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Preface

The study of computational problems in combinatorial grthgory goes back more
than 100 years. In a seminal paper from 1911, Max Dehn posed tiecision prob-
lems [46]: Theword problem(called Identitatsproblemby Dehn), theconjugacy
problem(called Transformationsproblerhy Dehn), and thésomorphism problem
The first two problems assume a finitely generated g®yplthough Dehn in his
paper requires a finitely presented group). For the wordIpnopthe input con-
sists of a finite sequencae of generators ofs (also known as a finite word), and
the goal is to check whethev represents the identity element Gf For the con-
jugacy problem, the input consists of two finite wordandv over the generators
and the question is whether the group elements representedhdv are conju-
gated. Finally, the isomorphism problem asks, whether tiwergfinitely presented
groups are isomorphit Dehns motivation for studying these abstract group theo-
retical problems came from topology. In a previous papaenfi®10, Dehn studied
the problem of deciding whether two knots are equivalen, [@8d he realized that
this problem is a special case of the isomorphism problene(eds the question of
whether a given knot can be unknotted is a special case of dhé problem). In
his paper from 1912 [47], Dehn gave an algorithm that solesmord problem for
fundamental groups of orientable closed 2-dimensionaiifolas. His algorithm is
nowadays known as Dehn'’s algorithm and can be applied t@aratass of groups
(so called hyperbolic groups). But Dehn also realized tigthree problems seem
to be very hard in general. In [46], he wroteit drei Fundamentalproblemarfalle
Gruppen mit zwei Erzeugenden zu IBsen, scheint einstweilen noch sehr schwierig
zu sein’ (Solving the three fundamental problems for all groups with generators
seems to be very difficult at the momgxithen Dehn wrote this sentence, a formal
definition of computability was still missing. Only in thedirhalf of the 1930’s, the
foundations of the modern theory of computability where lay Alonzo Church,
Kurt Godel, Emil Post, and Alan Turing, see e.g. Chapterthétextbook [40] for a
brief historial outline. Another 20 years later, Pyotr Ssrgvich Novikov [136] and
independently William Werner Boone [22] proved that Delintsiition concerning

1 Implicitly, the isomorphism problem can be also found intZ&s paper [161] from 1908.
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Viii Preface

the difficulty of his problems was true: There exist finitelegented groups with
an undecidable word problem (and hence an undecidablegajwproblem). The
isomorphism problem turned out to be undecidable aroundahee time [1, 145].
More details on the history around Dehn’s three decisioblgras can be found in
[158].

Despite these negative results, for many groups the wordlgmois decidable.
Dehn’s result for fundamental groups of orientable closetin?ensional manifolds
was extended to one-relator groups by his student Wilhelrgriva [121]. Other
important classes of groups with a decidable word problegnaatomatic groups
[57] (including important classes like braid groups [8] X@ter groups, right-angled
Artin groups, hyperbolic groups [68]) and finitely genethtenear groups, i.e.,
groups of matrices over a field [144] (including polycycliogps). This makes it
interesting to study the complexity of the word problem. @emational complexity
theory is a part of computer science that emerged in the n8@'4@&nd investigates
the relation between (i) the time and memory of a computeessary to solve a
computational problem and (i) the size of the input. For advproblem, the in-
put size is simply the length of the finite sequence of genesaEarly papers on
the complexity of word problems for groups are [27, 28, 23}]1®ne of the early
results in this context was that for every given> 0 there exist groups for which
the word problem is decidable but does not belong tortile level of the Grze-
gorczyk hierarchy (a hierarchy of decidable problems).[2#]) the other hand, for
many prominent classes of groups the complexity of the wooblpm is quite low.
For finitely generated linear groups Richard Jay Lipton aedhézkel Zalcstein
[108] proved that logarithmic working space (and hence poigial time) suffices
to solve the word problem. The class of automatic groups @ghem quite large
class of groups including many classical group classes facwthe word problem
can be solved in quadratic time [57]. In contrast, groups witlifficult word prob-
lem seem to be quite exotic objects. The vague statemenfathatost groups the
word problem is easy can be even made precise: Mikhail Grastated in [68] that
a randomly chosen (according to a certain probabilistic@se) finitely presented
group is hyperbolic with probability 1, a proof was given biekander Olshanskil
in [137]. Moreover, for every hyperbolic group the word pierh can be solved in
linear time. Hence, for most groups the word problem can besdan linear time.

One of the starting points for the work in this book was a goedtom the 2003
paper [94] by Ilya Kapovich, Alexei Myasnikov, Paul Eugerad&pp, and Viadimir
Shpilrain: Is there a polynomial time algorithm for the wgmebblem for the auto-
morphism group of a finitely generated free grdup For every groufs the set
of all automorphisms o6 together with the composition operation is a group, the
automorphism grouput(G) of G. Clearly, if G is finite, then alsd\ut(G) is finite.
But if G is only finitely generated, theAut(G) is not necessarily finitely gener-
ated, see [105] for a counterexample. In a seminal papef fi@® 1924, Jakob
Nielsen proved that the automorphism group of a finitely gaetee free grouf- is
finitely generated (and in fact finitely presented). This esit interesting to study
the word problem foAut(F). The straightforward algorithm for this problem has an
exponential running time. Saul Schleimer [151] realized006 that one can easily
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reduce the word problem férut(F) to a variant for the word problem fét, where
the input sequence is given in a succinct form by a so calledgsit-line program.
A straight-line program can be seen as a hierarchical gggmriof a string. From a
formal language theory point of view it is a context-freergraarG that generates
exactly one string that we denote withl(G). The length of this string can be ex-
ponential in the size of the gramm@r. In this senseG can be seen as a succinct
description ofval(G). The variant of the word problem for a gro@ where the
input sequence is given by a straight-line program iscthrapressed word problem
for G, which is the main topic of this book. Explicitly this prolohewas first studied
in my paper [110] (a long version appeared as [112]). My naditdn for this work
came from two other papers: In 1994, Wojciech Plandowsk®]PBoved that one
can decide in polynomial time whether two straight-linegraoms produce the same
words; implicitly this result can be also found in papers byrtMehlhorn, Raja-
mani Sundar, and Christian Uhrig [127, 128] and Yoram HeeghfMark Jerrum
and Faron Moller [79, 80] that were both published the sanae s Plandowski's
work. One could also rephrase this result by saying thatdngpcessed word prob-
lem for a free monoid can be solved in polynomial time. My setonotivation
for studying the compressed word problem is the paper [154aytin Beaudry,
Pierre McKenzie, Pierre Péladeau and Denis Thérien, eviverauthors studied the
problem whether a given circuit over a finite monoid evalsatea given monoid
element. This problem can be seen as the compressed workbmrédr a finite
monoid?

Let me come back to the word problem for the automorphismmafia free
group. In my paper [110] | proved that the compressed wor8lpro for a finitely
generated free group can be solved in polynomial time; thefiiuilds on the above
mentioned result by Plandowski. Using this result, Schégimas able to show that
the word problem foAut(F) (with F a finitely generated free group) can be solved
in polynomial time [151], which answered the question fr@4][positively.

After Schleimer’s work, it turned out that the compresseddvproblem has
applications not only for the word problem of automorphisraups, but also for
semidirect products and certain group extensions. Thisvatet the study of the
compressed word problem as a topic of its own interest. Timeddithis book is
to give an extensive overview of known results on the conga@svord problem.
Some of the results in this book can be found in publishedlagiwhile others ap-
pear to be new. As a computer scientist with a strong inténegioup theory, | tried
to make this book accessible to both mathematicians and w@mpcientists. In
particular, | tried to explain all necessary concepts framputer science (mainly
computational complexity theory) and group theory. On ttieohand, to keep the
book focused on the compressed word problem | had to stop attairc point. |
hope that | could find the right balance.

| want to thank my former supervisor Volker Diekert for higestific influence.
During my time in Stuttgart, he drew my interest to group tie¢gical decision prob-

2 At this point the reader might wonder why this book is aboet¢hmpressed word problems for
groups only and not monoids. This is more a matter of persaste, and the fact that so far there
exist more results for groups than for monoids
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lems and the work of Plandowski on compression. This wasténgrgy point for my
work on the compressed word problem. Many results from tbakbwere discov-
ered with my collaborators Niko Haubold, Christian Matkissand Saul Schleimer.
Without their contributions, this work would not exist i ipresent form. | have to
thank Daniel Konig for his thorough proof reading. Manyrika to the referees for
their numerous useful comments that helped to improve tbakbFinally, | am
grateful to Benjamin Steinberg for encouraging me to wtits book.

