the quotient of two binary encoded natural numbers can be com-
puted in logspace [35, 76]. This solved a long standing open problem.

Example 1.25.Another class of functions that can be computed with logspace trans-
ducers are free monoid morphisms. Letf : Σ∗ → Γ ∗ be a morphism between free
monoids. A logspace transducer that computesf simply reads the input wordx from
left to right, and for every symbola in x it appendsf (a) to the output.

Using polynomial time transducers and logspace transducers we can refine the clas-
sical many-one reducibility from computability theory.

Definition 1.26 (≤P
m,≤log

m ). Let K ⊆ Σ∗ andL ⊆ ∆∗ be languages. We writeK ≤P
m L

(K is polynomial time many-one reducible toL) if there exists a polynomial time
transducerM such that for allx ∈ Σ∗ we have:x∈ K if and only if fM(x) ∈ L. We
write K ≤

log
m L (K is logspace many-one reducible toL) if there exists a logspace

transducerM such that for allx∈ Σ∗ we have:x∈ K if and only if fM(x) ∈ L.

Since a logspace transducer works in polynomial time (this follows from the same
argument that showsL ⊆ P), K ≤

log
m L impliesK ≤P

m L. Moreover,L1 ≤
P
m L2 ≤

P
m L3

impliesL1 ≤
P
m L3, i.e.,≤P

m is transitive: Simply compose two polynomial time trans-
ducers. This simple approach does not work for logspace transducers: IfM1 andM2

are logspace transducers, then for an inputx, the length offM1(x) can be polynomial
in the length ofx. Hence, we cannot store the wordfM1(x) as an intermediate result.

Nevertheless,≤log
m is a transitive relation. The proof is neither obvious nor very dif-

ficult. Transitivity of≤log
m is very useful. In order to construct a logspace transducer

for a certain task, it allows to split this task into several (constantly many) subtasks
and to design a logspace transducer for each subtask.
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The classL is closed under≤log
m : If L ∈ L andK ≤

log
m L then alsoK ∈ L . The

same holds for all comlexity classes in (1.6). Similarly,P and all complexity class
aboveP in (1.6) are closed under≤P

m.
The following two types of reducibilities are weaker than≤log

m and ≤P
m, re-

spetively:

Definition 1.27 (≤P
bc, ≤

log
bc ). Let K ⊆ Σ∗ andL ⊆ ∆∗ be languages. We writeK ≤P

bc
L (K is polynomial time bounded conjunctively reducible toL) if there exist a
constantc ∈ N and a polynomial time transducerM such thatfM(Σ∗) ⊆ (#∆∗)c

(where #6∈ ∆ ) and for allx∈ Σ∗ we have:x ∈ K if and only if
∧c

i=1yi ∈ L, where
fM(x) = #y1#y2 · · ·#yc. We write K ≤log

bc L (K is logspace bounded conjunctively
reducible toL) if there exist a constantc∈ N and a logspace transducerM such that
fM(Σ∗) ⊆ (#∆∗)c (where #6∈ ∆ ) and for allx ∈ Σ∗ we have:x ∈ K if and only if∧c

i=1yi ∈ L, wherefM(x) = #y1#y2 · · ·#yc.

The relation≤P
bc (respectively,≤log

bc ) has the same closure properties that we men-

tioned for≤P
m (respectively,≤log

m ) above.
In this book, we will also need a fifth type of reducibility that is weaker than≤P

bc.
It is called polynomial time Turing-reducibilityand is defined viaoracle Turing
machines.

Definition 1.28 (oracle Turing machine).Let us fix a languageL ∈ ∆∗. An oracle
Turing machine with oracle access to Lis a tupleM = (Q,Σ ,Γ ,∆ ,δ ,q0,qf ,�) that
satisfies all the conditions of a Turing machine with output (Definition 1.15). In
addition,Q constains three distinguished statesq?,qY, andqN such thatδ contains
no outgoing transitions from stateq?. Instead, we enforce that for a configuration
α = (q?, i,w, j,y) (hence,y∈∆∗ is the output produced so far) the next configuration
is (qY, i,w, j,ε) if y∈ L and(qN, i,w, j,ε) if y 6∈ L.

Intuitively this means thatM can compute words over∆ (so called oracle queries).
When it enters the stateq? (the query state), the computed oracle query is send to an
L-oracle. This oracle answers instantaneously, whether theoracle query belongs to
L or not. Hence, membership in the setL can be tested for free. One could also say
that we enhance the machineM with a black-box procedure that tests membership
in the setL.

In Definition 1.28, we do not care whetherL is computable or not. Oracle Turing
machines can be deterministic or nondeterministic, but we will only use determin-
istic ones. All definitions that we gave for ordinary Turing machines (e.g., the ac-
cepted languageL(M), f (n)-time bounded,f (n)-space bounded) are defined anal-
ogously to ordinary Turing machines. Now we can define polynomial time Turing-
reducibility:

Definition 1.29 (≤P
T). For languagesL and K we write K ≤P

T L (K is polyno-
mial time Turing-reducible toK) if there exists a deterministic polynomially time-
bounded oracle Turing machineM with oracle access toL such thatK = L(M).



12 1 Preliminaries from Theoretical Computer Science

In other words:K can be decided in polynomial time using an oracle for the language
L. Clearly,K ≤P

m L impliesK ≤P
T L. The converse is false: For every languageL ⊆

{0,1}∗ we haveL≤P
T ({0,1}∗\L), but there are languages such thatL≤P

m ({0,1}∗\
L) does not hold (e.g. the halting problem).

Let≤ be one of our reducibility notions, and letK,L1, . . . ,Ln be languages. When
writing K ≤ {L1, . . . ,Ln} we mean thatK ≤ #L1#L2#· · ·Ln.

Using our reducibility relations we can finally define complete problems for com-
plexity classes. Complete problems for a complexity classC are the most difficult
problems for the classC . In some sense they completely capture the classC .

Definition 1.30 (C -hard language,C -complete language).LetC be a complexity
class and let≤ be one of the above reducibility relations (≤

log
m , ≤m

P , ≤log
bc , ≤P

bc or
≤T

P). A languageL is C -hard with respect to≤ if K ≤ L for everyK ∈ C (L is at
least as difficult as any problem inC ). The languageL is C -complete with respect
to ≤ if L ∈ C andL is C -hard with respect to≤. Whenever we say thatL is C -
complete, we implicitly refer to logspace many-one reducibility ≤

log
m .

Complete problems forC are in a sense the most difficult problems fromC . For this,
it is important that the reducibility used for the definitionof completeness is not too
weak. For instance, any languageL ⊆ {0,1}∗ with /0 6= L 6= {0,1}∗ is P-complete
with respect to≤m

P .
For many complexity classes, very natural complete problems are known, Sec-

tion 1.3.6 below mentions some of them. The book [58] contains a list of several
hundredNP-complete problems, and [67] contains a similar list ofP-complete prob-
lems.NP-complete problems are often called intractable, because of the following
observation: IfL is NP-complete, thenL ∈ P if and only if P = NP. Analogous
equivalences hold for other complexity classes too: For instance, ifL is P-complete,
thenL ∈ NL if and only if NL = P.

1.3.4 How to Represent Input Structures

We should say a few words about the input representation. Theinput for a Turing
machine is a word over some alphabetΣ . But quite often, we want to solve algorith-
mic problems, where the input is not a word, but for instance afinite graph, or a finite
relational structure, or even another Turing machine. If wewant to solve such a prob-
lem with a Turing machine, we have to encode the input data types by words. This
is certainly possible. For instance a directed graph onn nodes can be represented
by its adjacency matrix. This matrix can be encoded by a word over the alphabet
{0,1,#} by listing all matrix rows separated by #. Of course, there are other reason-
able representations of graphs. For instance a directed graph onn vertices 1, . . . ,n
can be represented by concatenating for 1≤ i ≤ n all words 0i#0j1#0j2 · · ·#0jk where
j1, . . . , jk is a list of all successor nodes of nodei. This encoding is based on adja-
cency lists. Strictly speaking the precise word encoding ofthe input data has to be
fixed for a computational problem. Quite often this is not done explicitly, but some
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canonical encoding is assumed. If two different input encodings can be transformed
into each other efficiently, say by a logspace transducer, then the complexity of the
problem does not depend on which of the two encodings is chosen (at least if we
only consider classes containingL ). For instance, the word encodings of directed
graphs based on adjacency matrices and adjacency lists can be converted into each
other by a logspace transducer.

Two important representations of numbers, which cannot be transformed into
each other by logspace transducers are the unary and binary representation of num-
bers. The unary representation of the numbern∈N is just the word 0n. A polynomial
time transducer cannot convert the binary encoding of the numbern into its unary
encoding, simply because the latter is exponentially longer than the former, but in
polynomial time only polynomially many output symbols can be produced. Hence,
for computational problems, where the input consists of numbers, it is important to
specify the encoding of numbers (unary or binary encoding).One also says that the
binary encoding of numbers is more succinct than the unary encoding. The topic
of succinctness is central for this book. In the next section, we will see a general
framework for succinct representations based on circuits.

A final remark in this context: For most natural encodings, itis very easy to
check for a Turing machine, whether a given input word is a valid encoding. For
instance, whether a word over the alphabet{0,1,#} is the word encoding of a graph
as described above can be verified by a deterministic Turing machine in logarithmic
space.

1.3.5 Circuits

Circuits are a central topic in this book. They allow to represent large objects in a
succinct way. In this section, we introduce a general definition of circuits. Later, we
will see several concrete instantiations of circuits.

Let us fix a countable (possibly finite) setF of function symbols, where every
f ∈F has a certain aritynf ∈N. In casenf = 0, f is a constant symbol. We assume
thatF contains at least one constant symbol.

Definition 1.31 (F -expressions with variables).LetV be a finite set ofvariables.
The setE (F ,V) of F -expressionswith variables fromV is the smallest set with
respect to inclusion such that:

• V ⊆ E (F ,V)
• If f ∈ F ande1, . . . ,enf ∈ E (F ,V), then alsof (e1, . . . ,enf ) ∈ E (F ,V).

The setVar(e) of variables that occur in the expressione is defined as follows:

• Var(v) = {v} for v∈V.
• Var( f (e1, . . . ,enf )) =

⋃
1≤i≤nf

Var(ei).

Circuits are a succinct representation of expressions without variables. The idea is
to represent a subexpression that appears several times only once.
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Definition 1.32 (circuit). An F -circuit is a tripleC = (V,S, rhs) such that:

• V is a finite set of variables (or circuit gates).
• S∈V is the start variable.
• rhs :V → E (F ,V) (rhs stands for “right-hand side”) assigns to each variablean

expression such that the relation

graph(C ) = {(A,B) ∈V ×V | A∈ Var(rhs(B))} (1.7)

is acyclic. The reflexive and transitive closure of the relation graph(C ) (which
is a partial order onV) is thehierarchical orderof C . The length (number of
edges) of a longest path in the graph(V,graph(C )) is theheightof C .

In order to evaluate a circuit we need an interpretation for the function symbols from
F . This leads to the notion of anF -algebra:

Definition 1.33 (F -algebra).An F -algebra is a pairA = (A, I), whereA is a set
and I maps everyf ∈ F to a functionI( f ) : Anf → A. We usually suppress the
mappingI and simply write(A,( f ) f∈F ) for (A, I). Here, f is identified with the
functionI( f ).

Definition 1.34 (evaluation of anF -circuit in an F -algebra).Fix anF -algebra
A = (A, I) and anF -circuit C = (V,S, rhs). We define the evaluation mapping
valAC : E (F ,V) → A inductively as follows:

• If e= X ∈V, thenvalAC (e) = valAC (rhs(X)).
• If e= f (e1, . . . ,enf ), thenvalAC (e) = f (valAC (e1), . . . ,val

A
C (enf )) ∈ A

The fact that(V,graph(C )) is acyclic ensures that the mappingvalAC is well-defined.
Finally, we definevalA (C ) = valAC (S).

TheF -algebraA will be always clear from the context. Hence, we will omit thesu-
perscriptA in the mappingsvalAC andvalA . We will also talk aboutA -expressions
andA -circuits (or circuits overA ) instead ofF -expressions andF -circuits. Fi-
nally, if also the circuitC is clear from the context, we will also omit the indexC

in the mappingvalC (e).
If a Turing machine wants to receive a circuitC = (V,S, rhs) as input, the circuit

has to be encoded by a word. One can identify the variables with numbers from
{1, . . . ,n} and each of these numbers can be binary encoded. Moreover, one can
assumeS= 1. Then, to encode the whole circuit, we first specify the number n
(number of variables) and then list all right-hand sides rhs(1), . . . , rhs(n). In order to
encode an expressione∈ E (A ,V) we have to specify how to encode the operation
symbols f ∈ F . If F is finite, we can simply include the setF into the set of
input symbols for the Turing machine. IfF is countably infinite, we can assume
thatF = N and take the binary encoding off as the code for the function symbol
f . In order to be flexible, let us fix a functionsize : F → N. In caseF is finite, we
assume thatsize( f ) = 1 for every f ∈ F . This is reasonable, since a symbol from
F can be specified in constant space.
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X0 X1 X2 X3 X4

X5 X6

Fig. 1.1 The graph of the circuit from Example 1.37.

Definition 1.35 (size of a circuit).Having fixed a size function, we define the size
|e| of an expressione∈ E (F ,V) inductively as follows:

• If e∈V, then|e| = 1.
• If e= f (e1, . . . ,enf ), then|e| = size( f )+ ∑

nf
i=1 |ei |.

Finally, we define thesize|C | of theF -circuit C = (V,S, rhs) as

|C | = ∑
X∈V

|rhs(X)|.

Definition 1.36 (circuit in normal form). A circuit C = (V,S, rhs) is in normal
form, if for every X ∈ V we have rhs(X) = f (X1, . . . ,Xnf ) for some f ∈ F and
X1, . . . ,Xnf ∈V.

By introducing additional variables we can transform in polynomial time a given
circuit C into a circuitD in normal form such thatval(C ) = val(D).

Example 1.37.Let F = {+,×,1}, wheren+ = n× = 2 andn1 = 0. Moreover, con-
sider theF -algebraA = (Z, I), whereI(+) is the addition operation,I(×) is the
multiplication operation, andI(1) = 1. Finally, define theF -circuit

C = ({X0,X1,X2,X3,X4,X5,X6},X6, rhs),

where the right-hand side mapping rhs is defined as follows (we use infix notation
for + and×):

rhs(X0) = 1

rhs(X1) = X0 +X0

rhs(Xi) = Xi−1×Xi−1 for 2≤ i ≤ 4

rhs(X5) = X2 +X0

rhs(X6) = X5 +X4

We obtain

valC (X0) = 1, valC (X1) = 2, valC (X2) = 4, valC (X3) = 16,

valC (X4) = 256, valC (X5) = 5, valC (X6) = 261
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and henceval(C ) = 261. The circuitC is in normal form, and has size 19. The
graph ofC is shown in Figure 1.1.

1.3.6 Some Important Computational Problems

In this section, we present some important algorithmic problems. In particular, we
present complete problems for the complexity classesL , NL , P, NP, andPSPACE.

Example 1.38 (graph accessibility).The following problem is known as thegraph
accessibility problem:

input: A directed graphG, and two nodessandt.
question:Is there a directed path froms to t in G?

The graph accessibility problem belongs toNL , and is actuallyNL -complete. The
undirected graph accessibility problemis the following restriction of the graph ac-
cessibility problem:

input: An undirected graphG, and two nodessandt.
question:Is there a path froms to t in G.

The undirected graph accessibility problem belongs toL . This is a very difficult re-
sult which was proved in 2004 bei Reingold [146]. Actually, the undirected graph
accessibility problem isL -complete. In order to make this statement nontrivial,
one has to work with a stronger reducibility than logspace-reducibility (so called
DLOGTIME-reducibility).

Example 1.39 (PRIMES).The following problem PRIMES belongs toP.

input: A word w∈ {0,1}∗.
question:Is w the binary representation of a prime number?

This was shown in 2004 by Agrawal, Kayal, and Saxena [4]. Notethat is easy to test
whether for an input wordw = 0n (unary representation ofn), n is a prime number.
This latter problem actually belongs toL . It is not known, whether PRIMES isP-
complete.

Example 1.40 (circuit value problem).A boolean circuitis aB-circuit (in the sense
of Definition 1.32), whereB = ({0,1},∧,∨,¬,0,1) is the boolean algebra (∧ de-
notes the binary boolean AND-function,∨ denotes the binary boolean OR-function,
and¬ denotes the unary boolean NOT-function). Thecircuit value problemis the
following problem:

input: A boolean circuitC.
question:Does the output gate ofC evaluate to 1.

Ladner proved that the circuit value problem isP-complete [101]. Moreover, the
monotone circuit value problem, which is the restriction of the circuit value problem
to monotone boolean circuits (boolean circuits that do not contain the¬-operator on
right-hand sides), isP-complete [63] as well.
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Example 1.41 (SAT).A boolean formula is an expression fromE (B,V) (in the
sense of Definition 1.31), whereB is the boolean algebra from the circuit value
problem andV is a finite set of variables. Such a boolean formulaF is satisfiable, if
the variables fromV can be replaced by truth values (0 or 1) in such a way thatF
evaluates to 1. SAT is the following problem:

input: A boolean formulaF .
question:Is F satisfiable?

SAT was shown to beNP-complete by Cook [39] and independently by Levin [104].
SAT was actually the first natural problem that was shown to beNP-complete.

Example 1.42 (SUBSETSUM).SUBSETSUM is the following problem:

input: A finite setW ⊆ N andt ∈ N, where all numbers are encoded in binary.
question:Is there a subsetV ⊆W such that∑w∈V w = t?

SUBSETSUM isNP-complete as well.

Example 1.43 (universality problem for NFAs).The universality problem for nonde-
terministic finite automata is the following problem:

input: A nondeterministic finite automatonA over the alphabet{0,1}.
question:DoesL(A) = {0,1}∗ hold, i.e., doesA accept all input words?

This problem was shown to bePSPACE-complete in [5].

1.3.7 Randomized Computation

Let M be a nondeterministic Turing machine, and letx be an input word forM. The
machineM generates acomputation treefor input x. This is a rooted tree, where
every node is labeled with a configuration. The root is labeled with the initial con-
figurationinit(x), and if a nodev is labeled with a configurationα, then for every
configurationβ with α ⊢M β , v has aβ -labeled child. Assume now that this com-
putation tree is finite, which means thatM does not have an infinite computation
on inputx. We may view the computation tree as a stochastic process, where at
each nodev with childrenv1, . . . ,vk one of the nodesv1, . . . ,vk is chosen with prob-
ability 1/k. We can now compute the probabilityProb[M acceptsx] thatM accepts
the inputx. This new viewpoint allows us to define several randomized complexity
classes:

Definition 1.44 (RP).A languageL belongs to the classRP (randomized polyno-
mial time) if there exists a nondeterministic polynomial time bounded Turing ma-
chineM such that for every inputx we have:

• If x 6∈ L then Prob[M acceptsx] = 0.
• If x∈ L then Prob[M acceptsx] ≥ 1/2.
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The choice of the probability 1/2 in the second case is not crucial. If the acceptance
probability in casex∈ L is 1/p(n) (wheren = |x| is the input length), i.e., the error
probability is 1−1/p(n), then by running the algorithmn·p(n) times, we can reduce
the error probability to(1−1/p(n))n·p(n), which is smaller than(1/2)n for n large
enough. It is important here that the different runs ofM on inputx are mutually
independent.

Note that a languageL belongs to the classcoRPif there exists a nondeterministic
polynomial time bounded Turing machineM such that for every inputx we have:

• If x∈ L then Prob[M acceptsx] = 1.
• If x 6∈ L then Prob[M acceptsx] ≤ 1/2.

The classRP∩coRPis also calledZPP (zero-error probabilistic polynomial time).
Note thatP⊆ ZPP.

Definition 1.45 (BPP).A languageL belongs to the classBPP (bounded error
probabilistic polynomial time) if there exists a nondeterministic polynomial time
bounded Turing machineM and a constantε such that for every inputx we have:

• if x 6∈ L then Prob[M acceptsx] ≤ 1/2− ε.
• if x∈ L then Prob[M acceptsx] ≥ 1/2+ ε.

The constantε (the probability gap) can be made larger by probability amplification.
For this the machine runs several times (say 2k−1 times) on inputx and outputs by
majority, i.e., the machine accepts if the machine accepts at leastk times. Chernoff’s
bound can used for the analysis of this new machine.

Note thatRP∪coRP⊆ BPP. The classesRP, coRP, andBPP are closed under
polynomial time many-one reductions: IfL ∈ RP andK ≤P

m L, then alsoK ∈ RP,
and similarly forcoRPandBPP. Since it is not known, whetherRP is closed under
complement, it is not clear whetherRP is closed under polynomial time Turing-
reductions. But we will need the following:

Lemma 1.46.Let L∈ RP (respectively,coRP) and K≤P
bc L. Then also K∈ RP

(respectively, K∈ coRP).

Proof. Let K ⊆ Σ∗ andL ⊆ ∆∗. By the definition of≤P
bc there exist a constantc and

a polynomial time transducerT such thatfT(Σ∗) ⊆ (#∆∗)c and for allx ∈ Σ∗ we
have:x∈ K if and only if

∧c
i=1yi ∈ L, wherefT(x) = #y1#y2 · · ·#yc.

First, assume thatL ∈ RP. Hence, there exists a nondeterministic polynomial
time Turing machineM such that for ally∈ ∆∗, (i) if y 6∈ L then Prob[M acceptsy] =
0, and (ii) if y ∈ L then Prob[M acceptsy] ≥ 1/2. Consider the nondeterministic
polynomial time Turing machineM′ that behaves for allx∈ Σ∗ as follows:

• Fromx, compute in polynomial time the wordfT(x) = #y1#y2 · · ·#yc.
• Run the machineM on each of the input wordsyi . These computations must be

mutually independent.
• If each of thesec many computations is accepting, thenM′ acceptsx, otherwise

M′ rejectsx.
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Let us compute the probability thatM′ acceptsx. Since the computations are mutu-
ally independent, we have

Prob[M′ acceptsx] =
c

∏
i=1

Prob[M acceptsyi ] (1.8)

If x 6∈ K, then there exists at least oneyi (1 ≤ i ≤ c) such thatyi 6∈ L. Hence,
Prob[M acceptsyi ] = 0, which implies Prob[M′ acceptsx] = 0 with (1.8). If x ∈ K,
thenyi ∈ L for all 1 ≤ i ≤ c. Hence, Prob[M acceptsyi ] ≥ 1/2 for all 1≤ i ≤ c.
Hence, Prob[M′ acceptsx] ≥ (1/2)c, which is a constant (sincec is a constant). Us-
ing probability amplification, we can increase this constant to at least 1/2.

Now, assume thatL ∈ coRP. Hence, there exists a nondeterministic polynomial
time Turing machineM such that for ally∈ ∆∗, (i) if y 6∈ L then Prob[M acceptsy]≤
1/2, and (ii) if y ∈ L then Prob[M acceptsy] = 1. Consider the nondeterministic
polynomial time Turing machineM′ constructed above and take an inputx ∈ Σ∗.
Let us compute the probability thatM′ acceptsx. If x 6∈ K, then there exists at
least oneyi (1 ≤ i ≤ c) such thatyi 6∈ L. Hence, Prob[M acceptsyi ] ≤ 1/2. With
(1.8) we get Prob[M′ acceptsx] ≤ 1/2. On the other hand, ifx∈ K, thenyi ∈ L for
all 1 ≤ i ≤ c. Hence, Prob[M acceptsyi ] = 1 for all 1≤ i ≤ c. This implies that
Prob[M′ acceptsx] = 1. ⊓⊔

There is some evidence in complexity theory forBPP= P and henceRP= coRP=
BPP= P Impagliazzo and Wigderson [85] proved that if there exists alanguage in
DTIME(2O(n)) that has circuit complexity 2Ω(n) (which seems to be plausible) then
BPP= P.

An important computational problem in the context of the classRP is polyno-
mial identity testing (PIT). For this, we first have to define arithmetic circuits. Re-
call that for a ringR, R[x1, . . . ,xn] defines the ring of polynomials with coefficients
from R and variablesx1, . . . ,xn. Also recall the definition of general circuits (Defi-
nition 1.32).

Definition 1.47 ((univariate, variable-free) arithmetic circuit). An arithmetic cir-
cuit over the ringR is a(R[x1, . . . ,xn],+, ·,1,−1,x1, . . . ,xn)-circuit for somen≥ 0.
Hence, an arithmetic circuit defines a polynomial fromR[x1, . . . ,xn] using the op-
erations of addition and multiplication of polynomials, starting from the poly-
nomials 1,−1, x1, . . . ,xn. A univariate arithmetic circuitover the ringR is a
(R[x],+, ·,1,−1,x)-circuit. A variable-free arithmetic circuitover the ringR is a
(R,+, ·,1,−1)-circuit.

The characteristicchar(R) of the ringR, i.e., the smallest numberm such that

1+ · · ·+1︸ ︷︷ ︸
m many

= 0.

If no suchm exists thenchar(R) = 0. Note that for an arithmetic circuitC over
R, all coefficients of the polynomialval(C ) are fromZchar(R) (the integers modulo
char(R)), where we setZ0 = Z.
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By iterated squaring, one can easily compute in logspace from a binary encoded
natural numberman arithmetic circuitC with val(C ) = xm. For instance, the circuit
with rhs(Xi) = Xi−1Xi−1 for 1≤ i ≤ n, rhs(X0) = x and start variableXn defines the
polynomialx2n

, and the size of this circuit isn+1. In the same way one can define a
variable-free arithmetic circuit over the ringZ of sizen+1 that defines the number
22n

. Note that the binary encoding of this number has 2n many bits. Due to this, one
may allow in arithmetic circuits right-hand sides of the form xm for a binary encoded
natural numberm.

In the literature, also the term “straight-line program” isused for arithmetic cir-
cuits, see e.g. [6, 84, 93]. Here, we reserve the term “straight-line program” for
another class of circuits that will be introduced in Section3.1.

The main computational problem for arithmetic circuits is polynomial identity
testing:

Definition 1.48 (polynomial identity testing, PIT(R)). For a ringR, the problem
PIT(R) (polynomial identity testing for the ring R) is the following computational
problem:

input: An arithmetic circuitC over the ringR
question:Is val(C ) the zero-polynomial?

Note that asking whetherval(C ) is the zero-polynomial is not the same as asking
whetherval(C ) is zero for all assignments of the variables inval(C ): For instance,
x2 +x∈ Z2[x] is not the zero polynomial but 02 +0 = 12 +1 = 0 in Z2.

It suffices to consider polynomial identity testing for the rings Z and Zm for
m≥ 2: By the remark after Definition 1.47,PIT(R) is equivalent toPIT(Zchar(R)).
The following important result was shown in [84] for the ringZ and in [3] for the
ringsZm (m≥ 2).

Theorem 1.49.For every ring R∈ {Z}∪{Zm | m≥ 2}, PIT(R) belongs tocoRP.

Before we prove Theorem 1.49, let us first present a simple reduction from polyno-
mial identity testing to polynomial identity testing for univariate circuits, see [3]:

Proposition 1.50.For every ring R there is a polynomial time many-one reduction
from polynomial identity testing to univariate polynomialidentity testing.

Proof. For a polynomialp(x1, . . . ,xn)∈R[x1, . . . ,xn] and a variablexi let deg(p,xi)∈
N be the maximal numberd such thatp(x1, . . . ,xn) contains a monomial of the form

r · xd1
1 · · ·xdi−1

i−1 xd
i xdi+1

i+1 · · ·xdn
n . Assume thatd ∈ N is such that deg(p,xi) < d for all

1≤ i ≤ n. We define the univariate polynomialuniv(p,d) ∈ R[x] as

univ(p,d) = p(xd,xd2
, . . . ,xdn

).

The mappingp 7→ univ(p,d) is injective, satisfiesuniv(p1 + p2,d) = univ(p1,d)+
univ(p2,d) anduniv(p1 · p2,d) = univ(p1,d) ·univ(p2,d), and maps the zero poly-
nomial to the zero polynomial. Hence,p is the zero-polynomial if and only if
univ(p,d) is the zero-polynomial. Moreover, given an arithmetic circuit C for
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p(x1, . . . ,xn), we can compute in polynomial time the binary encoding of a num-
berd such that deg(p,xi) < d for all 1≤ i ≤ n. Then we obtain an arithmetic circuit
for univ(p,d) by replacing every right-hand sidexi by xdi

. Note that the binary en-
coding of the numberdi can be computed in polynomial time.⊓⊔

Proof of Theorem 1.49.We prove the theorem only for the ringZ andZp for p prime.
These are acutally the only cases needed in this book. Let us start with R= Z. Let
C = (V,A0, rhs) be an arithmetic circuit overZ. By Proposition 1.50 we can assume
that C is univariate. Moreover, we can assume thatC is in normal form. Hence,
every right-hand side ofC is either 1,−1, a variable,X +Y, or X ·Y for gatesX
andY. Let p(x) = val(C ) and letr be the number of gates ofC andk = r +1. The
following facts follows easily by induction onr:

• The degree deg(p(x)) of the polynomialp(x) is at most 2r = 2k/2.
• For every natural numbera≥ 2 and every integerb with |b| ≤ a we have|p(b)| ≤

a2r
.

Let us define
A = {1,2, . . . ,2k}.

Since a non-zero polynomial of degreed over a fieldF has at mostd different roots
(in our case, we can take the fieldF = Q), we get: Ifp(x) 6= 0, then the probability
that p(a) = 0 for a randomly chosen elementa∈ A is at most 1/2. Hence, to check
whetherp(x) 6= 0, we can guess an elementa ∈ A, and check whetherp(a) 6= 0.
But here, another problem arises: The numberp(a) can be very large: By the above
consideration, we know that|p(a)| ≤ 2k2r

for all a∈A, but the binary representation
of 2k2r

has exponentially many bits.
To solve this problem, we computep(a) modm for randomly chosen numbersm

from the set
M = {1, . . . ,22k}.

Claim 1:Letb be an integer with 1≤ |b|≤ 2k2k
. Then the probability thatb modm 6=

0 for a randomly chosen numberm∈ M is at least 1/4k if k is sufficiently large.

Proof of the Claim 1:By the prime number theorem, the number of primes in the
setM goes to 22k/ ln(22k) for k→ ∞. Hence, ifk is sufficiently large, then there are
more than 22k/2k prime numbers inM. On the other hand, if 1≤ |b| ≤ 2k2k

, then the
number of different prime divisors ofb is at most log2(|b|) ≤ k2k. Hence, there are
at least 22k/2k−k2k prime numbersq∈M such thatb modq 6= 0. If k is sufficiently
large, then we get

22k/2k−k2k

22k =
1
2k

−
k
2k ≥

1
2k

−
1
4k

=
1
4k

.

This proves Claim 1.
Our algorithm works as follows:

• Randomly choose a pair(a,m) ∈ A×M.
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• Computep(a) modm. This can be done in polynomial time using the circuit
C for p(x). One simply replaces every gate with right-hand sidex by a modm.
Then we evaluate the circuit in the ringZm of integers modulom. Note that
elements ofZm can be represented with 2k = 2r + 2 bits. Hence, all additions
and multiplications can be done in polynomial time.

• If p(a) modm 6= 0 then accept, otherwise reject.

If p(x) is the zero polynomial, then this algorithm accepts with probability zero. On
the other hand, ifp(x) is not the zero polynomial, then the algorithm accepts with
probability at least 1/8k (if k = r +1 is large enough): With probability at least 1/2

the algorithm chooses an elementa∈ A with p(a) 6= 0. Note thatp(a) ≤ 2k2k
. For

such ana∈A, the probability that the chosen elementm∈M satisfiesp(a) modm 6=
0 is at least 1/4k by Claim 1. Finally, the success probability 1/8k in casep(x) is not
the zero polynomial can be increased to 1/2 using probability amplification. This
concludes the proof for the ringZ.

Let us now consider the fieldFq for q a prime number. LetC = (V,A0, rhs) be an
arithmetic circuit overFq in normal form and withr gates. Again, we can assume
that the polynomialval(C ) = p(x) is univariate. The degree ofp(x) is at most 2r .
Consider the infinite fieldFq(y) of all fractions of polynomials fromFq[y], which
containsFq. Hence, we can viewp(x) as a polynomial with coefficients fromFq(y).
If A is any subset ofFq[y] ⊆ Fq(y) with |A| ≥ 2r+1, then assumingp(x) is not the
zero polynomial, the probability thatp(a) = 0 for a randomly chosen polynomial
a = a(y) ∈ A is at most 1/2. Let d ≥ 1 be the smallest number withqd ≥ 2r+1

(clearly,d ≤ r +1) and define

A = {a(y) ∈ Fq[y] | degree(a(y)) < d}.

Note that|A| = qd ≥ 2r+1. Similar to the case of characteristic 0, we will compute
p(a) (for a = a(y) ∈ A chosen randomly) modulo a randomly chosen polynomial of
small degree. Recall that a polynomialcnyn +cn−1yn−1 + · · ·+c1y+c0 is monic, if
cn = 1. Let

M = {m(y) ∈ Fq[y] | m(y) is monic and degree(m(y)) = 2(d+ r)}

We can assume thatr ≥ 1 and hencee := d + r ≥ 2. Note that|M| = q2e. We need
the following claim:

Claim 2: Let b(y) ∈ Fq[y] be a polynomial with degree(b(y)) < 2e. Then the prob-
ability that b(y) modm(y) 6= 0 for a randomly chosen polynomialm(y) ∈ M is at
least 1/8e.

Proof of the Claim 2:The number of irreducible polynomials inM that divideb(y)
can be at most 2e/2e, because the product of all these irreducible polynomials has
degree at most 2e and every polynomial inM has degree 2e. Sinceq,e≥ 2, we have
2e/2e≤ q2e/8e. By [17, Eq. 3.37], the setM contains more thanq2e(1−q1−e)/2e≥
q2e/4e irreducible polynomials (note thatq≥ 2 ande≥ 2). Hence, the probability
thatb(y) modm(y) 6= 0 for a randomly chosen polynomialm(y) ∈ M is at least
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q2e/4e−q2e/8e
|M|

=
q2e/8e

q2e =
1
8e

.

This proves Claim 2.
Our probabilistic algorithm for testing whetherp(x) is not the zero polynomial

is now very similar to the case of characteristic 0:

• Randomly choose a pair(a(y),m(y))×A×M.
• Computep(a(y)) modm(y). This can be done in polynomial time by evaluating

the circuitC in the quotient ringFq[y]/(m(y)). Every element of this ring can
be represented by a polynomial overFq of degree at most 2(d+ r)−1≤ 4r +1
and can be therefore stored in polynomial space (the primeq is a constant in our
consideration). Moreover, arithmetic operations inFq[y]/(m(y)) can be be also
performed in polynomial time.

• If p(a(y)) modm(y) 6= 0 then accept, otherwise reject.

If p(x) is the zero polynomial, then this algorithm accepts with probability zero.
On the other hand, ifp(x) is not the zero polynomial, then the algorithm accepts
with probability at least 1/16(d + r): With probability at least 1/2 the algorithm
chooses a polynomiala(y) ∈ A with p(a(y)) 6= 0. Note that the degree ofp(a(y))
is at mostd2r < 2d+r . For such a polynomiala(y) ∈ A, the probability that the
chosen polynomialm(y) ∈ M satisfiesp(a(y)) modm(y) 6= 0 is at least 1/8(d+ r)
by Claim 2. Again, the success probability can be amplified to1/2. This concludes
the proof for the ringZq. ⊓⊔

Let us remark that usually Theorem 1.49 is proven without a reduction to the uni-
variate case (Proposition 1.50). In this case, one has to apply the so called Schwartz-
Zippel-DeMillo-Lipton Lemma [48, 153, 168] for multivariate polynomials. Except
for this detail, the above proof follows [84].

Theorem 1.49 and the above mentioned results from [85] implythat if there ex-
ists a language inDTIME(2O(n)) that has circuit complexity 2Ω(n) then polynomial
identity testing belongs toP. There is also an implication that goes the other way
round: Kabanets and Impagliazzo [92] have shown that if polynomial identity test-
ing over the integers belongs toP, then one of the following conclusions holds:

• There is a language inNEXPTIME = NTIME(2nO(1)
) that does not have polyno-

mial size circuits.
• The permanent is not computable by polynomial size arithmetic circuits.

Both conclusions represent major open problem in complexity theory. Hence, al-
though it is quite plausible that polynomial identity testing belongs toP (by [85]), it
will be probably very hard to prove (by [92]).

We conclude this section with the following result from [6],stating that for the
ring Z, polynomial identity testing is equivalent to the problem,whether a given
variable- free circuit evaluates to 0.

Theorem 1.51.There is a logspace many-one reduction fromPIT(Z) to the follow-
ing problem:
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input: A variable-free arithmetic circuitC over the ringZ.
question: Isval(C ) = 0?

Proof. Let C be an arithmetic circuit in normal form overZ, and letn ≥ 1 be the
number of gates ofC . We construct in polynomial time a variable-free arithmetic
circuit C ′ such thatval(C ) = 0 if and only if val(C ′) = 0. By Proposition 1.50 we
can assume thatC is univariate. Letval(C ) = p(x) anda = 222n

≥ 16. By iterated
squaring, one can easily construct in logspace a variable-free circuit that computesa.
By plugging in this circuit intoC , we obtain a variable-free circuitC ′ that computes
p(a). Clearly, if p(x)= 0 then alsop(a)= 0. It remains to show thatp(x) 6= 0 implies
p(a) 6= 0. Assume thatp(x) = αxm+ ∑m−1

i=0 αixi with α 6= 0. We have|αi | ≤ 22n
for

0≤ i ≤ m−1 andm≤ 2n. To show thatp(a) 6= 0 it suffices to show

|
m−1

∑
i=0

αia
i | < am ≤ |αam|. (1.9)

We have

|
m−1

∑
i=0

αia
i | ≤ 22n

m−1

∑
i=0

ai = 22n
·
am−1
a−1

≤ 22n
·
2am

a
= am ·

21+2n

a

Hence, (1.9) follows froma = 222n
> 21+2n

. ⊓⊔

1.3.8 The RAM Model of Computation

Efficient algorithms are not the main concern of this work (see the text books [5, 42]
for background on efficient alogorithms). When we state thata problem belongs to
P we do not care about the actual polynomial:O(n) is as good asO(n100). Nev-
ertheless, we make occasionally more exact statements on the running time of al-
gorithms. In these statements we implictly assume a more powerful computational
model than Turing machines. TimeO(n) on a Turing machine with a single work
tape is very restrictive. A more realistic model that is muchcloser to a real computer
is therandom access machine, briefly RAM.

A RAM has registersr0, r1, . . . that store integers of arbitrary size. The input is
a tuple of(i1, . . . , i l ) of integers. There are elementary instructions (that all need
constant time) for the following tasks:

• loading input values into registers,
• doing arithmetic operations (addition, subtraction, multiplication) on register

contents,
• doing bitwise AND and OR on register contents,
• conditional jumps (if the content of a certain register is 0 then jump to thek-th

instruction, otherwise proceed with the next instruction),
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• indirect addressing (copy the content of registerrc into registerr i , wherec is the
content of registerr j . Herei and j are the arguments of the instruction.

A problem with this model is that one may produce with a sequence ofn+1 instruc-
tions numbers of size 22n

(which need 2n bits): r0 := 2; r0 := r0 · r0; . . . r0 := r0 · r0;
where we don multiplications. In particular, one can evaluate a variable-free arith-
metic circuit in linear time. On the other hand, in all our examples the bit length
of all registers will be linearly bounded in the input length, which for an input tu-
ple (i1, . . . , i l ) can be defined as∑l

j=1 log|i j |. Under this restriction, a RAM can be
easily simulated on a Turing machine with only a polynomial blow-up.





Chapter 2
Preliminaries from Combinatorial Group
Theory

In this chapter, we recall basic definitions from combinatorial group theory. We
assume some basic knowledge of group theory, see for instance [149]. More back-
ground on combinatorial group theory can be found in [119, 159]. Groups will be
written multiplicatively throughout this work and the group identity will be denoted
with 1.

2.1 Free Groups

For an alphabetΓ let Γ −1 = {a−1 | a∈ Γ } be a disjoint copy of the alphabetΓ . We
define(a−1)−1 = a, and for a wordw = a1a2 · · ·an with n≥ 0 anda1,a2, . . . ,an ∈
Γ ∪Γ −1 we define(a1a2 · · ·an)

−1 = a−1
n · · ·a−1

2 a−1
1 ; this defines an involution on

(Γ ∪Γ −1)∗. We define the semi-Thue system

RΓ = {(aa−1,ε) | a∈ Γ ∪Γ −1}. (2.1)

This system is clearly Noetherian and also locally confluentand hence confluent.
The latter can be checked by considering overlapping left-hand sides. The only pos-
sible overlapping of two left-hand sides isaa−1a for a ∈ Γ ∪Γ −1. But regardless
whether we replaceaa−1 or a−1a by ε, we obtain fromaa−1a the worda. This
shows local confluence.

Definition 2.1. Thefree group generated byΓ is the quotient monoid

F(Γ ) = (Γ ∪Γ −1)∗/RΓ .