Siegen, January 2014 Markus Lohrey
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Chapter 1

Preliminaries from Theoretical Computer
Science

In this chapter, we briefly recall basic definitions from thetwal computer science.
We start with several general notations from formal languthgory (words, finite
automata, word rewriting systems). The main part of the thap a brief introduc-
tion into basic concepts from complexity theory. The godbignable readers that
are not familiar with complexity theory to understand theules and proofs in this
book. But this chapter cannot replace a thorough introduadtito the broad field of
complexity theory. For this, we refer the reader to the tedks [7, 138].

1.1 Preliminaries from Formal Language Theory

Letl” be a set, called amphabetn the following. We do not assume thats finite,
although most of the time it will be finite. Elements/ofwill be calledsymbols

Definition 1.1 (finite words, length and alphabet of a word, fa&tor, empty word).
A finite wordoverl™ is just a sequence of alphabet symbmisa;a; - - - a, withn> 0
anday,ay,...,ap € I'. We can havey = a; for i # j. The length of this word is
|sf=n. Foraer let|sla=|{i|1<i<n,a=a}| bethe numberof occurrences of
ain s. With alph(s) = {a€ I' | |s|a > 0} we denote the set of symbols that occur in
s, also called thalphabet of sFor 1< i < nwe writegi] = &. For 1<i < j <nlet

gi:j]=4a---a;.1f1 <i<j<ndoesnothold, then we sgt : j] = €. Any word of
the formsi : j] is called afactor of s. We also use the abbreviatiogs j] = s[1 : |]
andsgfi ;] = gi : |s|]. The unique word of length 0 is denoted bytheempty word.

Definition 1.2 (F'*, I'*, concatenation of words, free monoid, languagesThe
set of all finite words over™ is denoted withl *. Moreover, letl"* = *\
{€}. The concatenatiorof wordss = a; ---a, andt = b; - - by, is the wordst =
ai---apb1---bm. This is an associative operation with identity elemenHence,
I* has the structure of a monoid, called tinee monoidgenerated by . A lan-
guageis a subset of * for some finite alphabdt.
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An important class of languages are regular languages vareliefined by finite
automata:

Definition 1.3 (nondeterministic finite automaton).A nondeterministic finite au-
tomaton(briefly NFA), is a tuple«” = (Q, %, d,qo, F), where

Qis afinite set of states,

2 is the (finite) input alphabet,

0 C Qx 2 x Qis the set of transitions
(o € Qs the initial state, and

F C Qis the set of final states.

We defined as the smallest subset@fx Z* x Q such that:

e (g,6,q) € 5 for all geqQ,
e 0C0,and R R
e If (q,u,p),(p,v,r) €9, then alsqqg,uv,r) € d.

The language accepted by is L(«/) = {we 2* | 3q € F : (qo,W,q) € 3}; it is
the set of all words that label a path from the initial stggeto a final state. A
deterministic finite automatofbriefly DFA), is an« = (Q, X, d,qo,F) such that
for every pair(g,a) € Q x X there is at most one stapes Q such tha{q,a, p) € 9.

By a famous theorem of Rabin and Scott, for every N#Athere exists a DFAY’
such thal (&) = L(&’). There is family of NFA«, such thate, hasn states but
the smallest DFA accepting(.«,) has 2 states. When we only talk about finite
automata, we refer to nondeterministic finite automatorafgliage. C >* is reg-
ular if there is a finite automaton with(.<#) = L. The book [82] is an excellent
introduction into the wide area of automata theory.

1.2 Rewriting Systems

Rewriting systems are a formalism for manipulating wordsetber data structures.
Before we formally define word rewriting systems, we firstagiuice some abstract
properties of binary relations, see [21, Chapter 1] for nuw@tails.

Let — be a binary relation on a sé&t With —* we denote the reflexive and
transitive closure of>, and—* denotes the smallest equivalence relation containing
—. Formally, we havea <* b, if there existi > 1 and elementa,ay,...,a, € A
suchthaty =a,a,=b,and @ — a1 0ora 1 —a)forall1<i<n-1.

Definition 1.4 (Noetherian/locally confluent/confluent redtion). We say that—

is Noetherian(or terminating if there does not exist an infinite sequersge—

a; — ap — --- in A. The relation— is confluenif for all a,b,c € Awitha—*band
a —"* c there existgl € A such thath —* d andc —* d. The relation— is locally

confluentif for all a,b,c € A with a— b anda — c there existad € A such that
b—*dandc—"*d.
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Clearly, every confluent relation is also locally confluedioreover, Newman'’s
Lemma [134] states that a Noetherian and locally confludatiom is also con-
fluent. Furthermore, it~ is confluent then for alg,b € A, a —* b if and only if
there existsl € Awith a—* d andb —* d.

Definition 1.5 (set of irreducible words IRR(—), normal form NF_ (a)). Let
IRR(—) be the set of alk € A such that there does not exis A with a — b
(“IRR” stands for “irreducible’). Assume that- is Noetherian and confluent.
Then for every worda € A there exists a unique elemedF_, (a) € IRR(—) with
a—" NF_(a) (“NF” stands for “normal form”). Moreoveia «* b if and only if
NF_ (a) = NF_ (b).

Definition 1.6 (semi-Thue system)A semi-Thue systén{or word rewriting sys-
tem) over the alphabef is just a (possibly infinite) seR C I'* x I *, see [21] for
more details. We associate wikha binary relation—g on I *, also called the , as
follows: For allu,v e I *, u —r v if and only if there exisk,y € ' * and (¢,r) € R
such that = x¢y andv = xry. Elementg/, r) are calledulesand usually written as
l—r.

Definition 1.7 (Noetherian/confluent/locally confluent seiirThue system, irre-
ducible words). The semi-Thue systelR is Noetherian (confluent, locally conflu-
ent) if —r is Noetherian (confluent, locally confluent). L&R(R) = IRR(—R)
(the set ofirreducible wordswith respect toR) and NFr(w) = NF_,(w) (if Ris
Noetherian and confluent). Thus, we have

IRR(R)=r"*\ |J rrer.
(Lr)er

Definition 1.8 (quotient monoidl™ */R). Let[ujr={ve I * | u 4V} be the equiv-
alence class with respect e containingu. Note that—F is a congruence relation
on the free monoid *: If u; <% v1 andup <4 Vo, thenuuy g vive. Hence, we
can define the quotient monoid* /R as follows: The set of elements bf' /R is
the set of equivalence clasdek (u € I *) and the monoid multiplication is defined
by [Ulr[Vr = [UVr.

If Ris Noetherian and confluent, then every equivalence @issontains a unique
irreducible word\NFg(u). Hence, one can identiffy* /R with the set of irreducible
wordsIRR(R), where the product af,v € IRR(R) is defined byNFr(uv).

Example 1.9The semi-Thue systeR = {ba — ab,ca — ac} is Noetherian and
confluent. We havéRR(R) = a"{b,c}*. The monoid{a,b,c}*/R is isomorphic to
N x {a,b}* (where we take the monoid operatienon N).

For a finite Noetherian semi-Thue syst&wne can check wheth&is locally
confluent (and hence confluent by Newman’s Lemma) by vegfgionfluence of
so called critical pairs that result from overlapping leénd sides oR, see [21]
for more details. A survey on string rewriting systems engfiag applications in
group theory can be found in [37].

1 Named by Axel Thue, who introduced semi-Thue systems indg@p[160] from 1914.
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1.3 Preliminaries from Complexity Theory

We assume some familiarity with algorithms and the verydasincepts of com-
putability, see e.g. [7, 138] for an introduction. In thisten we will only outline
the basic concepts from computational complexity theoat tre needed for this
book.

This book is concerned with algorithmic problems in combanial group the-
ory, and their inherent computational difficulty. In ordemhake precise statements
about the computational difficulty (or computational coaxity) of problems, we
need an abstract mathematical model of a computer. Thed@siputational model
in computability theory and complexity theory is the Turimgchine. Turing ma-
chines were introduced in Turing’s seminal work [162] as bsti@act model of a
universal computer. There are several variants for the itiefinof a Turing ma-
chine. All these variants lead to the same definition of caxipf classes. Here, we
choose the variant of (nondeterministic and determinidticing machines with a
read-only input tape, a read-write working tape, and optilgra write-only output
tape.

1.3.1 Turing Machines

Definition 1.10 (nondeterministic Turing machine). A nondeterministic Turing
machineis a tupleM = (Q, %, I, 3,0p,9s,) where

Qis afinite set of states,

(o € Qs the initial state,

gs € Qis the final state,

" is afinite tape alphabet,

2 is the finite input alphabet with N {<,>} = 0,

O eI isthe blank symbol, and

S C(Q\{as}) x (Zu{«,p}) x I x Qx (F\{0d}) x {—1,0,1}?is the transition
relation. We call its elements instructions, and requieg tf,>,a, p,b,ds,dz) €
0 impliesd; > 0 and(q,<,a, p,b,ds,d) € & impliesd; < 0.

The nondeterministic Turing machind is deterministi¢ if for all intructions
(g,a,b, p,c,d1,dy), (q.a,b,p’,c,d;,d}) € & we havep=p/, c =/, d; = dj, and
dp = ds.

The idea is that the machind has an input tape, where the input word=
ajap---ap € 2* is stored in cell 1 to celh. Moreover, cell O (respectivelyy+ 1)
of the input tape contains the left (respectively, right)l enarker> (respectively,
<). The content of the input tape is not modified My Moreover, the machine has
a work tape whose cells are indexed by the integ&rsEach of these cells con-
tains a symbol fronf” . At the beginning all cells contain the blank symhaland
at every step, all but finitely many cells contain the blanknbpl. The machine
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has two heads: An input head, which is scanning a cell of tpatitape, and a
work head, which is scanning a cell of the work tape. Findhg Turing machine
is equipped with a finite state unit, whose current stateamf®. An instruction
(g,a,b, p,c,d1,dy) € 0 has the following intuitive meaning: If the is currently in
stateq, the input head is scanning a cell containing the synabahd the work tape
is scanning a cell containing the symipthen the machin®l can do the following
action: Overwrite thé in the current cell on the work tape with the non-blank sym-
bol c (we may havé = c), move the input head one cell in directiop(where “-1”
means “one cell to the left”, “0” means “stay at the same celfid “1” means “one
cell to the right”), move the work head one cell in directidy) and enter statg.
Let us now define formally configurations and transitions wfifig machines. The
following definitions all refer to the Turing machimid = (Q,2,I",d,do,qs, ).

Definition 1.11 (configuration).A configurationa of the Turing machiné/ is a
5-tuplea = (x,q,i,w, j), where:

X € 2* is the input word,

g € Qis the current state of the Turing machine,

0<i<|x/+ listhe cell scanned by the input head,

w:Z — I is the current content of the work tape, and there exist oniyefiy
manyk € Z with w(k) # OJ,

e | € Zisthe current cell scanned by the work head.

Thelength|a| of the configuratiorr = (x,q,i,w, j) is |a| = |{k € Z | w(k) # O}].
Let init(x) = (X, 0o, 0,w,0) be theinitial configurationof M for input x, where
wr (k) = O for all k € Z. With accept (the set of allaccepting configurationswe
denote the set of all configurations of the fofraqs,i,w, j).

Hence, the lengtha| is the number of non-blank cells on the work tape. Note that
the length of the input word does not count for the length af. This is crucial for
our later definition of logspace computations. Note that(x)| = 0.

For an instructiort € d and configurationst, 3 of M, we write o 3, if in-
structiont can be applied to configuratianand yields configuratiof. Here is the
formal definition:

Definition 1.12 (relationty). For configurationsr, 3 of M we write o - 8 if and
only if the following conditions are satisfied: = (x,q,i1,V,i2), B = (X, P, j1,W, j2)
t = (g,a1,a2, p,b,d1,dp), (>Xx<)[i1+ 1] = a1, V(iz) = ag, v(j) =w(j) for all j #
i2, W(iz) = b, j1 =i1+d;, and j, =iy 4+ do. We write a by B if there exists an
instructiont € o with o - .

Clearly, for a nondeterministic Turing machiiMg there may exist several (or no)
configurationg3 with a - 3, but the number of successor configurationsrab
bounded by a constant that only dependsvbnlf M is deterministic, then every
configuration has at most one successor configuration.

Note that ifar € accept, then there is no configuratighwith a -y 3. Moreover,
a kv B implies that|B| — |a| € {0,1} for all configurationsar and 3 (sinceM
cannot writd ] into a work tape cell).
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Definition 1.13 (computation,L(M), computably enumerable language)A com-
putation of M on input Xis a sequence of configuratiofeg,a1,...,am) with
init(x) = ap and a;_1 Fm a; for all 1 <i < m. The computation isuccessfulf
Om € accept. The set

L(M) ={x e =* | 3 successful computation ™ on inputx}

is the language accepted (or solved) My A languagel is calledcomputably
enumerablgor recursively enumerab)df there exists a Turing machind with
L=L(M).

In the above definition of computably enumerable languagesgan restrict the
Turing machineVl to be deterministic. In other words: Nondeterministic aeted
ministic Turing machines recognize the same class of lagggianamely the com-
putably enumerable languages.

Example 1.14Consider the deterministic Turing machine
M = (szvraéquath)a

whereQ = {do,01,02,03,9¢ }, Z = {a,b}, I = {a,b,#}, andd contains the follow-
ing tuples:

(1) (q07 >, Da qla#a 1) 1)

(2) (01,%,0,01,%,1,1) forx € {a,b}
(3) (qlqumana#a Oa 71)

(4) (02,<,%,02,%,0,—1) for x € {a,b}
(5) (QZ7 <]7#7 q37#7 _15 +1)

(6) (q37 Xa X7 q37#7 _15 +1)

(7) (q37>7#7qf5#5 Oa O)

This machine accepts the set of all palindromes over theahkgt{a, b}, i.e., the
set of wordsw € {a,b}* such thaw[i] = w[lw| —i+1] for all 1 <i < |w|. With the
first two types of instructions, we copy the input word onte thork tape. At the
end of this first stage, the input head scans the right endenark hen, with the
instructions of type (3) and (4), we move the work tape heatt mthe beginning of
the copy of the input word. The input head stays on the rigtitearker. The main
work is done with the instructions of type (6), which compfreevery 1<i <n
the symbolswv|i] andw[|w| — i 4 1] of the input wordw.

So far, we used Turing machines only as language acceptoni$arsto finite
automata in automata theory. But in many contexts we wargeoluring machines
to compute some possibly complex output word from the inpuidwFor instance,
we might want to output the sum or product of two input numbiées this, we need
Turing machines with output. Since such a machine shouldym® a single output
word for a given input word, the machine should be deterrimis

Definition 1.15 (Turing machine with output). A deterministic Turing machine
with output(also called @ransducey is a tupleM = (Q, >, ,A,,qo,q¢,) where
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e Q, 2, I, qo s, and] have the same meaning as for ordinary Turing machines,

e A is the output alphabet, and

e 5C (Q\{gr}) x (ZU{ap}) x T x QxT x{-1,0,1}%>x (AU {e}) is the
transition relation. We require thdt,>,a, p,b,d;,dz,c) € 6 impliesd; > 0
and(q,<,a, p,b,d;,dy, c) € 4 impliesd; < 0. Moreover, we require that for all
instructions(q,a, b, p,c,d1,d2,0),(qg,a,b, p’,c’,dj,d5,0') € & we havep = p/,
c=c,d; =dj, dy=dj, ando= 0 (i.e.,M is deterministic).