Hence, we obtainF(Γ ) by taking the setIRR(RΓ ) of words that do not contain a
factor of the formaa−1 for a∈ Γ ∪Γ −1. We simply call these wordsirreducible in
the following. If u andv are irreducible words, then the product ofu andv in the
free group is the unique irreducible word that is obtained from the concatenationuv
by cancelling factors of the formaa−1 for a∈ Γ ∪Γ −1 as long as possible.

27
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Clearly, the identity element ofF(Γ ) is the empty wordε and the inverse of the
irreducible wordw is w−1. For w ∈ (Γ ∪Γ −1)∗ we denote the unique irreducible
word NFRΓ (w) with NF(w). The wordNF(w) is obtained fromw by cancelling
factors of the formaa−1 for a ∈ Γ ∪Γ −1 as long as possible in any order. For
example, we haveNF(a−1aa−1bb−1b) = a−1b.

2.2 Finitely Generated Groups and Finitely Presented Groups

Definition 2.2 (finitely generated group).A groupG is finitely generated, if there
exists a finite setA⊆ G such that everyg∈ G can be written as a producta1a2 · · ·an

with a1,a2, . . . ,an ∈ A∪A−1. The setA is also called afinite generating setfor G.

Equivalently,G is finitely generated, if there exists a finite setΓ and a surjective
group homomorphismh : F(Γ ) → G.

For a subsetB ⊆ G we denote with〈B〉 the subgroup ofG generated byB, it
contains all productsb1b2 · · ·bn with b1,b2, . . . ,bn ∈ B∪B−1. Thenormal closure
of B⊆ G, denoted by〈B〉G is the subgroup generated by all conjugates of elements
from B, i.e.,

〈B〉G = 〈{gbg−1 | g∈ G,b∈ B}〉.

Following common notation, the quotient groupG/〈B〉G is also denoted with〈G |
B〉.

Definition 2.3 (presentation of a group, relator, finitely presented group).For a
setΓ andR⊆ F(Γ ) we write〈Γ | R〉 for the group〈F(Γ ) | R〉. The setR is called a
set ofrelatorsof the group〈Γ | R〉 and the pair(Γ ,R) is apresentationof the group
〈G | R〉. Here,Γ andR can be infinite. IfΓ = {a1, . . . ,an} andR= {r1, . . . , rm} are
finite we also write〈a1, . . . ,an | r1, . . . , rm〉 for 〈Γ | R〉. If G is finitely generated by
{a1, . . . ,an} thenG can be written in the form〈a1, . . . ,an | R〉 for a setR⊆ F(Γ ),
which in general is infinite. A groupG is finitely presentedif G is isomorphic to a
group〈a1, . . . ,an | r1, . . . , rm〉.

Example 2.4.Consider the presentation({a,b},{[a,b],a4,b2}). Here,

[a,b] = aba−1b−1

is thecommutator of a andb. The relator[a,b] specifies thata andb commute.
Moreover,a (resp.,b) generates a copy of the cyclic groupZ4 (resp.,Z2). Hence,
we have〈a,b, | [a,b],a4,b2〉 ∼= Z4×Z2.

Let us introduce some important classes of finitely presented groups that will reoc-
cur later.

Example 2.5 (graph groups).Let (A, I) be a finite undirected graph, whereI ⊆A×A
is the irreflexive and symmetric edge relation. With(A, I) we associate thegraph
group
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G(A, I) = 〈A | [a,b] for (a,b) ∈ I〉.

In other words: Two generators are allowed to commute if and only if they are
adjacent in the graph. Graph groups are also known asright-angled Artin groupsor
free partially commutative groups. For a survey on graph groups see [32].

Example 2.6 (Coxeter groups).Let M = (mi, j)1≤i, j≤n be a symmetric(n×n)-matrix
overN such thatmi, j = 1 if and only if i = j. The correspondingCoxeter groupis

C(M) = 〈a1, . . . ,an | (aia j)
mi, j for 1≤ i, j ≤ n〉.

In particular,a2
i = 1 in C(M) for 1 ≤ i ≤ n. Traditionally, one writes the entry∞

instead 0 in theCoxeter matrix Mand thenmi, j becomes the order of the element
aia j . If mi, j ∈ {0,1,2} for all 1≤ i, j ≤ n, thenC(M) is called aright-angled Coxeter
group. In this case we can defineC(M) also as〈G(A, I) | a2

i for 1≤ i ≤ n〉, where
(A, I) is the graph withA = {a1, . . . ,an} and(ai ,a j) ∈ I if and only if mi, j = 2. The
book [20] provides a detailed introduction into Coxeter groups.

Example 2.7 (automatic groups).To define automatic groups, let us first define the
convolution of words. For an alphabetA and two wordsu = a1a2 · · ·am andv =
b1b2 · · ·bn (with a1, . . . ,am,b1, . . . ,bn ∈ A) the convolution u⊗ v is the following
word over the alphabet(A∪{#})×(A∪{#})\{(#,#)},where #6∈A, k= max{m,n},
ai = # for m< i ≤ k, andbi = # for n < i ≤ k:

u⊗v= (a1,b1)(a2,b2) · · · (ak,bk).

For a finitely generated groupG, anautomatic structurefor G consists of a triple
(Γ ,A,(Aa)a∈Γ∪{1}), whereΓ is a finite generating set forG, A is a finite automaton
overΓ ∪Γ −1 such that the canonical homomorphismh : F(Γ ) → G is surjective on
L(A) (whereL(A) is viewed as a subset ofF(Γ )), and for everya∈ Γ ∪{1}, Aa is
a finite automaton over the alphabet(Γ ∪Γ −1∪{#})× (Γ ∪Γ −1∪{#}) \ {(#,#)}
such that for allu,v∈ L(A), u⊗v∈ L(Aa) if and only if h(ua) = h(v). Then, a group
G is automaticif it has an automatic structure. The book [57] provides a detailed in-
troduction into automatic groups. Every automatic group isfinitely presented. Graph
groups as well as Coxeter groups are automatic, see [75] and [24, 30], respectively.

Sometimes, we will write an identityu = v instead of the relatoruv−1 in a group
presentation. For instance, the graph groupG(A, I) = 〈A | [a,b] for (a,b) ∈ I〉 could
be also written as〈A | ab= ba for (a,b)∈ I〉. Moreover, for wordsu,v∈ (Γ ∪Γ −1)∗

we say that “u = v in 〈Γ | R〉 if uv−1 ∈ 〈R〉F(Γ ). This means thatu andv represent
the same group element of〈Γ | R〉.

We can also obtain the group〈Γ | R〉 as a quotient monoid by taking the semi-
Thue systemS= RΓ ∪{(r,ε) | r ∈ R∪R−1}, whereRΓ was defined in (2.1). Then

〈Γ | R〉 ∼= (Γ ∪Γ −1)∗/S.
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Clearly, every groupG can be written in the form〈Γ | R〉. Simply takeΓ = G andR
as the kernel of the canonical homomorphismh : F(G) → G. The notation〈Γ | R〉
allows to define the free product of two groups in the following way:

Definition 2.8 (free product).Let G1 = 〈Γ1 |R1〉 andG1 = 〈Γ2 | R2〉 be groups with
Γ1∩Γ2 = /0. Then thefree product G1 ∗G2 is 〈Γ1∪Γ2 | R1∪R2〉.

One can think about the free productG1 ∗G2 (where we assumeG1 ∩G2 = {1})
as the set of all alternating sequencesg1g2 . . .gn, where everygi belongs to either
G1 \ {1} or G2 \ {1}, andgi ∈ G1 \ {1} if and only if gi+1 ∈ G2 \ {1} for all 1 ≤
i ≤ n− 1. The product of two such sequences is computed in the natural way by
multiplying elements from the same group (G1 or G2) as long as possible. Formally,
let g = g1g2 · · ·gm andh = h1h2 · · ·hn be alternating sequences as described above.
If m= 0, thengh= h and if n = 0, thengh= g. Now, assume thatn,m> 0. If gm

andh1 are from different groups, i.e.,gm ∈ G1 \ {1} if and only if h1 ∈ G2 \ {1},
thengh is the alternating sequenceg1g2 · · ·gmh1h2 · · ·hn. Finally, assume thatgm and
h1 are from the same group. Letk be the maximal index 0≤ k ≤ min{n,m} such
that for all 1≤ i ≤ k, gm−i+1 = h−1

i . If k = m, thengh= hi+1 · · ·hn, and if k = n,
then gh = g1 · · ·gm−k (this includes the casek = m = n with gh = 1). Finally, if
k < min{m,n}, thengh= g1 · · ·gm−k−1(gm−khi+1)hi+2 · · ·hn.

If G is a group, andR is a subset ofG∗ F(Γ ), then we write〈G,Γ | R〉 (or
〈G,a1, . . . ,an | R〉 if Γ = {a1, . . . ,an}) for the group〈G∗F(Γ ) | R〉.

2.3 Tietze Transformations

Already in 1908, Tietze came up with a semi-decision procedure for checking
whether two group presentations yield isomorphic groups [161]. His procedure con-
sists of four elementary transformation steps:

Definition 2.9 (Tietze transformations).Let (Γ ,R) be a finite presentation of a
group.

• If r ∈ 〈R〉F(Γ ), then we say that the presentation(Γ ,R∪{r}) is obtained from a
Tietze-type-1 transformationfrom (Γ ,R). Intuitively, we add a redundant relator
to the presentation.

• If r ∈ R is such thatr ∈ 〈R\ {r}〉F(Γ ), then we say that the presentation(Γ ,R\
{r}) is obtained from aTietze-type-2 transformationfrom (Γ ,R). Intuitively, we
remove a redundant relator from the presentation.

• If a 6∈ Γ ∪Γ −1 and w ∈ (Γ ∪Γ −1)∗, then we say that the presentation(Γ ∪
{a},R∪ {a−1w}) is obtained from aTietze-type-3 transformationfrom (Γ ,R).
Intuitively, we add a redundant generator to the presentation. Note that the new
relatora−1w defines the new generatora asw (a word over the old generators).

• If a∈ Γ andw∈ ((Γ ∪Γ −1) \ {a,a−1})∗ such thata−1w∈ R, then we say that
the presentation(Γ \ {a},ϕ(R)) is obtained from aTietze-type-4 transformation
from (Γ ,R). Here,ϕ is the homomorphism withϕ(a) = w, ϕ(a−1) = w−1 and
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ϕ(c) = c for c∈ (Γ ∪Γ −1)\ {a,a−1}. Intuitively, a = w holds in the group〈Γ |
R〉, hencea is redundant an can be removed from the presentation.

Any of the above four transformations is called aTietze transformation.

It is not hard to see that if the finite group presentation(Σ ,S) is obtained by a finite
sequence of Tietze transformations from(Γ ,R), then〈Γ | R〉 ∼= 〈Σ | S〉. Tietze [161]
proved that also the converse holds:

Theorem 2.10.Let (Γ ,R) and(Σ ,S) be finite group presentations. Then〈Γ | R〉 ∼=
〈Σ | S〉 if and only if(Σ ,S) can be obtained by a finite sequence of Tietze transfor-
mations from(Γ ,R).

This result implies that the isomorphism problem for finitely generated groups (i.e.,
the question, whether two given finite group presentations yield isomorphic groups)
is computably enumerable. We will use Tietze transformations in Chapter 6.

Example 2.11.Consider the group〈a,b | [a,b],a3,b2〉 ∼= Z3 ×Z2
∼= Z6

∼= 〈c | c6〉.
Hence, we should be able to derive the presentation({c},{c6}) from the presenta-
tion ({a,b},{[a,b],a3,b2}) using Tietze transformations. Here is a derivation:

1. A Tietze-type-3 transformation allows to go from({a,b},{[a,b],a3,b2}) to
({a,b,c},{[a,b],a3,b2,c−1ab}). In the following, we only list the current set
of relators. Moreover, we write the relators[a,b],a3,b2,c−1ab in the more read-
able formab= ba, a3 = 1, b2 = 1, c = ab.

2. Using a Tietze-type-1 transformation (adding the consequencec= ba) followed
by a Tietze-type-2 transformation (removing the redundantrelatorab= ba), we
getc = ba, a3 = 1, b2 = 1, c = ab

3. The relatorc = ab can be written asa = cb−1. This allows to eliminate the
generatora with a Tietze-type-4 transformation. We getc= bcb−1, (cb−1)3 = 1,
b2 = 1.

4. Sinceb = b−1 follows from b2 = 1, we getc = bcb, (cb)3 = 1, b2 = 1 using a
Tietze-type-1 and Tietze-type-2 transformations.

5. Next,cbcbcb= 1 can be replaced byc3b = 1 (sincebcb= c). We now have
c = bcb, c3b = 1, b2 = 1, or equivalently,c = bcb, c3 = b, b2 = 1.

6. A Tietze-type-4 transformation (eliminatingb) yieldsc = c7, c3 = 1.
7. Finally, a Tietze-type-2 transformation allows to remove the relatorc = c7, and

we arrive at the presentation({c},{c6}).

2.4 The Word Problem

Now that we have defined basic concepts from combinatorial group theory and com-
plexity theory, it is time to introduce the word problem, which is the fundamental
computational problem in combinatorial group theory. Basically, the word problem
for a finitely generated groupG asks whether a given word over the generators ofG
and their inverses represents the group identity. Here is the formal definition:
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Definition 2.12.Let G be a finitely generated group with a finite generating setΓ ;
henceG is isomorphic to〈Γ | R〉 for a set of relatorsR⊆ (Γ ∪Γ −1)∗. Theword
problem for G with respect toΓ , brieflyWP(G,Γ ) is the following problem:

input: A word w∈ (Γ ∪Γ −1)
question:Doesw = 1 hold inG (i.e., doesw belong to〈R〉F(Γ ))?

In the way we defined it, the word problem depends on the chosengenerating set for
G. But if we are only interested in the decidability/complexity of word problems,
the actual generating set is not relevant:

Lemma 2.13.Let G be a finitely generated group and letΓ and Σ be two finite
generating sets. ThenWP(G,Γ ) ≤log

m WP(G,Σ).

Proof. Let G∼= 〈Γ | R〉 ∼= 〈Σ | S〉. There exists a homomorphismh : (Γ ∪Γ −1)∗ →
(Σ ∪Σ−1)∗ with h(a−1) = h(a)−1 for all a∈ Γ ∪Γ −1 that induces an isomorphism
from 〈Γ | R〉 to 〈Σ | S〉. Hence, for a wordw∈ (Γ ∪Γ −1)∗ we havew = 1 in 〈Γ | R〉
if and only if h(w) = 1 in 〈Σ | S〉. The lemma follows, since the homomorphismh
can be computed with a logspace transducer, see Example 1.25. ⊓⊔

Because of Lemma 2.13, it is justified to just speak of the wordproblem forG,
briefly WP(G). It is not difficult to come up with a finitely generated group with
an undecidable word problem. For finitely presented groups,this is a much harder
problem that was finally solved by Novikov [136] and independently by Boone [22]
in the 1950’s:

Theorem 2.14.There is a finitely presented group with an undecidable word prob-
lem.

A modern treatment of this result can be found [159]. In this context, we should
also mention the following celebrated result by Higman thatis known as Higman’s
embedding theorem [77]:

Theorem 2.15.Let G be a finitely generated group. Then G has a computably enu-
merable word problem if and only if G can be embedded into a finitely presented
group.

An algebraic characterization of groups with a computable word problem exists as
well; it goes back to Boone and Higman [23]:

Theorem 2.16.Let G be a finitely generated group. Then G has a computable word
problem if and only if G can be embedded into a simple subgroupof a finitely pre-
sented group.

In this book, we are only interested in groups with a computable word problem. The
class of groups with a computable word problem contains manyimportant group
classes. Finitely presented groups with undecidable word problem are somehow ex-
otic. The relators of such a group encode the transition relation of a Turing machine
with an undecidable halting problem.

If a group G has a computable word problem, the next question adresses the
complexity of the word problem. Actually, for many classes of groups, the word
problem can be solved in polynomial time. Here are some examples:
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• word hyperbolic groups [68]: Dehn’s algorithm (see [119, Chapter V.4]) solves
the word problem for these groups in linear time. Actually, the word problem
for a hyperbolic group can be solved in real time (i.e., the time bound is the
length of the input word) on a Turing machine with several work tapes [81]. In
[25], it was shown that the word problem for a hyperbolic group belongs to the
circuit complexity classNC2. In [111] this upper bound was slightly improved
to LogCFL , which is the class of all languages that are logspace many-one re-
ducible to a context-free language. Actually, the argumentin [111] shows that
every group having a Cannon’s algorithm (a generalization of Dehn’s algorithm)
[64] has a word problem inLogCFL . Besides word hyperbolic groups, every
finitely generated nilpotent group has a Cannon’s algorithm[64].

• graph groups, see Example 2.5: By [49, 167] the word problem for a graph group
can be solved in linear time on a RAM.

• automatic groups, see Example 2.7: The word problem can be solved in quadratic
time on a Turing machine.

Concerning space complexity, there is actually a big class of groups, where the word
problem can be even solved in logarithmic space.

Definition 2.17.A groupG is linear, if there exist a fieldF and a dimensiond such
that G embeds into thegeneral linear groupGLd(F) (the group of all invertible
(d×d)-matrices over the fieldF).

The following result is shown in [108] for a fieldF of characteristic 0 and in [156]
for a field of prime characteristic:

Theorem 2.18.Let G be a finitely generated linear group. Then the word problem
for G belongs toL .

The proof of Theorem 2.18 makes essential use of the following result, which we
will use in Section 4.5. Implicitly it appears in [108] for the case of a field of char-
acteristic 0, see also [156]. Recall that for a fieldF , F(x1, . . . ,xm) denotes the field
of all fractions of polynomials fromF [x1, . . . ,xm].

Theorem 2.19.Let G be a finitely generated linear group over a field F and let P
be the prime field of F (which is eitherQ if F has characteristic0 or Fp if F has
prime characteristic p). Then, G is isomorphic to a group of matrices over the field
P(x1, . . . ,xm).

Proof. The proof uses a bit of field theory. LetG be a finitely generated subgroup
of GLn(F). Hence, there exists a finite subsetA ⊆ F such that every matrix en-
try from a generator ofG belongs toA. We can therefore replace the fieldF by
the subfieldK generated byA. If we choose a maximal algebraically independent
subset{x1, . . . ,xm} ⊆ A, thenK becomes isomorphic to a finite algebraic extension
of a field of fractionsP(x1, . . . ,xm), whereP is the prime field ofF, see e.g. [86,
p. 156]. Let[K : P(x1, . . . ,xm)] = d be the degree of this algebraic extension. The
field K can be also seen as ad-dimensional associative algebra over the base field
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P(x1, . . . ,xm) (i.e., ad-dimensional vector space overP(x1, . . . ,xm) with a multipli-
cation that together with the vector addition yields a ring structure). By the regular
representation for associative algebras [87],K is isomorphic to a subring of the ring
Md(P(x1, . . . ,xm)) of (d×d)-matrices overP(x1, . . . ,xm). SinceK is a field, every
non-zero element ofK is thereby represented by a matrix fromGLd(P(x1, . . . ,xm)).
Hence, by replacing in the generator matrices ofG every matrix entry by a(d×d)-
matrix overP(x1, . . . ,xm), it follows that G is isomorphic to a finitely generated
subgroup ofGLnd(P(x1, . . . ,xm)). ⊓⊔

Let us briefly sketch, how Theorem 2.18 for characteristic 0 can be deduced from
Theorem 2.19. By Theorem 2.19 it remains to show that an identity A1A2 · · ·An = Idk

can be tested in logspace, whereA1,A2, . . .An are from a fixed set of(k× k)-
matrices overQ(x1, . . . ,xm). This identity can be reduced to an identityB1B2 · · ·Bn =
C1C2 · · ·Cn, whereB1,C1, . . . ,Bn,Cn are from a fixed set of(k× k)-matrices over
Z[x1, . . . ,xm]. Let d be the maximal degree of a polynomial in this set. Hence,
in the product matricesB1B2 · · ·Bn andC1C2 · · ·Cn every polynomial has degree
at mostdn. It follows that B1B2 · · ·Bn = C1C2 · · ·Cn if and only if for everym-
tuplea∈ {0, . . . ,dn}m we haveB1(a)B2(a) · · ·Bn(a) =C1(a)C2(a) · · ·Cn(a) (we de-
note with Bi(a) the integer matrix obtained by replacing every polynomial entry
p(x1, . . . ,xm) of Bi by p(a) and similarly for the matricesCi . Sincem is a constant
in our consideration, we can consider every tuplea ∈ {0, . . . ,dn}m one after the
other and thereby reuse the space needed for the previous tuple. Hence, it remains
to verify in logspace an identityB1B2 · · ·Bn = C1C2 · · ·Cn, whereB1,C1, . . . ,Bn,Cn

are(k×k)-matrices overZ with entries bounded in absolute value bynO(1). One can
easily show that every entry in the product matricesB1B2 · · ·Bn andC1C2 · · ·Cn has
sizenO(n). Using the Chinese remainder theorem, it suffices to the verify the iden-
tity modulo the firstℓ prime numbers, whereℓ ∈ nO(1). Actually, we can check the
identity modulo all numbers 2, . . . , p, wherep is theℓ-th prime number. Note thatp
has onlyO(logn) many bits. Hence, all computations can be done in logspace.

Examples of finitely generated linear groups are: finitely generated polycyclic
groups, Coxeter groups, braid groups, and graph groups. Hence, for all these groups
the word problem can be solved in logspace.

Finitely generatedmetabelian group(a groupG is metabelian if it is has a nor-
mal abelian subgroupA such that the quotientG/A is abelian too) can be embedded
into finite direct products of linear groups [165]. Hence, also for finitely gener-
ated metabelian groups the word problem can be solved in logspace. An interesting
class of groups, for which in general no efficient algorithm for the word problem
is known, is the class ofone-relator groups, i.e., groups of the form〈Γ | r〉 for
r ∈ (Γ ∪Γ −1)∗. By a famous result of Mangus [121] every one-relator group has
a computable word problem, which moreover is primitive recursive [10, 29]. No
better general complexity bound is known. On the other hand,no example of a one-
relator group with a provably hard word problem is known. Letus also mention that
by recent results of Wise [166], every one relator group withtorsion is linear, and
hence has a logspace word problem by Theorem 2.18.

By adapting the Novikov-Boone construction, Cannonito andGatterdam proved
that for everyn ≥ 0, there is a finitely presented groupG such that (i)WP(G) is
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1
c1

c2 cℓ−1

cℓ

r1

r2 rℓ−1

rℓ
. . .

Fig. 2.1 The starting point for folding

computable but (ii) not within then-th level of the Grzegorczyk hierarchy [27]. Re-
cently, it was even shown that for every computable setA there is a finitely presented
residually-finite group G(recall thatG is residually-finite if for everyg∈G\1 there
exists a homomorphismh : G→ H with H finite andh(g) 6= 1) such thatWP(G) is
at least as hard asA [97]. McKinsey [126] has shown that every finitely presented
residually-finite group has a computable word problem.

2.5 The Dehn Function and the Word Search Problem

In this section, we will introduce the Dehn function of a group, whose growth is
an important geometric invariant of a finitely presented group. A beautiful survey
on Dehn functions can be found in [147]. Finally, we will briefly discuss the word
search problem for a finitely presented group. This is an extension of the word prob-
lem, where we not only ask whether a given wordw represents the identity 1, but, in
the positive case, also want to compute a witness (in form of avan Kampen diagram)
for the fact thatw = 1.

Assume that we have a finitely presented groupG = 〈Γ | R〉 whereR⊆ (Γ ∪
Γ −1)+ is a finite set of cyclically reduced words of length at least 2(an irreducible
word w is cyclically reduced ifw is of the formavb for b 6= a−1). We also say
that the finite presentation(Γ ,R) is reduced, and it is easy to see that a given finite
presentation forG can be transformed (in polynomial time) into a reduced finite
presentation forG. If an irreducible wordw∈ (Γ ∪Γ −1)∗ represents the identity of
G, then in the free groupF(Γ ), w belongs to the normal subgroup〈R〉F(Γ ). Hence, in
F(Γ ) we can writew as a product∏ℓ

i=1cir ic
−1
i with ci ∈ (Γ ∪Γ −1)∗ irreducible and

r i ∈ R∪R−1. The smallest numberℓ for which we can writew as such a product is
also called theareaof w (with respect to the presentation(Γ ,R)). The choice of the
term “area” can be explained as follows: Given the word∏ℓ

i=1cir ic
−1
i one obtains

a planar diagram as follows: Start with a (planar) bouquet asshown in Figure 2.1.
Here, theci-labeled edge stands for a path of(Γ ∪Γ −1)-labeled edges such that the
concatenation of the labels yieldsci , and similarly for ther i -labeled loop. Moreover,
for everya-labeled edge there is a reverseda−1-labeled edge. If we walk along the
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boundary of this bouquet in clockwise orientation, starting in the base point 1 (this
is the so called boundary cycle), then we read exactly the word ∏ℓ

i=1cir ic
−1
i . The

reduction of this word using the rewriting systemRΓ for the free groupF(Γ ) (see
(2.1)) yields the irreducible wordw. This reduction process on words translates into
a folding process on planar digrams. As long as the boundary cycle contains two
successive edgese and f , such that the label off is the inverse of the label ofe,
then we fold these two edges into one edge and thereby identify the initial vertex
of e with the target vertex off . In case the initial vertex ofe is already equal to the
target vertex off (this situation can arise for instance, when folding the bouquet
for rr−1 for a relatorr), thene and f enclose a region, and we remove this whole
region including all edges and nodes within the region. Thisis a confluent process,
i.e., the completely folded planar diagram obtained this way does not depend from
the chosen order of folding steps. Moreover, the boundary cycle of the completely
folded planar diagram is labeled with the wordw. Such a diagram is called avan
Kampen diagramfor w and its area is the number of cells (closed regions) [119].
Hence, the area of an irreducible wordw with w = 1 in G is the minimal area of a
van Kampen diagram forw. The boundary of any cell of a van Kampen diagram is
labeled with a relator or the inverse of a relator.

Example 2.20.Let us consider the presentation({a,b},{aba−1b−1}) of Z×Z. Let
us fold the bouquet corresponding to

w = a−1(aba−1b−1)a ba−1(aba−1b−1)ab−1

which is (we do not show the inverse edges labeled witha−1 or b−1):

1
a

a

b
a

b

b

a

a

b

a
b

The origin is labeled with 1 and the two thick edges are the one’s that are folded
first. Hence, we get:

1

a

b
a

b
b

a

a

b

a
b
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Folding the twob-labeled edges at the origin 1 yields the following diagram:

1
a

b

a
b

a

a
b

a

b

Two more folding steps yield the following diagrams:

1 a

b

b

a

a
b

a
b 1

a

b

b
a

b
a

b

The right diagram is a van Kampen diagram forb2a−1b−2a of area 2.

Definition 2.21 (Dehn function). Let (Γ ,R) be a finite group presentation. The
Dehn function DΓ ,R : N → N of the group presentation(Γ ,R) is defined as

DΓ ,R(n) = max{area(w) | w is irreducible,w∈ 〈R〉F(Γ ), |w| ≤ n}.

In other words:DΓ ,R(n) is the maximal area of an irreducible word of length at
mostn that represents the identity ofG. Clearly, different finite presentations for
G may yield different Dehn functions. On the other hand, if(Γ1,R1) and(Γ2,R2)
are two finite presentations for the groupG, then there exists a constantc > 0 such
thatDΓ1,R1(n)≤ c·DΓ2,R2(cn+c)+cn+c [61, Proposition 2.4]. Hence, whether the
Dehn function is linear, quadratic, cubic, exponential, etc., does not depend on the
chosen presentation for a group. For every infinite finitely presented group the Dehn
function grows at least linear, and by [68], a group has a linear Dehn function if
and only if it is hyperbolic. Moreover, every automatic group has a quadratic Dehn
function.

The following relationship between the Dehn function of a group and the com-
plexity of the word problem is folklore:

Proposition 2.22.Let D(n) be a Dehn function for the finitely presented group G.
Then the word problem for the group G can be solved inNTIME(O(D(n))).

Proof. Let G∼= 〈Γ | R〉, where(Γ ,R) is a reduced presentation. LetS the be the set
of all cyclic permutations of words fromR∪R−1 (a words is a cyclic permutation of
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w if there exist wordsu andv such thatw= uvands= vu). We define the semi-Thue
system

T = RΓ ∪{(u,v) | uv−1 ∈ R∪R−1,u 6= ε},

whereRΓ is from (2.1). Here is some intuition: Rules of the form(u,v) with uv−1 ∈
R∪R−1 andu 6= ε allow to cut off cells from a van Kampen diagram that have a
nontrivial intersection with the boundary, whereu is the part of the cell that belongs
to the boundary. Rules(aa−1,ε) allow to remove boundary edgese, where one
endpoint is only adjacent with edgee. Using this intuition, the following fact is not
hard to see, see e.g. [147]. For a given irreducible input word w of lengthn, w = 1
in 〈Γ | R〉 if and only if w can be rewritten withT to the empty word in at most
(m+1)DΓ ,R(n)+n steps, wherem the maximal length of a relator inR (which is a
constant in our consideration). A nondeterministic Turingmachine simply guesses
such a sequence of rewrite steps. Moreover, successive rewrite steps can be applied
within bounded distance in the following sense: If the wordxuv is rewritten toxvy
using the rule(u,v) ∈ T, then (i) eitherv= ε and the next rewritten factor covers the
last symbol ofx or the first symbol ofy, or (ii) v 6= ε and the next rewritten factor
covers a position inv. Hence, the whole reduction process can be carried out in time
O(DΓ ,R(n)+n) on a Turing machine. The proposition follows, sinceDΓ ,R(n) grows
at least linear if〈Γ | R〉 is infinite. ⊓⊔

Another important and much more difficult result in this context is the follow-
ing NP-analogue of Higman’s embedding theorem, which was shown byBirget,
Ol’shanskii, and Rips [19]:

Theorem 2.23.For a finitely generated group G, the word problem belongs toNP
if and only if G can be embedded into a finitely presented groupwith a polynomial
Dehn function.

The Dehn function for a finitely presented groupG only yields an upper for the
complexity of the word problem. For instance, the Baumslag-Solitar group〈a,b |
bab−1 = a2〉 has an exponential Dehn function [57], but can be embedded into the
linear groupGL2(Q) using

a 7→

(
1 1
0 1

)
, b 7→

(
1/2 0

0 1

)

Hence, by Theorem 2.18 the word problem for〈a,b | bab−1 = a2〉 can be solved in
logarithmic space. An even more extreme example is the Baumslag-Gersten group
BG(1,2) = 〈a,b, t | bab−1 = t,tat−1 = a2〉, which was introduced by Baumslag [13]
as the first example of a non-cyclic group, all of whose finite quotients are cyclic. Its
Dehn function is roughly a tower of log2(n) exponents and hence non-elementary
[61, 143]. Nevertheless, using power circuits [133], whichare a succinct represen-
tation of huge integers, the word problem for BG(1,2) can be solved in polynomial
time [53, 132]. In [38] examples of groups with a computable word problem are
constructed, for which the gap between the complexity of theword problem and the
Dehn function is not bounded by a primitive recursive function. In [97] this result is
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further improved in two aspects: The gap is increased to any recursive function and
the group that realizes the gap is finitely presented and residually-finite.

Definition 2.24.Let (Γ ,R) be a finite reduced presentation and letG= 〈Γ | R〉. The
word search problemfor (Γ ,R), brieflyWSP(Γ ,R), is the following computational
problem with output:

input: An irreducible wordw∈ (Γ ∪Γ −1)∗

output:“no” if w 6= 1 in G, otherwise irreducible wordsc1, . . . ,cℓ ∈ (Γ ∪Γ −1)∗ and
r1, . . . , rℓ ∈ R∪R−1 such thatw = ∏ℓ

i=1cir ic−1
i in F(Γ ).

Hence, instead of just asking whether a given word represents the identity ofG,
one also wants to have a proof for representing the identity in the positive case. In-
stead of returning irreducible wordsc1, . . . ,cℓ ∈ (Γ ∪Γ −1)∗ andr1, . . . , rℓ ∈ R∪R−1

such thatw = ∏ℓ
i=1cir ic

−1
i in F(Γ ), one might also return a van Kampen diagram

with boundaryw. Both variants are equivalent with respect to polynomial time com-
putations: From the word∏ℓ

i=1ci r ic−1
i one can compute in polynomial time a van

Kampen diagram with boundaryw, and from a van Kampen diagram with boundary
w one can compute in polynomial time a word∏ℓ

i=1cir ic−1
i that is equal tow in the

free groupF(Γ ).
Logspace many-one reductions between computational problems with output are

defined as for decision problems. With this in mind, we get:

Lemma 2.25.Let (Γ ,R) and(Σ ,S) be two finite presentations with〈Γ | R〉 ∼= 〈Σ |
S〉. ThenWSP(Γ ,R) is logspace many-one reducible toWSP(Σ ,S).

Proof. Let f be an isomorphism from〈Γ | R〉 to 〈Σ | S〉. There exists a homo-
morphismg : F(Γ ) → F(Σ) that inducesf and similarly, there exists a homomor-
phismh : F(Σ) → F(Γ ) that inducesf−1. Assume we have an algorithm for solv-
ing WSP(Σ ,S) and we want to use this algorithm for solvingWSP(Γ ,R). So, let
w = a1 · · ·an ∈ (Γ ∪Γ −1)∗. We havew = 1 in 〈Γ | R〉 if and only if g(w) = 1 in
〈Σ | S〉. Hence, if our algorithm forWSP(Σ ,R) outputs “no” on inputg(w), then
we can output “no” on inputw. Otherwise, the algorithm forWSP(Σ ,S) outputs a
representation

g(w) =
ℓ

∏
i=1

cir ic
−1
i

in F(Σ), wherer i ∈ S∪S−1. Hence, inF(Γ ), we have

h(g(w)) = h(g(a1)) · · ·h(g(an)) =
ℓ

∏
i=1

h(ci)h(r i)h(ci)
−1 (2.2)

Note that in the group〈Γ | R〉 we haveh(r) = 1 for all r ∈ S. Hence, inF(Γ ) we
can write

h(r i) =
ki

∏
j=1

di, j pi, jd
−1
i, j

and thus
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h(ci)h(r i)h(ci)
−1 =

ki

∏
j=1

h(ci)di, j pi, jd
−1
i, j h(ci)

−1

with pi, j ∈ R∪R−1. Here, the wordsdi, j and the numberski do not depend on the
inputw. By plugging these identities into (2.2) and renaming the resulting word, we
obtain a representation

h(g(w)) = h(g(a1)) · · ·h(g(an)) =
k

∏
i=1

di pid
−1 (2.3)

In the group〈Γ | R〉 we also haveh(g(a)) = a for all a∈ Γ ∪Γ −1. Hence, we can
write in F(Γ )

h(g(ai))
−1ai =

ℓi

∏
j=1

ei, jqi, je
−1
i, j =: wi

with qi, j ∈ R∪R−1. Again, the wordsei, j and the numbersℓi do not depend on the
inputw. One can easily check that

h(g(an))
−1 · · ·h(g(a1))

−1a1 · · ·an =

wn(a
−1
n wn−1an)(a

−1
n a−1

n−1wn−2an−1an) · · · (a
−1
n · · ·a−1

2 w1a2 · · ·an).

in F(Γ ). Finally, we get

w = a1 · · ·an =
k

∏
i=1

di pid
−1wn(a

−1
n wn−1an) · · · (a

−1
n · · ·a−1

2 w1a2 · · ·an),

which is the desired representation forw. The above process can be clearly accom-
plished by a logspace transducer.⊓⊔

By Lemma 2.25, it is justified to speak of the word search problem for the groupG,
briefly WSP(G).

Further results on the word search problem can be found in [131]. Examples of
groups, for which the word search problem can be solved in polynomial time are
automatic groups and finitely generated nilpotent groups. For automatic groups, the
standard proof that every automatic group is finitely presented and has a quadratic
Dehn function [57] yields a polynomial time algorithm for the word search problem.
For finitely generated nilpotent groups it has been shown in [62] that a finitely gen-
erated nilpotent group of classc has a Dehn function of growthO(nc+1). This result
is shown in [62] by reducing a wordw with w = 1 to the empty word by a sequence
of rewrite steps with a system of the kind used in the proof of Proposition 2.22. This
sequence of rewrite steps is explicitly constructed in [62]and the construction can
be carried out in polynomial time. Finally, the constructedsequence of rewrite steps
directly translates into a van Kampen diagram forw.



Chapter 3
Algorithms on Compressed Words

In this chapter, we will study circuits over a structure whose domain is the setΓ ∗

of all finite words over a finite alphabet. The operations usedin the circuit include
the binary concatenation and all symbols fromΓ as constants. Such circuits are also
calledstraight-line programs(SLPs). A straight-line program can be also viewed
as a context-free grammar [82] that produces only a single word. Note that, as re-
marked in Section 1.3.7, the term “straight-line program” is also used for arithmetic
circuits. In this book, we use the term “straight-line program” exclusively for cir-
cuits over free monoids. We will also consider extensions ofstraight-line programs,
where some additional operations on words may be used in circuits (so called CSLPs
and PCSLPs).

A main topic in this chapter will be algorithms that receive as input a word, which
is not given explicitly but as a straight-line program. The main result of this chapter
states that for two given straight-line programs one can check in polynomial time
whether they produce the same words. For further results on SLPs see [59, 114, 142,
150].

3.1 Straight-Line Programs and Extensions

Let us start with the definition of a PCSLP, which are the most general word circuits
that we consider in this book. Here “SLP” abbreviates “straight-line program, and
“PC” stands for “projection and cut”.

Definition 3.1 (projection). For alphabets∆ ⊆ Γ let us define the projection ho-
momorphismπ∆ : Γ ∗ → ∆∗ by π∆ (a) = ε for a∈ Γ \∆ andπ∆ (a) = a for a∈ ∆ .
Strictly speaking, we should denote this homomorphism byπΓ ,∆ , but the alphabet
Γ will be always clear from the context.

Definition 3.2 (cut operator).For natural numbersi, j ∈ N and an arbitrary alpha-
betΓ , we define the mappingci, j : Γ ∗ → Γ ∗ by ci, j(w) = w[i : j] for all w∈ Γ ∗.

41
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Definition 3.3 (PCSLP, CSLP, SLP, C-expression, PC-expression). Let Γ be a
finite alphabet. We define the following structures with domain Γ ∗:

AΓ = (Γ ∗,◦,ε,(a)a∈Γ ,(π∆ )∆⊆Γ ,(ci, j)i, j∈N)

BΓ = (Γ ∗,◦,ε,(a)a∈Γ ,(ci, j)i, j∈N)

CΓ = (Γ ∗,◦,ε,(a)a∈Γ )

Here,◦ denotes the binary concatenation operator on words. APCSLPover the al-
phabetΓ is aAΓ -circuit. A CSLPover the alphabetΓ is aBΓ -circuit. AnSLPover
the alphabetΓ is aCΓ -circuit. A C-expressionis BΓ -expression. APC-expression
is anAΓ -expression.

PCSLPs and its restrictions will be denoted with lettersA,B,C, · · · . For a (PC)SLP
A = (V,S, rhs) over the alphabetΓ we will also write (V,Γ ,S, rhs) to make the
alphabet explicit. Occasionally, we will consider PCSLPs without a start variable.
For such a circuitA, val(A) is not defined.

PCSLPs are the only circuits in this book, which are based on astructure with
infinitely many operations (due to the cut-operatorsci, j ). Recall that when we de-
fined the size of a circuit we had to fix a sizesize( f ) for each function symbol. In
case the underlying structure contains only finitely many operations (which is the
case forCΓ ), we can takesize( f ) = 1 for all f . For the structureAΓ let us define
size(ci, j) = ⌈log2(i)⌉+ ⌈log2( j)⌉, which is the number of bits needed to specify the
numbersi and j.

We will always writee[i : j] instead ofci, j(e) in right-hand sides of PCSLPs.
We will use the abbreviationsX[: i] for X[1 : i] andX[i :] for X[i : l ], whereX is
a variable withl = |valA(X)|, in right-hand sides. One may also allow exponential
expressions of the formAi for A ∈ V and i ∈ N in right-hand sides of PCSLPs.
Such an expression can be replaced by⌈log2(i)⌉ many ordinary right-hand sides.
For instance the definitionA := a10 ca be replaced byA0 := a, A1 := A2

0, A2 := A2
1,

A3 := A2
2, A := A3A1. Hence, if we represent exponents in binary notation, then

exponential expressions can be eliminated by a logspace transducer.

Example 3.4.We consider the PCSLPA= ({A,B,C,D,E},{a,b,c},E, rhs) with rhs
defined as follows:

rhs(A) = ab rhs(B) = ac rhs(C) = BA

rhs(D) = π{a,c}(C)π{b,c}(C) rhs(E) = D[2 : 4]

Then we have:

val(A) = ab val(B) = ac val(C) = acab

val(D) = acacb val(E) = val(A) = cac

The size of the PCSLP is the sum of the sizes of all right-hand sides:
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|rhs(A)| = 2 |rhs(B)| = 2 |rhs(C)| = 2

|rhs(D)| = 4 |rhs(E)| = 1+1+2= 4

and therefore|A| = 14.

CSLPs were calledcomposition systemsin [60]1, collage systemsin [98], andinter-
val grammarsin [71]. Here, we prefer the name CSLP in order to be more consistent
in our terminology. Readers familiar with context-free grammars will notice that an
SLPA can be seen as a context-free grammar that generates the single wordval(A).
If rhs(A) = α we also write (as usual for context-free grammars)A→α. Some early
references on SLPs are [59, 139, 142].

Definition 3.5 (derivation tree).Thederivation treeof the SLPA = (V,Γ ,S, rhs) is
a finite rooted ordered tree, where every node is labeled witha symbol fromV ∪Γ .
The root is labeled with the start variableS and every node that is labeled with a
symbol fromΓ is a leaf of the derivation tree. A node that is labeled with a variable
A with rhs(A) = α1 · · ·αn (whereα1, . . . ,αn ∈V∪Γ ) hasn children that are labeled
from left to right withα1, . . . ,αn.

Recall the definition of a circuit in normal form (Definition 1.36), which also applies
to PCSLPs, CSLPs, and SLPs. In particular, we allow a right-hand side to beε. For
SLPs that evaluate to a non-empty word, we can forbid the empty word as a right-
hand side. An SLP in normal form without the empty word on a right-hand side is a
context-free grammar in Chomsky normal form:

Definition 3.6 (Chomsky normal form). An SLPA = (V,Γ ,S, rhs) is in Chomsky
normal form, if for all A∈V, rhs(A) belongs toΓ or has the formBCwith B,C∈V.

Example 3.7.Consider the SLPA over the terminal alphabet{a,b} with variables
A1, . . . ,A7, where rhs(A1) = a, rhs(A2) = b and rhs(Ai) = Ai−1Ai−2 for 3 ≤ i ≤ 7.
The start variable isA7. Thenval(A) = abaababaabaab. The SLPA is in Chomsky
normal form and|A| = 12.

We will make heavy use of the Chomsky normal form in this book.Therefore, let
us outline an efficient algorithm for transforming a given SLP into Chomsky normal
form.

Proposition 3.8.For a given SLPA = (V,Γ ,S, rhs) with val(A) 6= ε one can com-
pute in timeO(|A|) (on a RAM) an SLPB in Chomsky normal form such that
val(A) = val(B).

Proof. The proof is similar to the transformation of a context-freegrammar into
Chomsky normal form, and is divided into 4 steps.

Step 1.First, we compute in linear time an enumerationA1,A2, . . . ,An of V such
that if Ai is smaller thanA j with respect to the hierarchical order, theni < j, i.e., we
compute a topological sorting ofV, see e.g. [42].

1 The formalism in [60] differs in some minor details from CSLPs.
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Step 2.Using the toplogical sorting, we can compute the set of variablesE = {A∈
V | valA(A) = ε} in linear time: We set a bite(A) to zero for eachA∈V. Then we
go over the sequenceA1, . . . ,An. If rhs(Ai) only consists of variables and for each
variableA j in rhs(Ai) we havee(A j) = 1 (this includes the case that rhs(Ai) = ε),
then we sete(Ai) := 1. At the end, we haveE = {A∈V | e(A) = 1}. Then, we set
V := V \E and replace every occurrence of a variable fromE in a right-hand side
by the empty word. The resulting SLP has no empty right-hand sides.

Step 3.Next, we replace every occurrence of a terminal symbola ∈ Γ in a right-
hand side rhs(A) 6= a by a new variableAa with rhs(Aa) = a. At this point, every
right-hand side is either a single terminal symbol or a non-empty word over the set
of variablesV.

Step 4.Right-hand sides of length at least 3 are split into right-hand sides of length
2 by introducing additional variables. For this, we have to go only once over all
right-hand sides; hence linear time suffices.

Step 5.Finally, we remove right-hand sides consisting of a single variable (so called
chain productions). LetC := {A ∈ V | rhs(A) ∈ V}. Then, we go over the setC in
topological order and thereby redefine rhs(A) := rhs(rhs(A)) for everyA∈ C. The
resulting SLP is in Chomsky normal form.⊓⊔

A simple induction shows that for every SLPA of sizemone has|val(A)| ≤O(3m/3)
[31, proof of Lemma 1]. On the other hand, it is straightforward to define an SLP
B in Chomsky normal form of size 2n such that|val(B)| ≥ 2n. Hence, an SLP can
be seen as a compressed representation of the word it generates, and exponential
compression rates can be achieved in this way.

3.2 Algorithms for Words Represented by SLPs

In this section, we will see some simple polynomial time algorithms for words that
are represented by SLPs. In the next section, we will show that CSLPs and un-
der certain restrictions also PCSLPs can be transformed in polynomial time into
equivalent SLPs. Hence, all algorithmic problems from thissection can be solved in
polynomial time for CSLPs and PCSLPs (under some restrictions) as well.

Proposition 3.9.The following time bounds hold for the RAM model:

(1) Given an SLPA = (V,Σ ,S, rhs), one can compute all alphabetsalph(valA(A))
for A∈V in timeO(|A|).

(2) Given an SLPA = (V,Σ ,S, rhs), one can compute all lengths|valA(A)| for A∈V
in timeO(|A|).

(3) Given an SLPA and a number1 ≤ i ≤ |val(A)|, one compute the symbol
val(A)[i] in timeO(|A|) (this problem is in factP-complete [107]).

(4) Given an SLPA over the terminal alphabetΓ and a free monoid homomorphism
ρ : Γ ∗ → Σ∗, one can compute an SLPB such thatval(B) = ρ(val(A)) in time
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O(|A| ·max{|ρ(a)| | a∈ Γ }). Moreover, this computation is also possible by a
logspace transducer.

(5) Given an SLPA over the terminal alphabetΣ and a symbol a∈ Σ one can
compute the numbermax({0}∪{p | val(A)[p] = a}) (i.e., the maximal position
on whichval(A) contains an a) in timeO(|A|).

(6) Given an SLPA over the terminal alphabetΣ , a subalphabetΓ ⊆ Σ and a
number1 ≤ i ≤ |πΓ (val(A))|, one can compute the minimal position1 ≤ p ≤
|val(A)| with |πΓ (val(A)[1 : p])|= i (i.e., the position of the i-th occurrence of a
letter fromΓ in val(A)) in timeO(|A|).

Proof. By Proposition 3.8, we can assume thatA = (V,Σ ,S, rhs) is in Chomsky
normal form. First, we compute in linear time an enumerationA1,A2, . . . ,An of V
such that ifAi is smaller thanA j with respect to the hierarchical order, theni < j,
see also the proof of Proposition 3.8.

For (1), let us assume thatΣ = {a1, . . . ,am}. A subset ofΣ can be represented by
a bit vector of lengthm, and the union of two subsets can be computed as the bitwise
OR of the corresponding bit vectors. Note that the bitwise ORis an elementary op-
eration in our RAM model, see Section 1.3.8. Hence, we store for each nonterminal
Ai ∈V a bit vectorbi of lengthm, which is initially set to the 0-vector. Then we go
over all nonterminals in the orderA1,A2, . . . ,An. If rhs(Ai) = a j then we set thej-th
bit of bi to 1. If rhs(Ai) = A jAk with j,k < i then we setbi to the bitwise OR ofb j

andbk.
Basically, the same algorithm works for (2), except thatbi now stores a natural

number. If rhs(Ai) = a j then we setbi := 1. If rhs(Ai) = A jAk with j,k < i then
we setbi := b j +bk. Note that the number of bits of each numberbi is bounded by
O(log(|valA(A)|)) ≤ O(|A|).

For (3), the algorithm walks down in the derivation tree forA to positioni. By (2),
we can assume that for everyA∈V, the length|valA(A)| is available. At each stage,
the algorithm stores a numberp and a variableA of A such that 1≤ p≤ |valA(A)|.
Initially, p = i, andA is the start variable ofA. If rhs(A) = BC, then there are two
cases: If 1≤ p ≤ |valA(B)|, then we continue with positionp and the variableB.
Otherwise, we have|valA(B)|+ 1≤ p ≤ |valA(A)|, and we continue with position
p−|valA(B)| (this number can be computed using the algorithm from the previous
point) and variableC. Finally, if rhs(A) = a, then we must havep= 1 and we output
the terminal symbola.

For (4) we only have to replace in each right-hand side ofA every occurrence of
a terminal symbol byρ(a).

For (5) letpa,i = max({0}∪{k | valA(Ai)[k] = a}) for each 1≤ i ≤ n. We compute
all valuespa,i for 1 ≤ i ≤ n. First, we compute for each variableAi the alphabet
alph(valA(Ai)) (represented by a bit vector according to the proof of (1)) and the
length|valA(Ai)| (see (2)) in timeO(|A|). Then, we compute the positionspa,i as
follows: If rhs(Ai) = b ∈ Σ we setpa,i = 1 if b = a and pa,i = 0 otherwise. For a
variableAi with rhs(Ai) = A jAk ( j,k < i) we set:
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pa,i =






0 if a 6∈ alph(valA(Ai))

pa, j if a∈ alph(valA(Ai))\ alph(valA(Ak))

|valA(A j)|+ pa,k if a∈ alph(valA(Ak)).

Finally, the proof of (6) is similar to the proof of (3). By (2)and (4) we can
assume that for everyA∈V the lengths|valA(A)| and|πΓ (valA(A))| are available.
We start with setting a variablep to 0 and another variableq to i (wherei is from
(6)). Then we walk down in the derivation tree forA. If we are currently at a variable
A ∈ V and rhs(A) = BC, then there are two cases: If 1≤ q ≤ |πΓ (valA(B))|, then
we we continue at variableB and do not change the values ofp andq. On the other
hand, if |πΓ (valA(B))| < q ≤ |πΓ (valA(A))|, then we setp := p+ |valA(B)| and
q := q−|πΓ (valA(B))| and continue at variableC. Finally, if we arrive at a variable
A with rhs(A) ∈ Σ , then we terminate and output the current value ofp.

This concludes the proof of the proposition.⊓⊔

Point (4) from Proposition 3.9 can be extended to mappings computed by determin-
istic rational transducers, as long as we only require the output SLP to be computed
in polynomial time (and not logspace). Adeterministic rational transducerT is a
tupleT = (Q,Σ ,Γ ,δ ,q0,F), where

• Q is a finite set of states,
• Σ is the (finite) input alphabet,
• Γ is the (finite) output alphabet,
• δ ⊆ Q×Σ ×Γ ∗×Q is a finite set of transitions such that for everyq ∈ Q and

a∈ Σ there exists at most one transition of the form(q,a,w, p) in δ ,
• q0 ∈ Q is the initial state, and
• F ⊆ Q is the set of final states.

We defineδ̂ as the smallest subset ofQ×Σ∗×Γ ∗×Q such that:

• (q,ε,ε,q) ∈ δ̂ for all q∈ Q,

• δ ⊆ δ̂ , and
• If (q,u,v, p),(p,u′,v′, r) ∈ δ̂ , then also(q,uu′,vv′, r) ∈ δ̂ .

Then, for every statep∈ Q and every input wordu∈ Σ∗, there is at most one state
q∈ Q and at most one wordv∈ Γ ∗ such that(p,u,v,q) ∈ δ̂ . Hence, we can define a
partial mapping[[T ]] : Σ∗ →Γ ∗ by (i) [[T ]](u) = v if there is a final stateq∈ F such
that (q0,u,v,q) ∈ δ̂ and (ii) [[T ]](u) = undefined in all other cases. We define the
sizeof the transducerT = (Q,Σ ,Γ ,δ ,q0,F) as|T | = |Q|+ ∑(q,a,w,p)∈δ (|w|+1).

Theorem 3.10.From a given SLPA over the terminal alphabetΣ and a given de-
terministic rational transducerT with input alphabetΣ one can compute in time
O(|A| · |T |) an SLPB such thatval(B) = [[T ]](val(A)).

Proof. Let A = (V,Σ ,S, rhs), which is without loss of generality in Chomsky normal
form, andT = (Q,Σ ,Γ ,δ ,q0,F). In a first step we compute inductively over the
hierarchical order ofA for every variableA ∈ V and every statep ∈ Q the unique
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states(p,A) ∈ Q such that(p,val(A),v,s(p,A)) ∈ δ̂ for some wordv∈Γ ∗. If such a
wordv does not exist, we sets(p,A) = undefined. If rhs(A) = a∈ Σ then there is at
most one transition(p,a,w,q) ∈ δ and we sets(p,A) = q if such a transition exists.
If rhs(A) = BC and for every stateq∈ Q the statess(q,B) ands(q,C) are already
defined, then we sets(p,A) = s(s(p,B),C) for all p∈ Q (if s(p,B) is undefined, or
q = s(p,B) is defined buts(q,C) is undefined, then clearlys(p,A) is undefined too).
This first phase needs timeO(|V| · |Q|).

Now we can define the SLPB. The variables ofB are all pairs(p,A) ∈ Q×V
such thats(p,A) is defined. The right-hand sides for these variables are defined
as follows: LetA ∈ V, p ∈ Q, ands(p,A) = q. If rhs(A) = a ∈ Σ , then there is
exactly one transition(p,a,w,q) ∈ δ and we set rhs((p,A)) = w. If rhs(A) = BC,
then s(p,B) = r must be defined. We set rhs((p,A)) = (p,B)(r,C). This second
phase needs timeO(|V| ·∑(q,a,w,p)∈δ (|w|+1)). ⊓⊔

We will also need the following simple related result:

Theorem 3.11.For a given SLPA and a given nondeterministic finite automaton
A = (Q,Σ ,δ ,q0,F) we can check in timeO(|A| · |Q|3) whetherval(A) ∈ L(A ).

Proof. We can assume thatQ = {1, . . . ,n} and q0 = 1. This allows to represent
the set of transitions of the automatonA by boolean matricesMa, one for each
symbola∈ Σ . The matrixMa has a 1 at entry(i, j) if and only if (i,a, j) ∈ δ . We
can now evaluate the SLPA = (V,Σ ,S, rhs) (which is without loss of generality in
Chomsky normal form) over boolean matrices. Formally, for every variableA ∈ V
of A we define a boolean matrixMA as follows: If rhs(A) = a∈ Σ thenMA = Ma.
If rhs(A) = BC, thenMA = MBMC. Since a multiplication of two boolean(n×n)-
matrices can be done in timen3, we need timeO(|V| ·n3) to compute all matrices
MA.

Now,val(A) ∈ L(A ) if and only if there is a final statei ∈ F such that entry(1, i)
of the matrixMS is 1. ⊓⊔

In [15, 124] it was shown that there exists a fixed regular languageL such that it
is P-complete to check for a given SLPA whetherval(A) ∈ L; see also the remark
after Theorem 4.10.

The following lemma will be crucial for our applications of compressed word
problems. It generalizes point (4) from Proposition 3.9.

Lemma 3.12.For a given sequenceϕ1, . . . ,ϕn of free monoid homomorphisms
ϕi : Γ ∗ → Γ ∗ (1 ≤ i ≤ n) and an SLPA over the alphabetΓ one can compute
in logarithmic space an SLPB such thatval(B) = ϕ1(ϕ2(· · ·ϕn(val(A)) · · · )).

Proof. We compute in logarithmic space SLPs for the wordsϕ1(ϕ2(· · ·ϕn(a))) for
all a∈Γ . Then, one can take the union of all these SLPs (assuming thattheir variable
sets are pairwise disjoint) and replace in the SLPA every occurrence of a symbola
by the start variable of the SLP forϕ1(ϕ2(· · ·ϕn(a) · · · )).

Let us take variablesAi,a, where 0≤ i ≤ n anda∈ Γ , and define
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rhs(Ai,a) =

{
a if i = 0

Ai−1,a1 · · ·Ai−1,am if 0 < i ≤ n andϕi(a) = a1 · · ·am

By induction oni one can easily show thatval(Ai,a) = ϕ1(ϕ2(· · ·ϕi(a) · · · )). ⊓⊔

We conclude this chapter with a simple problem for words, which becomes difficult
for SLPs.

Theorem 3.13.The following problem isNP-complete:

input: Two SLPsA andB over the terminal alphabet{a,b}.
output: Is there a position i such thatval(A)[i] = val(B)[i] = b?

Proof. It is clear that the problem belongs toNP: We can guess a positioni and then
verify val(A)[i] = val(B)[i] in polynomial time.

For NP-hardness, we use a construction from [112]. We reduce from SUB-
SETSUM, see Example 1.42. Letw = (w1, . . . ,wn) be a tuple of natural numbers
and lett ∈ N; all numbers are encoded in binary. For a bit vectorx ∈ {0,1}n of
lengthn let us definex ·w = x1w1 + x2w2 + · · ·+ xnwn. Note that SUBSETSUM
is the question, whether there exists a bit vectorx ∈ {0,1}n with x · w = t. Let
1k be the constant-1 vector(1,1, . . . ,1) of lengthk, let wk = (w1, . . . ,wk), and let
sk = 1k ·wk = w1 + · · ·+ wk for 1≤ k ≤ n. Finally, lets= sn = w1 + w2 + · · ·+ wn

and define the word
S(w) = ∏

x∈{0,1}n

ax·wbas−x·w.

Here, the product∏x∈{0,1}n means that we concatenate all wordsax·wbas−x·w for
x ∈ {0,1}n and the order of concatenation is the lexicographic order on{0,1}n,
where the right-most bit has highest significance. For example, we have

S(2,3,5) = ba10 a2ba8 a3ba7 a5ba5 a5ba5 a7ba3 a8ba2 a10b

= ba12ba11ba12ba10ba12ba11ba12b.

Let us show that there is an SLPA of size polynomial in∑n
i=1 log(wi) for the word

S(w). Note that∑n
i=1 log(wi) is roughly the length of the binary encoding of the

tuplew. The SLPA contains variablesA1, . . . ,An with

rhs(A1) = bas+w1b

rhs(Ak+1) = Aka
s−sk+wk+1Ak (1≤ k≤ n−1).

Here we use binary coded numbers as exponents. These powers can be easily re-
moved by ordinary right-hand sides as remarked earlier. To see thatA can be com-
puted by a logspace transducer fromw1, . . . ,wn it suffices to compute all numbers
s1, . . . ,sn in logspace. This is an instance of the iterated addition problem (compute
the sum of a given tuple of binary encoded numbers), which belongs to the cir-
cuit complexity classTC0. Every function inTC0 can be computed by a logspace
transducer, see [163] for details.
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Let An be the start variable ofA. We prove by induction onk that

valA(Ak) =

(
∏

x∈{0,1}k\{1k}

ax·wkbas−x·wk

)
askb.

The casek = 1 is clear, sincevalA(A1) = bas+w1b = basas1b = a0bas−0as1b. For
k+1≤ n we obtain the following:

(
∏

x∈{0,1}k+1\{1k+1}

ax·wk+1bas−x·wk+1

)
ask+1b

=

(
∏

x∈{0,1}k

ax·wkbas−x·wk

)

︸ ︷︷ ︸
valA(Ak)a

s−sk

(
∏

x∈{0,1}k\{1k}

ax·wk+wk+1bas−x·wk−wk+1

)
awk+1askb

︸ ︷︷ ︸
awk+1valA(Ak)

= valA(Ak)a
s−sk+wk+1valA(Ak) = valA(Ak+1).

Fork = n we finally get

val(A) = valA(An) = ∏
x∈{0,1}n

ax·wbas−x·w = S(w).

Our second SLPB satisfies

val(B) = (atbas−t)2n
.

It is straightforward to construct such an SLP in logspace from the binary represen-
tations ofs andt. Clearly, there exists a bit vectorx ∈ {0,1}n with x ·w = t if and
only if there is a positioni with val(A)[i] = val(B)[i] = b. This concludes the proof.
⊓⊔

3.3 Transforming CSLPs and PCSLPs into SLPs

CSLPs and PCSLPs are sometimes more convenient than SLPs. Onthe other hand,
in this section we will see that CSLPs can be transformed in polynomial time into
SLPs. The same holds for PCSLPs if we restrict applications of projection operators
suitably.

The following result was shown by Hagenah in his PhD thesis [71] (in German),
see also [151].

Theorem 3.14.From a given CSLPA = (VA,Γ , rhsA) (without start variable)
in normal form with n variables one can compute in timeO(n2) an SLPB =
(VB,Γ , rhsB) (without start variable) of sizeO(n2) such that VA ⊆VB andvalB(X)=
valA(X) for all X ∈VA.
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Proof. Let us writeV and rhs forVA and rhsA, respectively, in the following.
Let h be the height ofA. The idea is to push cut-operators downwards (towards
smaller variables in the hierarchical order). First we compute the lengths of all words
valA(A) for A∈ V. This is possible in timeO(n) as for SLPs, see Proposition 3.9.
Choose a variableA ∈ V such that rhs(A) = B[i : j] but every smaller variableC
(smaller with respect to the hierarchical order) has no cut-operator in its right-hand
side. We show that we can eliminate the cut-operator in rhs(A) and thereby ob-
tain a CSLPA′ = (V ′,Γ ,S, rhs′) in normal form such thatV ⊆ V ′, |V ′ \V| ≤ 2h,
valA(A) = valA′(A) for all A∈V, and the height ofA′ is bounded by the height of
A. By iterating this transformation, we can eliminate all cut-operators and transform
A into an equivalent SLP of size|A|+O(h|V|) (the elimination of each cut-operator
increases the size byO(h)).

If rhs(B) = a for a ∈ Γ , then we set rhs(A) = a if i = j = 1 and rhs(A) = ε
otherwise. Now assume that rhs(B) = CD (recall that we assume thatA is in normal
form). Letm= |val(C)| andn = |val(D)|. There are three cases:

Case 1. j≤ m. We redefine rhs(A) = C[i, j].

Case 2. i≥ n+1. We redefine rhs(A) = D[i −m, j −m].

Case 3. i≤ m and j > m. In this case we introduce two new variablesC′ andD′,
redefine rhs(A) = C′D′, and set rhs(C′) = C[i :] and rhs(D′) = D[: i −m].

By iterating this process, we arrive at one of the following two situations:

(i) After several applications of Case 1 and 2 we have rhs(A) = X[k, l ] and
rhs(X) = a∈ Γ for some variableX ∈V.

(ii) We arrive at Case 3 for the first time.

In situation (i) we are done (and have not introduced any new variables). So assume
that we arrive in situation (ii). We have introduced two new variablesC′ andD′.
Let us deal withC′ (with D′ we deal analogously). We have set rhs(C′) = C[i :]. If
rhs(C) = a for a ∈ Γ , then we set rhs(C′) = a if i = 1 and rhs(C) = ε otherwise.
Now assume that rhs(C) = EF for E,F ∈V. Let m= |val(E)| andn = |val(F)|. We
distinguish two cases:

Case 1. i≤m. We introduce a new variableE′, redefine rhs(C′) = E′F , set rhs(E′) =
E[i :], and continue withE′.

Case 2. i> m. We redefine rhs(C′) = F[: i −m] and continue withC′.

By iterating this process we finally eliminate the cut-operator. Note that in each step
at most one new variable is introduced (in Case 1). Therefore, at mostd variables
are introduced. Since we have to do an analogous procedure for D′, we introduce at
most 2h new variables in total. Clearly, our process does not increase the height of
the CSLP. Moreover, the resulting CSLP is again in normal form except for variables
X with rhs(X) = ε. But these variables can be eliminated at the end. This proves the
theorem. ⊓⊔
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Theorem 3.14 cannot be generalized to PCSLPs, simply because the size of a small-
est SLP that is equivalent to a given PCSLP may be exponentialin the size of the
PCSLP. Here is an example:

Example 3.15.Forn≥ 1 let us define the PCSLP

An = ({A1, . . . ,An,An+1},Γn,A1, rhs)

with Γn = {a1, . . . ,an}, rhs(Ai) = π∆i (Ai+1)Ai+1 for 1 ≤ i ≤ n, and rhs(An+1) =
a1a2 · · ·an, where∆i = {a1, . . . ,an} \ {ai}. This PCSLP generates the word

val(An) = ∏
∆⊆Γn

π∆ (a1a2 · · ·an), (3.1)

where all subsets∆ ⊆Γn are listed in a kind of lexicographic order (the precise order
is not important for the following argument). LetBn be an SLP withval(An) =
val(Bn). By [31, Lemma 3],val(Bn) contains at mostk · |Bn| many different factors
of lengthk. But from (3.1) we see thatval(An) = val(Bn) contains at least

( n
⌈n/2⌉

)

many factors of length⌈n/2⌉. Hence,|Bn| must be at least⌈n/2⌉−1 ·
( n
⌈n/2⌉

)
, which

is exponential inn.

Nevertheless, under certain restrictions we can transforma given PCSLP into an
equivalent SLP:

Lemma 3.16.Let p be a constant. Then there exists a polynomial time algorithm
for the following problem:

input: Finite alphabetsΓ1, . . . ,Γp and a PCSLPA = (VA,Γ , rhsA) (without start
variable) overΓ =

⋃p
i=1Γi such that∆ ∈ {Γ1, . . . ,Γp} for every subexpression of the

form π∆ (α) that appears in a right-hand side ofA.

output: An SLPB = (VB,Γ , rhsB) (without start variable) overΓ such that VA ⊆VB

andvalA(X) = valB(X) for every X∈VA.

Proof. Since for a CSLP an equivalent SLP can be constructed in polynomial time
by Theorem 3.14, it suffices to construct in polynomial time aCSLP B with the
desired properties from the statement of the lemma. Let

C =
{ ⋂

i∈K

Γi | K ⊆ {1, . . . , p}
}
∪{Γ }.

Note thatC has constant size. LetVB = {X∆ |X ∈VA,∆ ∈C } be the set of variables
of B. We identifyX ∈VA with XΓ ∈VB. The right-hand side mapping rhsB will be
defined in such a way thatvalB(X∆ ) = π∆ (valA(X)).

If rhsA(X) = a ∈ Γ , then we set rhsB(X∆ ) = π∆ (a) ∈ {ε,a}. If rhsA(X) = YZ,
then we set rhsB(X∆ ) = Y∆ Z∆ . If rhsA(X) = πΘ (Y) with Θ ∈ {Γ1, . . . ,Γp}, then we
set rhsB(X∆ ) = Y∆∩Θ . Note that∆ ∩Θ ∈ C .

Finally, consider the case rhsA(X) = Y[i : j]. We set rhsB(X∆ ) = Y∆ [k : ℓ], where
k = |π∆ (val(Y)[: i − 1])|+ 1 andℓ = |π∆ (val(Y)[: j])|. These lengths can be com-
puted in polynomial time as follows: Implicitly, we have already computed a CSLP,



52 3 Algorithms on Compressed Words

which generates the wordval(Y). Hence, by adding a single definition, we obtain a
CSLP for the wordval(Y)[: i−1]. Using Theorem 3.14 we can transform this CSLP
in polynomial time into an equivalent SLP, which can be transformed in polynomial
time into an SLP for the wordπ∆ (val(Y)[: i −1]) by Proposition 3.9(4). From this
SLP we can compute the length|π∆ (val(Y)[: i−1])| in polynomial time by Proposi-
tion 3.9 (the SLP for the wordval(Y)[: i−1] is not used in the further computation).
The length|π∆ (val(Y)[: j])| can be computed similarly. Since the size ofC is con-
stant, the above construction works in polynomial time.⊓⊔

In the proof of Lemma 3.16, it is crucial thatp is a fixed constant, i.e., not part of
the input. Otherwise the construction would lead to an exponential blow-up. Exam-
ple 3.15 shows that this is unavoidable.

By Theorem 3.14, all algorithmic problems for SLP-represented words consid-
ered in Section 3.2 can be solved in polynomial time for CSLP-represented words
as well. The same applies to PCSLPs under the restriction forthe alphabet from
Lemma 3.16.

3.4 Compressed Equality Checking

The most basic task for SLP-compressed words is equality checking: Given two
SLPs A and B, doesval(A) = val(B) hold? Clearly, a simple decompress-and-
compare strategy is very inefficient. It takes exponential time to computeval(A)
and val(B). Nevertheless a polynomial time algorithm exists. This wasindepen-
dently discovered by Hirshfeld, Jerrum, and Moller [80], Mehlhorn, Sundar, and
Uhrig [128], and Plandowski [139].

Theorem 3.17 ([80, 128, 139]).The following problem belongs toP:

input: Two SLPsA andB

question: Doesval(A) = val(B) hold?

A natural generalization of checking equality of two words is pattern matching.
In the classicalpattern matching problemit is asked for given wordsp (usually
called the pattern) andt (usually called the text), whetherp is a factor oft. There
are several linear time algorithms for this problem on uncompressed words, most
notably the well-known Knuth-Morris-Pratt algorithm [99]. It is therefore natural to
ask, whether a polynomial time algorithm for pattern matching on SLP-compressed
words exists; this problem is sometimes calledfully compressed pattern matching
and is defined as follows:

input: Two SLPsA andB

question:Is val(A) a factor ofval(B)?

The first polynomial time algorithm for fully compressed pattern matching was pre-
sented in [96], further improvements with respect to the running time were achieved
in [59, 89, 106, 130]. In this book, we will only need the weaker Theorem 3.17.
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In the rest of this section, we will prove Theorem 3.17. Sincethe result is so
fundamental for the rest of the book, we will also analyze theprecise running time
of our algorithm (using the RAM model from Section 1.3.8). Our algorithm will
use Jeż’s recompression technique [89]. This technique was used in [89] to give
the currently fastest algorithm for fully compressed pattern matching. Basically, our
algorithm can be seen as a simplification of the algorithm from [89].2 We start with
several definitions.

Let s∈ Σ+ be a non-empty word over a finite alphabetΣ . We define the word
block(s) as follows: Assume thats = an1

1 an2
2 · · ·ank

k with a1, . . . ,ak ∈ Σ , ai 6= ai+1

for all 1 ≤ i < k andni > 0 for all 1≤ i ≤ k. Thenblock(s) = a(n1)
1 a(n2)

2 · · ·a(nk)
k ,

wherea(n1)
1 ,a(n2)

2 , . . . ,a(nk)
k are new symbols. For instance, fors = aabbbaccbwe

haveblock(s) = a(2)b(3)a(1)c(2)b(1). For the symbola(1) we will simply writea. Let
us setblock(ε) = ε.

For a partitionΣ = Σl ⊎Σr we denote withs[Σl ,Σr ] the word that is obtained from
sby replacing every occurrence of a factorab in swith a∈ Σl andb∈ Σr by the new
symbol〈ab〉. For instance, fors= abcbabcadandΣl = {a,c} andΣr = {b,d} we
haves[Σl ,Σr ] = 〈ab〉〈cb〉〈ab〉c〈ad〉. Since two different occurrences of factors from
Σl Σr must occupy disjoints sets of positions ins, the words[Σl ,Σr ] is well-defined.3

Obviously, for all wordss, t ∈ Σ∗ we have

(s= t ⇐⇒ block(s) = block(t)) and (s= t ⇐⇒ s[Σl ,Σr ] = t[Σl ,Σr ]). (3.2)

In the rest of this section, we assume that all SLPsA = (V,Σ ,S, rhs) are in a kind of
generalized Chomsky normal form: We require that for every variableA∈V, rhs(A)
is either of the formu∈ Σ+, uBvwith u,v∈ Σ∗ andB∈V, or uBvCwwith u,v,w∈
Σ∗ andB,C∈V. In other words, every right-hand side is non-empty and contains at
most two occurrences of variables. In particular, we only consider SLPs that produce
non-empty word. This is not a crucial restriction for checking the equalityval(A) =
val(B), since we can first check easily in polynomial time, whetherval(A) or val(B)
produce the empty string.

Following Jeż’s recompression technique [89], our strategy for checking an
equalityval(A) = val(B) is to compute fromA andB two SLPsA′ andB′ such
thatval(A′) = (block(val(A)))[Σl ,Σr ] andval(B′) = (block(val(B)))[Σl ,Σr ], where
the partition is chosen in such a way that the total length|val(A′)|+ |val(B′)| is
bounded byc · (|val(A)|+ |val(B)|) for some constantc < 1. This process is iter-
ated. After at most log(|val(A)|+ |val(B)|) ∈ O(|A|+ |B|) many iterations it must
terminate with two SLPs, one of which produces a string of length one. Checking
equality of the two words produced by these SLPs is easy. The main difficulty of
this approach is to bound the size of the two SLPs during this process.

2 Using a refined analysis, Jeż moreover achieves a better running time in [89] compared to our
algorithm.
3 More formally, one can define the semi-Thue systemR = {(ab, 〈ab〉) | a ∈ Σl ,b ∈ Σr}. It is
Noetherian and confluent, and we haves[Σl ,Σr ] = NFR(s).
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Algorithm 1 : CompressBlocks(A)

input : SLPA = (V,Σ ,S, rhs)
output: SLPB with val(B) = block(val(A))
let A1,A2, . . . ,Am be an enumeration ofV in hierarchical order
for i := 1 to m do

if rhs(Ai) = u∈ Σ+ then
rhs(Ai) := block(u)

else ifrhs(Ai) = uBv with u,v∈ Σ ∗ and B∈V then
rhs(Ai) := block(u)Bblock(v)

else
let rhs(Ai) = uBvCwwith u,v,w∈ Σ ∗ andB,C∈V
rhs(Ai) := block(u)Bblock(v)Cblock(w)

end
end
for i := 1 to m−1 do

if rhs(Ai) is of the form a(k) then
replace every occurrence ofAi in a right-hand side bya(k)

removeAi from the SLP
else

let rhs(Ai) be of the forma(k)αb(l )

if α = ε then
replace every occurrence ofAi in a right-hand side bya(k)b(l )

removeAi from the SLP
else

replace every occurrence ofAi in a right-hand side bya(k)Aib(l )

rhs(Ai ) := α
end

end
replace every factorc( j)c(k) (c∈ {a,b}) in a right-hand side byc( j+k)

end

Lemma 3.18.Given an SLPA, alph(block(val(A))) contains at most|A| many dif-
ferent symbols.

Proof. A block in s= val(A) is a maximal factor of the forms[i, j] = an for a∈ Σ
(maximal in the sense that eitheri = 1 ors[i−1] 6= a, and eitherj = |s| or s[ j +1] 6=
a). We have to show thats contains at most|A| different blocks. To every blockan

that is a factor ofs we can assign a unique variableA such thatan is a factor of
valA(A) butan is not a factor of any wordvalA(B), whereB is a variable that occurs
in rhs(A). But there are at most|rhs(A)| such blocks. Summing over all variables
yields the lemma. ⊓⊔

Lemma 3.19.Given an SLPA, one can compute in timeO(|A|) an SLPB such
that val(B) = block(val(A)). Moreover, ifA has m variables, thenB has at most m
variables and|B| ≤ |A|+4m.

Proof. LetA =(V,Σ ,S, rhs) (where every right-hand side is non-empty and contains
at most two variables) and letA1,A2, . . . ,Am be an enumeration ofV that respects
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the hierarchical order ofA: If Ai occurs in rhs(A j) theni < j. Such an enumeration
can be produced in timeO(|A|); it is equivalent to the problem of computing a topo-
logical sorting of an acyclic graph, see e.g. [42, Section 22.4]. We can assume that
Am = S. Let ai (respectively,bi) be the first (respectively, last) symbol ofvalA(Ai).
Moreover, letϕ be the homomorphism withϕ(a(k)) = ak for all a∈ Σ andk≥ 1.

Consider Algorithm 1 (CompressBlock). It gradually modifies the input SLPA.
Let A0 be the SLP before the second for-loop is executed for the firsttime, and let
Ai be the SLP produced after 1≤ i ≤ m−1 iterations of the second for-loop. Finally
let B = Am−1 be the output SLP. Hence,ϕ(val(A0)) = ϕ(block(val(A))) = val(A).
By induction on 0≤ i ≤ m−1 we prove the following invariants:

(i) For all 1≤ j ≤ i we have: Ifblock(valA(A j)) has length at most two, thenA j

does no longer occur inAi . On the other hand, ifblock(valA(A j)) = a(k)ub(l)

with u 6= ε, thenvalAi (A j) = u.
(ii) For all i +1≤ j ≤m, we haveϕ(valAi (A j)) = valA(A j) and rhsAi (A j) does not

contain a factor of the forma(p)a(q). Moreover, every occurrence of a variable

Ak with 1≤ k ≤ i in rhsAi (A j) has a symbol of the froma(p)
k on its left and a

symbol of the formb(q)
k on its right.

For i = 0, (i) and (ii) clearly hold. Now assume that (i) and (ii) holdfor some
0 ≤ i ≤ m−2 and consider the(i + 1)-th iteration of the for-loop. Only the right-
hand sides of variables fromAi+1, . . . ,Am are modified. Hence, (i) still holds for
all variablesA1, . . . ,Ai after the(i + 1)-th iteration. In order to prove the remain-
ing points, note that all variables in rhsAi (Ai+1) are among{A1, . . . ,Ai} and hence
satisfy point (i) after thei-th iteration. Morover,Ai+1 satisfies (ii) after thei-th iter-
ation. We getvalAi (Ai+1) = block(valA(Ai+1)) and rhsAi (Ai+1) either has the form
a(p) = block(valA(Ai+1)) or a(k)αb(l), wherea(k) (respectively,b(l)) is the first (re-
spectively, last) symbol ofblock(valA(Ai+1)). Using this, it is straightforward to
verify (i) for Ai+1 as well as (ii) for all variablesAi+2, . . . ,Am.

Note thatB has at mostm variables (no new variables are introduced) and that
the length of a right-hand side ofA increases by at most 4 in the construction ofB:
Every right-hand side ofA contains at most two variables, and for each occurrence
of a variable in a right-hand side we add one symbol on the leftand one symbol on
the right. Hence, we get|B| ≤ |A|+4m. ⊓⊔

Let us now analyze wordss[Σl ,Σr ] for a partitionΣ = Σℓ ⊎Σr .

Lemma 3.20.For a word s∈ Σ∗ which does not contain factor of the form aa with
a∈ Σ (i.e.,block(s) = s) there exists a partitionΣ = Σℓ ⊎Σr such that|s[Σl ,Σr ]| ≤
(3|s|+1)/4.

Proof. The following probabilistic argument is given in [90]. Lets= a1a2 · · ·an. We
put each symbola ∈ Σ with probability 1/2 into Σl and with probability 1/2 into
Σr . Hence, for every position 1≤ i ≤ n−1, the probability thataiai+1 ∈ Σl Σr is 1/4
(here, we needai 6= ai+1). By linearity of expectations (for which we do not need
independence), the expected number of positions 1≤ i ≤ n−1 with aiai+1 ∈ Σl Σr
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is (n−1)/4. Hence, there exists a partitionΣ = Σℓ ⊎Σr for which there are at least
(n−1)/4 many positions 1≤ i ≤ n−1 with aiai+1 ∈ Σl Σr . For this partition, we get
|s[Σl ,Σr ]| ≤ n− (n−1)/4= (3n+1)/4. ⊓⊔

Next, we show that for an SLP-represented string one can compute a partition as in
Lemma 3.20 in linear time:

Lemma 3.21.Assume that the alphabetΣ is an initial segment of the natural
numbers. Given an SLPA over the terminal alphabetΣ such that s:= val(A) =
block(val(A)), one can compute in timeO(|A|) a partition Σ = Σl ⊎Σr such that
|s[Σl ,Σr ]| ≤ (3|s|+1)/4.

Proof. Let n = |A|. First note that the words = val(A) contains at mostn many
different digrams (= factors of length 2). The argument is similar to the proof of
Lemma 3.18: To each digramabof swe can assign a unique variableA such thatab
is a factor ofvalA(A) butab is not a factor of any wordvalA(B), whereB is a variable
that occurs in rhs(A). But there are at most|rhs(A)|−1 such factors. Summing over
all variables yields the statement.

Consider Algorithm 2 (CountingDigrams), which computes for each lettera∈ Σ
a list R(a) that contains all pairs(b,v) such that the digramab occurs ins and the
number of positions 1≤ i ≤ |s| − 1 such thats[i, i + 1] = ab is equal tov. By the
remark in the preceding paragraph, the total number of entries in all listsR(a) (a∈
Σ ) is bounded byn. The algorithm first computes a topological sortingA1, . . . ,Am

of the variables with respect to the hierarchical order. Then, it computes for every
Ai ∈ V the numbervi of occurrences ofAi in the derivation tree ofA. This part of
the algorithm is taken from [65]. Next, an arrayB of at mostm entries is computed.
This array contains all triples(a,b, i), where rhs(Ai) = A jAk (for somej,k < i), the
last symbol ofvalA(A j) is a and the first symbol ofvalA(Ak) is b. Note that for
each occurrence ofab in s there exists a unique nodev in the derivation tree ofA
such that the occurrence ofab is belowv, but it is neither below the left child ofv
nor below the right child ofv. If v is labeled withAi and rhs(Ai) = A jAk, then the
last (respectively, first) symbol ofA j (respectively,Ak) must bea (respectively,b).
Hence, the total number of occurrences ofab in s is the sum of all numbersvi such
that(a,b, i) occurs in the arrayR.

In order to compute the listsR(a), the arrayB is sorted using radix sort on the
lexicographic order onΣ ×Σ (the first two components fromB-entries), where the
secondΣ -component has higher priority. Radix sort is an algorithm that allows to
sort an array ofm manyk-ary numbers havingd digits in timeO(dm+ dk) on a
RAM, see [42]. To apply radix sort in our situation, we need the assumption that the
alphabetΣ is an initial segment of natural numbers, see also [90]. Then, radix sort
needs timeO(m+ |Σ |) ≤ O(|A|) to sort the arrayB. From the sorted arrayC it is
easy to compute the listsR(a) for all a∈ Σ in a single pass overC.