The intuition behind an instructiofg, a, b, p,c,d;,d,0) € d is the same as for or-
dinary Turing machines, where in additiore A U {¢e} is the output symbol. The
idea is that the output is generated sequentially from defight. If o € A thenoiis
appended to the prefix of the output that has been alreadypeddIfo = ¢, then
the output is not extended in the current computation stepnélly, a configura-
tion of M is a 6-tuplea = (x,q,i,w, j,y), wherex, g,i,w, j have the same meaning
as in Definition 1.11 angl € A* is the partial output that has been produced so far.
For configurationsr, 8 and an instructiont € 6 we write a - B8 if and only if
a = (x,q,i1,V,i2,Y), B = (X,p, j1,W, j2,y0) t = (Q,a1, 8, p,b,ds,dz,0), and all con-
ditions from Definition 1.12 hold. Computations are definedlagously to ordinary
Turing machines.

A Turing machine with outpuM = (Q, %, ,A, J,0o,qs,]) computes a partial
functionfy : Z* — A* in the natural way:

Definition 1.16 (function f\y computed byM). For a wordx € Z* we havefy (x) =
y if and only if there exists an accepting configuratoe= (x,qs,i,w, j,y) such that
init(x) Fyy .

In general, the functiorfy, is only partially defined, sincé is not guranteed to
finally reach an accepting configuration fromi(x).

Recall that a languadeis computably enumerable if there exists a (deterministic
or nondeterministic) Turing machird with L = L(M). Alternatively, one can say
thatL is recursively enumerable if there exists a Turing machiitie @utputM such
thatL is the domain offy.

Definition 1.17 (computable language) A languagd. is computabldor recursive
or decidablg if and only if there exists a Turing machine with outpdtsuch that
for all inputsx: If x € L, thenfy(x) =1 and ifx ¢ L, thenfy (x) = 0 (in particular,
fi is total). A language, which is not computable is calledlecidable

Intuitively, a languagé. is computable, if there exists an algorithm such that for
every input wordx, the algorithm either terminates with the answer “yelselongs
toL” or “no, x does not belong ta”". It is well-known thatL is computable if and
only if L and the complement &f are both computably enumerable.

In the following, we use the terrmomputational problenor just problemas a
synonym for language. Hence, Turing machines are devigesofeing computa-
tional problems. When describing a computational probleat torresponds to a
languagd. C >* we use a description of the following form:

input: A word x over the alphabeX.
question:Doesx belong toL?
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1.3.2 Time and Space Classes

In this section, we define several important complexitysgas

Definition 1.18 (time and space needed by a Turing machinellet M be a Turing
machine and let = (ap, a1,...,am) be a computation dfl (for a certain inpuk).
We say that needdime m and we say thatneedspacemax{|a;| |0 <i <m}. The
Turing machinéM needs time (respectively, space) at mMdst N on inputx if every
computation (not only accepting ones) Mf on inputx needs time (respectively,
space) at mostl.

Definition 1.19 (f-time bounded, f-space bounded).Let f : N — N be a mono-
tonically increasing function. We say thdtis f-time boundedf for every inputx,
M needs time at modft(|x|). We say thaM is f-space boundedf for every input
X, M needs space at most|x|).

For example, the Turing machine from Example 1.1@is+ 4)-time bounded.
Of course, the above definitions can be also used for Turirghinas with out-
put.

Definition 1.20 (DTIME, NTIME, DSPACE, NSPACE). We define the following
complexity classes:

DTIME(f) = {L(M) | M is deterministic and-time bounded

NTIME(f) = {L(M) | M is nondeterministic and-time bounded
DSPACE(f) = {L(M) | M is deterministic and -space boundéd
NSPACE(f) = {L(M) | M is nondeterministic anfi-space boundgd

For a clas” of monotonically increasing functions dfiwe write DTIME(%") for
Utew DTIME(f) and similarly forNTIME, DSPACE, andNSPACE.

Trivially, DTIME(f) C NTIME(f) and DSPACE(f) C NSPACE(f). Some other
inclusions are:

e DSPACE(&(f)) = DSPACE(f) andNSPACE(&(f)) = NSPACE(f)
o NTIME(f) C DSPACE(f)
e NSPACE(f) C DTIME(27(N)if f € Q(logn).

Moreover, a famous theorem of Savitch states NGRACE(f) C DSPACE(f?) if
f € Q(logn). Hence, nondeterministic Turing machines can be simulsyeteter-
ministic Turing machines with a quadratic blow up in space.

Definition 1.21 (L, P, NP, PSPACE)Some important abbreviations are the follow-
ing, where as usud@[x] denotes the class of all polynomials with coefficients from
N:
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L = DSPACE(log(n)) (1.1)
NL = NSPACE(log(n)) (1.2)
P= |J DTIME(f) (1.3)
feN[n|
NP = [ J NTIME(f) (1.4)
feN[n|
PSPACE= | J DSPACE(f)= [J NSPACE(f) (1.5)
feN[n| feN[n|

The identity (*) in (1.5) is a consequence of Savitch’s tlesor In (1.1) and (1.2)
we do not have to specify the base of the logarithm, sincegihgrthe base only
involves a multiplicative factor. Sd, (respectivelyNL) is the class of all problems
that can be decided by a deterministic (respectively, namaenistic) Turing ma-
chine in logarithmic spac®, (respectivelyNP) is the class of all problems that can
be decided by a deterministic (respectively, nondetestig)i Turing machine in
polynomial time, andPSPACE s the class of all problems that can be decided by a
(deterministic or nondeterministic) Turing machine inypwmial space. The class

P is often identified with the class of those problems that casdived efficiently.
The following inclusions hold:

L €NL CPCNPCPSPACE (1.6)

But none of these inclusions is known to be strict (and thietatss of each inclu-
sion is a major open problem in complexity theory), althotigh so called space
hierarchy theorem implieBlL C PSPACE, hence one of the inclusions must be
proper.

Definition 1.22 (coC).For a complexity clas€ we denote witlcoC the set of all
complements of languages fran

Hence,C = coCmeans thaC is closed under complement. It is easy to show that
deterministic time and space classes (likeP, PSPACE) are closed under com-
plement. A famous result shown independently by ImmermahSzelepcsényi in
1985 states thaL = coNL. WhetheNP = coNPis a major open problem in com-
plexity theory.

1.3.3 Reductions and Completeness

In this section we will introduce the important notions ofluetions and com-
pleteness for a complexity class. Via completeness, onéeamify the most diffi-
cult problems within a complexity class. First we have t@adtice some resource
bounded classes of transducers:
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Definition 1.23 (polynomial time transducer, logspace trasducer). A polyno-
mial time transduceis a Turing machin®! with output that computes a total func-
tion fi and that isp(n)-time bounded for a polynomigi(n). A logspace transducer
is a Turing machiné with output that computes a total functidgy and that is
log(n)-space bounded.

Example 1.24The binary representation of the sum of two natural numbeas t
are given in binary representation can be computed with splace transducer that
follows the standard school method for additionu Bindv are the binary represen-
tations of the two input numbers (let us assume that the ségisificant bit is left),
then the machine has to store a positios b < max{|ul, |v|}. This position can
be stored in binary representation and hence needs onlittugécally many bits.
Moreover, a carry bit is stored. In each step, the bits atiiposp in u andv and the
carry bitis added , a new output bit is produced and a new tsiriy stored. More-
over, the positiorp is incremented. Incrementing a number in binary representa
is possible in logarithmic space.

Also the product of two binary encoded natural numbers caodmputed by a
logspace transducer; this requires a little bit more wodntfor sum. Finally, also
the integer part of the quotient of two binary encoded natwenbers can be com-
puted in logspace [35, 76]. This solved a long standing opeblem.

Example 1.25Another class of functions that can be computed with logspans-
ducers are free monoid morphisms. lfet>* — I"* be a morphism between free
monoids. A logspace transducer that comptitesnply reads the input worfrom
left to right, and for every symbal in x it appendsf (a) to the output.

Using polynomial time transducers and logspace transdweecan refine the clas-
sical many-one reducibility from computability theory.