Completely analogous to the listsR(a), one can also compute in linear time lists
L(a) (a∈ Σ ), whereL(a) contains all pairs(b,v) such that the digramba occurs in
s and the number of positions 1≤ i ≤ |s|−1 such thats[i, i +1] = ab is equal tov.
Both listsR(a) andL(a) are needed in Algorithm 3 (ComputePartition) (see again
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Algorithm 2 : CountingDigramms
Data: SLPA = (V,Σ ,S, rhs) with val(A) = block(val(A))
transformA into Chomsky normal form in timeO(|A|)
let A1,A2, . . . ,Am be an enumeration ofV in hierarchical order
for i := 1 to m−1 do

vi := 0
end
vm := 1
for i := m downto 2 do

if rhs(Ai) = A jAk then
v j := v j +vi

vk := vk +vi
end

end
c := 0
for i := 1 to m do

if rhs(Ai) = a∈ Σ then
first(i) := a; last(i) := a

else
let rhs(Ai) = A jAk with j ,k< i
first(i) := first( j); last(i) := last(k)
a := last( j); b := first(k)
c := c+1
B[c] := (a,b, i)

end
end
sort arrayB using radix sort on the lexicographic order on tuples fromΣ ×Σ ×{1, . . . ,m},
ignoring the last component, and letC be the resulting array (of lengthc≤ m)
for a∈ Σ do

R(a) := empty list
end
for i := 1 to c do

letC[i] = (a,b, i)
if i = 1 or C[i −1] is not of the form(a,b, j) for some jthen

append toR(a) the entry(b,vi)
else

let the last entry inR(a) be(b,v)
replace this entry by(b,v+vi)

end
end

[90]) for computing a partitionΣ = Σl ⊎Σr . The two setsΣl andΣr are stored as bit
maps, i.e., arrays of length|Σ |, where thea-th array entry is 0 or 1, depending on
whethera belongs toΣl (respectively,Σr ). Here, we need again the assumption that
Σ = {1, . . . , |Σ |}.

ComputePartition first computes in a greedy way a partitionΣ = Σl ⊎Σr such
that the number of positions 1≤ i ≤ |s|−1 with s[i, i + 1] ∈ Σl Σr ∪Σr Σl is at least
(|s|−1)/2. For this the algorithm goes over all symbols fromΣ and makes for every
a∈ Σ a greedy choice. If for the current setsΣl andΣr the number of occurrences of
digrams fromaΣr ∪Σra is at least as large as the number of occurrences of digrams
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Algorithm 3 : ComputePartition(A)

Data: SLPA = (V,Σ ,S, rhs) with val(A) = block(val(A))
compute listL(a) andR(a) for all a∈ Σ using Algorithm 2
Σl := /0; Σr := /0; Γ := /0
for a∈ Σ do

la := 0; ra := 0
end
for a∈ Σ do

if ra ≥ la then
Σl := Σl ∪{a}
for (b,v) ∈ L(a) do

lb := lb +v
end
for (b,v) ∈ R(a) do

lb := lb +v
end

else
Σr := Σr ∪{a}
for (b,v) ∈ L(a) do

rb := rb +v
end
for (b,v) ∈ R(a) do

rb := rb +v
end

end
end
if ∑a∈Σr ∑(b,v)∈(Σl×N)∩R(a) v > ∑a∈Σl ∑(b,v)∈(Σr×N)∩R(a) v then

(Σl ,Σr) := (Σr ,Σl )
end

from aΣl ∪Σl a, then the algorithm putsa into Σl , otherwisea is put intoΣr . To make
this choice, the algorithm stores (and correctly updates) the number of occurrences
of digrams fromaΣr ∪ Σra (resp.,aΣl ∪ Σl a) in the variablera (resp.,la). These
variables are updated using the listsL(a) andR(a).

Since the number of positions 1≤ i ≤ |s|−1 with s[i, i + 1] ∈ Σl Σr ∪Σr Σl is at
least(|s|−1)/2, there exist at least(|s|−1)/4 positionsi with s[i, i + 1] ∈ Σl Σr or
there exist at least(|s|−1)/4 positionsi with s[i, i +1] ∈ Σr Σl . The last if-statement
in Algorithm 3 selects the partition which yields more digram occurrences. Note
that the sum∑a∈Σr ∑(b,v)∈(Σl×N)∩R(a) v can be computed in linear time since the sets
Σl andΣr are stored as bit maps and the total length of all listsR(a) is at mostn. A
similar remark applies to the sum∑a∈Σl ∑(b,v)∈(Σr×N)∩R(a) v. ⊓⊔

Since we have to deal with two SLPs that have to be checked for equality, we need
a simple adaptation of Lemma 3.21 for two SLPs:

Lemma 3.22.There is an algorithmComputePartition(A,B) that computes for
given SLPsA andB over the terminal alphabetΣ with s:= val(A) = block(val(A))
and t:= val(B)= block(val(B)) in timeO(|A|+ |B|) a partition such that|s[Σl ,Σr ]|+
|t[Σl ,Σr ]| ≤ 3(|s|+ |t|)/4+5/4.
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Algorithm 4 : CompressPairs(A,Σl ,Σr)

Data: SLPA = (V,Σ ,S, rhs) with val(A) = block(val(A)) and a partitionΣ = Σl ⊎Σr .
let A1,A2, . . . ,Am be an enumeration ofV in hierarchical order
for i := 1 to m−1 do

if rhs(Ai) is of the form aα for a∈ Σr then
replace every occurrence ofAi in a right-hand side byaAi

rhs(Ai) := α
end
if rhs(Ai) is of the formβb for b∈ Σl then

replace every occurrence ofAi in a right-hand side byAib
rhs(Ai) := β

end
if rhs(Ai) = ε then

replace every occurrence ofAi in a right-hand side byε
removeAi from the SLP

end
end
replace every occurrence of a factorab∈ Σl Σr in a right-hand side by〈ab〉

Proof. By taking the disjoint union of all productions ofA andB we can easily con-
struct an SLPC of sizeO(|A|+ |B|) such thatval(C) = st =: u. With Lemma 3.21
we obtain a partitionΣ = Σl ∪Σr such that|u[Σl ,Σr ]| ≤ (3|u|+1)/4= (3(|s|+ |t|)+
1)/4. On the other hand, we have|u[Σl ,Σr ]| ≥ |s[Σl ,Σr ]|+ |t[Σl ,Σr ]|−1. Hence, we
get|s[Σl ,Σr ]|+ |t[Σl ,Σr ]| ≤ 3(|s|+ |t|)/4+5/4. ⊓⊔

Lemma 3.23.Given an SLPA over the terminal alphabetΣ such thatval(A) =
block(val(A)) and a partitionΣ = Σℓ ∪Σr one can compute in timeO(|A|) an SLP
B such thatval(B) = val(A)[Σl ,Σr ]. Moreover, ifA has m variables, thenB has at
most m variables and|B| ≤ |A|+4m.

Proof. Let A = (V,Σ ,S, rhs) and letA1,A2, . . . ,Am be an enumeration ofV that re-
spects the hierarchical order ofA: If Ai occurs in rhs(A j) then i < j. We can as-
sume thatS= Am. Let ai (respectively,bi) be the first (respectively, last) symbol
of valA(Ai). Consider Algorithm 4 (CompressPairs) and letB be the output SLP
of this algorithm. The proof thatval(B) = val(A)[Σl ,Σr ] is similar to the proof of
Lemma 3.19.

For a wordw∈ Σ∗ define the wordspopl (w) andpopr(w) as follows:

popl (ε) = ε popr(ε) = ε
popl (au) = au for a∈ Σl ,u∈ Σ∗ popr(ua) = ua for a∈ Σr ,u∈ Σ∗

popl (au) = u for a∈ Σr ,u∈ Σ∗ popr(ua) = u for a∈ Σl ,u∈ Σ∗

Moreover, letpop(w) = popl (popr(w)) = popr(popl (w)). Note that for a single
symbola we havepop(a) = ε.

LetAi be the SLP afteri iterations of the for-loop (0≤ i ≤m−1). Hence,A0 = A.
By induction on 0≤ i ≤ m−1 one can easily prove the following invariants:
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Algorithm 5 : CheckEquality
Data: SLPsA andB

while |val(A)| > 1 and |val(B)| > 1 do
A := CompressBlocks(A)
B := CompressBlocks(B)
let Γ be the union of the terminal alphabets ofA andB

(Γl ,Γr) := ComputePartition(A,B)
A := CompressPairs(A,Γl ,Γr)
B := CompressPairs(B,Γl ,Γr)

end
check whetherval(A) = val(B)

(i) For all 1≤ j ≤ i we have: Ifpop(valA(A j)) = ε, then variableAi does no
longer occur inAi . Otherwise,valAi (A j) = pop(valA(A j)).

(ii) For all i + 1≤ j ≤ m we havevalAi (A j) = valA(A j). Moreover, every occur-
rence in rhsAi (A j) of a variableAk with 1 ≤ k ≤ i andak ∈ Σr (respectively,
bk ∈ Σl ) is preceded (respectively, followed) byak (respectively,bk).

Hence, we haveval(A) = val(Am−1). Moreover, for every factorizationαAiβ of a
right-hand side fromAm−1 we have:

• Eitherα does not end with a symbol fromΣl or valAm−1(Ai) does not start with a
symbol fromΣr .

• Eitherβ does not start with a symbol fromΣr or valAm−1(Ai) does not end with a
symbol fromΣl .

This implies that for the final SLPB, which results from replacing in all right-
hand sides ofAm all occurrences of factorsab∈ Σl Σr by 〈ab〉, we haveval(B) =
val(A)[Σl ,Σr ] for every variable.

Note thatB has at mostm variables (no new variables are introduced) and that
the length of a right-hand side ofA increases by at most 4 in the construction ofB:
Every right-hand side ofA contains at most two variables, and for each occurrence
of a variable in a right-hand side we introduce at most one symbol on the left and
right. Hence, we get|B| ≤ |A|+4m. ⊓⊔

Proof of Theorem 3.17.Assume that we have two SLPsA andB over the same ter-
minal alphabetΣ and letm := |val(A)| andn := |val(B)|. Moreover, letk (respec-
tively, l ) be the number of variables ofA (respectively,B). Algorithm 5 (Check-
Equality) checks whetherval(A) = val(B). Correctness of the algorithm follows
from observation (3.2). It remains to analyze the running time of the algorithm. By
Lemma 3.22, the number of iterations of the while-loop is bounded byO(log(n+
m)) ≤ O(|A|+ |B|). Let Ai and Bi be the SLPs afteri iterations of the while-
loop. The number of variables ofAi (respectively,Bi ) is at mostk (respectively,
l ). Hence, by Lemma 3.19 and 3.23, the size ofAi (respectively,Bi) can be bounded
by |A|+4ki ∈ O((|A|+ |B|)2) (respectively,|B|+4li ∈ O((|A|+ |B|)2)). Since the
i-th iteration takes timeO(|Ai |+ |Bi |), the total running time isO((|A|+ |B|)3). ⊓⊔
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3.5 2-level PCSLPs

For our algorithms in Chapter 5, it is useful to consider PCSLPs, which are divided
into two layers.

Definition 3.24 (2-level PCSLP).A 2-level PCSLPis a tupleA = (Up,Lo,Γ ,S, rhs)
such that the following holds:

• Up, Lo, andΓ are pairwise disjoint finite alphabets,S∈ Up, and rhs :Up∪Lo →
PC(Up∪Lo,Γ ).

• The tuple(Up,Lo,S, rhs↾Up) is a PCSLP over the terminal alphabetLo.
• The tuple(Lo,Γ , rhs↾Lo) is an SLP (without start variable) over the terminal al-

phabetΓ .

The setUp (respectively,Lo) is called the set ofupper level variables(lower
level variables) of A. Moreover, we setV = Up∪ Lo and call it the set of vari-
ables ofA. The PCSLP(Up,Lo,S, rhs↾Up) is called theupper part ofA, briefly
up(A), and the SLP (without start variable)(Lo,Γ , rhs↾Lo) is the lower part of
A, briefly, lo(A). The upper level evaluation mappinguvalA : PC(Up,Lo) → Lo∗

of A is defined asuvalA = valup(A). The evaluation mappingvalA is defined by
valA(X) = vallo(A)(valup(A)(X)) for X ∈ Up andvalA(X) = vallo(A)(X) for X ∈ Lo.
Finally, we setval(A) = valA(S). We define the size ofA as|A| = ∑X∈V |rhs(X)|.

Example 3.25.Let A = ({F,G,H},{A,B,C,D,E},{a,b,c},H, rhs) be a two-level
PCSLP withUp = {F,G,H} andLo = {A,B,C,D,E}, where the mapping rhs de-
fined as follows:

rhs(A) = a rhs(B) = b rhs(C) = c

rhs(D) = AB rhs(E) = AC

rhs(F) = EABCDEA

rhs(G) = F [2 : 6]

rhs(H) = π{A,C,D}(G)

Then we have

up(A) = ({F,G,H},{A,B,C,D,E},H, rhs↾Up) and

lo(A) = ({A,B,C,D,E},{a,b,c}, rhs↾Lo).

TheuvalA-values for the upper level variables are:

uvalA(F) = EABCDEA

uvalA(G) = ABCDE

uvalA(H) = ACD

ThevalA-values for all variables ofA are:
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valA(A) = a valA(B) = b valA(C) = c

valA(D) = ab valA(E) = ac

valA(F) = valA(EABCDEA) = acabcabaca

valA(G) = valA(ABCDE) = abcabac

val(A) = valA(H) = valA(ACD) = acab

Note thatvalA(G) is different fromvalA(F)[2 : 6] = cabca



Chapter 4
The Compressed Word Problem

In this chapter, we introduce the main topic of this book, namely the compressed
word problem for a finitely generated group. This is the variant of the word prob-
lem, where the input word is not written down explicitly, butgiven by an SLP. Since
the input word is given in a more succinct way, the compressedword problem for
a groupG may have a higher computational complexity than the word problem for
G, and in Section 4.8 we will see such a group. In Section 4.1 we show that the
complexity of the compressed word problem is preserved whengoing to a finitely
generated subgroup or a finite extension. Section 4.2 demonstrates that an efficient
algorithm for the compressed word problem for a groupG leads to efficient al-
gorithms for (ordinary) word problems for various groups derived from G (auto-
morphism groups, semidirect products, and other group extensions). The remaining
Sections 4.3-4.8 study the complexity of the compressed word problem in various
classes of groups (finite groups, free groups, finitely generated linear groups, finitely
generated nilpotent groups, wreath products).

4.1 The Compressed Word Problem and Basic Closure
Properties

Let us start with the definition of the compressed word problem:

Definition 4.1. Let G be a finitely generated group and fix a finite generating setΓ
for G. Thecompressed word problemfor G with respect toΓ , briefly CWP(G,Γ ),
is the following decision problem:

input: An SLPA over the terminal alphabetΓ ∪Γ −1.
question:Doesval(A) = 1 hold inG?

In CWP(G,Γ ), the input size is of course the size|A| of the SLPA. As for the
(uncompressed) word problem, the complexity of the compressed word problem
does not depend on the chosen generating set:

63
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Lemma 4.2.Let G be a finitely generated group and letΓ andΣ be two generating
sets. ThenCWP(G,Γ ) ≤

log
m CWP(G,Σ).

Proof. Let G∼= 〈Γ | R〉 ∼= 〈Σ | S〉. There exists a homomorphismh : (Γ ∪Γ −1)∗ →
(Σ ∪Σ−1)∗ with h(a−1) = h(a)−1 for all a∈ Γ ∪Γ −1 that induces an isomorphism
from 〈Γ | R〉 to 〈Σ | S〉. Hence, for a wordw∈ (Γ ∪Γ −1)∗ we havew = 1 in 〈Γ | R〉
if and only if h(w) = 1 in 〈Σ |S〉. The lemma follows, since by Proposition 3.9(4) we
can compute from a given SLPA overΓ ∪Γ −1 in logarithmic space an SLPB over
Σ ∪Σ−1 such thatval(B) = h(val(A)). This gives a logspace many-one reduction
from CWP(G,Γ ) to CWP(G,Σ). ⊓⊔

By Lemma 4.2, we can just speak about the compressed word problem forG, briefly
CWP(G).

Before we consider the compressed word problem in specific groups we prove
two preservation results. Recall the reducibility relations from Section 1.3.3. By the
following simple proposition, the complexity of the compressed word problem is
preserved when going to a finitely generated subgroup:

Proposition 4.3.Assume that H is a finitely generated subgroup of the finitely gen-
erated group G. ThenCWP(H) ≤log

m CWP(G).

Proof. Choose a generating setΓ for G that contains a generating setΣ for H. Then
for a wordw∈ (Σ ∪Σ−1)∗ we havew = 1 in H if and only if w = 1 in G. ⊓⊔

By the following result from [116], the complexity of the compressed word problem
is also preserved when going to a finite extension:

Theorem 4.4.Assume that K is a finitely generated subgroup of the group G such
that the index[G : K] is finite (hence, G is finitely generated too). ThenCWP(G)≤P

m
CWP(K).

Proof. LetΓ be a finite generating set forK and letΣ be a finite generating set forG.
Let h : (Σ ∪Σ−1)∗ →G be the canonical morphism. LetKg1, . . . ,Kgn be a list of the
cosets ofK, where without loss of generalityg1 = 1. LetA be the coset automaton
of K. This is an NFA over the alphabetΣ ∪Σ−1 and with state set{Kg1, . . . ,Kgn}.
The initial and final state isK = Kg1 and the triple(Kgi ,a,Kg j) (a∈ Σ ∪Σ−1) is a
transition ofA if and only if Kgia = Kg j . Note that this automaton accepts a word
w∈ (Σ ∪Σ−1)∗ if and only if h(w) ∈ K. Since by Theorem 3.11 it can be checked
in polynomial time whether the word generated by a given SLP is accepted by a
given NFA (here, we even have a fixed NFAA ), we can check in polynomial time
whetherh(val(A)) ∈ K for a given SLPA.

Now let A = (V,Σ ∪Σ−1,S, rhs) be an SLP in Chomsky normal form over the
alphabetΣ ∪Σ−1. We want to check whetherval(A) = 1 in G. First, we check in
polynomial time, whetherh(val(A)) ∈ K. If not, we reject immediately (formally,
since we have to construct a polynomial time many-one reduction from CWP(G)
to CWP(K), we should output some fixed SLP overΓ ∪Γ −1 that evaluates to an
element ofK \{1}). Otherwise, we will construct in polynomial time an SLPB over
the generating setΓ ∪Γ −1 of K, which computes the same group element asA.
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The set of variables ofB is the set of triples

W = {[gi ,A,g−1
j ] | A∈V,1≤ i, j ≤ n, gih(valA(A))g−1

j ∈ K}.

By the above observation, this set can be computed in polynomial time. Now, let
us define the right-hand sides for the variables[gi ,A,g−1

j ] ∈ W. First, assume that

rhs(A) = a, wherea∈ Σ ∪Σ−1. Hence,giag−1
j ∈K, and we set rhs([gi ,A,g−1

j ]) = w,

where w ∈ (Γ ∪ Γ −1)∗ is such thath(w) = giag−1
j (we do not have to com-

pute this wordw; it is a fixed word that does not depend on the input). Now
assume that rhs(A) = BC. In polynomial time, we can determine the uniquek
such thatgih(valA(B)) belongs to the cosetKgk. Thus,gih(valA(B))g−1

k ∈ K, i.e.,
[gi ,B,g−1

k ] ∈W. We set

rhs([gi ,A,g−1
j ]) = [gi ,B,g−1

k ][gk,C,g−1
j ].

Note that
gih(valA(A))g−1

j = gih(valA(B))g−1
k gkh(valA(C))g−1

j .

Hence, sincegih(valA(A))g−1
j andgih(valA(B))g−1

k both belong to the subgroupK,

we also havegkh(valA(C))g−1
j ∈ K, i.e., [gk,C,g−1

j ] ∈ W. Finally, let [g1,S,g−1
1 ] =

[1,S,1] be the start variable ofB. Since we assume thath(val(A)) = h(valA(S))∈K,
we have[1,S,1] ∈ W. It is easy to prove that for every variable[gi ,A,g−1

j ] ∈ W,

valB([gi ,A,g−1
j ]) represents the group elementgih(valA(A))g−1

j . Thus,val(A) = 1
in G if and only if val(B) = 1 in K, which is an instance ofCWP(K). This proves
the theorem. ⊓⊔

The reducibility relation≤P
m in Theorem 4.4 cannot be replaced by the stronger

relation≤log
m (unlessP= L ) because there exists a finite groupG with aP-complete

compressed word problem, see Theorem 4.10 (takeK = 1 in Theorem 4.4).

4.2 From the Compressed Word Problem to the Word Problem

It turns out that an efficient algorithm for the compressed word problem for a group
G can be used to solve efficiently the (uncompressed) word problem in certain
groups derived fromG. Hence, the compressed word problem is useful for the so-
lution of the ordinary word problem. In this section, we present three results of
this type. All three results are formulated in terms of certain reducibilities, see Sec-
tion 1.3.3.

Definition 4.5 (Aut(G)). For a groupG, Aut(G) denotes theautomorphism group
of G, which consists of all automorphisms ofG with composition of functions as
the group operation.

Recall from Definition 1.27 the definition of≤log
bc .
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Theorem 4.6 (cf [151]).Let G be a finitely generated group and let H be a finitely
generated subgroup ofAut(G). ThenWP(H) ≤

log
bc CWP(G).

Proof. Let Σ be a finite generating set forG, where without loss of generalitya∈ Σ
implies a−1 ∈ Σ . Let H be generated by the finite setA ⊆ Aut(G), where again
ϕ ∈ A impliesϕ−1 ∈ A.

For a given input wordϕ1ϕ2 · · ·ϕn (with ϕi ∈ A for 1 ≤ i ≤ n we have to
check whether the composition ofϕ1,ϕ2, . . . ,ϕn (in that order) is the identity iso-
morphism in order to solve the word problem forH. But this is equivalent to
ϕn(ϕn−1(· · ·ϕ1(a) · · · )) = a in G for all a∈ Σ .

SinceΣ is closed under inverses, everyϕ ∈ A can be viewed as a homomorphism
onΣ∗. Hence, by Lemma 3.12 we can compute in logarithmic space an SLP Aa over
the alphabetΣ such thatval(Aa) = ϕn(ϕn−1(· · ·ϕ1(a) · · · ))a−1. Thus, the composi-
tion of ϕ1,ϕ2, . . . ,ϕn is the identity if and only if for alla ∈ Σ , val(Aa) = 1 in G.
Since|Σ | is a constant in our consideration, we obtainWP(H) ≤

log
bc CWP(G). ⊓⊔

It should be noted that there are finitely generated (even finitely presented) groups
G, whereAut(G) is not finitely generated, see e.g. [105]. Therefore, we restrict in
Theorem 4.6 to a finitely generated subgroup ofAut(G).

Definition 4.7 (semidirect product). Let K and Q be groups and letϕ : Q →
Aut(K) be a group homomorphism. Then thesemidirect product K⋊ϕ Q is the
group with the domainK × Q and the following multiplication:(k,q)(ℓ, p) =
(k·(ϕ(q)(ℓ)),qp), where· denotes the multiplication inK (note thatϕ(q)∈Aut(K)
and henceϕ(q)(ℓ) ∈ K).

The following result is stated in [116].

Theorem 4.8.Let K and Q be finitely generated groups and letϕ : Q→Aut(K) be a
homomorphism. Then, for the semidirect product K⋊ϕ Q we haveWP(K ⋊ϕ Q)≤

log
m

{WP(Q),CWP(K)}.

Proof. Let us consider a word(k1,q1)(k2,q2) · · · (kn,qn), whereki (respectively,qi)
is a generator ofK (respectively,Q). In K ⋊ϕ Q we have

(k1,q1)(k2,q2) · · · (kn,qn) = (θ1(k1)θ2(k2) · · ·θn(kn),q1q2 · · ·qn),

whereθi ∈ Aut(K) is the automorphism defined by

θi = ϕ(q1 · · ·qi−1) = ϕ(q1) · · ·ϕ(qi−1)

for 1 ≤ i ≤ n (note thatθ1 = idK). By Lemma 3.12, we can compute in log-
arithmic space an SLPA over the generators ofK, which produces the word
θ1(k1)θ2(k2) · · ·θn(kn). We have(k1,q1)(k2,q2) · · · (kn,qn) = 1 in K⋊ϕ Q if and only
if q1q2 · · ·qn = 1 in Q andval(A) = 1 in K. This proves the proposition.⊓⊔

The semidirect productG = K ⋊ϕ Q is a an extension ofK by Q, i.e.,K is a normal
subgroup ofG with quotientG/K ≃ Q. A reasonable generalization of Theorem 4.8
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would beWP(G) ≤
log
m (WP(G/K),CWP(K)). But this cannot be true: there exist

finitely generated groupsG, Q, andK such that (i)Q = G/K, (ii) Q andK have
computable word problems, and (iii)G has an undecidable word problem [14]. On
the other hand, if we require additionally, thatQ is finitely presented (in fact,Q
recursively presented suffices), thenG must have a computable word problem [36].
For the special case that the quotientQ = G/K has a polynomial time word search
problem (see Definition 2.24), we can prove the following:

Theorem 4.9.Let K be a finitely generated normal subgroup of G such that thequo-
tient Q= G/K is finitely presented, has a polynomial Dehn function, andWSP(Q)
can be solved in polynomial time. ThenWP(G) ≤P

m CWP(K).

Proof. Let Σ be a finite generating set forK and letQ = G/K = 〈Γ | R〉 with Γ a
finite generating set forQ andR⊆ (Γ ∪Γ −1)∗ a finite set of relators forQ. Let ϕ :
G→Q be the canonical surjective homomorphism and choose a mappingh : Q→G
with h(1) = 1 andϕ(h(a)) = a for a∈ Q. The setΣ ∪h(Γ ) generatesG and there
exists a so called factor setf : Q×Q → K such thath(a)h(b) = f (a,b)h(ab) for
a,b∈ Q. Note that in generalh is not a homomorphism.

Let us take a wordw∈ (Σ ∪Σ−1∪h(Γ ∪Γ −1))∗ and factorizew as

w = w0h(a1)w1h(a2) · · ·wn−1h(an)wn

with wi ∈ (Σ ∪Σ−1)∗ (0≤ i ≤ n) andai ∈ Γ ∪Γ −1 (1≤ i ≤ n).
The worda1a2 · · ·an ∈ (Γ ∪Γ −1)∗ represents the group elementϕ(w) ∈ Q. In a

first step, we check in polynomial time, whetherϕ(w) = 1 in Q. Note thatWP(Q)
can be solved in polynomial time, since it reduces toWSP(Q).

If ϕ(w) 6= 1 in Q, we know thatw 6= 1 in G. Hence, assume thatϕ(w) =
a1a2 · · ·an = 1 in Q for the rest of the proof. Hence,w represents an element of
the normal subgroupK. Our goal will be to construct in polynomial time an SLPC

over the alphabetΣ ∪Σ−1 such thatw = val(C) in G. Hence,w = 1 in G if and only
if val(C) = 1 in K.

We first construct in polynomial time (usingWSP(Q)) a representation

a1a2 · · ·an =
m

∏
i=1

uir iu
−1
i in the free groupF(Γ ), (4.1)

wherer1, . . . , rm ∈ R∪R−1 are relators or inverse relators forQ.
Consider the semi-Thue system

S= {(aa−1,ε),(ε,aa−1) | a∈ Γ ∪Γ −1}∪{(r,ε) | r ∈ R∪R−1}.

For every rule(v,w) ∈ S, we haveϕ(h(v)) = ϕ(h(w)) in Q; hereh is extended to a
homomorphismh : (Γ ∪Γ −1)∗ → G. Hence, there exists a wordsv,w ∈ (Σ ∪Σ−1)∗

such thath(v) = h(w)sv,w in G. Let us fix these wordssv,w.
Using the identity (4.1), we can construct in polynomial time a derivation

a1a2 · · ·an = u0 →S u1 →S u2 →S · · · →S uk = ε (4.2)
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of polynomial length inn.
Note thath(a1)h(a2) · · ·h(an) represents an element ofK in G. Using the deriva-

tion (4.2), we will compute in polynomial time an SLPA overΣ ∪Σ−1 (the monoid
generating set of the normal subgroupK) such that in the groupG we have

h(a1)h(a2) · · ·h(an) = val(A). (4.3)

For this, we will compute for every 0≤ i ≤ k an SLPAi overΣ ∪Σ−1 such that

h(a1)h(a2) · · ·h(an) = h(ui)val(Ai)

in the groupG. Clearly, forA0 we choose an SLP that generates the empty word.
For the induction step, let us take 0≤ i < k and assume that we have an SLPAi

such thath(a1)h(a2) · · ·h(an) = h(ui)val(Ai) in the groupG. Sinceui →S ui+1 there
exists a rule(v,w) ∈ S andx,y ∈ (Γ ∪Γ −1)∗ such thatui = xvy andui+1 = xwy.
Sinceh(v) = h(w)sv,w in G, we get

h(ui) = h(x)h(v)h(y)

= h(x)h(w)sv,wh(y)

= h(x)h(w)h(y)(h(y)−1sv,wh(y))

= h(ui+1)(h(y)−1sv,wh(y))

in the groupG. SinceK is a normal subgroup ofG, the wordh(y)−1sv,wh(y) can
be certainly rewritten as a word overΣ ∪Σ−1. At this point, we need the following
claim:

Claim.Given wordsh(b1)h(b2) · · ·h(b j) with b1, . . . ,b j ∈ Γ ∪Γ −1 andc1c2 · · ·cℓ ∈
(Σ ∪Σ−1)∗, we can construct in polynomial time an SLPB overΣ ∪Σ−1 such that

h(b j)
−1 · · ·h(b2)

−1h(b1)
−1c1c2 · · ·cℓh(b1)h(b2) · · ·h(b j) = val(B)

in the groupG.

Proof of the claim.It suffices to construct in polynomial time SLPsBi such that

h(b j)
−1 · · ·h(b2)

−1h(b1)
−1cih(b1)h(b2) · · ·h(b j) = val(Bi)

in the groupG. ThenB can be defined as an SLP that generates the concatenation
val(B1) · · ·val(Bℓ).

For b∈ Γ ∪Γ −1 let ψb : K → K be the automorphism ofK defined byψb(x) =
h(b)−1xh(b). Thus, we have

h(b j)
−1 · · ·h(b2)

−1h(b1)
−1cih(b1)h(b2) · · ·h(b j) = ψb j (· · ·ψb2(ψb1(ci)) · · · )

An application of Lemma 3.12 therefore proves the claim.

Using our claim, we can construct in polynomial time an SLPB overΣ ∪Σ−1 such
that
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h(y)−1sv,wh(y) = val(B)

in the groupG (note that the wordy is a suffix of the wordui that was constructed
in polynomial time before). Hence, in the groupG we have

h(a1)h(a2) · · ·h(an) = h(ui)val(Ai)

= h(ui+1)(h(y)−1sv,wh(y))val(Ai)

= h(ui+1)val(B)val(Ai).

Hence, we can defineAi+1 as an SLP that produces the concatenationval(B)val(Ai).
Now, we can finish the proof of the theorem. We have

w = w0h(a1)w1h(a2)w2h(a3) · · ·wn−1h(an)wn

= w0 (h(a1)w1h(a1)
−1)(h(a1)h(a2)w2h(a2)

−1h(a1)
−1) · · ·

(h(a1) · · ·h(an)wnh(an)
−1 · · ·h(a1)

−1)(h(a1) · · ·h(an))

in the groupG. Using our claim, we can compute in polynomial time for every
1≤ i ≤ n an SLPBi overΣ ∪Σ−1 such that

w = w0val(B1) · · ·val(Bn)(h(a1) · · ·h(an))
(4.3)
= w0val(B1) · · ·val(Bn)val(A),

where the SLPA overΣ ∪Σ−1 was computed in polynomial time before. Hence, to
check whetherw= 1 in K, it suffices to check whetherw0val(B1) · · ·val(Bn)val(A)=
1 in the normal subgroupK. But this is an instance ofCWP(K), since one can easily
construct an SLP forw0val(B1) · · ·val(Bn)val(A) from w0, B1, . . . ,Bn, andA. This
concludes the proof.⊓⊔

Theorem 4.9 is stated in [116] for the special case thatQ is an automatic group.

4.3 The Compressed Word Problem in Finite Groups

The simplest finitely genertated groups are the finite groups. So let us continue our
investigations on the compressed word problem with finite groups.

Theorem 4.10.For every finite group G,CWP(G) can be solved in polynomial time.
Moreover, if G is a non-solvable finite group, thenCWP(G) is P-complete.

Proof. The first statement is an immediate corollary of Theorem 3.11: ChooseG is
the generating set forG. The set of all words overG that evaluate to the identity
in the finite group can be accepted by a finite automaton (with state setG). Hence,
for a given SLPA over the alphabetG we can check in polynomial time, whether
val(A) evaluates to the identity ofG.

The second statement is implicitly shown in [15] and is basedon Barrington’s
proof of NC1-completeness of the word problem for a finite non-solvable group
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[11]. Let G be a finite non-solvable group. Hence, there exists a subgroup H such
thatH = [H,H] ([H,H] is the commutator subgroup ofG, i.e., the subgroup gener-
ated by all commutatorsaba−1b−1 with a,b∈ G). We can without loss of generality
assume thatG = H and thusG = [G,G]. We choose the generating setG\ {1} for
G. We proveP-hardness ofCWP(G) by a reduction from circuit value problem, see
Example 1.40. So, letC be a boolean circuit. Since∨ can be expressed with∧ and
¬, we can assume thatC has no∨-gates. We now construct an SLPA as follows:
For every gateA of the circuitC and every non-trivial group elementg ∈ G\ {1}
we introduce a variableAg in the SLPA. We will havevalA(Ag) = 1 in G if gateA
evaluates to 0 andvalA(Ag) = g in G if gateA evaluates to 1. IfA is an input gate
of the circuitC , then we set rhs(Ag) = ε if gateA is labeled with 0 and rhs(Ag) = g
if gateA is labeled with 1. Next, assume thatA is a¬-gate and letB be the unique
input gate forA. We set rhs(Ag) = Bg−1g. Finally, letA be an∧-gate and letB andC
be the two input gates forA. SinceG = [G,G], we can writeg as a product of com-
mutatorsg = ∏n

i=1(g
−1
i h−1

i gihi), where without loss of generalityn≤ |G| (which is
a constant in our consideration) andg1,h1, . . . ,gn,hn ∈ G\ {1}. We define

rhs(Ag) =
n

∏
i=1

(Bg−1
i

Ch−1
i

BgiChi ).

Note that ifB evaluates to 0, then for all 1≤ i ≤ n, valA(Bg−1
i

) = valA(Bgi ) = 1 in

the groupG. Hence, also

valA(Bg−1
i

)valA(Ch−1
i

)valA(Bgi )valA(Chi ) = 1

in G and thusvalA(Ag) = 1 in G. If C evaluates to 0, we can argue analogously. On
the other hand, if bothB andC evaluate to 1, then for all 1≤ i ≤ n,

valA(Bg−1
i

)valA(Ch−1
i

)valA(Bgi )valA(Chi ) = g−1
i h−1

i gihi

in G. Hence,valA(Ag) = g in G.
Finally, if O is the output gate of the circuitC , then we add a new variableS

to A (the start variable) and set rhsA = Ogg−1 for an arbitraryg∈ G\ {1}. We get
val(A) = 1 in G if and only if the circuitC evaluates to 1. It is not hard to show that
the SLPA can be constructed with a logspace transducer from the circuit C . ⊓⊔

From Theorem 4.10 it follows that there exists a fixed regularlanguageL for which
it is P-complete to check whetherval(A) ∈ L for a given SLPA (see the remark
after Theorem 3.11): Take any non-solvable finite groupG (e.g.,G = A5). Then the
set of all words overG\ {1} whose product inG is 1 is a regular language.

For a finite solvable group, the compressed word problem is unlikely to be P-
hard. Theorem 4.2 from [15] implies that the compressed wordproblem for a finite
solvable group belongs to the complexity classDET, which is the class of all prob-
lems that areNC1-reducible to the problem of computing the determinant of a given
integer matrix. It is known thatDET ⊆ NC2; see [163] for more details concerning
these classes.
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4.4 The Compressed Word Problem in Free Groups

In this section, we prove that the compressed word problem for a free group can be
solved in polynomial time. This was shown in [110]. Later, wewill prove more gen-
eral results (see Chapter 5.1). Nevertheless, we decided topresent details for the free
group case since it shows the principal ideas for other more technical constructions
in Chapter 5.1 and 6. Recall the definition of CSLPs (Definition 3.3).

Theorem 4.11.The compressed word problem for a finitely generated free group
belongs toP.

Proof. Consider a free groupF(Γ ) with Γ finite, and letA = (V,Γ ∪Γ −1,S, rhsA)
be an SLP in Chomsky normal form over the terminal alphabetΓ ∪Γ −1. We will
compute in polynomial time a CSLPB = (V,Γ ∪Γ −1,S, rhsB) such thatval(B) =
NF(val(A)) (recall the definition of the normal form mappingNF from Section 2.1).
By Theorem 3.14 one can transform in polynomial timeB into an equivalent SLP
B′. Then,val(A) = 1 in F(Γ ) if and only if val(B′) = ε, which can be easily checked
in polynomial time. The right-hand side mapping rhsB will be defined inductively
over the hierarchical order ofA in such a way thatvalB(A) = NF(valA(A)) for every
A∈V.

Consider a variableA∈ V. If rhsA(A) = a∈ Γ ∪Γ −1, then we set rhsB(A) = a.
Now assume that rhsA(A) = BC for variablesB,C∈V. So, for the current CSLPB
we already havevalB(B) = NF(valA(B)) andvalB(C) = NF(valA(C)). Using The-
orem 3.14 for the current CSLPB, we can construct in polynomial time two SLPs
BB andBC such thatvalB(B) = val(BB) andvalB(C) = val(BC).

Let val(BB) = u andval(BC) = v. By Proposition 3.9(2) we can compute the
lengthsm= |u| andn = |v| in polynomial time. Letx be the longest word such that
there existu′ andv′ with u = u′x andv = x−1v′. Then,NF(valA(A)) = u′v′. If we
can compute the lengthk = |x| in polynomial time, then we can define rhsB(A) =
B[1 : m−k]C[k+1 : n].

Hence, it remains to compute the length ofx in polynomial time. This can be done
using a binary search approach. First, from the SLPBB we can easily compute (by
inverting all right-hand sides) an SLPB′

B such thatval(B′
B) = u−1. Then, it remains

to compute the length of the longest common prefix ofval(B′
B) andval(BC). We

first check in polynomial time whetherval(B′
B) = val(BC) using Theorem 3.17. If

this holds, then|x| = m= n. Now assume thatval(B′
B) 6= val(BC). We can assume

thatm= n is a power of 2. If e.g.m≤ n and 2e is the smallest power of 2 that is at
leastn, then modifyB′

B andBC such that they generate wordsu−1b2e−m andvb2e−n

whereb 6∈ Γ ∪Γ −1 is a new symbol.
So, assume thatm= n = 2e. Note that 2e ≤ 2n. We start our binary search with

ℓ = p = 2e−1 and check in polynomial time (using Theorem 3.17 and 3.14) whether
val(B′

B)[1 : ℓ] = val(BC)[1 : ℓ]. If this is true, we setp := p/2 andℓ := ℓ+ p, oth-
erwise setp := p/2 andℓ := ℓ− p. We continue untilp = 1/2, thenℓ is the length
of x. The number of iterations ise∈ O(logn) and hence bounded byO(|A|). This
proves the theorem.⊓⊔
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Schleimer proved a far reaching generalization of Theorem 4.11:

Theorem 4.12 (cf. [152]).For every word hyperbolic group G,CWP(G) can be
solved in polynomial time.

In Chapter 5.1 we prove another generalization of Theorem 4.11: For every graph
groupG, CWP(G) can be solved in polynomial time (Corollary 5.6).

We can also show that the compressed word problem for a free group of rank at
least 2 isP-complete:

Theorem 4.13.The compressed word problem for a finitely generated free group of
rank at least 2 isP-complete.

Proof. It suffices to proveP-hardness forF2 = F({a,b}), which will be done by
a reduction from the monotone circuit value problem, see Example 1.40. LetΓ =
{a,b}.

Robinson has shown in [148, Theorem 6.3] that the (uncompressed) word prob-
lem for F2 is NC1-hard. We will use the following facts from his proof: Let
x,y∈ (Γ ∪Γ −1)∗ such that|x| = |y| = k and|x|a−|x|a−1 = |y|a−|y|a−1 = 0. Then,
if we interpretx andy as elements fromF2, the following holds:

(x = 1)∨ (y = 1) ⇔ a−3kxa3kya−3kx−1a3ky−1 = 1

(x = 1)∧ (y = 1) ⇔ a−3kxa3kya−3kxa3ky = 1

Note that the words on the right of these equivalences have length 16k and that the
number ofa’s minus the number ofa−1’s is again 0.

Now let C be a monotone Boolean circuit. Without loss of generality wecan
assume thatC is layered, i.e., the gates ofC are partitioned inton layers and a
gate in layeri > 1 receives its inputs from layeri−1 see, e.g., [67, Problem A.1.6].
Layer 1 contains the input gates and layern contains the unique output gate. We now
construct an SLPA as follows. For every gatez of C , G contains two variablesAz

andAz−1. We will havevalA(Az) = 1 in F2 if and only if gatezof the circuit evaluates
to 1. The variableAz−1 evaluates to the inverse ofvalA(Az) in F2. Moreover, we will
have|valA(Az)|= |valA(Az−1)|= 2·16i−1 if z is located in thei-th layer of the circuit
(1≤ i ≤ n).

For every input gatex in layer 1 we define the right-hand sides ofAx andAx−1 as
follows:

rhs(Ax) =

{
aa−1 if gatex is labeled with 1

b2 if gatex is labeled with 0

rhs(Ax−1) =

{
aa−1 if gatex is labeled with 1

b−2 if gatex is labeled with 0

If z is an∨-gate in thei-th layer (i ≥ 2) with input gatesx andy from the(i −1)-th
layer, then the right-hand sides forAz andAz−1 are
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rhs(Az) = a−6·16i−2
Axa

6·16i−2
Aya

−6·16i−2
Ax−1a6·16i−2

Ay−1 and

rhs(Az−1) = Aya
−6·16i−2

Axa
6·16i−2

Ay−1a−6·16i−2
Ax−1a6·16i−2

.

Note that the binary codings of the exponents 6·16i−2 have polynomial length and
hence each of the above productions can be replaced by a sequence of ordinary
productions. Moreover, if|val(Au)| = 2·16i−2 for u∈ {x,x−1,y,y−1} (which is true
if x andy are located in the first layer, i.e.,i = 2), then|val(Az)| = |val(Az−1)| =
2 ·16i−1. If z is an∧-gate in thei-th layer (i ≥ 2) with input gatesx andy, then the
right-hand sides forAz andAz−1 are

rhs(Az) = a−6·16i−2
Axa

6·16i−2
Aya

−6·16i−2
Axa

6·16i−2
Ay and

rhs(Az−1) = Ay−1a−6·16i−2
Ax−1a6·16i−2

Ay−1a−6·16i−2
Ax−1a6·16i−2

.

Once again, these definitions can be replaced by sequences ofordinary definitions.
Let o be the unique output gate of the circuitC . Then, by the result from [148], the
circuit C evaluates to 1 if and only ifvalA(Ao) = 1 in F2. ⊓⊔

Let us conclude this section with a slight generalization ofTheorem 4.11 to a uni-
form setting, where the rank of the free group is part of the input.

Theorem 4.14.The following problem isP-complete:

input: A finite alphabetΓ and an SLPA over the alphabetΓ ∪Γ −1.
question: Doesval(A) = 1 hold in F(Γ )?

Proof. By Theorem 4.13 it suffices to prove membership inP. LetΓ = {a1, . . . ,an}.
Then the mappingh with h(ai) = aiba−i extends to an embedding ofF(Γ ) into
F(a,b), see e.g. [119, Proposition 3.1]. By Proposition 3.9(4) we can compute an
SLPB for h(val(A)) from A andΓ in polynomial time. This proves the theorem by
Theorem 4.11. ⊓⊔

4.5 The Compressed Word Problem for Finitely Generated
Linear Groups

Recall the definition of the randomized complexity classesRP andcoRPfrom Sec-
tion 1.3.7. These classes are located betweenP andNP. Moreover, there is some
evidence from complexity theory thatP = RP = coRP. This makes the following
result from [116] for finitely generated linear groups interesting:

Theorem 4.15.Let G be a finitely generated linear group. Then, the compressed
word problem for G belongs tocoRP.

Proof. Let G be linear over the fieldF. Assume first thatF has characteristic 0.
Recall the polynomial identity testing problemPIT(Z) ∈ coRP, see Definition 1.48
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and Theorem 1.49. SincecoRP is closed under polynomial time many-one reduc-
tions, it suffices to showCWP(G) ≤P

m PIT(Z). LetΓ be a finite generating set ofG
and letA = (V,S, rhs) be an SLP in Chomsky normal form overΓ ∪Γ −1. By Theo-
rem 2.19 we can assume thatG is a finitely generated group of(d×d)-matrices over
the field of fractionsQ(x1, . . . ,xn). Let Ma be the matrix corresponding to generator
a∈Γ ∪Γ −1. These matrices are fixed; they are not part of the input. We can writeMa

as 1
p(x1,...,xn)

Na, whereNa is a (d×d)-matrix overZ[x1, . . . ,xn] andp(x1, . . . ,xn) is
the same polynomial overZ for all generatorsa. ForA∈V let nA be the length of the
word valA(A); it can be computed in polynomial time for everyA∈V by Proposi-
tion 3.9(2). From the SLPA we can now build in polynomial time arithmetic circuits
Ci, j (1≤ i, j ≤ d) in the variablesx1, . . . ,xn such thatval(Ci, j) = 0 for all 1≤ i, j ≤ d
if and only if val(A) = 1 in G. For this, we associated2 defined circuit variablesAi, j

(1≤ i, j ≤ d) with every SLP-variableA∈V. The circuit variableAi, j will evaluate
to entry (i, j) of the matrixp(x1, . . . ,xn)

nAvalA(A). If rhs(A) = a ∈ Γ ∪Γ −1 then
rhs(Ai, j ) is set to entry(i, j) of the matrixNa. If rhs(A) = BC, then we set

rhs(Ai, j) =
d

∑
k=1

Bi,kCk, j .

Finally, we set the output variable of the circuitCi, j to Si, j for i 6= j and toSi, j −
p(x1, . . . ,xn)

nS for i = j.
From the circuitsCi, j we can easily construct an arithmetic circuit for the poly-

nomial
p(x1, . . . ,xn,y,z) = ∑

1≤i, j≤d

yizjval(Ci, j ).

Then p(x1, . . . ,xn,y,z) is the zero polynomial if and only if every polynomial
val(Ci, j ) is the zero polynomial.

The same arguments apply ifF has prime characteristicp. In that case (using
again Theorem 2.19) we can showCWP(G) ≤P

m PIT(Zp). By Theorem 1.49, also
polynomial identity testing over the coefficient ringZp belongs tocoRP. ⊓⊔

Examples of finitely generated linear groups are: finitely generated polycyclic
groups (which include finitely generated nilpotent groups), Coxeter groups, braid
groups, and graph groups. Hence, for all these groups the compressed word prob-
lem belongs tocoRP. The same holds for finitely generated metabelian groups since
they embed into finite direct products of linear groups [165]. For finitely generated
nilpotent groups, Coxeter groups, and graph groups, we willshow that the com-
pressed word problem even belongs toP (Theorem 4.19, Corollary 5.6 and 5.7). In
the next section, we will present a concrete group for which the compressed word
problem is equivalent (with respect to polynomial time many-one reductions) to
polynomial identity testing over the ringZ.
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4.6 The Compressed Word Problem forSL3(Z)

Recall that thespecial linear groupSLd(Z) is the group of all(d×d)-matrices over
Z with determinant 1. The groupSL2(Z) is virtually free (has a free subgroup of
finite index). Hence, by Theorem 4.4 and 4.11 its compressed word problem can
be solved in polynomial time. ForSL3(Z), the complexity of the compressed word
problem exactly coincides with the complexity of polynomial identity testing over
Z, which is not known to be inP.

Theorem 4.16.CWP(SL3(Z)) andPIT(Z) are polynomial time many-one reducible
to each other.

Proof. SinceSL3(Z) is linear over the fieldQ of characteristic zero, the proof of
Theorem 4.15 shows thatCWP(SL3(Z)) ≤P

m PIT(Z).
The proof forPIT(Z)≤P

m CWP(SL3(Z)) is based on a construction from Ben-Or
and Cleve [16], which can be seen as an arithmetic version of Barrington’s construc-
tion (that we used in the proof of Theorem 4.10.) By Theorem 1.51 it suffices to
construct in polynomial time from a variable-free arithmetic circuit C = (V,S, rhs)
over Z an SLPA over generators ofSL3(Z) such thatval(C ) = 0 if and only if
val(A) evaluates to the identity matrix.

The SLPA contains for every gateA ∈ V and allb ∈ {−1,1} and 1≤ i, j ≤ 3
with i 6= j a variableAi, j ,b. Let us denote the matrix to whichAi, j ,b evaluates with
Ai, j ,b as well. The SLPA is constructed in such a way that for every column vector
(x1,x2,x3)

T ∈Z3 the following holds for the vector(y1,y2,y3)
T = Ai, j ,b(x1,x2,x3)

T :
yi = xi +b · valC (A) ·x j andyk = xk for k∈ {1,2,3} \ { j}.

Consider a gateA of the variable-free arithmetic circuitC . Without loss of gener-
ality assume thatC is in normal form. We make a case distinction on the right-hand
side ofA.

Case 1.rhs(A) = c∈ {−1,1}. Then we set rhs(Ai, j ,b) = Id3 +Mi, j ,b·c, whereId3 is
the(3×3) identity matrix and all entries in the matrixMi, j ,b·c are 0, except for the
entry at position(i, j), which isb ·c.

Case 2.rhs(A) = B+C. Then we set rhs(Ai, j ,b) = Bi, j ,bCi, j ,b.

Case 3.rhs(A) = B ·C. Let {k} = {1,2,3} \ {i, j}. Then we set

rhs(Ai, j ,1) = Bk, j ,−1Ci,k,1Bk, j ,1Ci,k,−1

rhs(Ai, j ,−1) = Bk, j ,−1Ci,k,−1Bk, j ,1Ci,k,1

If (y1,y2,y3)
T = Ai, j ,1(x1,x2,x3)

T = Bk, j ,−1Ci,k,1Bk, j ,1Ci,k,−1(x1,x2,x3)
T , then we

gety j = x j , yk = xk + valC (B) ·x j − valC (B) ·x j = xk, and

yi = xi − valC (C) ·xk + valC (C) · (xk + valC (B) ·x j) = xi + valC (C) · valC (B) ·x j .

Similarly, if (y1,y2,y3)
T = Ai, j ,−1(x1,x2,x3)

T = Bk, j ,−1Ci,k,−1Bk, j ,1Ci,k,1(x1,x2,x3)
T ,

then we gety j = x j , yk = xk + valC (B) ·x j − valC (B) ·x j = xk, and
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yi = xi + valC (C) ·xk− valC (C) · (xk + valC (B) ·x j) = xi − valC (C) · valC (B) ·x j .

Finally, let S1,2,1 be the start variable ofA. Then, we haveval(C ) = 0 if and only
if for all (x1,x2,x3) ∈ Z3 we haveS1,2,1(x1,x2,x3)

T = (x1 + val(C ) · x2,x2,x3) =
(x1,x2,x3) if and only if val(A) evaluates toId3. This proves the theorem.⊓⊔

4.7 The Compressed Word Problem for Finitely Generated
Nilpotent Groups

Let us first recall the definition of a nilpotent group.

Definition 4.17 (lower central series, nilpotent group).The lower central series
of the groupG is the sequence of subgroupsG= G1 ≥ G2 ≥G3 ≥ ·· · whereGi+1 =
[Gi ,G] (which is the subgroup ofGi generated by all commutatorsg−1h−1gh for
g∈ Gi andh∈ G; by induction one can show that indeedGi+1 ≤ Gi). The groupG
is nilpotent if there existsi ≥ 1 with Gi = 1.

Robinson [148] has shown that the word problem for a finitely generated linear
group belongs to the circuit complexity classTC0 ⊆ L . Moreover, every nilpotent
group is linear, see e.g. [95]. Hence, by Theorem 4.15 the compressed word problem
for a finitely generated nilpotent group belongs tocoRP. This upper bound was im-
proved in [74] toP. Our proof of this result uses a fact about unitriangular matrices.
Recall that a(d×d)-matrix M = (ai, j)1≤i, j≤d overZ is unitriangular ifai,i = 1 for
all 1≤ i ≤ d andai, j = 0 for i > j, i.e., all entries below the diagonal are zero. For
a matrixM = (ai, j)1≤i, j≤d overZ let |M| = ∑1≤i, j≤d |ai, j |. It is straightforward to
show that|M1 ·M2| ≤ d2|M1| · |M2| for two (d×d)-matricesM1 andM2, see [108,
Lemma 3]. Hence, for a product ofm matrices we have

|M1 ·M2 · · ·Mm| ≤ d2(m−1)|M1| · |M2| · · · |Mn|.

The estimate in the following proposition is very rough but sufficient for our pur-
pose:

Proposition 4.18.Let M1, . . . ,Mm be a unitriangular(d×d)-matrices overZ with
m≥ 2d and let n= max{|Mi | | 1 ≤ i ≤ m}. For the product of these matrices we
have

|M1M2 · · ·Mm| ≤ d+(d−1)

(
m

d−1

)
d2(d−2)nd−1.

Proof. Let Ai = Mi − Idd, this is a matrix which has only zeros on the diagonal and
below. Hence any product of at leastd many matricesAi is zero. We get

M1M2 · · ·Mm =
m

∏
i=1

(Ai + Idd) = ∑
I⊆{1,...,m},|I |<d

∏
i∈I

Ai .
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We have|Ai | ≤ n and hence

|∏
i∈I

Ai | ≤ d2(|I |−1) ∏
i∈I

|Ai | ≤ d2(|I |−1)n|I |

for I 6= /0. Finally, we get

|M1M2 · · ·Mm| ≤ d+
d−1

∑
i=1

(
m
i

)
d2(i−1)ni

(the summandd is due to|Idd| = d). Since we assumem≥ 2d we have
(m

i

)
≤

( m
d−1

)

for all 1≤ i ≤ d−1. Hence, we get

|M1M2 · · ·Mm| ≤ d+(d−1)

(
m

d−1

)
d2(d−2)nd−1.

⊓⊔

Theorem 4.19.Let G be a finitely generated nilpotent group. ThenCWP(G) can be
solved in polynomial time.

Proof. Let G be a finitely generated nilpotent group. ThenG has a finitely generated
torsion-free nilpotent subgroupH such that the index[G : H] is finite [95, Theorem
17.2.2]. By Theorem 4.4, it suffices to solveCWP(H) in polynomial time. LetΓ
be a finite generating set forH. There existsd ≥ 1 such that the finitely generated
torsion-free nilpotent groupH can be embedded into the groupUTd(Z) of unitrian-
gular (d×d)-matrices overZ [95, Theorem 17.2.5]. Letϕ : H → UTd(Z) be this
embedding. Letn = max{|ϕ(a)| | a∈ Γ ∪Γ −1}. Note thatn andd are constants in
our consideration.

If the word w ∈ (Γ ∪Γ −1)∗ is given by an SLPA = (V,Γ ∪Γ −1,S, rhs) in
Chomsky normal form of sizem, we can evaluate the SLP bottom-up in the group
UTd(Z) as follows: For every variableA∈V we compute the matrixϕ(val(A)). If
rhs(A) = BC and the matricesϕ(val(B)) andϕ(val(C)) are already computed, then
ϕ(val(A)) is set to the product of these two matrices. Since|valA(A)| ≤ |w| ≤ 2m,
Proposition 4.18 implies

|ϕ(val(A))| ≤ d+(d−1)

(
2m

d−1

)
d2(d−2)nd−1 ∈ 2O(m).

Hence, every entry in the matrixϕ(val(A)) can be represented withO(m) bits.
Therefore, the evaluation can be accomplished in polynomial time. ⊓⊔

By [9], the automorphism group of a finitely generated nilpotent group is finitely
generated (even finitely presented) and hence, by Theorem 4.19 has a polynomial
time word problem.
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4.8 Wreath Products: Easy Word Problem but Difficult
Compressed Word Problem

In this section, we will present a groupG, for which the word problem can be solved
in logarithmic space, but the compressed word problem iscoNP-hard, and thus not
solvable in polynomial time unlessP = NP (which is equivalent toP = coNP). We
start with the definition of a wreath product of two groups:

Definition 4.20 (wreath product).Let G andH be groups. Consider the direct sum

K =
⊕

g∈G

Hg,

whereHg is a copy ofH. We viewK as the set

H(G) = { f : G→ H | f (g) 6= 1 for only finitely manyg∈ G}

of all mappings fromG to H with finite support together with pointwise multiplica-
tion as the group operation, i.e.,( f1 f2)(g) = f1(g) f2(g). The groupG has a natural
left action onH(G) given by

g f(a) = f (g−1a)

wheref ∈H(G) andg,a∈G. The corresponding homomorphismϕ : G→Aut(H(G))
is defined byϕ(g)( f ) = g f for g∈ G and f ∈ H(G). The corresponding semidirect
productH(G) ⋊ϕ G is thewreath product H≀G.1 In other words:

• Elements ofH ≀G are pairs( f ,g), whereg∈ G and f ∈ H(G).
• The multiplication inH ≀G is defined as follows: Let( f1,g1),( f2,g2) ∈ H ≀G.

Then( f1,g1)( f2,g2) = ( f ,g1g2), wheref (a) = f1(a) f2(g
−1
1 a).

The following intuition might be helpful: An element( f ,g)∈H ≀Gcan be thought of
as a finite multiset of elements ofH \{1} that are sitting at certain elements ofG (the
mappingf ) together with the distinguished elementg∈ G, which can be thought of
as a cursor moving inG. If we want to compute the product( f1,g1)( f2,g2), we do
this as follows: First, we shift the finite collection ofH-elements that corresponds
to the mappingf2 by g1 (the result is the mappingg1 f2): If the elementh∈ H \{1}
is sitting ata ∈ G (i.e., f2(a) = h), then we removeh from a and put it to the
new locationg1a ∈ H. This new collection corresponds to the mappingf ′2 : a 7→
f2(g

−1
1 a). After this shift, we multiply the two collections ofH-elements pointwise:

If in a∈ G the elementsh1 andh2 are sitting (i.e.,f1(a) = h1 and f ′2(a) = h2), then
we put the producth1h2 into the locationa. Finally, the new distinguishedG-element
(the new cursor position) becomesg1g2.

Assume thatH = 〈Σ | RH〉 andG = 〈Γ | RG〉 with Σ ∩Γ = /0. Then we have

H ≀G∼= 〈Σ ∪Γ | RG∪RH ∪{[waw−1,b] | a,b∈ Σ ,w∈ (Γ ∪Γ −1)∗,w 6= 1 in G}〉,

1 This wreath product is also called the restricted wreath product since only finitely supported
mappings fromG to H are considered and not all mappings.
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see e.g. [125]. In terms of the above intuition, the relator[waw−1,b] (recall that
[x,y] = xyx−1y−1) expresses that the following two actions have the same effect:

• (i) Moving the cursor to (theG-element represented by)w, (ii) multiplying the
H-element at the new cursor position witha, (iii) moving the cursor back to the
origin, and (iv) finally multiplying theH-element at the origin withb.

• (i) Multiplying the H-element at the current cursor withb, (ii) moving the cursor
to w, (iii) multiplying theH-element at the new cursor position witha, and finally
(iv) moving the cursor back to the origin.

If G andH are finitely generated, then alsoH ≀G is finitely generated. On the other
hand,H ≀G is finitely presented if and only if one of the following two cases holds:
(i) H = 1 andG is finitely presented or (ii)H is finitely presented andG is finite, see
[12]. The complexity of the word problem for wreath productswas studied in [164].

Theorem 4.21.If G is finitely generated non-abelian andZ ≤ H, thenCWP(G≀H)
is coNP-hard.

Proof. It suffices to prove the theorem for the wreath productG ≀Z. Let g,h ∈ G
such thatgh 6= hg and letZ be generated byt. We prove the theorem by a reduc-
tion from the problem from Theorem 3.13. Hence, letA andB be SLPs over the
alphabet{a,b}. Let n = |val(A)| andm= |val(B)|. Moreover, letA1 (respectively,
B1) be the SLP that results fromA by replacing every occurrence of the symbola
by theZ-generatort and every occurrence of the symbolb by tg (respectively,th).
Similarly, letA2 (respectively,B2) be the SLP that results fromA by replacing ev-
ery occurrence of the symbola by t and every occurrence of the symbolb by tg−1

(respectively,th−1). From these SLPs is it easy to construct in logspace an SLPC

such that
val(C) = val(A1)t

−nval(B1)t
−mval(A2)t

−nval(B2)t
−m

(SLPs fort−n andt−m can be obtained in logspace by replacing inA andB, respec-
tively, all occurrences ofa andb by t−1). Then, if there is no positioni ∈ N such
that val(A)[i] = val(B)[i] = b, we haveval(C) = 1 in G ≀Z. On the other hand, if
there is a positioni ∈ N such thatval(A)[i] = val(B)[i] = b, then, if( f ,0) ∈ G ≀Z is
the element represented by the wordval(C), we havef (i) = ghg−1h−1 6= 1. Hence
val(C) 6= 1 in G ≀Z. ⊓⊔

If G is a finite group, then the word problem forG≀Z can be solved in logspace. This
follows from [164], where it has been shown that ifG1 andG2 are groups for which
the word problem belongs to the circuit complexity class (uniform) NC1 (and this
is the case for finite groups andZ), then also the word problem forG1 ≀G2 belongs
to NC1 ⊆ L . Hence, for a finite non-abelian groupG, the word problem forG ≀Z
belongs toL but the compressed word problem iscoNP-hard. Another group with
an easy word problem but difficult compressed word problem isThompson’s group

F = 〈x0,x1,x2, . . . | xnxk = xkxn+1 for all k < n〉.

This group is actually finitely presented:F = 〈a,b | [ab−1,a−1ba], [ab−1,a−2ba2]〉.
The groupF has several other nice representations, e.g. by piecwiese linear home-
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omorphisms of the unit interval[0,1] or by certain tree diagrams, see [26] for more
details. Thompson’s groupF is a subgroup of Thompson’s groupV, for which the
word problem belongs to the circuit complexity classAC1 [18], which satisfies
NL ⊆ AC1 ⊆ NC2 ⊆ P .

Theorem 4.22.CWP(F) is coNP-hard.

Proof. It is known that the wreath productF ≀Z is a subgroup ofF [69]. SinceF is
non-abelian, the theorem follows from Theorem 4.21.⊓⊔

If G andH are finitely generated abelian groups, then the wreath product H ≀G is
metabelian (H(G) is a normal subgroup ofH ≀G with (H ≀G)/H(G) = G). Hence, as
remarked earlier,H ≀G can be embedded into a direct product of linear groups and
CWP(H ≀G) belongs tocoRP. This fact can be slightly extended:

Corollary 4.23. For every finitely generated abelian group H and every finitely gen-
erated virtually abelian group H (i.e., H is a finite extension of a finitely generated
abelian group),CWP(H ≀G) belongs tocoRP.

Proof. Assume thatK is a finitely generated subgroup of indexm in G. ThenHm≀K
is isomorphic to a subgroup of indexm in H ≀G (see e.g. [118]). IfH is finitely
generated abelian thenHm is finitely generated abelian too and thereforeCWP(Hm≀
K) belongs tocoRP. Finally, we can apply Theorem 4.4 and the fact thatcoRP is
closed under≤P

m. ⊓⊔

It is well known that ifN is a normal subgroup ofG, then also[N,N] is a normal
subgroup ofG. Hence, one can consider the quotient groupG/[N,N]. The following
result of Magnus [122] has many applications in combinatorial group theory.

Theorem 4.24 (Magnus embedding theorem).Let Fk be a free group of rank k and
let N be a normal subgroup of Fk. Then Fk/[N,N] embeds into the wreath product
Zk ≀ (Fk/N).

We can use the Magnus embedding theorem to get:

Theorem 4.25.Let Fk be a free group of rank k and let N be a normal subgroup
of Fk such that Fk/N is finitely generated virtually abelian. ThenCWP(Fk/[N,N])
belongs tocoRP.

Proof. By the Magnus embedding theorem, the groupFk/[N,N] embeds into the
wreath productZk ≀ (Fk/N). For the latter group, the compressed word problem be-
longs tocoRPby Corollary 4.23. ⊓⊔



Chapter 5
The Compressed Word Problem in Graph
Products

In this chapter we will introduce an important operation in combinatorial group
theory: graph products. A graph product is specified by a finite undirected graph,
where every node is labeled with a group. The graph product specified by this group-
labeled graph is obtained by taking the free product of all groups appearing in the
graph, but elements from adjacent groups are allowed to commute. This operation
generalizes free products as well as direct products. Graphgroups were introduced
by Green in her thesis [66]. Further results for graph products can be found in [54,
75, 83, 129].

The main result of this chapter states that there is a polynomial time Turing-
reduction from the compressed word problem for a graph product to the compressed
word problems of the groups labeling the nodes of the graph. The material of this
chapter is taken from [74].

5.1 Graph Products

In this section, we formally define graph products and state the main result of this
chapter.

Definition 5.1 ((in)dependence alphabet).An independence alphabet is a pair
(A, I), whereA is an arbitrary set andI ⊆ A× A is an irreflexive and symmet-
ric relation onA. Thedependence alphabetassociated with(A, I) is (A,D), where
D = (A×A)\ I . Note that the relationD is reflexive.

Let us fix for this subsection afinite independence alphabet(W,E) with W =
{1, . . . ,n} and finitely generated groupsGi for i ∈ {1, . . . ,n}. Let Gi = 〈Γi | Ri〉 with
Γi ∩Γj = /0 for i 6= j.

Definition 5.2 (graph product). The graph productdefined by(W,E,(Gi)i∈W) is
the following group:

81
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G(W,E,(Gi)i∈W) =

〈
n⋃

i=1

Γi |
n⋃

i=1

Ri ∪
⋃

(i, j)∈E

{[a,b] | a∈ Σi ,b∈ Σ j}

〉

In other words: We take the free product of all the groupsG1, . . . ,Gn but elements
x∈ Gi , y∈ G j with (i, j) ∈ E are allowed to commute.

Clearly, if everyGi is finitely generated (respectively, finitely presented) then the
same holds forG(W,E,(Gi)i∈W). If E = /0, thenG(W,E,(Gi)i∈W) is the free product
G1 ∗G2 ∗ · · · ∗Gn and if (W,E) is a complete graph, thenG(W,E,(Gi)i∈W) is the
direct product∏n

i=1Gi . In this sense, the graph product construction generalizesfree
and direct products.

Note that graph groups (see Example 2.5) are exactly the graph products of copies
of Z. Graph products of copies ofZ/2Z are known asright-angled Coxeter groups,
see [56] for more details.

Recently, it was shown that the word problem for a graph product of groups with
logspace word problem can be solved in logspace too [51]:

Theorem 5.3.Let (W,E) be a fixed finite independence alphabet and for every i∈
W let Gi be a finitely generated group. IfWP(Gi) ∈ L for all i ∈ W, then also
WP(G(W,E,(Gi)i∈W)) ∈ L .

Recall the definition of polynomial time Turing reducibility ≤P
T (Definition 1.29).

The main result of this chapter is:

Theorem 5.4.Let (W,E) be a finite independence alphabet and for every i∈W let
Gi be a finitely generated group. Then we have

CWP(G(W,E,(Gi)i∈W)) ≤P
T {CWP(Gi) | i ∈W}.

By taking(W,E) = ({1,2}, /0), we get:

Corollary 5.5. Let G1 and G2 be finitely generated groups. ThenCWP(G1∗G2)≤
P
T

{CWP(G1),CWP(G2)}.

By takingGI = Z (respectively,Z/2Z) for everyi ∈W, we get:

Corollary 5.6. For every graph group G (respectively, right-angled Coxeter group
G), CWP(G) belongs toP.

Building on results from [155], Laurence has shown in [102] that automorphism
groups of graph groups are finitely generated. Recently, Day[44] proved that auto-
morphism groups of graph groups are in fact finitely presented. Further structural
results on automorphism groups of graph groups can be found in [33, 34]. Gen-
eralizing the main result from [102], it was shown in [43] that the automorphism
group of a graph product of finitely generated Abelian groupsis finitely generated.
In particular, the automorphism group of a right-angled Coxeter group is finitely
generated. From Corollary 5.6 and Theorem 4.6 it follows that the word problem
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for the automorphism group of a graph group or a right-angledCoxeter group can
be solved in polynomial time. More generally, Theorem 4.6 and 5.4 yield a poly-
nomial time algorithm for the word problem of a finitely generated subgroup of
Aut(G(W,E,(Gi)i∈W)), where every vertex groupGi has a polynomial time com-
pressed word problem. It is not clear, whether the full groupAut(G(W,E,(Gi)i∈W))
is finitely generated in case every groupAut(Gi) is finitely generated.

Proposition 4.3, Theorem 4.4, and Corollary 5.6 imply that for every finite exten-
sionG of a subgroup of a graph group (one also says thatG virtually embedds into
a graph group),CWP(G) belongs toP. Recently, this class of groups turned out be
very rich. It contains the following classes of groups:

• Coxeter groups (not only right-angled ones) [72]
• one-relator groups with torsion [166]
• fully residually free groups [166]
• fundamental groups of hyperbolic 3-manifolds [2]

Hence, we can state the following corollary:

Corollary 5.7. For every group from one of the following classes the compressed
word problem belongs toP: Coxeter groups, one-relator groups with torsion, fully
residually free groups, fundamental groups of hyperbolic 3-manifolds.

The existence of a polynomial time algorithm for the compressed word problem of
a fully residually free groups was also shown by Macdonald [120].

5.2 Trace Monoids

5.2.1 General definitions

Our approach to the compressed word problem for graph products will be based on
the theory of traces (partially commutative words). In the following we introduce
some notions from trace theory, see [49, 55] for more details. Let us fix an indepen-
dence alphabet(Σ , I) and let(Σ ,D) be the corresponding dependence alphabet, see
Definition 5.1. The setΣ may be infinite, but most of the time, it will be finite in this
chapter.

Definition 5.8 (trace monoid).Thetrace monoidM(Σ , I) is defined as the quotient
monoidM(Σ , I) = Σ∗/{(ab,ba) | (a,b) ∈ I}. Its elements are calledtraces.

Trace monoids are known to be cancellative. We denote by[w]I the trace represented
by the wordw∈ Σ∗. The trace[ε]I is the empty trace; it is the identity of the monoid
M(Σ , I) and we denote it simply byε. Since the relations(ab,ba) do not change the
length or the alphabet of a word, we can definealph([w]I ) = alph(w) and|[w]I | =
|w|. Fora∈ Σ let I(a) = {b∈ Σ | (a,b) ∈ I} be the letters that commute witha and
D(a) = Σ \ I(a). For tracesu,v∈ M(Σ , I) with alph(u)× alph(v) ⊆ I we also write
uIv.
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Definition 5.9 (independence clique).An independence cliqueis a subset∆ ⊆ Σ
such that(a,b)∈ I for all a,b∈ ∆ with a 6= b. For afinite independence clique∆ , we
write [∆ ]I for the trace[a1a2 · · ·an]I , wherea1,a2, . . . ,an is an arbitrary enumeration
of ∆ (the precise enumeration is not important).

The following lemma is known as Levi’s Lemma. It is one of the most fundamental
facts for trace monoids, see e.g. [55, p 74]:

Lemma 5.10 (Levi’s Lemma).Let u1, . . . ,um,v1, . . . ,vn ∈ M. Then u1u2 · · ·um =
v1v2 · · ·vn if and only if there exist wi, j ∈ M (1≤ i ≤ m, 1≤ j ≤ n) such that

• ui = wi,1wi,2 · · ·wi,n for every 1≤ i ≤ m,
• v j = w1, jw2, j · · ·wm, j for every 1≤ j ≤ n, and
• (wi, j ,wk,ℓ) ∈ I if 1 ≤ i < k≤ mandn≥ j > ℓ ≥ 1.

The situation in the lemma will be visualized by a diagram of the following kind.
The i-th column corresponds toui , the j-th row corresponds tov j , and the intersec-
tion of the i-th column and thej-th row representswi, j . Furthermorewi, j andwk,ℓ

are independent if one of them is left-above the other one.

vn w1,n w2,n w3,n . . . wm,n
...

...
...

...
...

...
v3 w1,3 w2,3 w3,3 . . . wm,3

v2 w1,2 w2,2 w3,2 . . . wm,2

v1 w1,1 w2,1 w3,1 . . . wm,1

u1 u2 u3 . . . um

A convenient representation for traces aredependence graphs, which are node-
labeled directed acyclic graphs. For a wordw∈ Σ∗ the dependence graphDw has
vertex set{1, . . . , |w|} where the nodei is labeled withw[i]. There is an edge from
vertex i to j if and only if i < j and(w[i],w[ j]) ∈ D. It is easy to see that for two
wordsw,w′ ∈ Σ∗ we have[w]I = [w′]I if and only if Dw andDw′ are isomorphic
node-labeled graphs. Hence, we can speak ofthedependence graph of a trace.

Example 5.11.We consider the following independence alphabet(Σ , I):

c a

e d b

Then the corresponding dependence alphabet is:

a e

b c d

We consider the wordsu = aeadbacddandv = eaabdcaeb. Then the dependence
graphsDu of u andDv of v look as follows, where we label the vertexi with the
letteru[i] (respectively,v[i]):
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Du

a

e

d

a

b a

c d d

Dv

a

e

d

a

b a

c

b

e

Note that we only show Hasse diagrams and hence omit for instance the edge from
the firstd to the lastd in Du.

Definition 5.12 (downward-closed set, convex set).Let Ew be the edge relation
for the dependence graphDw for a tracew. A subsetV ⊆ {1, . . . , |w|} is called
downward-closed, if (i, j) ∈ Ew and j ∈V implies i ∈V. A subsetV ⊆ {1, . . . , |w|}
is calledconvex, if (i, j),( j,k) ∈ E∗

w andi,k∈V implies j ∈V.

Definition 5.13 (projection homomorphism).For ∆ ⊆ Σ we define theprojection
homomorphismπ∆ : M(Σ , I) → M(∆ , I ∩ (∆ ×∆)) by π∆ (a) = ε for a∈ Σ \∆ and
π∆ (a) = a for a∈ ∆ .

With this definition, we get the following projection lemma:

Lemma 5.14.For u,v∈ M(Σ , I) we have u= v if and only ifπ{a,b}(u) = π{a,b}(v)
for all (a,b) ∈ D.

5.2.2 The Prefix and Suffix Order on Traces.

Definition 5.15 (prefix and suffix of a trace).Let u,v∈ M(Σ , I). Thenu is aprefix
(respectively,suffix) of v if there exists somew∈ M(Σ , I) such thatuw= v (respec-
tively, wu= v) in M(Σ , I), for shortu�p v (respectively,u�s v).

Prefixes of a traceu exactly correspond to downward-closed subsets of the depen-
dence graph ofu.

Definition 5.16 (u⊓pv, u⊓sv, u\pv, u\sv). Theprefix infimum(respectively,suffix
infimum) u⊓p v (respectively,u⊓s v) is the largest tracew with respect to�p (re-
spectively,�s) such thatw �p u andw �p v (respectively,w �s u andw �s v); it
always exists [41]. Withu\p v (respectively,u\s v) we denote the unique tracew
such thatu = (u⊓p v)w (respectively,u = w(u⊓s v)). Uniqueness follows from the
fact thatM(Σ , I) is cancellative.

Note thatu\p v = u\p (u⊓p v) andu\sv = u\s(u⊓sv).

Definition 5.17 (min(u) and max(u)). Foru∈ M(Σ , I), we define

min(u) = {a∈ Σ | a�p u} and

max(u) = {a∈ Σ | a�s u}.
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Clearly, min(u) and max(u) are finite independence cliques and[min(u)]I �p u and
[max(u)]I �s u. Occasionally, we will identify the traces[min(u)]I and [max(u)]I
with the independence cliques min(u) and max(u), respectively.

Example 5.18.We continue Example 5.11 above. We haveu⊓pv= [aeadbac]I =: w
and its dependence graph is:

Dw

a

e

d

a

b a

c

Furthermore we have min(w) = {a,d,e} and max(w) = {a,c}.

We also need the following lemma from [109]:

Lemma 5.19.For u,v∈ M(Σ , I) we have u�p v if and only if the wordπ{a,b}(u) is
a prefix of the wordπ{a,b}(v) for all (a,b) ∈ D.

5.2.3 Trace Rewriting Systems.

Trace rewriting systems are defined analogously to semi-Thue systems (i.e., word
rewriting systems).

Definition 5.20 (trace rewriting system).A trace rewriting system Rover the trace
monoidM(Σ , I) is a finite subset ofM(Σ , I)×M(Σ , I) [49]. We define theone-
step rewrite relation→R ⊆ M(Σ , I)×M(Σ , I) by: x →R y if and only if there are
u,v∈ M(Σ , I) and(ℓ, r) ∈ R such thatx = uℓv andy = urv.

As for semi-Thue systems, we say that the trace rewriting system R is Noetherian
(confluent, locally confluent) if→R is Noetherian (confluent, locally confluent). Let
IRR(R) = IRR(→R) (the set ofirreducible traceswith respect toR) andNFR(w) =
NF→R(w) (if R is Noetherian and confluent) be thenormal formof the tracew. Trace
rewriting systems are studied in detail in [49].

5.2.4 Confluent and Terminating Trace Rewriting Systems for
Graph Products

Let us fix for this subsection afinite independence alphabet(W,E) with W =
{1, . . . ,n} and finitely generated groupsGi for i ∈ {1, . . . ,n}. For pairwise disjoint
nonempty setsC1, . . . ,Cn we define the independence relation

E[C1, . . . ,Cn] =
⋃

(i, j)∈E

Ci ×Cj (5.1)
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on the alphabet
⋃n

i=1Ci . Every independence clique of(
⋃n

i=1Ci ,E[C1, . . . ,Cn]) has
size at mostn. We define a (possibly infinite) independence alphabet as in [54, 100]:
Let

Ai = Gi \ {1} and A =
n⋃

i=1

Ai .

We assume thatA1, . . . ,An are pairwise disjoint. We fix the independence relation

I = E[A1, . . . ,An]

on A for the rest of this subsection. The independence alphabet(A, I) is the only
independence alphabet in this chapter, which may be infinite. OnM(A, I) we define
the trace rewriting system

R=
n⋃

i=1

(
{([aa−1]I ,ε) | a∈ Ai}∪{([ab]I , [c]I ) | a,b,c∈ Ai ,ab= c in Gi}

)
. (5.2)

Clearly,R is terminating (it reduces the length of traces). The following lemma was
shown in [100]:

Lemma 5.21.The trace rewriting system R is confluent.

Proof. SinceR is terminating, it suffices by Newman’s Lemma [134] to show that
R is locally confluent, i.e., for alls,s1,s2 ∈ M(A, I) with s→R s1 ands→R s2 there
existss′ ∈ M(A, I) with s1 →

∗
R s′ ands2 →

∗
R s′.

Thus, assume thats→R s1 ands→R s2. Hence,s = tiaibiui andsi = tir iui for
i ∈ {1,2}, where(aibi, r i) ∈ R. Thus,r i ∈ A∪{ε}. By applying Levi’s Lemma 5.10
to the identityt1a1b1u1 = t2a2b2u2, we obtain the following diagram:

u2 w2 q1 v2

a2b2 p2 t q2

t2 v1 p1 w1

t1 a1b1 u1

Thus,w1Iw2. Since the trace monoid is cancellative, we can assumev1 = v2 = ε
for the further arguments. Assume thatai,bi ∈ Aσi with σi ∈ {1, . . . ,n}. Let us first
consider the caset 6= ε. Thus,σ1 = σ2 = σ , r1, r2 ∈Aσ ∪{ε}, andcIwi for all c∈Aσ
andi ∈ {1,2}. Moreover, sincep1Ip2 but both traces only contain symbols fromAσ ,
we havep1 = ε or p2 = ε and similarlyq1 = ε or q2 = ε. If p1 = p2 = q1 = q2 =
ε thena1b1 = t = a2b2 and hencer1 = r2. We gets1 = w2r1w1 = w1r2w2 = s2.
Otherwise, sincea1b1 cannot be a proper factor ofa2b2 and vice versa, we obtain
up to symmetry the following diagram (recall that we assumev1 = v2 = ε):

u2 w2 b1 ε
a2b2 a2 b2 = a1 ε

t2 ε ε w1

t1 a1b1 u1
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Thus,s1 = a2w2r1w1 = w1a2r1w2 and s2 = w1r2w2b1 = w1r2b1w2. In the group
Gσ we havea2r1 = a2a1b1 = a2b2b1 = r2b1. But this implies thats1 ands2 can be
reduced to the same trace. This concludes the caset 6= ε.

Now assume thatt = ε. Thus, we have the following diagram:

u2 w2 q1 ε
a2b2 p2 ε q2

t2 ε p1 w1

t1 a1b1 u1

If also p1 = ε, the diagram looks as follows:

u2 w2 a1b1 ε
a2b2 p2 ε q2

t2 ε ε w1

t1 a1b1 u1

In particular,w1q2Ia1 implying w1q2Ir1. We have to show thats1 = p2w2r1w1q2

ands2 = w1r2w2a1b1 can be reduced to the same trace. We haves2 →R w1r2w2r1.
Moreover with the independencies listed above, we obtain

s1 = p2w2r1w1q2 = p2w2w1q2r1 = w1p2q2w2r1 →R w1r2w2r1.

If one of the tracesp2, q1, or q2 is empty, then we can argue analogously. Thus, we
may assume thatp1, p2, q1, andq2 are nonempty. It followsp1 = a1, q1 = b1, p2 =
a2, andq2 = b2. Then all traces from{w1,w2,a1b1,a2b2} are pairwise independent,
from which it follows again easily thats1 ands2 can be reduced tow1w2r1r2. ⊓⊔

SinceR is terminating and confluent it defines unique normal forms. Alternatively
to Definition 5.2, one can define the graph productG(W,E,(Gi)i∈W) of G1, . . . ,Gn

as the quotient monoid

G(W,E,(Gi)i∈W) = M(A, I)/R.