Definition 1.26 (<P, <M99). LetK C =* andL C A* be languages. We writé <PL
(K is polynomial time many-one reducible k9 if there exists a polynomial time
transduceM such that for alk € >* we havex € K if and only if fy(x) € L. We
write K g'r%g L (K is logspace many-one reducibleltp if there exists a logspace

transduceM such that for alk € >* we havex € K if and only if fy(X) € L.

Since a logspace transducer works in polynomial time (ihliswWs from the same
argument that showss C P), K <199 L impliesK <P L. Moreoverl; <P L, <P L3
impliesL; <P L3, i.e., <P is transitive: Simply compose two polynomial time trans-
ducers. This simple approach does not work for logspacsdrtasers: 1M; andM,

are logspace transducers, then for an ingthe length offy, (x) can be polynomial

in the length of. Hence, we cannot store the waiig, (x) as an intermediate result.
Nevertheless< ¢ is a transitive relation. The proof is neither obvious nam\aif-
ficult. Transitivity ofg'r%g is very useful. In order to construct a logspace transducer
for a certain task, it allows to split this task into sever{stantly many) subtasks
and to design a logspace transducer for each subtask.
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The clasd. is closed undekiS%: If L € L andK <|% L then alsoK € L. The
same holds for all comlexity classes in (1.6). Similafyand all complexity class
aboveP in (1.6) are closed undet.

The following two types of reducibilities are weaker thart? and <P, re-
spetively:

Definition 1.27 (<P, <9). LetK C 5* andL C A* be languages. We writ¢ <P,

L (K is polynomial time bounded conjunctively reducibleltp if there exist a
constantc € N and a polynomial time transducdt such thatfy (Z*) C (#A4*)°
(where #¢Z A) and for allx € * we havex € K if and only if A?_;yi € L, where
fm(X) = #yaftyz - - - #ye. We write K g't?cg L (K is logspace bounded conjunctively
reducible ta) if there exist a constamte N and a logspace transdudérsuch that
fm(Z*) C (#A*)C (where #¢ A) and for allx € * we havex € K if and only if
ALY € L, wherefy (X) = #y1#yo - - - #ye.

The relationgf;c (respectively,g'g’f) has the same closure properties that we men-

tioned for<p, (respectivelyg'r%g) above.

In this book, we will also need a fifth type of reducibility theweaker thargﬁc.
It is called polynomial time Turing-reducibilityand is defined viaracle Turing
machines

Definition 1.28 (oracle Turing machine).Let us fix a languagke € A*. An oracle
Turing machine with oracle access tdd.a tupleM = (Q, Z,I",A, J,0p,ds,) that
satisfies all the conditions of a Turing machine with outféfinition 1.15). In
addition,Q constains three distinguished statpsyy, andgy such thatd contains

no outgoing transitions from statg. Instead, we enforce that for a configuration
a = (gp,i,w, j,y) (hencey € A* is the output produced so far) the next configuration
is (qy,i,w, j, &) if ye Land(gn,i,w, j,&) if y & L.

Intuitively this means thal can compute words ovéeY (so called oracle queries).
When it enters the statg (the query state), the computed oracle query is send to an
L-oracle. This oracle answers instantaneously, whetheoréree query belongs to

L or not. Hence, membership in the $etan be tested for free. One could also say
that we enhance the machikewith a black-box procedure that tests membership
in the set..

In Definition 1.28, we do not care whetheis computable or not. Oracle Turing
machines can be deterministic or nondeterministic, but \lleowly use determin-
istic ones. All definitions that we gave for ordinary Turin@ahines (e.g., the ac-
cepted language(M), f(n)-time boundedf (n)-space bounded) are defined anal-
ogously to ordinary Turing machines. Now we can define palyiabtime Turing-
reducibility:

Definition 1.29 (<F). For language4 andK we write K <? L (K is polyno-
mial time Turing-reducible t&) if there exists a deterministic polynomially time-
bounded oracle Turing machih with oracle access tb such thak = L(M).
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In other wordsK can be decided in polynomial time using an oracle for thelagg
L. Clearly,K <P L impliesk <? L. The converse is false: For every language
{0,1}* we havel < ({0,1}*\ L), but there are languages such that?, ({0,1}*\
L) does not hold (e.g. the halting problem).

Let < be one of our reducibility notions, and ktL;, ... L, be languages. When
writing K < {L1,...,Ln} we mean thaK < #Lj#Lo#---Lp.

Using our reducibility relations we can finally define contplproblems for com-
plexity classes. Complete problems for a complexity clédsare the most difficult
problems for the clas®’. In some sense they completely capture the ctass

Definition 1.30 (¢-hard language,4’-complete language)Let 4" be a complexity
class and leK be one of the above reducibility relationg',%g, < g'g’cg, SE’C or
<I). A languagd. is @-hard with respect te< if K < L for everyK € ¢ (L is at
least as difficult as any problem #i). The languagé is ¥-complete with respect
to < if L € ¥ andL is ¢-hard with respect ta<. Whenever we say that is ¢-
complete, we implicitly refer to logspace many-one rediliq'*bgh‘%g.

Complete problems fo£” are in a sense the most difficult problems frgmFor this,
it is important that the reducibility used for the definitiohcompleteness is not too
weak. For instance, any language: {0,1}* with 0 # L # {0,1}* is P-complete
with respect to<g'.

For many complexity classes, very natural complete problare known, Sec-
tion 1.3.6 below mentions some of them. The book [58] comstairlist of several
hundredNP-complete problems, and [67] contains a similar lisPafomplete prob-
lems.NP-complete problems are often called intractable, becatigeedollowing
observation: IfL is NP-complete, therL € P if and only if P = NP. Analogous
equivalences hold for other complexity classes too: Fdaim, ifL is P-complete,
thenL € NL if and only if NL = P.

1.3.4 How to Represent Input Structures

We should say a few words about the input representationinfhe for a Turing
machine is a word over some alphaBeBut quite often, we want to solve algorith-
mic problems, where the inputis not a word, but for instanfeite graph, or a finite
relational structure, or even another Turing machine. lfuaat to solve such a prob-
lem with a Turing machine, we have to encode the input datestygy words. This
is certainly possible. For instance a directed grapm orodes can be represented
by its adjacency matrix. This matrix can be encoded by a weeat the alphabet
{0,1,#} by listing all matrix rows separated by #. Of course, theseadher reason-
able representations of graphs. For instance a directguhgnan vertices 1...,n
can be represented by concatenating ferik n all words 0#0i1#0i2 - . . #0ik where
i1,---, jk is a list of all successor nodes of noid& his encoding is based on adja-
cency lists. Strictly speaking the precise word encodinthefinput data has to be
fixed for a computational problem. Quite often this is noteemplicitly, but some
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canonical encoding is assumed. If two different input efrogglcan be transformed
into each other efficiently, say by a logspace transducen the complexity of the
problem does not depend on which of the two encodings is ch(deast if we
only consider classes containihg. For instance, the word encodings of directed
graphs based on adjacency matrices and adjacency listeaaonierted into each
other by a logspace transducer.

Two important representations of numbers, which cannotréesformed into
each other by logspace transducers are the unary and bem@gsentation of num-
bers. The unary representation of the nuntbeiN is just the word 0. A polynomial
time transducer cannot convert the binary encoding of thebmun into its unary
encoding, simply because the latter is exponentially lotigen the former, but in
polynomial time only polynomially many output symbols cagroduced. Hence,
for computational problems, where the input consists of lnens, it is important to
specify the encoding of numbers (unary or binary encodi@gg also says that the
binary encoding of numbers is more succinct than the unacgaing. The topic
of succinctness is central for this book. In the next sectiom will see a general
framework for succinct representations based on circuits.

A final remark in this context: For most natural encodingssivery easy to
check for a Turing machine, whether a given input word is &vahcoding. For
instance, whether a word over the alphafietl, #} is the word encoding of a graph
as described above can be verified by a deterministic Turexchime in logarithmic
space.

1.3.5 Circuits

Circuits are a central topic in this book. They allow to regamt large objects in a
succinct way. In this section, we introduce a general dédimif circuits. Later, we
will see several concrete instantiations of circuits.