The following lemma is important for solving the word problem in a graph product
G = G(W,E,(Gi)i∈W):

Lemma 5.22.Let u,v∈ A∗. Then u= v in G if and only ifNFR([u]I ) = NFR([v]I ).
In particular we have u= 1 in G if and only ifNFR([u]I ) = ε.

Proof. The if-direction is trivial. Let on the other handu,v∈ A∗ and suppose that
u = v in G. By definition this is the case if and only if[u]I and [v]I represent the
same element fromM(A, I)/Rand are hence congruent. SinceRproduces a normal
form for elements from the same congruence class, this implies thatNFR([u]I ) =
NFR([v]I ). ⊓⊔

On the trace monoidM(A, I) we can define a natural involution−1 : M(A, I) →
M(A, I). For a lettera ∈ Aσ , a−1 is the inverse ofa in the groupGσ . This de-
fines an involution onA, which can be extended to the trace monoidM(A, I) by
[a1 · · ·an]

−1
I = [a−1

n · · ·a−1
1 ]I .
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For the normal form of the product of twoR-irreducible traces we have the fol-
lowing lemma, which was shown in [54] (equation (21) in the proof of Lemma 22)
using a slightly different notation.

Lemma 5.23.Let u,v∈ IRR(R) be irreducible traces fromM(A, I). Let x= u\sv−1,
y = v\p u−1, x′ = x\smax(x) and y′ = y\p min(y). Then

NFR(uv) = x′NFR(max(x)min(y))y′.

Before we prove this lemma, let us give some intuition. Sinceu andv both belong
to IRR(R), rules ofR can be only applied at the border ofu andv. We haveu =
x(u⊓sv−1) andv= (u−1⊓pv)y. Moreover,(u⊓sv−1)−1 = (u−1⊓pv) and(u−1⊓pv)
is the longest tracep for which there exist tracesx andy with u = xp−1 andv = py.
This means thatuv→∗

R xy, and in the tracexy no rule of the form([aa−1]I ,ε) can
be applied. Hence, only rules of the form([ab]I ,c) ∈ R can be applied and rule
application can only occur at the border betweenx andy.

Proof of Lemma 5.23.As remarked above, we haveu= x(u⊓sv−1) andv= (u−1⊓p

v)y. Moreover,(u⊓s v−1)−1 = (u−1⊓p v) and(u−1⊓p v) is the longest tracep for
which there exist tracesx andy with u = xp−1 andv = py.

With x′ andy′ as defined in the lemma we get

uv= x′max(x)(u⊓sv−1)(u−1⊓p v)max(y)y′ →∗
R x′max(x)max(y)y′

→∗
R x′NFR(max(x)min(y))y′.

Let q = NFR(max(x)min(y)) ∈ IRR(R). It remains to show thatx′qy′ ∈ IRR(R).
Note that alsox′,y′ ∈ IRR(R) (sincex′ is a prefix ofu∈ IRR(R) andy′ is a suffix of
v∈ IRR(R)).

Recall that max(x) and min(y) are independence cliques. Moreover, there cannot
exista∈ max(x) with a−1 ∈ min(y), because thisa could be moved to(u−1⊓p v). It
follows thatq contains a symbol fromAσ if and only if Aσ ∩(max(x)∪min(y)) 6= /0.

In order to get a contradiction, let us assume that there exist ([ab]I , r) ∈ R and
tracesq1,q2 such thatx′qy′ = q1abq2. By Levi’s Lemma 5.10 andx′,q,y′ ∈ IRR(R)
we obtain up to symmetry one of the following two diagrams:

z2 s2 q2 t2
ab a ε b
z1 s1 q1 t1

x′ q y′

z2 s2 q2 t2
ab a b ε
z1 s1 q1 t1

x′ q y′

Assume thata,b∈ Aσ (σ ∈ W). Let us first consider the left diagram. SinceaIq1,
bIq2, and q = q1q2, we obtainaIq and thusaI max(x). Furthermore, from the
diagram we obtain alsobIs2. Thus, aIs2, which impliesa ∈ max(x′). Together
with aI max(x) it follows that a ∈ max(x′ max(x)) = max(x), which contradicts
aI max(x).

Now let us consider the right diagram. Again we havea ∈ max(x′). Further-
more,aIq1, i.e.,bIq1. Hence,b∈min(q)∩Aσ . Recall thatq= NFR(max(x)min(y)).
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Hence, there are two possibilities: Either there existsa′ ∈max(x)∩Aσ or b∈min(y)
and bI max(x). If a′ ∈ max(x) ∩ Aσ , then x = x′max(x) would contain the fac-
tor [aa′]I , which contradictsx ∈ IRR(R). If b ∈ min(y) and bI max(x), then also
aI max(x), which impliesa∈ max(x′ max(x)) = max(x); the same contradiction as
in the previous paragraph.⊓⊔

Note that in Lemma 5.23|max(x)| as well as|min(y)| are bounded byn = |W|.
Hence, there are at mostn rewrite steps in the derivation ofNFR(max(x)min(y))
from max(x)min(y).

5.2.5 Simple Facts for Compressed Traces.

SLPs allow to represent traces in a succinct way. In this section, we collect some
tools for manipulating SLP-represented traces. These tools will be important in or-
der to solve the compressed word problem for a graph product.

Lemma 5.24.The following problem can be decided in polynomial time:

input: A finite independence alphabet(Σ , I) and SLPsA andB over the terminal
alphabetΣ .
question: Does[val(A)]I = [val(B)]I hold?

Proof. FromA andB we can compute by Proposition 3.9(4) in polynomial time for
all (a,b) ∈ D SLPsAa,b andBa,b with val(Aa,b) = π{a,b}(val(A)) andval(Ba,b) =
π{a,b}(val(B)). By Lemma 5.14, it suffices to checkval(Aa,b) = val(Ba,b), which is
possible in polynomial time by Theorem 3.17.⊓⊔

The previous lemma is slightly generalized by the followingone:

Lemma 5.25.The following problem can be decided in polynomial time:

input: A finite independence alphabet(Σ , I) and SLPsA andB over the terminal
alphabetΣ .
question: Does[val(A)]I �p [val(B)]I hold?

Proof. ComputeAa,b andBa,b as above. By Lemma 5.19, we have to check for all
(a,b) ∈ D, whether the wordval(Aa,b) is a prefix of the wordval(Ba,b). But this
can be easily reduced to an equivalence check: Compute in polynomial timeℓa,b =
|val(Aa,b)| (using Proposition 3.9(2)) and an SLPCa,b with val(Ca,b) = val(Ba,b)[:
ℓa,b] (using Theorem 3.14). Finally check in polynomial time whetherval(Ca,b) =
val(Aa,b) for all (a,b) ∈ D using Theorem 3.17.⊓⊔

Lemma 5.26.There is a polynomial time algorithm for the following problem:

input: A finite independence alphabet(Σ , I) and an SLPA over the alphabetΣ .
output: The setsmax([val(A)]I ) andmin([val(A)]I )
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Proof. Without loss of generality we can assume thatA = (V,Σ ,S, rhs) is in Chom-
sky normal form. We show how to compute max([val(A)]I ). First we compute
alph(val(A)) in polynomial time using Proposition 3.9(1). Fora ∈ alph(val(A))
let pa ∈ {1, . . . , |val(A)|} maximal such thatval(A)[pa] = a. These numbers can
be computed in polynomial time by Proposition 3.9(5). UsingTheorem 3.14 we
compute in polynomial time an SLPB such thatval(B) = val(A)[pa + 1 :] Then
a ∈ max([val(A)]I ) if and only if aI alph(val(B)). This property can be checked
in polynomial time by computingalph(val(B)) (using Proposition 3.9(1)). Repeat-
ing this procedure for alla ∈ alph(val(A)) we get the set max([val(A)]I ). The set
min([val(A)]I ) can be determined similarly.⊓⊔

For the following, recall the definition of a C-expression (Definition 3.3).

Lemma 5.27.There is a polynomial time algorithm for the following problem:

input: A finite independence alphabet(Σ , I) and an SLPA over the terminal alpha-
betΣ .
output: C-expressionsα and β with Var(α) = Var(β ) = {S} (where S is the
start variable ofA), [valA(α)]I = [val(A)]I \s max([val(A)]I ), and [valA(β )]I =
[val(A)]I \p min([val(A)]I )

Moreover,|α| (respectively,|β |) can be bounded byO(|min([val(A)]I )| · log2(|val(A)|))
(respectively,O(|max([val(A)]I )| · log2(|val(A)|))).

Proof. We show how to compute the expressionα in polynomial time; forβ one
can argue analogously. By Lemma 5.26 we can find the set max([val(A)]I ) in poly-
nomial time. Letpa ∈ {1, . . . , |val(A)|} be maximal such thatval(A)[pa] = a for
a∈ max([val(A)]I ) and let{k1, . . . ,km} = {pa | a∈ max([val(A)]I )} with k1 < k2 <
· · ·< km. These numbers can be computed in polynomial time by Proposition 3.9(5).
We set

α = S[: k1−1]S[k1+1 : k2−1] · · ·S[km−1 +1 : km−1]S[km+1 :].

Then[valA(α)]I = [val(A)]I \smax([val(A)]I ). Since the positionsk1, . . . ,km are rep-
resented in binary, each of them needsO(log2(|val(A)|)) many bits. Hence|α|
can be bounded byO(m · log2(|val(A)|)). Sincem = |max([val(A)]I )| we have
|α| ≤ O(|max([val(A)]I )| · log2(|val(A)|)). ⊓⊔

5.3 The Compressed Word Problem for Graph Products

In this section, we will prove Theorem 5.4. Our technique will generalize our algo-
rithm for free groups (Theorem 4.11). There are two aspects,which make the proof
of Theorem 5.4 more complicated than the proof of Theorem 4.11 for free groups:

• We have to deal with partial commutation, i.e., traces instead of words.



92 5 The Compressed Word Problem in Graph Products

• We have to prove a preservation theorem: Whereas Theorem 4.11 deals with a
fixed group (a finitely generated free group), theGi (i ∈ W) in Theorem 5.4 are
arbitrary finitely generated groups and we have to reduce thecompressed word
problem for the graph product to the compressed word problems for the groups
Gi .

Let us fix thefinite independence alphabet(W,E) with W = {1, . . . ,n} and finitely
generated groupsGi for i ∈ {1, . . . ,n} for the rest of this section. Let furthermore
Σi be a finite generating set forGi for i ∈ {1, . . . ,n}. Without loss of generality we
can assume thatΣi does not contain the identity element and thatΣi ∩Σ j = /0 for
i 6= j. We defineΣ =

⋃n
i=1 Σi . Let G denote the graph productG(W,E,(Gi)i∈W) for

the rest of this section. Moreover, letAi , A, I , andR have the same meaning as in
Section 5.2.4. Note thatΣi ⊆ Ai for all 1≤ i ≤ n.

Recall the definition of a 2-level PCSLP (Definition 3.24). For the following
discussion, let us fix a 2-level PCSLP

B = (Up,Lo,Σ ∪Σ−1,S, rhs)

over the terminal alphabetΣ ∪Σ−1 (the monoid generating set of our graph product
G). We introduce several properties forB.

Definition 5.28 (pure).The 2-level PCSLPB is pure if for every X ∈ Lo there ex-
ists i ∈ W such thatvalB(X) ∈ (Σi ∪Σ−1

i )
+

andvalB(X) 6= 1 in Gi (hencevalB(X)
represents a group element from the setA).

For the following notations, assume thatB is pure. Then, we can define the mapping
typeB : Lo →W by typeB(X) = i if valB(X) ∈ (Σi ∪Σ−1

i )
+

. For i ∈W let

Lo(i) = {X ∈ Lo | typeB(X) = i}.

Then the setsLo(1), . . . ,Lo(n) form a partition ofLo. Moreover, using (5.1) on page
86 we can define an independence relationIB onLo by

IB = E[Lo(1), . . . ,Lo(n)].

Definition 5.29 (nicely projecting).The 2-level PCSLPB is nicely projecting if for
every subexpression of the formπ∆ (α) (∆ ⊆ Lo) that appears in a right-hand side
of up(B), there existsK ⊆W with ∆ =

⋃
i∈K Lo(i).

This condition will be needed in order to apply Lemma 3.16. Note that the number
of all sets

⋃
i∈K Lo(i) with K ⊆W is bounded by 2n = O(1) (the size ofW is a fixed

constant in our consideration).

Definition 5.30 (irredundant). The 2-level PCSLPB is irredundant if for allX,Y ∈
Lo such thatX 6= Y andtypeB(X) = typeB(Y) = i, we havevalB(X) 6= valB(Y) in
the groupGi .

One can think of a pure and irredundant 2-level PCSLPB as a PCSLP, where the
terminal alphabet is a finite subsetB⊆A, with A=

⋃
i∈W Gi \{1} from Section 5.2.4:
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Takeup(B), replace every variableX ∈ Lo(i) (i ∈W) by the group element fromGi

represented byvalB(X), and remove the lower partlo(B). Moreover, each element
from B∩Ai (i ∈W) is represented by a unique SLP over the terminal alphabetΣi ∪
Σ−1

i (namely the lower partlo(B) with the appropriate start variable). IfB is pure
but not irredundant then, using the compressed word problems for the groupsGi

as oracles, one can compute a pure and irredundant 2-level PCSLP C such that
val(B) = val(C) in G as follows: If B contains two variablesX,Y ∈ Lo such that
X 6= Y, typeB(X) = typeB(Y) = i andvalB(X) = valB(Y) in Gi , one has to replaceY
in all right-hand sides byX. Note that this process does not change the set of upper
level variables ofB.

Definition 5.31 (saturated).The 2-level PCSLPB is saturatedif for everyX ∈ Lo

with typeB(X) = i, there existsY ∈ Lo with typeB(Y) = i andvalB(Y) = valB(X)−1

in Gi .

If B is pure, irredundant and saturated, then for everyX ∈ Lo with typeB(X) = i,
there must be a uniqueY ∈ Lo with typeB(Y) = i andvalB(Y) = valB(X)−1 in Gi

(we may haveY = X in casevalB(X)2 = 1 in Gi ). ThisY is denoted byX−1, and we
define(X1 · · ·Xn)

−1 = X−1
n · · ·X−1

1 for X1, . . . ,Xn ∈ Lo.

Definition 5.32 (well-formed).The 2-level PCSLPB is well-formed, if it is pure,
irredundant, saturated, and nicely projecting.

Assume thatB is well-formed. We call a tracew∈ M(Lo, IB) reducedif it contains
no factor[YZ]IB with Y,Z ∈ Lo andtypeB(Y) = typeB(Z). Note that[X1 · · ·Xm]IB ∈
M(Lo, IB) with X1, . . . ,Xm∈ Lo is reduced if and only if[a1 · · ·am]I ∈ IRR(R), where
a j ∈ A is the group element represented byvalB(Xj) for 1 ≤ j ≤ m. A variable
X ∈ Up∪ Lo is reduced if eitherX ∈ Lo or X ∈ Up and the trace[uval(X)]IB is
reduced. Finally,B is reduced, if every variableX of B is reduced. We have:

Lemma 5.33.LetB be a well-formed and reduced 2-level PCSLP. Thenval(B) = 1
in G if and only ifuval(B) = ε.

Proof. Clearly, if uval(B) = ε, then alsoval(B) = ε and henceval(B) = 1 in G.
For the other direction we assume thatuval(B) = X1 · · ·Xm for somem> 0. Since
B is pure there area1, . . . ,am ∈ A such thatval(Xi) represents the group element
ai for i ∈ {1, . . . ,m}. SinceB is reduced, we have[a1 · · ·am]I ∈ IRR(R) and hence
NFR([a1 · · ·am]I ) = [a1 · · ·am]I 6= ε. From Lemma 5.22 it follows thata1 · · ·am 6= 1
in G and henceval(B) 6= 1 in G. ⊓⊔

Together with Lemma 5.33, the following proposition can be used to solve the com-
pressed word problem for the graph productG.

Proposition 5.34.Given an SLPA over Σ ∪ Σ−1 we can compute a well-formed
and reduced 2-level PCSLPB with val(A) = val(B) in G in polynomial time using
oracle access to the decision problemsCWP(Gi) (1≤ i ≤ n).
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Proof. Let A = (VA,Σ ∪Σ−1,S, rhsA) be the given input SLP overΣ ∪Σ−1. We
assume without loss of generality thatA is in Chomsky normal form. Moreover, we
exclude the trivial case that rhsA(S) ∈ Σ ∪Σ−1. We construct a sequence of 2-level
PCSLPsA j = (Up j ,Lo j ,Σ ∪Σ−1,S, rhsj) (0≤ j ≤ r ≤ |VA|) such that the following
holds for all 0≤ j ≤ r:

(a) A j is well-formed.
(b) |A j | ≤ 2 · |A|+O( j · |A|)≤ 2 · |A|+O(|VA| · |A|)
(c) val(A) = val(A j) in G for all 0≤ j ≤ r.
(d) If X ∈ Up j is not reduced, then rhsj(X) ∈ (Up j ∪Lo j)

2.
(e) |uval(A j)| ≤ |val(A)|

Moreover, the final 2-level PCSLPB = Ar will be reduced. Let us writetype j for
typeA j

andI j for IA j in the following.
During the construction ofA j+1 from A j , we will replace the right-hand side

YZ (Y,Z ∈ Up j ∪Lo j ) for a non-reduced (with respect toA j ) variableX ∈ Up j by
a new right-hand side of sizeO(|A|), so thatX is reduced inA j+1 andvalA j (X) =
valA j+1(X) in G. All other right-hand sides for upper level variables will be kept,
and constantly many new lower level variables will be added.

We start the construction with the 2-level PCSLP

({X ∈VA | rhsA(X) ∈V2
A}, {X ∈VA | rhsA(X) ∈ Σ ∪Σ−1}, Σ ∪Σ−1,S, rhsA).

Note thatS is an upper level variable in this system (which is required for 2-level
PCSLPs) since we assume rhsA(S) 6∈ Σ ∪Σ−1. Moreover, the system is pure and
nicely projecting (there are no projection operations in right-hand sides), but not
necessarily irredundant and saturated. The latter two properties can be easily en-
forced by adding for every variableX with rhsA(X) = a∈ Σ ∪Σ−1 a variableX−1

for a−1 and then eliminating redundant lower level variables. The resulting 2-level
PCSLPA0 is well-formed and satisfies|A0| ≤ 2 · |A| andval(A0) = val(A). Hence
(a), (b), and (c) are satisfied and also (d) and (e) clearly hold.

For the inductive step of the construction, assume that we have constructedA j =
(Up j ,Lo j ,Σ ∪Σ−1,S, rhsj) and letX ∈ Up j , Y,Z ∈ Up j ∪Lo j such that rhsj(X) =
YZ, X is not reduced, butY andZ are already reduced. In order to makeX reduced,
we will apply Lemma 5.23. The following proposition, whose proof is postponed to
the next Section 5.3.1, makes this application possible.

Proposition 5.35.Let(W,E) be a fixed independence alphabet with W= {1, . . . ,n}.
The following problem can be solved in polynomial time:

input: Pairwise disjoint finite alphabetsΓ1, . . . ,Γn, an SLPB over the terminal al-
phabetΓ =

⋃n
i=1Γi , and two variables Y and Z fromB.

output: PC-expressionsα,β with Var(α) = Var(β ) = {Y} such that the following
holds, where J= E[Γ1, . . . ,Γn]:

(1) For every subexpression of the formπ∆ (γ) in α andβ there exists K⊆{1, . . . ,n}
with ∆ =

⋃
i∈K Γi .
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(2) [valB(α)]J = [valB(Y)]J \p [valB(Z)]J

(3) [valB(β )]J = [valB(Y)]J ⊓p [valB(Z)]J

(4) |α|, |β | ≤ O(log|val(B)|)

An analogous statement can be shown for the operations\s and⊓s which refer to
the suffix order on traces. Actually, we only need the PC-expressionα for the trace
difference.

In order to apply Proposition 5.35 to our situation we transform the upper
level partup(A j ) into an equivalent SLPC over the terminal alphabetLo j using
Lemma 3.16. This is possible, sinceA j is nicely projecting by (a). Every upper level
variable ofA j is also present inC and we haveuvalA j (C) = valC(C) for everyC ∈
Up j . The SLPC can be constructed in time polynomially bounded in|up(A j)| and

hence in|A|. Note that we have|val(C)| = |uval(A j)| ≤ |val(A)| ≤ 2|A| by (e). We
can add toC symbolsY−1 andZ−1 such thatvalC(Y−1) = valC(Y)−1 = uvalA j (Y)−1

andvalC(Z−1) = valC(Z)−1 = uvalA j (Z)−1. In caseY ∈ Lo j (respectively,Z∈ Lo j ),
the symbolY−1 (respectively,Z−1) is already present (sinceA j is saturated).

Now we setΓi = Lo j(i) and apply Proposition 5.35 (and the analogous statement
for \s and⊓s) to Γi (i ∈W) andC to obtain two PC-expressionsα andβ such that
|α|, |β | ≤ O(|A|), Var(α) = {Y}, Var(β ) = {Z}, and

[valC(α)]I j = [valC(Y)]I j \s [valC(Z−1)]I j ,

[valC(β )]I j = [valC(Z)]I j \p [valC(Y−1)]I j .

But due to the correspondence betweenC andup(A j), this means (uval denotes
uvalA j )

[uval(α)]I j = [uval(Y)]I j \s [uval(Z)]−1
I j

,

[uval(β )]I j = [uval(Z)]I j \p [uval(Y)]−1
I j

.

Moreover, for every subexpression of the formπ∆ (γ) in α or β there existsK ⊆
{1, . . . ,n} with ∆ =

⋃
i∈K Lo j(i). Intuitively, α andβ represent the parts ofuval(Y)

anduval(Z) that remain after cancellation in the graph group generatedby the alpha-
betLo j . Hence,[uval(α)]I j [uval(β )]I j does not contain a factor of the form[XX−1]I j

for X ∈ Lo j . Using Lemma 5.26 we can compute the setsVmax = max([uval(α)]I j )
andVmin = min([uval(β )]I j ) in polynomial time. In order to apply Lemma 5.26 we
have to compute, using Lemma 3.16, temporary SLPs for the words uval(α) and
uval(β ). These SLPs are temporary in the sense that they are not needed for the
next iteration of the algorithm. Recall thatVmax andVmin are subsets ofLo j . Since
every independence clique of(Lo j , I j) has size at most|W| = n = O(1), we have
|Vmax|, |Vmin| = O(1).

Next, Lemma 5.27 allows us to compute in polynomial time PC-expressions
α ′,β ′ such thatVar(α ′) = Var(α) = {Y}, Var(β ′) = Var(β ) = {Z}, and
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[uval(α ′)]I j = [uval(α)]I j \s [Vmax]I j ,

[uval(β ′)]I j = [uval(β )]I j \p [Vmin]I j .

The length bound in Lemma 5.27 implies that|α ′|, |β ′| ≤ O(|A|). Moreover, for
every 1≤ i ≤ n we must have|Vmax∩Lo j(i)| ≤ 1 and|Vmin∩Lo j(i)| ≤ 1. Let

V ′
max = {X ∈Vmax | type j(X) 6∈ type j(Vmin)},

V ′
min = {X ∈Vmin | type j(X) 6∈ type j(Vmax)}.

If (X1,X2) ∈ Vmax×Vmin is such thattype j(X1) = type j(X2) = i, then by the def-
inition of [uval(α)]I j and [uval(β )]I j , we must haveval(X1)val(X2) 6= 1 in Gi (no
further cancellation is possible in the product[uval(α)]I j [uval(β )]I j ). For each such
pair we add a new lower level variableXX1,X2 to Lo j with right-hand sideX1X2; let
V ′ be the set of these new variables. Clearly,|V ′| ≤ n= O(1). Finally, the right-hand
side forX is changed to the PC-expression

γ = α ′ v′maxv′ v′minβ ′, (5.3)

wherev′max (respectively,v′, v′min) is an arbitrary word that enumerates all vari-
ables fromV ′

max (respectively,V ′, V ′
min). We have|γ|= |α ′|+ |β ′|+O(1)≤ O(|A|).

Clearly,γ evaluates inG to the same group element asvalA j (X). By adding at most
|V ′| = O(1) many further lower level variables, we obtain a saturated system. The
resulting 2-level PCSLP is not necessarily irredundant, but this can be ensured, as
explained in the paragraph after Definition 5.30, using oracle calls to the compressed
word problems for the vertex groupsGi (this does not increase the size of the 2-level
PCSLP). The resulting 2-level PCSLP is pure, irredundant, and saturated, but not
necessarily nicely projecting, because of the new lower level variables fromV ′. But
note that these variables do not occur in the scope of a projection operatorπ∆ ; they
only occur in the wordsv′ in (5.3). Hence, we may add the new lower level variables
to the appropriate sets appearing in projection operators,so that the 2-level PCSLP
becomes nicely projecting as well. The resulting 2-level PCSLP isA j+1; it is well-
formed. Its size can be bounded by|A j |+O(|A|) ≤ 2 · |A|+O( j · |A|)+O(|A|)≤
2 · |A|+O(( j + 1) · |A|); hence (a) and (b) above hold forA j+1. Moreover, in the
groupG we haveval(A j+1) = val(A j) = val(A), hence (c) holds. Lemma 5.23 im-
plies thatX is reduced inA j+1 which implies property (d) forA j+1. Finally, for (e)
note that|uval(A j+1)| ≤ |uval(A j)| ≤ |val(A)|.

After r ≤ |VA| steps, our construction yields the well-formed and reduced2-level
PCSLPAr with val(Ar) = val(A) in G. This proves Proposition 5.34.⊓⊔

We can now easily finish the proof of Theorem 5.4.

Proof of Theorem 5.4.Let A be an SLP over the monoid generating setΣ ∪Σ−1

of the graph productG. By Proposition 5.34 we can translateA into a reduced and
well-formed 2-level PCSLPB with val(A) = val(B) in G. This translation can be
done in polynomial time using oracle access to the problemsCWP(Gi) for i ∈W. By
Lemma 5.33, we haveval(A) = 1 in G if and only if uval(B) = ε. By Lemma 3.16
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we can translateup(B) in polynomial time into an equivalent SLP, for which it is
trivial to check whether it produces the empty word. This proves Theorem 5.4. ⊓⊔

5.3.1 Proof of Proposition 5.35

We will prove Proposition 5.35 in this section. Recall that we fixed the finite undi-
rected graph(W,E) with W = {1, . . . ,n}.

Proposition 5.35 (restated).Let(W,E) be a fixed independence alphabet with W=
{1, . . . ,n}. The following problem can be solved in polynomial time:

input: Pairwise disjoint finite alphabetsΓ1, . . . ,Γn, an SLPB over the terminal al-
phabetΓ =

⋃n
i=1Γi , and two variables Y and Z fromB.

output: PC-expressionsα,β with Var(α) = Var(β ) = {Y} such that the following
holds, where I= E[Γ1, . . . ,Γn]:

(1) For every subexpression of the formπ∆ (γ) in α or β there exists K⊆ W with
∆ =

⋃
i∈K Γi .

(2) [valB(α)]I = [valB(Y)]I \p [valB(Z)]I

(3) [valB(β )]I = [valB(Y)]I ⊓p [valB(Z)]I

(4) |α|, |β | ≤ O(log|val(B)|)

In the following, we will write\ and⊓ for \p and⊓p, respectively. Moreover, if
∆ =

⋃
i∈K Γi , we will write πK for the projection morphismπ∆ : Γ ∗ →Γ ∗. Let us fix

Γ =
⋃n

i=1Γi and letI = E[Γ1, . . . ,Γn].
Let s∈ Γ ∗ be a word andJ ⊆ {1, . . . , |s|} a set of positions ins. Below, we

identify the dependence graphDs with the edge relation ofDs. We are looking for
a succinct representation for the set of all positionsp such that∃ j ∈ J : ( j, p) ∈ D∗

s.
This is the set of positionsp for which there exists a path in the dependence graph
Ds from some positionj ∈ J to positionp. For i ∈W define

pos(s,J, i) = min({|s|+1} ∪ {p | 1≤ p≤ |s|,s[p] ∈ Γi ,∃ j ∈ J : ( j, p) ∈ D∗
s}).

Example 5.36.To ease the reading we will consider the setW = {a,b,c,d,e} instead
of W = {1, . . . ,5}. The dependence relationD is:

a e

b c d

Let Γx = {x} for x ∈ W. We consider the following words, where we write the
position number on top of each symbol:
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

s= d b c d b a c d b d e a b d c

The dependence graph ofs looks as follows:

b

d
c

d

b
a

c
d

b

d

e

a b

d

c

Let J = {5,6,9}. We want to determinepos(s,J,4). In the following picture of the
dependence graph ofswe mark positions fromJ with boxes and all positionsp 6∈ J
with ( j, p) ∈ D∗

s for somej ∈ J with circles.

b

d
c

d

b
a

c
d

b

d

e

a b

d

c

The positions with letters fromΓ4 = {d} which depend from positions fromJ are
{8,10,14} with the minimum 8, hencepos(s,J,4) = 8.

For the setJ = {6,9} we get the following picture forpos(s,J,4):

b

d
c

d

b
a

c
d

b

d

e

a b

d

c

Since there are no positions with letters fromΓ4 = {d} which depend from positions
from J, it follows thatpos(s,J,4) = |s|+1 = 16.

Instead ofpos(s,{p}, i), we simply writepos(s, p, i). Note thatpos(s, /0, i) = |s|+1.
The definition ofpos(s,J, i) and the fact that symbols from a setΓi are pairwise
dependent implies:

Lemma 5.37.Let s∈ Γ ∗ and J⊆ {1, . . . , |s|}. Then for every position1 ≤ p ≤ |s|
the following two properties are equivalent:

• ∃ j ∈ J : ( j, p) ∈ D∗
s

• If s[p] ∈ Γi then p≥ pos(s,J, i).

We will also need the following lemma:

Lemma 5.38.For a given SLPA, a position1 ≤ p ≤ |val(A)| and i∈ W, we can
compute the positionpos(val(A), p, i) in polynomial time.
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Proof. We first need a few definitions: LetD = (W ×W) \E be the dependence
relation for our fixed independence alphabet(W,E). A path in(W,D) (viewed as an
undirected graph) is calledsimple, if it does not visit a node twice. Forj ∈ W let
P j be the set of all simple paths in the dependence alphabet(W,D) that start in the
node j. The path, which only consists of the nodej belongs toP j . The size of each
setP j is bounded by 2|W||W|!, which is a fixed constant in our consideration.

Let us now fix A, p, and i as in the lemma. By Proposition 3.9(3), we can
compute in polynomial time the unique nodej ∈ W such thatval(A)[p] ∈ Γj . For
a simple pathρ ∈ P j let us definepos(p,ρ) ∈ {1, . . . , |val(A)|+ 1} inductively.
Let ρ = ( j1, j2, . . . , jℓ) with j = j1. If ℓ = 1, thenpos(p,ρ) = p. Otherwise let
ρ ′ = ( j1, j2, . . . , jℓ−1) and letpos(p,ρ) be the smallest positionq > pos(p,ρ ′) such
thatval(A)[q] ∈ Γjℓ if such a position exists, otherwisepos(p,ρ) = |val(A)|+1.

We can compute the positionpos(p,ρ) in polynomial time as follows: Assume
that the positionq′ = pos(p,ρ ′) is already computed. Using Theorem 3.14 we
can compute in polynomial time an SLPA′ with val(A′) = val(A)[q′ + 1 :]. Then
pos(p,ρ) is the smallest position inval(A′) that carries a letter fromΓjℓ . This posi-
tion can be computed in polynomial time using a straightforward variation of Propo-
sition 3.9(5). This shows that the numberpos(p,ρ) can be computed in polynomial
time for every simple pathρ ∈ P j . Finally, pos(val(A), p, i) is the minimum over
all these positions for all simple paths fromj to i. ⊓⊔

Let us now come back to the problem of constructing PC-expressions, which eval-
uates to[valB(Y)]I \ [valB(Z)]I and [valB(Y)]I ⊓ [valB(Z)]I . Let us first solve this
problem for explicitly given words. Then we will argue that our algorithm leads to a
polynomial time algorithm for SLP-represented input words. Hence, lets,t ∈ Γ ∗ be
words. Our goal is to compute wordsinf,diff ∈ Γ ∗ such that[inf]I = [s]I ⊓ [t]I and
[diff]I = [s]I \ [t]I .

In Algorithm 6 (Compute-Infimum-Difference) we accumulatethe wordsinf and
diff by determining for every position from{1, . . . , |s|} (viewed as a node of the de-
pendence graphDs) whether it belongs to[inf]I or [diff]I . For this, we will store a
current positionℓ in the words, which will increase during the computation. Ini-
tially, we setℓ := 1 and inf := ε, diff := ε. At the end, we have[inf]I = [s]I ⊓ [t]I and
[diff]I = [s]I \ [t]I .

For a set of positionsK = {ℓ1, . . . , ℓk} ⊆ {1, . . . , |s|} with ℓ1 < ℓ2 < · · · < ℓk we
define the word

s↾K = s[ℓ1] · · ·s[ℓk].

Consider a specific iteration of the while-loop body in algorithm Compute-Infimum-
Difference and letℓ denote the value of the corresponding program variable at the
beginning of the iteration. Assume in the following thatDiffℓ ⊆ {1, . . . , ℓ−1} is the
set of all positions from{1, . . . , ℓ−1}, which belong to the difference[s]I \ [t]I , i.e.,
they do not belong to the common prefix[s]I ⊓ [t]I . Moreover, let

Infℓ = {1, . . . , ℓ−1} \Diffℓ
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Algorithm 6 : Compute-Infimum-Difference
input : wordss, t ∈ Γ ∗

output: wordsinf,diff ∈ Γ ∗ such that[inf]I = [s]I ⊓ [t]I and[diff]I = [s]I \ [t]I
ℓ := 1 ; (stores a position in s)
inf := ε ; (stores a word)
diff := ε ; (stores a word)
for i ∈W do

pos(i) := |s|+1 ; (stores positions in s)
end
while ℓ ≤ |s| do

U := {i ∈W | pos(i) < ℓ}
next := min({pos(i) | i ∈W\U}∪{|s|+1});
j := max{i | ℓ−1≤ i ≤ next−1, [inf πW\U (s[ℓ : i])]I � [t]I} ; (*)
inf := inf πW\U (s[ℓ : j ])
diff := diff πU (s[ℓ : j ])s[ j +1] ; (let s[|s|+1] = ε)
for i ∈W do

pos(i) := min{pos(i),pos(s, j +1, i)} ; (let pos(s, |s|+1, i) = |s|+1)
end
ℓ := j +2

end

be the set of all positions from{1, . . . , ℓ−1}, which belong to the trace prefix[s]I ⊓
[t]I . Thus,Infℓ is downward-closed inDs, which means that(i, j) ∈ D∗

s and j ∈ Infℓ
imply i ∈ Infℓ. Moreover, we have[s↾Infℓ]I � [s]I ⊓ [t]I . Note that the algorithm
neither stores the setDiffℓ nor the setInfℓ. This will be important later, when the
input wordssandt are represented by SLPs, because the setsDiffℓ andInfℓ may be
of exponential size in that case. Ifℓ, inf,diff, andpos(i) (i ∈W) denote the values of
the corresponding program variables at the beginning of thecurrent iteration of the
while-loop, then the algorithm will maintain the followingtwo invariants:

(I1) inf = s↾Infℓ, diff = s↾Diffℓ,
(I2) pos(i) = pos(s,Diffℓ, i) for all i ∈W

In each iteration of the while-loop, we investigate the subword of s from posi-
tion ℓ to the next position of the formpos(i), and we determine for each posi-
tion from some initial segment of this interval, whether it belongs to[s]I ⊓ [t]I or
[s]I \ [t]I . More precisely, we search for the largest positionj ∈ {ℓ−1, . . . ,next−1}
such that[inf πW\U(s[ℓ : j])]I is a trace prefix of[t]I . Recall thatinf = s↾Infℓ is
the already collected part of the common trace prefix. We update inf anddiff by
inf := inf πW\U(s[ℓ : j]) anddiff := diff πU(s[ℓ : j])s[ j +1].

Before we prove that the algorithm indeed preserves the invariants (I1) and (I2),
let us first consider a detailed example.

Example 5.39.To ease the reading we will consider the setW = {a,b,c,d,e, f ,g}
instead ofW = {1, . . . ,7} together with the following dependence relationD:

a b

c d

e f

g
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Let Γx = {x} for all x∈W. We consider the following words:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

s= f b g c c g b c c e a g f e f d g

t = b c g c f g b e a g g f e d f b g

The dependence graphs of[s]I and[t]I look as follows:

Ds

f

b

g

c c

g

b
c c

e

a

g

f e f

d g

Dt

f

b

g

c c

g

b c

e

a

g

f e

d g

f

b

We want to determines⊓pt ands\pt using algorithm Compute-Infimum-Difference.
Initially, we setℓ = 1, inf = diff = ε, andpos(x) = |s|+1 = 18 for allx∈W. Since
ℓ ≤ |s| the while loop is executed.

First iteration: The algorithm first sets

U = /0 and next = 18.

Hence, we have

inf πW\U(s[ℓ : next−1]) = | f b g c c g b c c e a g f e f d g

1 2 3 4 5 6 7 8 9 1011121314151617.

Here, we denote with ’|’ the position betweeninf andπW\U(s[ℓ : next− 1]). The
algorithm computes the largest number 0≤ j ≤ 17 such that[inf πW\U(s[ℓ : j])]I is
a trace prefix of[t]I . From the dependence graphs above it can be easily seen that
j = 7. We have

inf πW\U(s[ℓ : j]) = | f b g c c g b

diff πU(s[ℓ : j])s[ j +1] = c,

which are the new values forinf anddiff, respectively. Moreover, thepos-values are
reset as follows:

pos(a) = pos(b) = 18, pos(c) = 8, pos(d) = 16,

pos(e) = pos( f ) = 18, pos(g) = 17.



102 5 The Compressed Word Problem in Graph Products

Finally, ℓ is set to 9. Sinceℓ = 9≤ |s| the while loop is repeated.

Second iteration:The algorithm first sets

U = {c} and next = 16.

We have
inf πW\{c}(s[9 : 15]) = f b g c c g b | e a g f e f

1 2 3 4 5 6 7 8 9 101112131415.

Searching for the largest positionℓ−1 = 8≤ j ≤ 15= next−1 such that the trace
[inf πW\U(s[ℓ : j])]I is a prefix of[t]I gives j = 15. We have

inf πW\{c}(s[9 : 15]) = f b g c c g b | e a g f e f

diff π{c}(s[9 : 15])s[16] = c c d,

which are the new values forinf anddiff. Thepos-values do not change in the second
iteration, i.e., we still have

pos(a) = pos(b) = 18, pos(c) = 8, pos(d) = 16,

pos(e) = pos( f ) = 18, pos(g) = 17.

Finally, ℓ is set to 17. Sinceℓ ≤ |s| the while loop is repeated.

Third iteration:The algorithm first sets

U = {c,d} and next = 17.

We have
inf πW\U(s[17 : 16]) = f b g c c g b e a g f e f|

1 2 3 4 5 6 7 8 9 10111213141516.

We find j = 16. We have

inf πW\U(s[17 : 16]) = f b g c c g b e a g f e f|

diff πU(s[17 : 16])s[17] = c c d g.

Also in the third iteration, thepos-values do not change. Finally,ℓ is set to 18. Since
ℓ > |s| the algorithm stops and produces[inf]I = [ f bgccgbeag f e f]I and [diff]I =
[ccdg]I . These traces are indeed[s]I ⊓ [t]I and[s]I \ [t]I . This is visualized in the next
picture with[s]I ⊓ [t]I on the left side of the dotted line and[s]I \ [t]I on the right side.

Ds

f

b

g

c c

g

b
c c

e

a

g

f e f

d g
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Let us now prove the correctness of the algorithm. We start with invariant (I1):

Lemma 5.40.Algorithm Compute-Infimum-Difference preserves invariant (I1).

Proof. Let us takeℓ ∈ {1, . . . , |s|} and assume that the invariants (I1) and (I2) hold
at the beginning of an execution of the body of the while-loop. Hence,

• inf = s↾Infℓ, diff = s↾Diffℓ, and
• pos(i) = pos(s,Diffℓ, i) for all i ∈W.

We have to show that invariant (I1) holds after the executionof the loop body as
well. As in the algorithm, let:

U = {i ∈W | pos(s,Diffℓ, i) < ℓ}, (5.4)

next = min({pos(s,Diffℓ, i) | i ∈W \U}∪{|s|+1}), (5.5)

j = max{i | ℓ−1≤ i ≤ next−1, [inf πW\U(s[ℓ : i])]I � [t]I}. (5.6)

We have to prove the following statements:

• A positionp∈ {ℓ, . . . , j} belongs to the common trace prefix[s]I ⊓ [t]I if and only
if s[p] ∈ Γi for somei ∈W \U .

• If j +1≤ |s|, then j +1 does not belong to the common trace prefix[s]I ⊓ [t]I .

For the first point, assume thats[p] ∈Γi , whereℓ ≤ p≤ j andi ∈U . By definition of
U in (5.4), we havepos(s,Diffℓ, i) < ℓ ≤ p. Lemma 5.37 implies that there exists a
path inDs from some position inDiffℓ to positionp. Since positions inDiffℓ do not
belong to[s]I ⊓ [t]I , positionp does not belong to[s]I ⊓ [t]I as well.

For the other direction, consider the set of positions

P = {p | ℓ ≤ p≤ j,s[p] ∈ Γi for somei ∈W \U}.

We claim thatInfℓ ∪P is a downward-closed subset inDs. Since[s↾(Infℓ ∪P)]I =
[inf πW\U(s[ℓ : j])]I � [t]I by (5.6), this implies that all positions fromP indeed be-
long to[s]I ⊓ [t]I . ThatInfℓ∪P is downward-closed inDs follows from the following
three facts:

• Infℓ is downward-closed inDs.
• There does not exist a path from a node inDiffℓ to a node fromP: As-

sume that such a path, ending inp ∈ P, would exist. Lets[p] ∈ Γi with i ∈
W \U . Lemma 5.37 impliespos(s,Diffℓ, i) ≤ p. Moreover,i ∈ W \U implies
pos(s,Diffℓ, i)≥ ℓ by (5.4). Hence,ℓ≤ pos(s,Diffℓ, i)≤ p≤ j < next, where the
last inequality follows from (5.6). But this contradicts the definition ofnext in
(5.5).

• There does not exist a path from a node in{ℓ, . . . , j} \P to a node ofP: We have
{ℓ, . . . , j}\P= {p | ℓ≤ p≤ j,s[p]∈Γi for somei ∈U}. Lemma 5.37 and the def-
inition of U from (5.4) imply that every node from{ℓ, . . . , j} \P can be reached
via a path starting inDiffℓ. Hence, the existence of a path from{ℓ, . . . , j} \P to
P contradicts the previous point.
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It remains to be shown that positionj + 1 does not belong to the common trace
prefix [s]I ⊓ [t]I in casej +1≤ |s|. We distinguish several cases: Ifj = next−1, then
j +1= next = pos(s,Diffℓ, i) for somei ∈W\U by (5.5). Hence, there exists a path
from Diffℓ to j +1 in Ds. Thereforej +1 cannot belong to[s]I ⊓ [t]I . Now, assume
that j < next−1. If s[ j +1] ∈ Γi for somei ∈U , then (5.4) impliespos(s,Diffℓ, i) <
ℓ ≤ j + 1. Lemma 5.37 again yields the existence of a path fromDiffℓ to j + 1.
Finally, lets[ j +1]∈Γi for somei ∈W\U . Maximality of j in (5.6) implies that the
trace

[inf πW\U(s[ℓ, j +1])]I = [inf πW\U(s[ℓ : j])]I s[ j +1]

is not a trace prefix of[t]I . Since we already know that the trace[inf πW\U(s[ℓ : j])]I
consists exactly of those positions from{1, . . . , j} that belong to the common trace
prefix [s]I ⊓ [t]I , this implies thatj +1 does not belong to[s]I ⊓ [t]I . ⊓⊔

Lemma 5.41.Algorithm Compute-Infimum-Difference preserves invariant (I2).

Proof. We consider a specific iteration of the while loop and assume that (I1) and
(I2) hold at the beginning of the loop, i.e.,

• inf = s↾Infℓ, diff = s↾Diffℓ and
• pos(i) = pos(s,Diffℓ, i) for all i ∈W.

We infer that (I2) holds after the execution of the loop. LetU , next, and j be defined
by (5.4)–(5.6). Letℓ′ = j + 2 > ℓ be the new value ofℓ after the execution of the
loop body and leti ∈ W. We have to show thatpos(s,Diffℓ′ , i) is the new value of
pos(i) after the execution of the loop body. Since we already know byLemma 5.40
that (I1) holds after the execution of the loop, we have

s↾Diffℓ′ = diff πU(s[ℓ : j])s[ j +1] = (s↾Diffℓ)πU(s[ℓ : j])s[ j +1],

which means that

Diffℓ′ = Diffℓ ∪{p | ℓ ≤ p≤ j,∃k∈U : s[p] ∈ Γk}∪{ j +1} (5.7)

(in casej = |s|, we omit{ j +1} from the right-hand side). Hence, we have to show
that

pos(s,Diffℓ′ , i) = min{pos(s, Diffℓ, i),pos(s,{ j +1}, i)}. (5.8)

for all i ∈W. By (5.7),Diffℓ∪{ j +1} ⊆ Diffℓ′ , which implies

pos(s,Diffℓ′ , i) ≤ min{pos(s,Diffℓ, i),pos(s, j +1, i)}.

It remains to show that

pos(s,Diffℓ′ , i) ≥ min{pos(s,Diffℓ, i),pos(s, j +1, i)}.

The case thatpos(s,Diffℓ′ , i) = |s|+1 is trivial. Hence, assume thatpos(s,Diffℓ′ , i)≤
|s| and consider a path inDs from a positionp∈ Diffℓ′ to a positionq≤ |s| such that
s[q] ∈ Γi. It suffices to show that there is a path from a position inDiffℓ∪{ j +1} to
p (then, there exists a path fromDiffℓ ∪{ j +1} to q as well). By (5.7), we have
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Algorithm 7 : Compute-Compressed-Infimum-Difference
input : SLPB and two variablesY andZ
output: PC-expressionsα ,β with val(α) = [val(Y)]I ⊓ [val(Z)]I and

val(β ) = [val(Y)]I \ [val(Z)]I
ℓ := 1
α := ε
β := ε
for i ∈W do

pos(i) := |val(Y)|+1
end
while ℓ ≤ |val(Y)| do

U := {i ∈W | pos(i) < ℓ}
next := min({pos(i) | i ∈W\U}∪{|val(Y)|+1})
j := max{i | ℓ−1≤ i ≤ next−1, [val(α ◦πW\U (Y[ℓ : i]))]I � [val(Z)]I} ; (*)
α := α ◦πW\U (Y[ℓ : j ])
β := β ◦πU (Y[ℓ : j ])◦Y[ j +1] ; (let val(Y)[|val(Y)|+1] = ε)
for i ∈W do

pos(i) := min{pos(i),pos(val(Y), j +1, i)} ; (**)
end
ℓ := j +2

end

p∈ Diffℓ ∪{p | ℓ ≤ p≤ j,∃k∈U : s[p] ∈ Γk}∪{ j +1}.

The casep∈ Diffℓ ∪{ j + 1} is trivial. Hence, assume thatℓ ≤ p≤ j ands[p] ∈ Γk

for somek ∈ U . From (5.4), we getpos(s,Diffℓ,k) < ℓ ≤ p. Lemma 5.37 implies
that there exists a path fromDiffℓ to p. ⊓⊔

Lemma 5.42.The number of iterations of the while-loop in algorithm Compute-
Infimum-Difference is bounded by|W|+1= n+1= O(1).

Proof. We claim that in each execution of the loop body except for thelast one,
the setU = {i ∈ W | pos(i) < ℓ} strictly grows, which proves the lemma. Let us
consider an execution of the loop body. Note that for everyi ∈ W, positionpos(i)
cannot increase. There are two cases to distinguish. Ifj < next−1, then the symbol
s[ j + 1] must belong to some alphabetΓi with i ∈ W \U due to the maximality of
j in line (*) of the algorithm. Clearly,pos(s,{ j + 1}, i) = j + 1, hencepos(i) will
be set to a value≤ j + 1 in the loop body. Since the new valueℓ will be j + 2, the
new setU will also containi, i.e.,U strictly grows. If j = next−1 < |s|, then again,
since j + 1 = next = pos(i) for somei ∈W \U and the new valueℓ will be j + 2,
the setU strictly grows. Finally, if j = next−1= |s|, thenℓ will be set to|s|+2 and
the algorithm terminates.⊓⊔

Algorithm Compute-Infimum-Difference for computing[s]I \ [t]I and[s]I ⊓ [t]I leads
to Algorithm 7 (Compute-Compressed-Infimum-Difference),which computes PC-
expressions for (we writeval for valB in the following) [val(Y)]I ⊓ [val(Z)]I and
[val(Y)]I \ [val(Z)]I . For better readability we denote the concatenation operation
in PC-expressions by◦ in Algorithm 7. The idea is to consider the statements
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for updatinginf anddiff in algorithm Compute-Infimum-Difference as statements
for computing PC-expressionsα andβ with [val(α)]I = [val(Y)]I ⊓ [val(Z)]I and
[val(β )]I = [val(Y)]I \ [val(Z)]I . So, (2) and (3) from Proposition 5.35 are satisfied.
Moreover, property (1) follows directly from the construction of α andβ . For the
size estimate in (4), note that by Lemma 5.42,α andβ are concatenations ofO(1)
many expressions of the formπK(Y[p1, p2]). Moreover, each of the positionsp1 and
p2 is bounded by|val(Y)| ≤ |val(B)| and hence needs onlyO(log|val(B)|) many
bits.

It remains to argue that Algorithm 7 can be implemented such that it runs in
polynomial time. By Lemma 5.42, the number of iterations of the loop body is
bounded by the constant|W|+ 1. Hence, it suffices to show that a single iteration
only needs polynomial time. The condition[val(α ◦πW\U(Y[ℓ : j]))]I � [val(Z)]I in
line (*) of Algorithm 7 can be checked in polynomial time by Lemma 5.25. For
this, note that by Lemma 3.16 we can compute in polynomial time an SLP for the
word val(α ◦πW\U(Y[ℓ : j])). Hence, the numberj in line (*) can be computed in
polynomial time via binary search in the same way as in the proof of Theorem 4.11
for free groups. Finally, the positionpos(val(Y), j +1, i) in line (**) of Algorithm 7
can be computed in polynomial time by Lemma 5.38. This concludes the proof of
Proposition 5.35 and hence the proof of Theorem 5.4, which isthe main result of
this chapter.



Chapter 6
The Compressed Word Problem in
HNN-Extensions

In this chapter we prove two further important transfer theorems for the compressed
word problem:

• The compressed word problem for a multiple HNN-extension ofa base group
H over finite associated subgroups is polynomial time Turing-reducible to the
compressed word problem forH.

• The compressed word problem for an amalgamated product of groupH1 andH2

with finite amalgamated subgroups is polynomial time Turing-reducible to the
compressed word problems forH1 andH2.

“HNN” stands for the authors Higman, B.H. Neumann and, H. Neumann of [78],
where they introduced HNN-extension. An HNN-extension is specified by a base
groupH and two isomorphic subgroupsA andB (the associated subgroup) together
with an isomorphismϕ : A → B. One would like to extend this isomorphism to
an automorphism onH. But in general this is not possible. ButH embedds into a
group on whichϕ is extended to an automorphism. This group is obtained fromH
by adding a new generatort (the so called stable letter) together with the relations
t−1at = ϕ(a) for all a ∈ A. Thus, conjugation ofA by t gives the isomorphismϕ .
This operation can be generalized to multiple HNN-extensions, where several stable
letters are added in one step.

The amalgamated free product of two groupsH1 andH2 with isomorphic sub-
groupsA1 andA2 and an isomorphismϕ : A1 → A2 is obtained by identifying in the
free productH1∗H2 the elementsa andϕ(a) for all a∈ A1.

HNN-extension and amalgamated free products are extremelyimportant in com-
binatorial group theory. For instance, finitely presented groups with an undecidable
word problem (see Theorem 2.14) can be constructed from freegroups using a se-
ries of HNN-extensions. Bass-Serre theory [154] relates the action of a group on a
tree with an iterated decomposition of the group via HNN-extensions and amalga-
mated free products. By Stallings famous end theorem [157],a finitely generated
group has infinitely many ends (a certain geometric invariant of a group) if and only
if the group can be written as an HNN-extension with finite associated subgroups or
an amalgamated free product with finite amalgamated subgroups.

107
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In contrast to general HNN-extensions and amalgamated products, the restriction
to finite associated (respectively, amalgamated) subgroups is algorithmically tame.
It is not too difficult to show that the word problem for an HNN-extensionG with
base groupH and finite associated subgroups is polynomial time Turing reducible to
the word problem forH, and a similar result holds for amalgamated free products.
By the results of this chapter, this tameness also holds in the compressed setting.
The material of this chapter is taken from [73], which is partly inspired by the work
from [117] on solving equations in HNN-extensions.

6.1 HNN-extensions

We introduce multiple HNN-extensions in this section. Let us fix throughout this
chapter abase group H= 〈Σ | R〉. Let us also fix isomorphic subgroupsAi ,Bi ≤ H
(1≤ i ≤ n) and isomorphismsϕi : Ai → Bi . Leth : (Σ ∪Σ−1)∗ → H be the canonical
morphism, which maps a wordw ∈ (Σ ∪Σ−1)∗ to the element ofH it represents.
Let t1, . . . ,tn symbols which do not belong to the groupH. It is common to writeati

an abbreviation fort−1
i ati.

Definition 6.1 (multiple HNN-extension).The (multiple) HNN-extensiondefined
by H andA1,B1, . . . ,An,Bn is the group

G = 〈H, t1, . . . ,tn | ati = ϕi(a) (1≤ i ≤ n,a∈ Ai)〉. (6.1)

The first important result about HNN-extensions is:

Theorem 6.2 (cf. [78]).For two words u,v∈ (Σ ∪Σ−1)∗ we have u= v in G if and
only if u= v in H. Hence, H is a subgroup of G.

In this chapter, we will be only concerned with the case that all groupsA1, . . . ,An

are finite and thatΣ is finite, i.e.,H is finitely generated. In this situation, we may
assume that

⋃n
i=1(Ai∪Bi)⊆Σ . We say thatAi andBi areassociated subgroupsin the

HNN-extensionG. For the following, the notationsAi(+1) = Ai andAi(−1) = Bi

are useful. Note thatϕα
i : Ai(α) → Ai(−α) for α ∈ {+1,−1}.

Definition 6.3 (setRed(H,ϕ1, . . . ,ϕn) of Britton-reduced words). We say that a
wordu∈ (Σ ∪Σ−1∪{t1, t

−1
1 , . . . ,tn,t−1

n })∗ is Britton-reduced(after John Britton) if
u does not contain a factor of the formt−α

i wtαi for α ∈ {1,−1}, w ∈ (Σ ∪Σ−1)∗

andh(w) ∈ Ai(α). With Red(H,ϕ1, . . . ,ϕn) we denote the set of all Britton-reduced
words.

For a wordu ∈ (Σ ∪ Σ−1 ∪ {t1,t
−1
1 , . . . ,tn,t−1

n })∗ let write πt(u) for the projec-
tion π{t1,t

−1
1 ,...,tn,t

−1
n }(u) of u to the alphabet{t1,t

−1
1 , . . . ,tn,t−1

n }, see Definition 3.1.

The following lemma provides a necessary and sufficient condition for equality of
Britton-reduced words in an HNN-extension, it follows easily from [119, Theo-
rem 2.1]:
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u0

tα1
i1

u1
tα2
i2 u2

tα3
i3 u3 tα4

i4

u4

v0

tα1
i1 v1 tα2

i2
v2 tα3

i3

v3 tα4
i4

v4

c1 c2 c3 c4 c5 c6 c7 c8

Fig. 6.1 A van Kampen diagram for the identityu0t
α1
i1

u1tα2
i2

u2t
α3
i3

u3tα4
i4

u4 = v0t
β1
j1

v1tβ2
j2

v2tβ3
j3

v3t
β4
j4

v4

in the HNN-extension〈H, t1, . . ., tn | ati = ϕi(a) (1 ≤ i ≤ n,a ∈ Ai)〉. Light-shaded (respectively,
dark-shaded) faces represent relations inH (respectively, relations of the formctαi = tα

i ϕα
i (c) with

c∈ Ai(α)).

Lemma 6.4.Let u= u0t
α1
i1

u1 · · ·t
αℓ
iℓ

uℓ and v= v0t
β1
j1

v1 · · ·t
βm
jm

vm be Britton-reduced

words such that u0, . . . ,uℓ,v0, . . . ,vm∈ (Σ ∪Σ−1)∗, α1, . . . ,αℓ,β1, . . . ,βm∈ {1,−1},
and i1, . . . , iℓ, j1, . . . , jm ∈ {1, . . . ,n}. Then u= v in the HNN-extension G from (6.1)
if and only if the following hold:

• πt(u) = πt(v) (i.e.,ℓ = m, ik = jk, andαk = βk for 1≤ k≤ ℓ)
• there exist c1, . . . ,c2m ∈

⋃n
k=1(Ak∪Bk) such that:

– ukc2k+1 = c2kvk in H for 0≤ k≤ ℓ (here we set c0 = c2ℓ+1 = 1)
– c2k−1 ∈ Aik(αk) and c2k = ϕαk

ik
(c2k−1) ∈ Aik(−αk) for 1≤ k≤ ℓ.

The second condition of the lemma is visualized in Figure 6.1by a van Kampen di-
agram foruv−1. The elementsc1, . . . ,c2ℓ in such a van Kampen diagram will be also
called theconnecting elements. Note that Theorem 6.2 is an immediate consequence
of Lemma 6.4 since every wordu∈ (Σ ∪Σ−1)∗ is Britton-reduced.

We give a proof of Lemma 6.4, following [50]:

Proof of Lemma 6.4.If a van Kampen diagram as in Figure 6.1 exists, then clearly
u = v in G. For the other direction let us define the infinite alphabetΓ = H \ {1}∪
{t, t−1}. For every 1≤ i ≤ n let Xi (resp.Yi) be a traversal for the cosets ofAi

(resp.,Bi). This means that everyh ∈ H can be uniquely written ash = ax (resp.,
h= by) for a∈Ai andx∈Xi (resp.,b∈Bi andy∈Yi). We can assume that 1∈Xi ∩Yi

for all 1 ≤ i ≤ n. We define an infinite semi-Thue systemS over Γ by the rules
below, where 1≤ i ≤ n, g,h∈ H \{1}, a∈ Ai \{1}, b∈ Bi \{1}, x∈ Xi , andy∈Yi .
Moreover, forg,h ∈ H \ {1} we denote withg ·h either the empty wordε in case
g = h−1 or the productgh∈ H \ {1}. Similarly, the element 1∈ Xi ∩Yi is identified
with the empty word.

tit
−1
i → ε t−1

i ti → ε (6.2)

gh→ g ·h ti(ϕi(a) ·y) → atiy t−1
i (a ·x) → ϕi(a)t−1

i x (6.3)

Then the following three points can be easily checked:

• Γ ∗/S∼= G
• S is Noetherian and confluent.
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• If w is Brittion-reduced andw→S w′, thenw′ is Britton-reduced as well.

Now assume thatu = v in G. Hence, there existsw∈ IRR(S) such thatu→∗
S w and

v→∗
S w. But sinceu andv are Britton-reduced, only rules of the form (6.3) can be

applied in the derivationsu →∗
S w andv →∗

S w. These derivations can be seen as
van Kampen diagrams as in Figure 6.1 foruw−1 andwv−1, respectively. By gluing
these diagrams together along thew-path, we obtain a van Kampen diagram as in
Figure 6.1. ⊓⊔

The semi-Thue system in (6.2) and (6.3) can be used to give a polynomial time
Turing-reduction from the word problem forG to the word problem forH in case
the groupsAi andBi are finite.

Example 6.5.Consider the HNN-extensionG = 〈a,t | t−1a2t = a3〉. This is the
BaumslagSolitar group BS(2,3). We haveG∼= 〈Z,t | t−1xt = ϕ(x) (x∈ 2Z)〉, where
ϕ : 2Z → 3Z is defined byϕ(2x) = 3x. The wordu = ta2t−1a3t is Britton-reduced,
whereas the wordv = ta3t−1a2t is not Britton-reduced. We havev = a4t = ta6 in G
andu = ta5t−1at in G.

The following lemma can be used in order to compute a Britton-reduced word for
the group element represented by the concatenation of two Britton-reduced words.
Recall that for a free group an irreducible word equivalent to the concatenation
of two irreducible wordsu and v can be computed by computing longest words
u1 = a1 · · ·am andv0 = a−1

m · · ·a−1
1 such thatu = u0u1 andv = v0v1. Thenu0v1 is

irreducible. The same idea holds in the HNN-extensionG from (6.1).

Lemma 6.6.Assume that u= u0t
α1
i1

u1 · · · t
αn
in un and v= v0t

β1
j1

v1 · · ·t
βm
jm vm are Britton-

reduced words. Let d(u,v) be the largest number d≥ 0 such that

(a) Ain−d+1(αn−d+1) = A jd(−βd) (we set Ain+1(αn+1) = A j0(−β0) = 1) and
(b) there exists c∈ A jd(−βd) with

t
αn−d+1
in−d+1

un−d+1 · · · t
αn
in

unv0 tβ1
j1
· · ·vd−1tβd

jd
= c

in the group G from (6.1) (note that this condition is satisfied for d = 0).

Moreover, let c(u,v) ∈ A jd(−βd) be the element c in (b) (for d= d(u,v)). Then

u0t
α1
i1

u1 · · ·t
αn−d(u,v)
in−d(u,v)

(un−d(u,v) c(u,v)vd(u,v))t
βd(u,v)+1
jd(u,v)+1

vd(u,v)+1 · · · t
βm
jm

vm

is a Britton-reduced word equal to uv in G.

Lemma 6.6 is visualized by Figure 6.2.

6.2 The Main Computational Problems

The main goal of this chapter is to show that the compressed word problem for
an HNN-extension of the form (6.1) is polynomial time Turing-reducible to the
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u0

tα1
i1

u1

· · ·

un−d

t
αn−d+1
in−d+1

· ·
·

tαn
in

un v0

tβ1
j1

· · ·

tβd
jd

vd

· · ·
vm−1

tβm
jm

vm

c(u,v)

Fig. 6.2 Lemma 6.6

compressed word problem forH. In fact, we will prove the existence of such a
reduction for a slightly more general problem, which we introduce below.

For the further consideration, let us fix the finitely generated groupH together
with the finite subgroupsA andB. Let Σ be a finite generating set forH. These data
are fixed, i.e., they will not belong to the input of computational problems.

In the following, when writing down a multiple HNN-extension

〈H, t1, . . . ,tn | ati = ϕi(a) (1≤ i ≤ n,a∈ A)〉, (6.4)

we assume implicitly that everyϕi is in fact an isomorphism between subgroups
A1 ≤ A andB1 ≤ B. Hence,ϕi can be viewed as apartial isomorphism from our
fixed subgroupA to our fixed subgroupB, and (6.4) is in fact an abbreviation for the
group

〈H, t1, . . . ,tn | ati = ϕi(a) (1≤ i ≤ n,a∈ dom(ϕi))〉.

Note that there is only a fixed number of partial isomorphismsfrom A to B, but we
allow ϕi = ϕ j for i 6= j in (6.4).

Let us introduce several restrictions and extensions ofCWP(G). Our most gen-
eral problem is the following computational problemUCWP(H,A,B) (the letter “U”
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stands for “uniform”, meaning that a list of partial isomorphisms fromA to B is part
of the input):

input: Partial isomorphismsϕi : A→ B (1≤ i ≤ n) and an SLPA over the alphabet
Σ ∪Σ−1∪{t1, t

−1
1 , . . . ,tn, t−1

n }.
question:Doesval(A) = 1 hold in〈H,t1, . . . ,tn | ati = ϕi(a) (1≤ i ≤ n,a∈ A)〉?

The restriction of this problemUCWP(H,A,B) to Britton-reduced input words is
denoted byRUCWP(H,A,B). It is formally defined as the following problem:

input: Partial isomorphismsϕi : A→ B (1≤ i ≤ n) and SLPsA,B over the alphabet
Σ ∪Σ−1∪{t1, t

−1
1 , . . . ,tn, t−1

n } such thatval(A),val(B) ∈ Red(H,ϕ1, . . . ,ϕn).
question:Doesval(A)= val(B) hold in〈H,t1, . . . ,tn | ati = ϕi(a) (1≤ i ≤ n,a∈A)〉?

Let us now consider a fixed list of partial isomorphismsϕ1, . . . ,ϕn : A → B. Then
RCWP(H,A,B,ϕ1, . . . ,ϕn) is the following computational problem:

input: Two SLPsA andB over the alphabetΣ ∪Σ−1∪{t1,t
−1
1 , . . . ,tn,t−1

n } such that
val(A),val(B) ∈ Red(H,ϕ1, . . . ,ϕn).
question:Doesval(A)= val(B) hold in〈H,t1, . . . ,tn | ati = ϕi(a) (1≤ i ≤ n,a∈A)〉?

The main result of this chapter is:

Theorem 6.7.UCWP(H,A,B) ≤P
T CWP(H).

The rest of Chapter 6 is concerned with the proof of Theorem 6.7.
Let us first consider the special case of the compressed word problem for an

HNN-extension of the form (6.1) withH = A1 = · · · = An = B1 = · · · = Bn finite. In
this case, we can even assume that the finite groupH (represented by its multiplica-
tion table) is part of the input:

Lemma 6.8.The following problem can be solved in polynomial time:

input: A finite group H, automorphismsϕi : H → H (1≤ i ≤ n), and an SLPA over
the alphabet H∪{t1, t

−1
1 , . . .tn,t−1

n }.
question: Doesval(A) = 1 hold in 〈H,t1, . . . ,tn | hti = ϕi(h) (1≤ i ≤ n,h∈ H)〉?

Proof. Let s ∈ (H ∪ {t1, t
−1
1 , . . . tn,t−1

n })∗. From the relators of the groupG =
〈H, t1, . . . ,tn | hti = ϕi(h) (1 ≤ i ≤ n,h ∈ H)〉 it follows that there exists a unique
h ∈ H with s= πt(s)h in G. Hence,s= 1 in G if and only if πt(s) = 1 in the free
groupF(t1, . . . ,tn) andh = 1 in H.

Now, let A be an SLP over the alphabetH ∪ {t1,t
−1
1 , . . . tn,t−1

n }. Without loss
of generality assume thatA is in Chomsky normal form. We can produce an
SLP for the projectionπt(val(A)) (see Proposition 3.9(4)) and check in polyno-
mial time whether this SLP produces a word that is the identity in the free group
F(t1, . . . ,tn), see Theorem 4.14. Hence, it suffices to compute for every variableA
of A the uniquehA ∈ H with val(A) = πt(val(A))hA in G. We compute the elements
hA bottom up. The case that the right-hand side forA is a terminal symbol from
H ∪ {t1, t

−1
1 , . . .tn, t−1

n } is clear. Hence, assume that rhs(A) = BC and assume that
hB,hC ∈ H are already computed. InG we have:

val(A) = val(B)val(C) = πt(val(B))hBπt(val(C))hC.
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Thus, it suffices to compute the uniqueh∈ H with hBπt(val(C)) = πt(val(C))h in
G. Note that ifπt(val(C)) = tα1

i1
tα2
i2

· · ·tαn
in , then

h = ϕαn
in

(· · ·ϕα2
i2

(ϕα1
i1

(hB)) · · · ) = (ϕα1
i1

· · ·ϕαn
in

)(hB).

The automorphismf = ϕα1
i1

· · ·ϕαn
in

can be easily computed from an SLPC for the

word πt(val(C)) by replacing inC the terminal symbolti (respectively,t−1
i ) by ϕi

(respectively,ϕ−1
i ). This allows to computef bottom-up and then to computef (hB).

⊓⊔

Note that the group〈H, t1, . . . ,tn | hti = ϕi(h) (1 ≤ i ≤ n,h∈ H)〉 is the semidirect
productH ⋊ϕ F , whereF = F(t1, . . . ,tn) is the free group generated byt1, . . . ,tn and
the homomorphismϕ : F → Aut(H) is defined byϕ(ti) = ϕi .

6.3 Reducing to Britton-Reduced Sequences

As a first step in the proof of Theorem 6.7, we show that the problemUCWP(H,A,B)
is polynomial time Turing-reducible to the problemRUCWP(H,A,B), where all in-
put words are assumed to be Britton-reduced. Later, it will be important that the
Turing-reduction fromUCWP(H,A,B) to RUCWP(H,A,B) does not change the
list of partial isomorphismsϕ1, . . . ,ϕn : A→ B.

Lemma 6.9.We haveUCWP(H,A,B) ≤P
T RUCWP(H,A,B). More precisely, there

is a polynomial time Turing-reduction from the problemUCWP(H,A,B) to the prob-
lem RUCWP(H,A,B) that on input(ϕ1, . . . ,ϕn,A) only asksRUCWP(H,A,B)-
queries of the form(ϕ1, . . . ,ϕn,A

′,B′) (thus, the list of partial isomorphisms is not
changed).

Proof. Consider partial isomorphismsϕi : A→ B (1≤ i ≤ n) and let

G = 〈H, t1, . . . ,tn | ati = ϕi(a) (1≤ i ≤ n,a∈ A)〉.

Moreover, letA be an SLP in Chomsky normal form over the alphabetΣ ∪Σ−1 ∪
{t1, t

−1
1 , . . . ,tn, t−1

n }. Using oracle access toRUCWP(H,A,B), we will construct a
CSLPA′ with val(A′) = val(A) in G andval(A′) Britton-reduced, on which finally
theRUCWP(H,A,B)-oracle can be asked whetherval(A′) = 1 in G. The systemA′

has the same variables asA but for every variableX, valA′(X) is Britton-reduced
andval(A′,X) = valA(X) in G.

Assume thatX is a variable ofA with rhs(X) = YZ, whereY andZ were al-
ready processed during our reduction process. Hence,val(Y) andval(Z) are Britton-
reduced. Let

val(Y) = u0t
α1
i1

u1 · · · t
αℓ
iℓ

uℓ and val(Z) = v0t
β1
j1

v1 · · · t
βm
jm

vm.
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with u0, . . . ,uℓ,v0, . . . ,vm ∈ (Σ ∪ Σ−1)∗ and α1, . . . ,αℓ,β1, . . . ,βk ∈ {−1,1}. For
1 ≤ k ≤ ℓ (respectively, 1≤ k ≤ m) let p(k) (respectively,q(k)) be the unique po-
sition within val(Y) (respectively,val(Z)) such thatval(Y)[: p(k)] = u0t

α1
i1

u1 · · · t
αk
ik

(respectively,val(Z)[: q(k)] = v0t
β1
j1

v1 · · · t
βk
jk

). By Proposition 3.9(6) the positions
p(k) andq(k) can be computed in polynomial time fromk.

According to Lemma 6.6 it suffices to findd = d(val(Y),val(Z)) ∈ N andc =
c(val(Y),val(Z)) ∈A∪B in polynomial time. This can be done, using binary search:
First, compute min{l ,m}. For a given numberk ≤ min{ℓ,m} we want to check
whether

t
αℓ−k+1
iℓ−k+1

uℓ−k+1 · · · t
αℓ
iℓ

uℓ v0 tβ1
j1
· · ·vk−1t

βk
jk
∈ Aiℓ−k+1(αℓ−k+1) = A jk(−βk) (6.5)

in the groupG. Note that (6.5) is equivalent totαℓ−k+1
iℓ−k+1

= t−βk
jk

and

∃c∈ A jk(−βk) : (val(Y)[p(ℓ−k+1) :])−1c = val(Z)[: q(k)]. (6.6)

The two sides of this equation are Britton-reduced words andthe number of pos-
sible valuesc∈ A jk(−βk) is bounded by a constant. Hence, (6.6) is equivalent to a
constant number ofRUCWP(H,A,B)-instances that can be computed in polynomial
time.

In order to find with binary search the valued (i.e. the largestk≥ 0 such that (6.5)
holds), one has to observe that (6.5) implies that (6.5) alsoholds for every smaller
valuek; this follows from Lemma 6.4. Fromd, we can compute in polynomial time
the positionsp(ℓ−d+1) andq(d). Then, according to Lemma 6.6, the word

val(Y)[: p(ℓ−d+1)−1]cval(Z)[q(d)+1 :]

is Britton-reduced and equal toval(Y)val(Z) in G. Hence, we can set

rhs(X) := Y[: p(ℓ−d+1)−1]cZ[q(d)+1 :].

This concludes the proof of the lemma.⊓⊔

The above proof can be also used in order to derive the following statement:

Lemma 6.10.Letϕ1, . . . ,ϕn : A→ B be fixed partial isomorphisms. Then, the prob-
lemCWP(〈H, t1, . . . ,tn | ati = ϕi(a) (1≤ i ≤ n,a∈ A)〉) is polynomial time Turing-
reducible to the problemRCWP(H,A,B,ϕ1, . . . ,ϕn).

6.4 Reduction to a Constant Number of Stable Letters

In this section, we show that the number of different stable letters can be reduced to
a constant. For this, it is important to note that the associated subgroupsA,B ≤ H
do not belong to the input; so their size is a fixed constant.
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Fix the constantδ = 2 · |A|! · 2|A| for the rest of Chapter 6. Note that the num-
ber of HNN-extensions of the form〈H,t1, . . . ,tk | ati = ψi(a) (1 ≤ i ≤ k,a ∈ A)〉
with k ≤ δ is a constant in our consideration. The following lemma saysthat
RUCWP(H,A,B) can be reduced in polynomial time to one of the problems
RCWP(H,A,B,ψ1, . . . ,ψk). Moreover, we can determine in polynomial time, which
of these problems arises.

Lemma 6.11.There exists a polynomial time algorithm for the following:

input: Partial isomorphismsϕ1, . . . ,ϕn : A → B and SLPsA,B over the alphabet
Σ ∪Σ−1∪{t1, t

−1
1 , . . . tn, t−1

n } such thatval(A),val(B) ∈ Red(H,ϕ1, . . . ,ϕn).
output: Partial isomorphismsψ1, . . . ,ψk : A→ B where k≤ δ and SLPsA′, B′ over
the alphabetΣ ∪Σ−1∪{t1, t

−1
1 , . . . tk,t

−1
k } such that:

• For every1≤ i ≤ k there exists1≤ j ≤ n with ψi = ϕ j .
• val(A′),val(B′) ∈ Red(H,ψ1, . . . ,ψk)
• val(A) = val(B) in 〈H, t1, . . . ,tn | ati = ϕi(a) (1 ≤ i ≤ n,a ∈ A)〉 if and only if

val(A′) = val(B′) in 〈H, t1, . . . ,tk | ati = ψi(a) (1≤ i ≤ k,a∈ A)〉.

Proof. Fix an instance(ϕ1, . . . ,ϕn,A,B) of the problemRUCWP(H,A,B). In par-
ticular, val(A),val(B) ∈ Red(H,ϕ1, . . . ,ϕn). Define the functionτ : {1, . . . ,n} →
{1, . . . ,n} by

τ(i) = min{k | ϕk = ϕi}.

This mapping can be easily computed in polynomial time from the sequence
ϕ1, . . . ,ϕn. Assume without loss of generality that the range ofτ is {1, . . . ,γ} for
someγ ≤ n. Note thatγ ≤ |A|! ·2|A| = δ

2 . For everyti (1≤ i ≤ γ) we take two stable
lettersti,0 andti,1. Hence, the total number of stable letters is at mostδ . We define
the HNN-extension

G′ = 〈H, t1,0, t1,1, . . . ,tγ,0,tγ,1 | ati,k = ϕi(a) (1≤ i ≤ γ,k∈ {0,1},a∈ A)〉.

This HNN-extension has 2γ ≤ δ many stable letters; it is the HNN-extension
〈H, t1, . . . ,tk | ati = ψi(a) (1≤ i ≤ k,a∈ A)〉 from the lemma.

It is straightforward to construct a deterministic rational transducerT , which
transforms the input wordu0t

α1
i1

u1t
α2
i2

u2t
α3
i3

u3 · · · t
αm
im

um (with u0, . . . ,um∈ (Σ ∪Σ−1)∗

and 1≤ i1, . . . , im ≤ n) into the word

[[T ]](w) = u0tα1
τ(i1),1

u1 tα2
τ(i2),0

u2tα3
τ(i3),1

u3 · · · t
αm
τ(im),mmod 2um.

Claim: Let u,v ∈ Red(H,ϕ1, . . . ,ϕn) be Britton-reduced. Then also[[T ]](u) and
[[T ]](v) are Britton-reduced. Moreover, the following are equivalent:

(a) u = v in 〈H, t1, . . . ,tn | ati = ϕi(a) (1≤ i ≤ n,a∈ A)〉
(b) [[T ]](u) = [[T ]](v) in the HNN-extensionG′ andπt(u) = πt(v).

Proof of the claim.Let u= u0t
α1
i1

u1 · · · t
αℓ
iℓ

uℓ andv= v0t
β1
j1

v1 · · · t
βm
jm vm. The first state-

ment is obvious due to the fact that[[T ]](u) does not contain a subword of the form

tα
i,kwtβj ,k for k∈ {0,1}, and similarly for[[T ]](v).
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For (a) ⇒ (b) assume thatu = v in 〈H,t1, . . . ,tn | ati = ϕi(a) (1 ≤ i ≤ n,a ∈
A)〉. Lemma 6.4 impliesπt(u) = πt(v) (i.e., ℓ = m, α1 = β1, . . . ,αm = βm, i1 =
j1, . . . , im = jm), and that there exists a van Kampen diagram of the followingform:

(†)

u0

tα1
i1

u1
tα2
i2 u2 tαm

im
um

v0

tα1
i1 v1 tα2

i2
v2

tαm
im

vm

c1 c2 c3 c4 c5 · · · c2m−1 c2m

The relators ofG′ imply that the following is a valid van Kampen diagram inG′:

(‡)

u0

tα1
τ(i1),1

u1
tα2
τ(i2),0 u2 tαm

τ(im),m mod 2

um

v0

tα1
τ(i1),1

v1 tα2
τ(i2),0

v2 tαm
τ(im),m mod 2

vm

c1 c2 c3 c4 c5 · · · c2m−1 c2m

Hence,[[T ]](u) = [[T ]](v) in G′.
For (b) ⇒ (a) assume that[[T ]](u) = [[T ]](v) in G′ andπt(u) = πt(v). We have

already argued that[[T ]](u) and [[T ]](v) are Britton-reduced. Hence,[[T ]](u) =
[[T ]](v) in G′ implies that there exists a van Kampen diagram of the form(‡). Since
πt(u) = πt(v) we can obtain a diagram of the form(†) by replacing the dark-shaded
t-faces in(‡) by the correspondingt-faces ofG. This proofs the claim.

By the previous claim,[[T ]](val(A)) and[[T ]](val(B)) are Britton-reduced. More-
over, SLPsA′ and B′ for these words can be computed in polynomial time by
Theorem 3.10. In caseπt(val(A)) 6= πt(val(B)) (this can be checked in polyno-
mial time by Proposition 3.9(4) and Theorem 3.17) we choose these SLPs such that
e.g.val(A′) = t1 andval(B′) = t−1

1 . Hence,val(A′) = val(B′) in G′ if and only if
val(A) = val(B) in 〈H, t1, . . . ,tn | ati = ϕi(a)(1 ≤ i ≤ n,a ∈ A)〉. This proves the
lemma. ⊓⊔

Due to Lemma 6.11 it suffices to concentrate our effort on problems of the form
RCWP(H,A,B,ϕ1, . . . ,ϕk), wherek≤ δ . Let

G0 = 〈H, t1, . . . ,tk | ati = ϕi(a) (1≤ i ≤ k,a∈ A)〉 (6.7)

and let us choosei ∈ {1, . . . ,k} such that|dom(ϕi)| is maximal. Without loss of
generality assume thati = 1. Let dom(ϕ1) = A1 ≤ A and letB1 = ϕ1(A1)≤ B be the
range ofϕ1. We writet for t1 in the following and define

Γ = Σ ∪{t2, . . . ,tk}.

We can write our HNN-extensionG0 from (6.7) as
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G0 = 〈K,t | at = ϕ1(a) (a∈ A1)〉, (6.8)

where
K = 〈H, t2, . . . ,tk | ati = ϕi(a) (2≤ i ≤ k,a∈ A)〉. (6.9)

The latter groupK is generated byΓ . We may havek = 1 in which caseK = H. The
goal of the next three Sections 6.5–6.7 is to prove the following crucial lemma:

Lemma 6.12.RCWP(H,A,B,ϕ1, . . . ,ϕk) is polynomial time Turing-reducible to
the problemsRCWP(H,A,B,ϕ2, . . . ,ϕk) andRUCWP(A1,A1,A1).

6.5 Abstracting from the Base GroupK

Our aim in this subsection will be to reduce the compressed word problem forG0

from (6.8) to the compressed word problem for another group,where we have ab-
stracted from most of the concrete structure of the base group K in (6.9).

Let us consider an input(A,B) for RCWP(H,A,B,ϕ1, . . . ,ϕk) with k≤ δ . With-
out loss of generality assume thatk = δ . Thus,A and B are SLPs over the al-
phabetΣ ∪Σ−1 ∪ {t1, t

−1
1 , . . . ,tδ ,t−1

δ } = Γ ∪Γ −1 ∪ {t,t−1} with val(A),val(B) ∈
Red(H,ϕ1, . . . ,ϕδ ). Hence, we also haveval(A),val(B) ∈ Red(K,ϕ1).

Without loss of generality we may assume thatπt(val(A)) = πt(val(B)). This
property can be checked in polynomial time using Proposition 3.9(4) and Theo-
rem 3.17. If it is not satisfied then we haveval(A) 6= val(B) in G0. Hence, there are
m≥ 0, α1, . . . ,αm ∈ {1,−1}, and wordsu0,v0 . . . ,um,vm ∈ (Γ ∪Γ −1)∗ such that

val(A) = u0t
α1u1 · · ·t

αmum and (6.10)

val(B) = v0t
α1v1 · · · t

αmvm. (6.11)

One might think that the number of different wordsui (respectively,vi ) may grow
exponentially in the size ofA (respectively,B). But we will see that this is actually
not the case.