Let us fix a countable (possibly finite) sét of function symbols, where every
f € & has a certain arity; € N. In casen; =0, f is a constant symbol. We assume
that.# contains at least one constant symbol.

Definition 1.31 (¥ -expressions with variables)LetV be a finite set ofariables
The set&(#,V) of .7-expressionsvith variables fromV is the smallest set with
respect to inclusion such that:

e VC&(F,V)

o If feF andey,...,en € &(F,V), thenalsof (ey,...,en) € &(F,V).

The setVar(e) of variables that occur in the expressieis defined as follows:

e Var(v)={v}forveV.

e Var(f(e,...,en)) = Ui<i<n, Var(e).

Circuits are a succinct representation of expressionsowitiiariables. The idea is
to represent a subexpression that appears several timesrard.
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Definition 1.32 (circuit). An .Z-circuit is a triple%” = (V, S,rhs) such that:

e V is afinite set of variables (or circuit gates).

e ScV isthe start variable.

e rhs:V — &(Z,V) (rhs stands for “right-hand side”) assigns to each variahle
expression such that the relation

graph(%) = {(A,B) €V xV | Ac Var(rhgB))} (1.7)

is acyclic. The reflexive and transitive closure of the iielagraph(%’) (which
is a partial order otV) is the hierarchical orderof ¥. The length (number of
edges) of a longest path in the grajhgraph(%)) is theheightof ¢

In order to evaluate a circuit we need an interpretationtferftinction symbols from
. This leads to the notion of aff -algebra:

Definition 1.33 (¥ -algebra). An .%-algebra is a pait7 = (A1), whereA is a set
and| maps everyf € .# to a functionl (f) : A" — A. We usually suppress the
mappingl and simply write(A, (f)¢c#) for (A/1). Here, f is identified with the
functionl (f).

Definition 1.34 (evaluation of an.Z -circuit in an .7 -algebra).Fix an.# -algebra
o/ = (A,]) and an.Z-circuit ¢ = (V,Srhs). We define the evaluation mapping
valZ : &£(.#,V) — Ainductively as follows:

o Ife=XeV,thenval (e) = valZ (rhgX)).
o Ife=f(ey,...,en ), thenval (€) = f(valZ (ey),...,valZ (en,)) € A

The fact thatV, graph(%)) is acyclic ensures that the mapping? is well-defined.
Finally, we defineval” (¢) = valZ (S).

The.# -algebragz will be always clear from the context. Hence, we will omit gwe
perscriptes in the mappingsaliﬁ andval”. We will also talk about7-expressions
and .o/ -circuits (or circuits over) instead of.%-expressions and# -circuits. Fi-
nally, if also the circuit¢” is clear from the context, we will also omit the ind&k
in the mappingaly(e).

If a Turing machine wants to receive a circdit= (V, S rhs) as input, the circuit
has to be encoded by a word. One can identify the variablds nuitnbers from
{1,...,n} and each of these numbers can be binary encoded. Moreowecam
assumeS= 1. Then, to encode the whole circuit, we first specify the nenmb
(number of variables) and then list all right-hand side$ths..,rhs(n). In order to
encode an expressi@e &(<7,V) we have to specify how to encode the operation
symbolsf € #. If % is finite, we can simply include the sef into the set of
input symbols for the Turing machine. J¥ is countably infinite, we can assume
that.# = N and take the binary encoding 6fas the code for the function symbol
f. In order to be flexible, let us fix a functiaize : .# — N. In case¥ is finite, we
assume thatize(f) = 1 for everyf € .. This is reasonable, since a symbol from
# can be specified in constant space.
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Fig. 1.1 The graph of the circuit from Example 1.37.

Definition 1.35 (size of a circuit).Having fixed a size function, we define the size
|e| of an expressior € &(.%,V) inductively as follows:

e IfecV, thenle|=1. .
o Ife=f(ey,...,en), thenle| =size(f) + 3., |&l.

Finally, we define thaize|%’| of the.#-circuit ¢ = (V,S;rhs) as

€| =§v|fhix)|-

Definition 1.36 (circuit in normal form). A circuit ¢ = (V,S;rhs) is in normal
form, if for every X € V we have rh&X) = f(Xy,..., Xy, ) for somef € . and
Xl,...,an eV.

By introducing additional variables we can transform inymaimial time a given
circuit ¢ into a circuitZ in normal form such thatal(%’) = val(2).

Example 1.37Let.# = {+, x, 1}, wheren, = n, = 2 andn; = 0. Moreover, con-
sider the#-algebra« = (Z,1), wherel (+) is the addition operatior(x) is the
multiplication operation, ant{1) = 1. Finally, define theZ -circuit

G = ({Xo, X1, X2, X3, Xa, X5, X6}, X6, 1hS),

where the right-hand side mapping rhs is defined as follovesy®e infix notation
for + andx):

rhg(Xp) =1

rhs(X1) = Xo+Xo

rhaXi) = Xi_1x X_1for2<i<4
rhs(Xs) = X2+ Xo

rhs(Xs) = X5+ X4

We obtain

valy(Xo) =1, valgy(X1) =2, valgy(Xz) =4, valg(X3) =16,
valy(Xq) =256, valy(Xs) =5, valg(Xg) =261
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and henceval(¢) = 261. The circuit? is in normal form, and has size 19. The
graph of%” is shown in Figure 1.1.

1.3.6 Some Important Computational Problems

In this section, we present some important algorithmic fgmis. In particular, we
present complete problems for the complexity clagsdsL, P, NP, andPSPACE

Example 1.38 (graph accessibilityhe following problem is known as thgraph
accessibility problem

input: A directed graplG, and two nodes andt.
questionis there a directed path frogtot in G?

The graph accessibility problem belonga\th, and is actuallyNL-complete. The
undirected graph accessibility probleisithe following restriction of the graph ac-
cessibility problem:

input: An undirected grapls, and two nodes andt.
questionis there a path frorstot in G.

The undirected graph accessibility problem belongds.t®his is a very difficult re-
sult which was proved in 2004 bei Reingold [146]. Actuallye tundirected graph
accessibility problem id -complete. In order to make this statement nontrivial,
one has to work with a stronger reducibility than logspagducibility (so called
DLOGTIME-reducibility).

Example 1.39 (PRIMEST.he following problem PRIMES belongs &

input: Awordw € {0,1}"*.

question:s w the binary representation of a prime number?

This was shown in 2004 by Agrawal, Kayal, and Saxena [4]. Nwdeis easy to test
whether for an input worgy = Q" (unary representation of), nis a prime number.
This latter problem actually belongs ta It is not known, whether PRIMES 8-
complete.

Example 1.40 (circuit value problen#.boolean circuitis a. #-circuit (in the sense
of Definition 1.32), where” = ({0,1},A,V,—,0,1) is the boolean algebra\(de-
notes the binary boolean AND-function,denotes the binary boolean OR-function,
and— denotes the unary boolean NOT-function). Tdieuit value problenis the
following problem:

input: A boolean circuiC.
question:Does the output gate @f evaluate to 1.

Ladner proved that the circuit value problemHscomplete [101]. Moreover, the
monotone circuit value problemvhich is the restriction of the circuit value problem
to monotone boolean circuits (boolean circuits that do naota&in the--operator on
right-hand sides), iB-complete [63] as well.
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Example 1.41 (SAT)A boolean formula is an expression froff(%,V) (in the
sense of Definition 1.31), wher® is the boolean algebra from the circuit value
problem and/ is a finite set of variables. Such a boolean forntlia satisfiable, if
the variables fronV can be replaced by truth values (0 or 1) in such a way Fhat
evaluates to 1. SAT is the following problem:

input: A boolean formula-.
questionis F satisfiable?

SAT was shown to bBIP-complete by Cook [39] and independently by Levin [104].
SAT was actually the first natural problem that was shown thlBecomplete.

Example 1.42 (SUBSETSUMHUBSETSUM is the following problem:

input: A finite setW C N andt € N, where all numbers are encoded in binary.
questions there a subs&t C W such thaty ey W=1?

SUBSETSUM isNP-complete as well.

Example 1.43 (universality problem for NFAhe universality problem for nonde-
terministic finite automata is the following problem:

input: A nondeterministic finite automatohover the alphabefo, 1}.
question:DoesL(A) = {0,1}* hold, i.e., doe#\ accept all input words?

This problem was shown to lRSPACE-complete in [5].

1.3.7 Randomized Computation

Let M be a nondeterministic Turing machine, andd&ie an input word foM. The
machineM generates aomputation tredor input x. This is a rooted tree, where
every node is labeled with a configuration. The root is ladh&léh the initial con-
figurationinit(x), and if a noder is labeled with a configuratioa, then for every
configurationf with a Fy B, v has aB-labeled child. Assume now that this com-
putation tree is finite, which means thét does not have an infinite computation
on inputx. We may view the computation tree as a stochastic processevat
each node with childrenvs, ..., v one of the nodes,, ..., v is chosen with prob-
ability 1/k. We can now compute the probabil®yob[M accepts] thatM accepts
the inputx. This new viewpoint allows us to define several randomizedpexity
classes:

Definition 1.44 (RP).A languagel belongs to the clasRP (randomized polyno-
mial tim@ if there exists a nondeterministic polynomial time bouthdering ma-
chineM such that for every inpwt we have:

e If x¢ L then ProfM acceptx] = 0.
e If xe L then ProfM acceptx] > 1/2.
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The choice of the probability/R in the second case is not crucial. If the acceptance
probability in case € L is 1/p(n) (wheren = |x| is the input length), i.e., the error
probability is 1— 1/p(n), then by running the algorithm p(n) times, we can reduce
the error probability tq1 — 1/p(n))™P(", which is smaller thari1/2)" for n large
enough. It is important here that the different rundvbfon inputx are mutually
independent.

Note that a languadebelongs to the clasoRPif there exists a nondeterministic
polynomial time bounded Turing machiiesuch that for every inputwe have:

e If xe L then ProfM acceptx] = 1.
e If x¢ L then ProfM accepts] < 1/2.

The classRPNcoRPis also calledZPP (zero-error probabilistic polynomial time
Note thatP C ZPP.

Definition 1.45 (BPP). A languageL belongs to the clasBPP (bounded error
probabilistic polynomial timpg if there exists a nondeterministic polynomial time
bounded Turing machind and a constard such that for every inpwt we have:

e if x¢ L then ProfM acceptx] < 1/2—¢.
e if xe€ L then ProliM acceptx] > 1/2+¢.

The constant (the probability gap) can be made larger by probability aficption.
For this the machine runs several times (sky-2 times) on inpuk and outputs by
majority, i.e., the machine accepts if the machine accepastk times. Chernoff’s
bound can used for the analysis of this new machine.

Note thatRPUcoRP C BPP. The classeRP, coRP, andBPP are closed under
polynomial time many-one reductions:llfc RP andK <P, L, then alsoK € RP,
and similarly forcoRPandBPP. Since it is not known, wheth&P is closed under
complement, it is not clear wheth&P is closed under polynomial time Turing-
reductions. But we will need the following:

Lemma 1.46.Let L € RP (respectivelycoRP) and K gﬁc L. Then also Ke RP
(respectively, Ke coRP).

Proof. LetK C =* andL C A*. By the definition of<p_ there exist a constantand
a polynomial time transducédr such thatfr (Z*) C (#4*)¢ and for allx € Z* we
have:xx € K if and only if A7_; yi € L, wherefr (X) = #y1#y, - - - #yc.

First, assume thdt € RP. Hence, there exists a nondeterministic polynomial
time Turing machin® such that for aly € A*, (i) if y ¢ L then ProfM accepts/| =
0, and (ii) if y € L then ProlfiM accepty] > 1/2. Consider the nondeterministic
polynomial time Turing machin®!’ that behaves for akk € * as follows:

e Fromx, compute in polynomial time the worfg (x) = #y1#y» - - - #yc.

e Run the machin® on each of the input wordg. These computations must be
mutually independent.

¢ If each of thes& many computations is accepting, thiéhh accepts¢, otherwise
M’ rejectsx.
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Let us compute the probability thet’ acceptx. Since the computations are mutu-
ally independent, we have

Cc
ProgM’ acceptx] = |'lProl:{M acceptsy] (1.8)
i=

If x ¢ K, then there exists at least oge(1 < i < ¢) such thaty; ¢ L. Hence,
ProbjM acceptsi] = 0, which implies ProfM’ accepts = 0 with (1.8). Ifx e K,
theny; € L for all 1 <i < c. Hence, ProfM accepts;] > 1/2 forall 1<i <c.
Hence, ProfM’ accepts] > (1/2)¢, which is a constant (sinagis a constant). Us-
ing probability amplification, we can increase this constarat least 12.

Now, assume thdt € coRP. Hence, there exists a nondeterministic polynomial
time Turing machin® such that for aly € A*, (i) if y ¢ L then ProlM accepts/| <
1/2, and (ii) if y € L then ProfiM accepty] = 1. Consider the nondeterministic
polynomial time Turing machin#&’ constructed above and take an input *.
Let us compute the probability that’ acceptsx. If x & K, then there exists at
least oney; (1 <i < c) such thaty; ¢ L. Hence, ProfM acceptsy;] < 1/2. With
(1.8) we get Prol’ acceptx| < 1/2. On the other hand, ¥ € K, theny; € L for
all 1 <i <c. Hence, PropM accepts;] = 1 for all 1 <i < c. This implies that
ProgM’ accept =1. O

There is some evidence in complexity theoryB®P = P and henc&kP = coRP=
BPP = P Impagliazzo and Wigderson [85] proved that if there exidenguage in
DTIME(29M) that has circuit complexity2™ (which seems to be plausible) then
BPP=P.

An important computational problem in the context of thesslP is polyno-
mial identity testing (PIT.)For this, we first have to define arithmetic circuits. Re-
call that for a ringR, R[xq, . ..,%n] defines the ring of polynomials with coefficients
from R and variablex;, ..., x,. Also recall the definition of general circuits (Defi-
nition 1.32).

Definition 1.47 ((univariate, variable-free) arithmetic drcuit). An arithmetic cir-

cuit over the ringRis a(R[Xq, ..., Xn],+,,1,—1,X,...,%n)-Circuit for somen > 0.

Hence, an arithmetic circuit defines a polynomial fr&wg, ..., X,] using the op-
erations of addition and multiplication of polynomialsaing from the poly-
nomials 1,—1, xg,...,%,. A univariate arithmetic circuitover the ringR is a
(R[x],+,-,1,—1,x)-circuit. A variable-free arithmetic circuibver the ringR is a
(R +,-,1,—1)-circuit.

The characteristichar(R) of the ringR, i.e., the smallest numbet such that

1+---+1=0.
N——
mmany
If no suchm exists thenchar(R) = 0. Note that for an arithmetic circu##’ over

R, all coefficients of the polynomiakl(%’) are fromZ..(g) (the integers modulo
char(R)), where we seZy = Z.
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By iterated squaring, one can easily compute in logspace &binary encoded
natural numbeman arithmetic circui#’ with val(%¢’) = x™. For instance, the circuit
with rhs(Xi) = X_1X_1 for 1 <i < n, rhgXy) = x and start variabl, defines the
polynomialxzn, and the size of this circuit is+ 1. In the same way one can define a
variable-free arithmetic circuit over the rir#gof sizen+ 1 that defines the number
22" Note that the binary encoding of this number h&s@ny bits. Due to this, one
may allow in arithmetic circuits right-hand sides of therfor™ for a binary encoded
natural numbem.

In the literature, also the term “straight-line programuised for arithmetic cir-
cuits, see e.g. [6, 84, 93]. Here, we reserve the term “sitdige program” for
another class of circuits that will be introduced in SecBoh

The main computational problem for arithmetic circuits @ymomial identity
testing:

Definition 1.48 (polynomial identity testing, PIT(R)). For a ringR, the problem
PIT(R) (polynomial identity testing for the ring)Ris the following computational
problem:

input: An arithmetic circuité over the ringR
questionis val(%) the zero-polynomial?