Let us replace every occurrence oftα (α ∈ {1,−1}) in A andB by aa−1tαaa−1,
wherea∈Γ is arbitrary. This is to ensure that any two occurrences of symbols from
{t, t−1} are separated by a non-empty word overΓ ∪Γ −1, i.e., we can assume that
u0,v0, . . . ,um,vm ∈ (Γ ∪Γ −1)+ in (6.10) and (6.11).

Our first goal is to transformA (and similarlyB) into an equivalent SLP that
generates in a first phase a word of the formX0tα1X1 · · · tαmXm, whereXi is a further
variable that generates in a second phase the wordui ∈ (Γ ∪Γ −1)+. This is similar
to the notion of a 2-level PCSLP from Definition 3.24. Assume that the SLPA =
(U,{t, t−1}∪Γ ∪Γ −1,S, rhs) is in Chomsky normal form.

In a first step, we remove every variableX ∈U fromA such that rhs(X)∈ {t,t−1}
by replacingX in all right-hand sides ofA by rhs(X). Now, all right-hand sides of
A are of the formYZ, tαZ, Ytα , or x∈ Γ ∪Γ −1, whereY,Z ∈U .

Next we split the setU of variables ofA into two parts:
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UK = {X ∈U | val(X) ∈ (Γ ∪Γ −1)+} and Ut = U \U0
K.

The subscriptK refers to the fact that every variable fromUK defines an element
from the new base groupK ≤ G0, whereas the subscriptt refers to the fact that
every variable fromUt generates a word whereK-generators as well ast or t−1

occurs.
Now we manipulate all right-hand sides for variables fromUt in a bottom-up

process. Thereby we add further variables toUK , whereas the setUt will not change.
At each stage, the tuple

At := (Ut ,{t,t−1}∪UK,S, rhs↾Ut )

is a CSLP that generates a word from(UK)+tα1(UK)+ · · ·tαm(UK)+.
Consider a variableX ∈ Ut such that every variable inu := rhs(X) is already

processed, butX is not yet processed. Ifu is of the formtαZ or Ytα , then there is
nothing to do. Now assume thatu = YZ such thatY andZ are already processed.
Consider the last symbolω ∈ {t,t−1}∪UK of valAt (Y) and the first symbolα ∈
{t, t−1}∪UK of valAt (Z) (these symbols can be computed in polynomial time). If
eitherω ∈ {t, t−1} or α ∈ {t, t−1}, then again nothing is to do. Otherwise,ω ,α ∈
UK . We now setUK := UK ∪{X′}, whereX′ is a fresh variable with rhs(X′) = ωα.
Finally, we redefine rhs(X) := Y[: ℓ−1]X′Z[2 :], whereℓ = |valAt (Y)|.

When all variables fromUt are processed, we transform the final CSLPAt in
polynomial time into an equivalent SLP using Theorem 3.14. Let us denote this
SLP again byAt . Moreover, let

AK := (UK ,Γ ∪Γ −1, rhs↾Uk).

This is an SLP without initial variable. The construction implies that

val(At) = X0t
α1X1 · · · t

αmXm (6.12)

with X0, . . . ,Xm ∈ UK andvalAK (Xk) = ui . Note that the number of differentXi is
polynomially bounded, simply because the setUK was computed in polynomial
time. Hence, also the number of differentui in (6.10) is polynomially bounded.

For the SLPB the same procedure yields the following data:

• An SLPBt = (Vt ,{t, t−1}∪VK,S, rhs↾Vt ) such thatval(Bt) = Y0tα1Y1 · · · tαmYm.
• An SLPBK = (VK ,Γ ∪Γ −1, rhs↾Vk) without initial variable such thatY1, . . . ,Ym∈

VK andvalBK (Yi) = vi .

Without loss of generality assume thatUK ∩VK = /0. LetWK = UK ∪VK . We assume
that we have a single right-hand side mapping rhs with domainUt ∪Vt ∪UK ∪VK .
Let C = (WK ,Γ ∪Γ −1, rhs↾WK ), In the following, forZ ∈ WK we write val(Z) for
valC(Z) ∈ (Γ ∪Γ −1)+.

Let us next consider the free productF(WK)∗A1∗B1. Recall thatA1 (respectively,
B1) is the domain (respectively, range) of the partial isomorphismϕ1. Clearly, in this
free product,A1 andB1 have trivial intersection (even if|A1∩B1|> 1 in H). We now
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define the finite set of relators

E = {Z1c1Z−1
2 c−1

2 | Z1,Z2 ∈WK ,c1,c2 ∈ A1∪B1,val(Z1)c1 = c2val(Z2) in K}.
(6.13)

We can compute the setE in polynomial time using oracle access toCWP(K) or
alternatively, by Lemma 6.10, using oracle access toRCWP(H,A,B,ϕ2, . . . ,ϕk).
This is the only step, where we need oracle access toRCWP(H,A,B,ϕ2, . . . ,ϕk) in
the proof of Lemma 6.12. Note that the relatorZ1c1Z−1

2 c−1
2 stands for the relation

Z1c1 = c2Z2.
Consider the group

G1 = 〈F(WK)∗A1∗B1,t | E , t−1at = ϕ1(a)(a∈ A1)〉

= 〈(F(WK)∗A1∗B1)/N,t | at = ϕ1(a) (a∈ A1)〉,

where
N = 〈E 〉F(WK)∗A1∗B1

is the normal closure ofE in F(WK)∗A1∗B1. We can define a homomorphism

ψ : F(WK)∗A1∗B1 → K

by ψ(Z) = val(Z) for Z ∈ WK , ψ(a) = a for a ∈ A1, andψ(b) = b for b ∈ B1. Of
course, the restrictions ofψ to A1 as well asB1 are injective. Moreover, for every
relatorZ1c1Z−1

2 c−1
2 ∈ E we haveψ(Z1c1Z−1

2 c−1
2 ) = val(Z1)c1val(Z2)

−1c−1
2 = 1 in

K. Thus,ψ defines a homomorphism

ψ̂ : (F(WK)∗A1∗B1)/N → K.

Moreover,A1∩N = 1: If a∈ N∩A1 thenψ(a) ∈ ψ(N) = 1; thusa = 1, sinceψ is
injective onA1. Similarly, B1∩N = 1. This means thatA1 andB1 can be naturally
embedded in(F(WK)∗A1∗B1)/N andϕ1 : A1 →B1 can be considered as an isomor-
phism between the images of this embedding in(F(WK)∗A1∗B1)/N. Therefore, the
above groupG1 is an HNN-extension with base group(F(WK) ∗A1∗B1)/N ≤ G1.
Moreover,ψ̂ : (F(WK)∗A1∗B1)/N → K can be lifted to a homomorphism

ψ̂ : G1 → G0 = 〈K,t | at = ϕ1(a) (a∈ A1)〉.

Here,G0 is from (6.8).
The idea for the construction ofG1 is to abstract as far as possible from the

concrete structure of the original base groupK. We only keep thoseK-relations that
are necessary to prove (or disprove) thatval(A) = val(B) in the groupG0. These are
the relators fromE .

Lemma 6.13.We haveval(At),val(Bt) ∈ Red((F(WK)∗A1∗B1)/N,ϕ1).

Proof. Recall thatval(A),val(B)∈Red(K,ϕ1). Consider for instance a factort−1Xit
of val(At) from (6.12). IfXi = a in (F(WK)∗A1∗B1)/N for somea∈ A1, then after
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applyingψ̂ we haveval(Xi) = ui = a in K. Hence,val(A) from (6.10) would not be
Britton-reduced. ⊓⊔

Lemma 6.14.The following statements are equivalent:

(a) val(A) = val(B) in G0 from (6.8).
(b) val(At) = val(Bt ) in G1

Proof. For (b) ⇒ (a) assume thatval(At) = val(Bt ) in G1. We obtain inG0:
val(A) = ψ̂(val(At)) = ψ̂(val(Bt)) = val(B).

For (a) ⇒ (b) assume thatval(A) = val(B) in the groupG0. Sinceval(A) and
val(B) are Britton-reduced andπt(val(A)) = πt(val(B)), we obtain a van Kampen
diagram of the form:

u0
tα1

u1 tα2 u2
tαm

um

v0

tα1 v1 tα2 v2
tαm

vm

c1 c2 c3 c4 c5 · · · c2m−1 c2m

In this diagram, we can replace every light-shaded face, representing theK-relation
uic2i+1 = c2ivi , by a face representing the validE -relationXic2i+1 = c2iYi , see (6.13).
We obtain the following van Kampen diagram, which shows thatval(At) = val(Bt )
in G1:

(⋆)

X0
tα1

X1 tα2 X2
tαm

Xm

Y0
tα1

Y1 tα2 Y2
tαm

Ym

c1 c2 c3 c4 c5 · · · c2m−1 c2m

This proves the lemma.⊓⊔

By Lemma 6.14, it remains to check, whetherval(At) = val(Bt) in the HNN-
extensionG1, whereval(At) andval(Bt ) are both Britton-reduced.

6.6 Eliminating letters from B1∪{t, t−1}

Recall the Tietze transformations from Section 2.3. We can use the defining relations
b = t−1ϕ−1

1 (b)t (b∈ B1 \ {1}) of G1 for Tietze transformations of type 4. For this,
note thatA1∩B1 = {1} in the groupF(WK) ∗A1 ∗B1. In this way we eliminate in
the groupG1 the generators fromB1\ {1}. After this transformation, we may have
apart from relations of the form

Z1a1 = a2Z2 with a1,a2 ∈ A1 (6.14)
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also defining relations of the forms

Z1t
−1a1t = a2Z2

Z1a1 = t−1a2tZ2

Z1t
−1a1t = t−1a2tZ2,

wherea1,a2 ∈A1 (here and in the following, we implicitly assume all valid relations
a1a2 = a to get the structure of the free factorA1). We can replace these relations by
relations of the following types

Z1t
−1a1 = a2Z2t

−1 (6.15)

tZ1a1 = a2tZ2 (6.16)

tZ1t
−1a1 = a2tZ2t

−1 (6.17)

and end up with the group

G2 = 〈F(WK)∗A1,t | (6.14)− (6.17)〉

that is isomorphic toG1. Let us now introduce for everyZ ∈WK the new generators

[Zt−1], [tZ], [tZt−1]

together with the defining relations

[Zt−1] = Zt−1, [tZ] = tZ, [tZt−1] = tZt−1. (6.18)

Formally, we make a Tietze-type-3 transformation. This allows to replace the defin-
ing relations (6.15)–(6.17) by

[Z1t
−1]a1 = a2[Z2t

−1] (6.19)

[tZ1]a1 = a2[tZ2] (6.20)

[tZ1t
−1]a1 = a2[tZ2t

−1] (6.21)

leading to the group

G3 = 〈F({Z, [Zt−1], [tZ], [tZt−1]|Z ∈WK})∗A1,t | (6.14),(6.18)− (6.21)〉. (6.22)

Finally, we can eliminatet andt−1 by replacing (6.18) by

[tZ] = [Zt−1]−1Z2, [tZt−1] = [tZ]Z−1[Zt−1], (6.23)

which is a Tietze-type-4 transformation. It yields the group

G4 = 〈F({Z, [Zt−1], [tZ], [tZt−1] | Z ∈WK})∗A1 | (6.14), (6.19)-(6.21), (6.23)〉.
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ε

Z

tZ′

t qf

Z, ε

t−1, [Zt−1]

t, Z

$, Z

t−1, [tZ′t−1] $, [tZ′]
Z′, ε

t, [tZ′]

Fig. 6.3 The transitions of the deterministic rational transducerT .

Since each transformation fromG1 to G4 is a Tietze transformation,G1 is isomor-
phic to G4. We now want to rewrite the SLPsAt andBt into new SLPs over the
generators ofG4. This can be done with a deterministic rational transducerT that
reads a wordX0tα1X1tα2X2 · · ·tαmXm$ from the input tape, where $ is an end marker
and

• replaces every occurrence of a factortXi with αi+1 6= −1 by the symbol[tXi ],
• replaces every occurrence of a factorXit−1 with αi 6= 1 by the symbol[Xit−1],

and finally
• replaces every occurrence of a factortXit−1 by the symbol[tXit−1].

The set of states of the transducerT is {ε,t,qf }∪{Z,tZ | Z ∈WK}, and the transi-
tions are shown in Figure 6.3 (for allZ,Z′ ∈Wk). The initial state isε and the unique
final state isqf . By Theorem 3.10 we can construct in polynomial time SLPs that
generate the words[[T ]](val(At)$) and[[T ]](val(Bt)$).

Let G5 be the group that is obtained by removing the relations (6.23) in the above
presentation of the groupG4, i.e.,

G5 = 〈F({Z, [Zt−1], [tZ], [tZt−1] | Z ∈WK})∗A1 | (6.14), (6.19)–(6.21)〉. (6.24)

Lemma 6.15.The following statements are equivalent:

(a) val(A) = val(B) in G0

(b) val(At) = val(Bt ) in G1

(c) [[T ]](val(At)$) = [[T ]](val(Bt)$) in G4

(d) [[T ]](val(At)$) = [[T ]](val(Bt)$) in G5

Proof. The equivalence of (a) and (b) was stated in Lemma 6.14. The equivalence of
(b) and (c) is clear sinceG1 andG4 are isomorphic and the transducerT rewrites a
word over the generators ofG1 into a word over the generators ofG4. Moreover, (d)
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implies (c) because we omit one type of relations, namely (6.23), when going from
G5 to G4. It remains to prove that (a) implies (d). Ifval(A) = val(B) in G0, then, as
argued in the proof of Lemma 6.14, we obtain a van Kampen diagram of the form
(⋆) (page 120) in the groupG1. The boundary of every light-shaded face is labeled
with a relation fromE . We obtain a van Kampen diagram for[[T ]](val(At)$) =
[[T ]](val(Bt)$) in G5 by removing all vertical edges that connect (i) target nodes
of t-labeled edges or (ii) source nodes oft−1-labeled edges. The boundary cycle of
every remaining face is labeled with a relator of type (6.14)or (6.19)–(6.21), which
are the relators ofG5. An example is shown below.⊓⊔

Example 6.16.Let us give an example of the transformation from a diagram ofthe
form (⋆) into a van Kampen diagram for the groupG5. Assume that the diagram in
G1 is:

X0
t

X1 t−1 X2 t−1 X3 t
X4

Y0
t

Y1 t−1 Y2 t−1 Y3
t

Y4

a1 b1 b2 a2 b3 a3 a4 b4

Then we obtain the following van Kampen diagram in the groupG5:

X0

[tX1t−1] [X2t−1] X3
[tX4]

Y0

[tY1t−1] [Y2t−1] Y3

[tY4]

a1 a2 a3 a4

Only the relations (6.14) and (6.19)–(6.21) are used in thisdiagram.

For the further considerations, we denote the SLPs for the words [[T ]](val(At)$)
and[[T ]](val(Bt)$) again withA andB, respectively. It remains to check whether
val(A) = val(B) in G5. Let

Z = {Z, [Zt−1], [tZ], [tZt−1] | Z ∈WK}

and let us redefine the set of defining relationsE as the set of all defining relations
of the form (6.14), (6.19)–(6.21). Thus,

G5 = 〈F(Z )∗A1 | E 〉,

where every defining relation inE is of the formZ1a1 = a2Z2 for Z1,Z2 ∈ Z and
a1,a2 ∈ A1.
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6.7 Transforming G5 into an HNN-Extension

By further Tietze transformations we show that the groupG5 = 〈F(Z ) ∗A1 | E 〉
is an HNN-extension with the base groupA1 and associated subgroupsA1 andA1.
This will prove Lemma 6.12. To this end, let us take a relationZ1a1 = a2Z2 with
Z1 6= Z2. With a Tietze-type-4 transformation we can eliminateZ2 by replacing it
with a−1

2 Z1a1. Subwords of the formaa′ with a,a′ ∈ A1 that arise after this transfor-
mation can of course be multiplied out in the finite groupA1. We carry out the same
replacementZ2 7→ a−1

2 Z1a1 also in the SLPsA andB, which increases the size of the
SLPs only by an additive constant, and repeat these steps. After polynomially many
Tietze transformations we obtain a group presentation, where all defining relations
have the formZ = a1Za2, i.e.a2 = Z−1a−1

1 Z. We can write this group presentation
as

G6 = 〈A1,Z1, . . . ,Zm | Z−1
i aZi = ψi(a) (1≤ i ≤ m,a∈ dom(ψi))〉.

Note that every mappingψi is a partial automorphism onA1 since it results from
the conjugation by some element in our initial group. Hence,G6 is indeed an HNN-
extension overA1.

We can now finish the proof of Lemma 6.12.

Proof of Lemma 6.12.We have to show that the problemRCWP(H,A,B,ϕ1, . . . ,ϕk)
is polynomial time Turing-reducible to the problemsRCWP(H,A,B,ϕ2, . . . ,ϕk) and
RUCWP(A1,A1,A1). Using oracle access to the problemRCWP(H,A,B,ϕ2, . . . ,ϕk)
(which was necessary for computing the set of defining relationsE from (6.13)),
we have computed in polynomial time from a givenRCWP(H,A,B,ϕ1, . . . ,ϕk)-
instance anUCWP(A1,A1,A1)-instance, which is a positive instance if and only
if the originalRCWP(H,A,B,ϕ1, . . . ,ϕk)-instance is positive. A final application of
Lemma 6.9 allows to reduceUCWP(A1,A1,A1) toRUCWP(A1,A1,A1). This proves
Lemma 6.12. ⊓⊔

6.8 Final Step in the Proof of Theorem 6.7

We now apply Lemma 6.11 to the problemRUCWP(A1,A1,A1) (one of the two
target problems in Lemma 6.12). An input for this problem canbe reduced in
polynomial time to an instance of a problemRCWP(A1,A1,A1,ψ1, . . . ,ψk), where
ψ1, . . . ,ψk : A1 → A1 and k ≤ 2|A1|! · 2|A1| ≤ 2|A|! · 2|A| = δ . Our current HNN-
extension is

G7 = 〈A1, t1, . . . ,tk | ati = ψi(a) (1≤ i ≤ k,a∈ dom(ψi))〉.

We next separate the (constantly many) stable letterst1, . . . ,tk that occur in the
RCWP(A1,A1,A1,ψ1, . . . ,ψk)-instance into two sets:{t1, . . . ,tk} = S1 ∪S2 where
S1 = {ti | dom(ψi) = A1} andS2 = {t1, . . . ,tk} \S1. Without loss of generality as-
sume thatS2 = {t1, . . . ,tℓ}. Then we can write the HNN-extensionG7 as
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G7 = 〈H ′, t1, . . . ,tℓ | ati = ψi(a) (1≤ i ≤ ℓ,a∈ dom(ψi))〉, (6.25)

where
H ′ = 〈A1, tℓ+1, . . . ,tk | ati = ψi(a) (ℓ+1≤ i ≤ k,a∈ A1)〉.

Note that (i)|dom(ψi)| < |A1| for every 1≤ i ≤ ℓ and that (ii)A1 = dom(ψi) for
everyℓ + 1≤ i ≤ k. By Lemma 6.8,CWP(H ′) can be solved in polynomial time.
The groupH ′ is in fact the semidirect productA1 ⋊ϕ F(tℓ+1, . . . ,tk), where the ho-
momorphismϕ : F(tℓ+1, . . . ,tk)→Aut(A1) is defined byϕ(ti) = ψi . Recall also that
at the end of Section 6.4,A1 was chosen to be of maximal cardinality among the do-
mains of all partial isomorphismsϕ1, . . . ,ϕk. The following proposition summarizes
what we have shown so far:

Proposition 6.17.Let ϕ1, . . . ,ϕk : A → B be partial isomorphisms, where k≤ δ ,
A1 = dom(ϕ1), and without loss of generality|A1| ≥ |dom(ϕi)| for 1≤ i ≤ k. The
problemRCWP(H,A,B,ϕ1, . . . ,ϕk) is polynomial time Turing-reducible to the fol-
lowing (constantly many) decision problems:

(1) RCWP(H,A,B,ϕ2, . . . ,ϕk)
(2) RCWP(A1 ⋊ϕ F,A1,A1,ψ1, . . . ,ψℓ), where F is a free group of rank at mostδ ,

ϕ : F →Aut(A1) is a homomorphism,ℓ≤ δ , andψ1, . . . ,ψℓ : A1 →A1 are partial
automorphisms with|dom(ψi)| < |A1| for all 1≤ i ≤ ℓ

Note that indeed, in (2) there are only constantly many semidirect products of
the formA1 ⋊ϕ F and thatCWP(A1 ⋊ϕ F) can be solved in polynomial time by
Lemma 6.8.

Now, we have all tools needed to prove the main theorem of thischapter:

Proof of Theorem 6.7.By Lemma 6.9 and Lemma 6.11 it suffices to solve a prob-
lem RCWP(H,A,B,ϕ1, . . . ,ϕk) (with k ≤ δ ) in polynomial time. For this we apply
Proposition 6.17 repeatedly, i.e., we apply Proposition 6.17 to the two target prob-
lems (1) and (2) from the proposition again. Note that in the target problems one of
the two properties holds:

• The maximal size of an associated subgroup is smaller than inthe input instance.
• The maximal size of an associated subgroup is the same as in the input instance

but the number of stable letters is smaller than in the input instance.

This implies that after|A| · δ = 2 · |A| · |A|! · 2|A| (which is a fixed constant) many
applications of Proposition 6.17 we have reducedRCWP(H,A,B,ϕ1, . . . ,ϕk) to the
problemsCWP(H) andCWP(C⋊ϕ F), whereC ≤ A, F is a free group of rank at
mostδ , andϕ : F → Aut(C) is a homomorphism. Note that this is still a polynomial
time Turing-reduction, since the composition of a constantnumber of polynomial
time Turing-reductions is again a polynomial time Turing-reduction. ⊓⊔
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6.9 Amalgamated Products

In this section we prove a transfer theorem for the compressed word problem for
an amalgamated free product, where the amalgamated subgroups are finite. We will
deduce this result from our transfer theorem for HNN-extensions. Let us start with
the definition of an amalgamated free product:

Definition 6.18 (amalgamated free product).Let H1 andH2 be two groups with
subgroupsA1 ≤ H1 andA2 ≤ H2. Let ϕ : A1 7→ A2 be an isomorphism. Theamal-
gamated free product of H1 and H2, amalgamating the subgroups A1 and A2 by the
isomorphismϕ , is the groupG = 〈H1 ∗H2 | a = ϕ(a) (a∈ A1)〉.

Theorem 6.19.Let G= 〈H1 ∗H2 | a = ϕ(a) (a ∈ A1)〉 be an amalgamated free
product of finitely generated groups G1 and G2 with A1 ≤ G1 a finite subgroup.
ThenCWP(G) ≤P

T {CWP(H1),CWP(H2)}.

Proof. It is well known [119, Theorem 2.6, p. 187] thatG can be embedded into the
HNN-extension

G′ := 〈H1∗H2,t | at = ϕ(a) (a∈ A1)〉

by the homomorphismΦ with

Φ(x) =

{
t−1xt if x∈ H1

x if x∈ H2.

Given an SLPA over generators ofG, we can compute in polynomial time an SLP
B with val(B) = Φ(val(A)), see Proposition 3.9(4). We obtain

val(A) = 1 in G ⇐⇒ Φ(val(A)) = 1 in Φ(G)

⇐⇒ val(B) = 1 in G′.

By Theorem 6.7 and Corollary 5.5,CWP(G′) is polynomial time Turing-reducible
to the problemsCWP(H1) andCWP(H2). ⊓⊔



Chapter 7
Outlook

We conclude this book with a few remarks about topics relatedto the compressed
word problem for groups, which could not be covered for spacereasons.

In this book, we focused on the compressed word problem for groups. But it
makes perfectly sense to study the compressed word problem for finitely generated
monoids as well. IfM is a finitely generated monoid with a finite generating setΣ ,
then the compressed word problem forM asks, whether for given SLPsA andB

overΣ , val(A) = val(B) holds inM. As for groups, the complexity of this problem
is independent of the concrete generating set.

Implicitly, we have seen some complexity statements for compressed word prob-
lems for monoids. Theorem 3.17 states that the compressed word problem for a free
monoid can be solved in polynomial time, and Lemma 5.24 generalizes this state-
ment to trace monoids. In [113] it was shown that the compressed word problem for
any finitely generated free inverse monoid of rank at least 2 is complete for the level
Π p

2 of the polynomial time hierarchy. Inverse monoids are an important class of
monoids that have inverses in a weaker sense than groups have, see [103]. The poly-
nomial time hierarchy is a hierarchy of complexity classes betweenP andPSPACE
that is believed to be proper. In particular, the classΠ p

2 containsNP andcoNP, and
it is conjectured that these inclusions are proper. The ordinary word problem for a
free inverse monoid can be solved in logarithmic space [115].

We have seen that the compressed word problem for a groupG can be used in
order to solve the word problem for the automorphism groupAut(G) (or a finitely
generated subgroup ofAut(G)), see Theorem 4.6. Compression techniques can be
also used in order to solve the word problem for the outer automorphism group
Out(G) (the quotient ofAut(G) by the inner automorphism group, which consists
of all conjugationsx 7→ g1xg for g∈ G). Schleimer proved in [151] that for a finitely
generated free groupF, the word problem forOut(F) can be solved in polynomial
time. For this, he proved that a variant of the compressed conjugacy problem for
F can be solved in polynomial time, for which he used a polynomial time pattern
matching algorithm for compressed words, c.f. Section 3.4.In [74], Schleimer’s
result was generalized to graph groups and graph products.

127
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In the proofs of Theorem 4.6–4.9, we basically used straight-line programs as
a compact representation of long words that occur as intermediate data structures
in algorithms. This leads to the idea of using other specialized succinct data struc-
tures to store intermediate results. In the context of word problems, we mentioned
power circuits in Section 2.5. These are succinct representations of huge integers
(towers of exponents). Power circuits were designed to solve the word probem in
groups like the Baumslag-Gersten group BG(1,2) = 〈a,b,t | bab−1 = t,tat−1 = a2〉
or Higman’s groupH4 = 〈a0,a1,a2,a3 | a1a0a−1

1 = a2
0,a2a1a−1

2 = a2
1,a3a2a−1

3 =

a2
2,a0a3a−1

0 = a2
3〉. In these groups, standard algorithms for HNN-extensions (Brit-

ton reduction) yield big powersan, and power circuits can be used to store the expo-
nentn succinctly, see [53, 132]. An interesting project for future work might be to
combine SLPs with power circuits, so that words of huge length (and not just singly
exponential length as for SLPs) can be produced.

Apart from the solution of word problems, the formalism of straight-line pro-
grams turned out to be useful also for other algebraic decision problems, in par-
ticular for the solution of word equations. Aword equationover a finitely gener-
ated monoidM (generated by the finite setΓ ) is a pair of the form(U,V), where
U,V ∈ (Γ ∪X)∗. Here,X is a finite set of variables. This word equation issolvableif
there exists a mappingσ : X →Γ ∗ such thatσ(U) = σ(V) in M, where we extendσ
to a morphism on(Γ ∪X)∗ by settingσ(a) = a for a∈Γ . The mappingσ is called a
solutionof (U,V). In his seminal paper [123], Makanin proved that one can decide
whether a given word equation over a free monoid is solvable,and in [140] he ex-
tended this result to free groups. Since the work of Makanin,the upper bound on the
complexity of solvability of word equations (in free monoids and free groups) was
improved several times. An important step was done by Plandowski and Rytter in
[141]. To state their result, we need a few definitions (we always refer to equations
in free monoids below). Letσ be a solution for a word equation(U,V). We say that
σ is minimal, if for every solutionσ ′ of (U,V) we have|σ(U)| ≤ |σ ′(U)|. We say
that|σ(U)| is the length of a minimal solution of(U,V).

Theorem 7.1 ([141]).Let (U,V) be a word equation and let n= |UV|. Assume that
(U,V) has a solution and let N be the length of a minimal solution of(U,V). Then,
for every minimal solutionσ of (U,V), the wordσ(U) can be generated by an SLP
of size O(n2 log2(N)(logn+ loglogN)).

Thus, minimal solutions for word equations are highly compressible.
In combination with other ingredients, Plandowski used Theorem 7.1 to show

that solvability of word equations over a free monoid belongs to PSPACE [140].
This is the currently best known upper bound. Solvability ofword equations in a free
monoid is easily seen to beNP-hard, and it has been repeatedly conjectured that the
precise complexity isNP too. In [91], Jeż applied his recompression technique from
[88, 89] (see Section 3.4) to word equations and obtained an alternativePSPACE-
algorithm for solving word equations over a free monoid. Gutiérrez [70] proved that
solvability of word equations over free groups belongs toPSPACEas well. Further
results regarding the compressibility of solutions of wordequations can be found in
[52].
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evaluation.SIAM Journal on Computing, 26(1):138–152, 1997.

16. M. Ben-Or and R. Cleve. Computing algebraic formulas using a constant number of registers.
SIAM Journal on Computing, 21(1):54–58, 1992.

17. E. Berlekamp.Algebraic Coding Theory. McGraw-Hill, New York, 1968.
18. J.-C. Birget. The groups of Richard Thompson and complexity. International Journal of

Algebra and Computation, 14(5-6):569–626, 2004.

129



130 References

19. J.-C. Birget, A. Y. Ol′shanskii, E. Rips, and M. V. Sapir. Isoperimetric functionsof groups
and computational complexity of the word problem.Annals of Mathematics. Second Series,
156(2):467–518, 2002.

20. A. Björner and F. Brenti.Combinatorics of Coxeter Groups, volume 231 ofGraduate Texts
in Mathematics. Springer, New York, 2005.

21. R. V. Book and F. Otto.String–Rewriting Systems. Springer, 1993.
22. W. W. Boone. The word problem.Annals of Mathematics. Second Series, 70:207–265, 1959.
23. W. W. Boone and G. Higman. An algebraic characterizationof groups with soluble word

problem.Journal of the Australian Mathematical Society, 18:41–53, 1974.
24. B. Brink and R. B. Howlett. A finiteness property and an automatic structure for Coxeter

groups.Mathematische Annalen, 296:179–190, 1993.
25. J.-Y. Cai. Parallel computation over hyperbolic groups. In Proceedings of the 24th Annual

Symposium on Theory of Computing, STOC 1992, pages 106–115. ACM Press, 1992.
26. J. W. Cannon, W. J. Floyd, and W. R. Parry. Introductory notes on Richard Thompson’s
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88. A. Jėz. Compressed membership for NFA (DFA) with compressed labels is in NP (P). InPro-

ceedings of the 29th International Symposium on Theoretical Aspects of Computer Science,
STACS 2012, volume 14 ofLIPIcs, pages 136–147. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2012.
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Acronyms and Notations

↔∗ equivalence relation generated by→, see p. 2
→R one-step rewrite relation, see p. 3 and 86
⊢M transition relation between configurations of

the Turing machineM, see p. 5
≤P

m polynomial time many-one reducible, see p. 10
≤log

m logspace many-one reducible, see p. 10
≤P

bc polynomial time bounded conjunctively reducible,
see p. 11

≤
log
bc logspace bounded conjunctively reducible, see

p. 11
≤P

T polynomial time Turing-reducible, see p. 11
�p prefix order on traces, see p. 85
�s suffix order on traces, see p. 85
[a,b] commutator ofa andb, see p. 28
〈B〉 subgroup generated byB, see p. 28
〈B〉G normal closure ofB⊆ G, see p. 28
H ≀G wreath product ofH andG, see p. 78
K ⋊ϕ Q semidirect product ofK andQ, see p. 66
|s| length of the words, see p. 1
|s|a number of occurrences of symbola in the word

s, see p. 1
s[i] symbol at positioni in s, see p. 1
s[i : j] factor ofs from positioni to position j, see p. 1
s[i :] suffix of sstarting at positioni, see p. 1
s[: j] prefix ofsending at positioni, see p. 1
[s]R equivalence class ofs with respect to↔∗

R, see
p. 3

s[Σl ,Σr ] see p. 53
[[T ]] mapping computed by the deterministic ratio-

nal transducerT , see p. 46
u⊓p v prefix infimum of the tracesu andv, see p. 85

137



138 Acronyms and Notations

u⊓sv suffix infimum of the tracesu andv, see p. 85
u\p v unique tracew such thatu = (u⊓p v)w, see

p. 85
u\sv unique tracew such thatu = w(u⊓s v), see

p. 85
[w]I trace represented by the wordw, see p. 83
Γ ∗ set of finite words overΓ and free monoid gen-

erated byΓ , see p. 1
Γ + set of finite non-empty words overΓ , see p. 1
Γ ∗/R quotient ofΓ ∗ by the semi-Thue systemR, see

p. 3
〈Γ | R〉 group presented by(Γ ,R), see p. 28
[∆ ]I trace represented by the independence clique

∆ , see p. 84
ε empty word, see p. 1
π∆ projection homomorphism, see p. 41 and 85
accept set of accepting configurations, see p. 5
alph(s) set of letters that occur in the words, see p. 1
Aut(G) automorphism group ofG, see p. 65
block(s) see p. 53
BPP bounded error probabilistic polynomial time,

see p. 18
C-expression see p. 42
C(M) Coxeter group defined by the matrixM, see

p. 29
char(R) characteristic of the ringR, see p. 19
coC set of all complements of languages from the

classC, see p. 9
coRP co-randomized polynomial time, see p. 18
CSLP straight-line program with cut, see p. 42
CWP(G) compressed word problem for the groupG, see

p. 64
CWP(G,Γ ) compressed word problem for the groupGwith

respect to the generating setΓ , see p. 63
D(a) set of letter not commuting witha, see p. 83
DΓ ,R Dehn function for the group presentation(Γ ,R),

see p. 37
Dw dependence graph for the wordw, see p. 84
DFA deterministic finite automaton, see p. 2
DSPACE( f ) class of languages that can be decided by anf -

space bounded deterministic Turing machine,
see p. 8

DTIME( f ) class of languages that can be decided by an
f -time bounded deterministic Turing machine,
see p. 8
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E[C1, . . . ,Cn] see p. 86
F(Γ ) free group generated byΓ , see p. 27
G(A, I) graph group defined by the graph(A, I), see

p. 29
G(W,E,(Gi)i∈W) graph product, see p. 82
GLd(F) general linear group of dimensiond over the

field F , see p. 33
graph(C ) edge relation of the circuitC , see p. 14
I(a) set of letter commuting witha, see p. 83
init(x) initial configuration for inputx, see p. 5
IRR(→) set of irreducible elements with respect to the

relation→, see p. 3
IRR(R) set of irreducible words or traces with respect

to R, see p. 3 and 86
L deterministic logspace, see p. 9
L(A ) language accepted by the NFAA , see p. 2
L(M) language accepted by the Turing machineM,

see p. 6
lo(A) lower part of the 2-level PCSLPA, see p. 61
M(Σ , I) trace monoid defined by(Σ , I), see p. 83
max(u) maximal symbols of the traceu, see p. 85
min(u) minimal symbols of the traceu, see p. 85
NF→(a) normal form ofa with respect to the relation

→, see p. 3
NFR(s) normal form ofswith respect to the semi-Thue

system or trace rewrite systemR, see p. 3 and
86

NFA nondeterministic finite automaton, see p. 2
NL nondeterministic logspace, see p. 9
NP nondeterministic polynomial time, see p. 9
NSPACE( f ) class of languages that can be decided by an

f -space bounded nondeterministic Turing ma-
chine, see p. 8

NTIME( f ) class of languages that can be decided by an
f -time bounded nondeterministic Turing ma-
chine, see p. 8

P deterministic polynomial time, see p. 9
P j simple paths in a dependence alphabet that

start at nodej, see p. 99
PC-expression see p. 42
PCSLP straight-line program with projection and cut,

see p. 42
PIT(R) polynomial identity testing for the ringR, see

p. 20
pos(s,J, i) see p. 97
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PSPACE polynomial space, see p. 9
RAM random access machine, see p. 24
RCWP(H,A,B,ϕ1, . . . ,ϕn) see p. 112
Red(H,ϕ1, . . . ,ϕn) set of Britton-reduced words, see p. 108
rhs right-hand side mapping of a circuit, see p. 14
RP randomized polynomial time, see p. 17
RUCWP(H,A,B) see p. 112
SAT boolean satisfiability problem, see p. 17
SLd(Z) special linear group of dimensiond over the

ring Z, see p. 75
SLP straight-line program, see p. 42
SUBSETSUM subset sum problem, see p. 17
UCWP(H,A,B) see p. 111
up(A) upper part of the 2-level PCSLPA, see p. 61
valAC evaluation mapping of the circuitC in the al-

gebraA , see p. 14
Var(e) variables that occur in the expressione, see

p. 13
WP(G) word problem for the groupG, see p. 32
WP(G,Γ ) word problem for the groupG with respect to

the generating setΓ , see p. 32
WSP(G) word search problem for the groupG, see p. 40
WSP(G,Γ ) word search problem for the groupG with re-

spect to the generating setΓ , see p. 39
ZPP zeror-error probabilistic polynomial time, see

p. 18



Index

2-level PCSLP, 61

accepting configurations, 5
algebra, 14
alphabet, 1
alphabet of a word, 1
amalgamated free product, 125
area, 35
arithmetic circuit, 19
automatic group, 29
automatic structure for group, 29
automorphism group, 65

boolean circuit, 16
bounded error probabilistic polynomial time,

18
Britton-reduced word, 108

C-expression, 42
characteristic of the ringR, 19
Chomsky normal form, 43
circuit, 14
circuit in normal form, 15
circuit value problem, 16
co-randomized polynomial time, 18
commutator, 28
complete language, 12
compressed word problem, 63
computable language, 7
computably enumerable, 6
computation of a Turing machine, 6
concatenation of words, 1
configuration, 5
confluent, 2
connecting elements, 109
convex set, 85
convolution of words, 29

Coxeter group, 29
Coxeter matrix, 29
CSLP, 42

decidable language, 7
Dehn function, 37
dependence alphabet, 81
dependence graphs, 84
derivation tree, 43
deterministic finite automaton, 2
deterministic rational transducer, 46
deterministic Turing machine, 4
DFA, 2
downward-closed set, 85

empty word, 1
expression, 13

factor of a word, 1
finite word, 1
finitely generated group, 28
finitely presented group, 28
free group, 27
free monoid, 1
free partially commutative grou, 29
free product of groups, 30

general linear group, 33
graph accessibility problem, 16
graph group, 28
graph product, 81

hard language, 12
height of a circuit, 14
hierarchical order of a circuit, 14
HNN-extension, 108

independence alphabet, 81
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independence clique, 84
initial configuration, 5
irreducible element with respect to→, 3
irreducible trace with respect to trace rewriting

system, 86
irreducible word in free group, 27
irreducible word with respect to semi-Thue

system, 3
irredundant 2-level PCSLP, 92

language, 1
length of a word, 1
Levi’s Lemma, 84
locally confluent, 2
logspace bounded conjunctively reducible, 11
logspace many-one reducibility, 10
logspace transducer, 10
lower level variables, 61
lower central series, 75
lower part of a 2-level PCSLP, 61

Magnus embedding theorem, 80
metabelian, 34
monotone circuit value problem, 16

Newman’s lemma, 3
NFA, 2
nicely projecting 2-level PCSLP, 92
nilpotent group, 75
Noetherian, 2
nondeterministic finite automaton, 2
nondeterministic Turing machine, 4
normal closure, 28
normal form of a trace, 86
normal form of a word, 3

one-relator group, 34
one-step rewrite relation, 3, 86
oracle Turing machine, 11

PC-expression, 42
PCSLP, 42
polynomial identity testing, 20
polynomial time bounded conjunctively

reducible, 11
polynomial time many-one reducibility, 10
polynomial time transducer, 10
polynomial time Turing-reducible, 11
prefix infimum, 85
prefix of a trace, 85
presentation of a group, 28
PRIMES, 16
problem, 7
projection homomorphism, 41, 85
pure 2-level PCSLP, 92

quotient monoid, 3

RAM, 24
random access machine, 24
randomized polynomial time, 17
recompression technique, 53
recursive language, 7
recursively enumerable, 6
regular language, 2
relator of a group, 28
residually-finite group, 34
right-angled Artin group, 29

SAT, 17
saturated 2-level PCSLP, 93
semi-Thue system, 3
semidirect product, 66
simple path, 98
size of a circuit, 15
SLP, 42
space bounded, 8
special linear group, 74
SUBSETSUM, 17
successful computation, 6
suffix infimum, 85
suffix of a trace, 85

terminating, 2
Tietze transformations, 30
time bounded, 8
trace monoid, 83
trace rewriting system, 86
transducer, 6
Turing machine with output, 6

undecidable language, 7
undirected graph accessibility problem, 16
unitriangular matrix, 76
univariate arithmetic circuit, 19
universality problem for nondeterministic

finite automata, 17
upper part of a 2-level PCSLP, 61
upper level variables, 61

van Kampen diagram, 35
variable-free arithmetic circuit, 19

well-formed 2-level PCSLP, 93
word equation, 128
word problem, 32
word search problem, 38
wreath product, 78

zero-error probabilistic polynomial time, 18