Note that asking whethenl(%) is the zero-polynomial is not the same as asking
whethenval(%) is zero for all assignments of the variablesih(%’): For instance,
X2 +X € Z,[X] is not the zero polynomial buf@-0= 1?2+ 1= 0in Z,.

It suffices to consider polynomial identity testing for thiegs Z and Zn, for
m> 2: By the remark after Definition 1.4P|T(R) is equivalent tPIT(Zcpar(R) )-
The following important result was shown in [84] for the rifigand in [3] for the
rnNgsZm (m> 2).

Theorem 1.49.For every ring Re {Z} U{Zm | m> 2}, PIT(R) belongs taccoRP.

Before we prove Theorem 1.49, let us first present a simplectezh from polyno-
mial identity testing to polynomial identity testing for ivariate circuits, see [3]:

Proposition 1.50.For every ring R there is a polynomial time many-one redurctio
from polynomial identity testing to univariate polynomi@entity testing.

Proof. For a polynomiap(xa,...,Xn) € R[X1,...,%n] and a variable; let ded p,xi) €
N be the maximal numbetsuch thaip(x, ..., X,) contains a monomial of the form
rodt o hdxtr. . xth Assume thatl € N is such that deg, x) < d for all

1 <i < n. We define the univariate polynomiativ(p,d) € R[x] as

univ(p,d) = p(xd,x&, ... x").

The mappingp — univ(p,d) is injective, satisfieaniv(py + pz,d) = univ(ps,d)+
univ(pz,d) anduniv(ps - p2,d) = univ(pz,d) - univ(pz,d), and maps the zero poly-
nomial to the zero polynomial. Hence, is the zero-polynomial if and only if
univ(p,d) is the zero-polynomial. Moreover, given an arithmetic @itcs” for
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p(X1,...,X)), we can compute in polynomial time the binary encoding of ennu
berd such that de@, x;) < d for all 1 <i < n. Then we obtain an arithmetic circuit
for univ(p,d) by replacing every right-hand sideby x@'. Note that the binary en-
coding of the numbed' can be computed in polynomial time

Proof of Theorem 1.4%Ve prove the theorem only for the ricigandZy, for p prime.
These are acutally the only cases needed in this book. Leartsasth R= 7. Let

¢ = (V,Ag,rhs) be an arithmetic circuit ovet. By Proposition 1.50 we can assume
that ¢ is univariate. Moreover, we can assume ti#fats in normal form. Hence,
every right-hand side of is either 1,—1, a variableX +Y, or X -Y for gatesX
andY. Let p(x) = val(¢’) and letr be the number of gates &f andk=r + 1. The
following facts follows easily by induction on

e The degree dd@(x)) of the polynomialp(x) is at most 2= 2%/2.
e Forevery natural number> 2 and every integdy with |b| < awe have p(b)| <
a?.

Let us define
A={1,2,...,2.

Since a non-zero polynomial of degr@ever a fieldF has at mostl different roots
(in our case, we can take the fidid= Q), we get: Ifp(x) # 0, then the probability
thatp(a) = 0 for a randomly chosen elememt A is at most ¥2. Hence, to check
whetherp(x) # 0, we can guess an element A, and check whethep(a) # 0.
But here, another problem arises: The numfi@) can be very large: By the above
consideration, we know thap(a)| < 2<¢ for all a € A, but the binary representation
of 2" has exponentially many bits.

To solve this problem, we compupga) modm for randomly chosen numbens
from the set

M={1,...,2%}.

Claim 1: Letb be an integer with & |b| < 2%, Then the probability thai modm
0 for a randomly chosen numbierc M is at least 14k if k is sufficiently large.

Proof of the Claim 1By the prime number theorem, the number of primes in the
setM goes to 2¢/In(2%) for k — . Hence, ifk is sufficiently large, then there are
more than 2/2k prime numbers iml. On the other hand, if £ |b| < 22 then the
number of different prime divisors dfis at most log(|b|) < k2X. Hence, there are
at least 2</2k — k2 prime numbers; € M such thab modq +# 0. If kis sufficiently
large, then we get

2XK/2k—k2 1 k_1 1 1
22k 2k 2k~ 2k 4k 4k
This proves Claim 1.
Our algorithm works as follows:

e Randomly choose a paja,m) € Ax M.
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e Computep(a) modm. This can be done in polynomial time using the circuit
% for p(x). One simply replaces every gate with right-hand sidyy a modm.
Then we evaluate the circuit in the rirgyy, of integers modulan. Note that
elements ofZn, can be represented withk2= 2r 4 2 bits. Hence, all additions
and multiplications can be done in polynomial time.

e If p(a) modm# 0 then accept, otherwise reject.

If p(x) is the zero polynomial, then this algorithm accepts withoatality zero. On
the other hand, ip(x) is not the zero polynomial, then the algorithm accepts with
probability at least 18k (if k=r + 1 is large enough): With probability at least2l
the algorithm chooses an element A with p(a) # 0. Note thatp(a) < 2<2°. For
such ara € A, the probability that the chosen element M satisfiegp(a) modm+#£
Ois at least 14k by Claim 1. Finally, the success probability8k in casep(x) is not
the zero polynomial can be increased §®using probability amplification. This
concludes the proof for the rirg.

Let us now consider the fielfly for g a prime number. Le¥ = (V,Ag,rhs) be an
arithmetic circuit ovetf'q in normal form and withr gates. Again, we can assume
that the polynomiabal(%4’) = p(x) is univariate. The degree @fx) is at most 2.
Consider the infinite field(y) of all fractions of polynomials froniq[y], which
containgFq. Hence, we can vieyp(x) as a polynomial with coefficients froiy(y).

If Ais any subset of4y] C Fq(y) with |A] > 2"+1, then assuming(x) is not the
zero polynomial, the probability thai(a) = 0 for a randomly chosen polynomial
a=a(y) € Ais at most 72. Letd > 1 be the smallest number witf > 2'+1
(clearly,d <r +1) and define

A= {aly) € Fqly] | degreéaly)) < d}.

Note that|/A| = q@ > 2"*1. Similar to the case of characteristic 0, we will compute
p(a) (fora=a(y) € A chosen randomly) modulo a randomly chosen polynomial of
small degree. Recall that a polynoméay” + ¢, _1y"* + - - 4 c1y + Co is monig if

M = {m(y) € Fqly] | m(y) is monic and degrée(y)) = 2(d+r)}

We can assume that> 1 and hence:=d +r > 2. Note thatM| = g%¢. We need
the following claim:

Claim 2: Let b(y) € Fqly] be a polynomial with degréb(y)) < 2°. Then the prob-
ability thatb(y) modm(y) # 0 for a randomly chosen polynomiai(y) € M is at
least 1/8e.

Proof of the Claim 2The number of irreducible polynomials M that divideb(y)
can be at most® 2e, because the product of all these irreducible polynomiats h
degree at most®and every polynomial it has degreee Sinceq,e > 2, we have
2¢/2e < q?°/8e. By [17, Eq. 3.37], the sel contains more thag?®(1—q'®)/2e>
g?®/4e irreducible polynomials (note that> 2 ande > 2). Hence, the probability
thatb(y) modm(y) # 0 for a randomly chosen polynomialy) € M is at least
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g*/4e—q*®/8e q*®/8e 1

M 7 g

This proves Claim 2.
Our probabilistic algorithm for testing whethp(x) is not the zero polynomial
is now very similar to the case of characteristic O:

e Randomly choose a paja(y),m(y)) x Ax M.

e Computep(a(y)) modm(y). This can be done in polynomial time by evaluating
the circuit% in the quotient ringfqly]/(m(y)). Every element of this ring can
be represented by a polynomial oWy of degree at most@+r) —1<4r+1
and can be therefore stored in polynomial space (the pgiiee constant in our
consideration). Moreover, arithmetic operation&jfy] /(m(y)) can be be also
performed in polynomial time.

e If p(aly)) modm(y) # 0 then accept, otherwise reject.

If p(x) is the zero polynomial, then this algorithm accepts withbafality zero.
On the other hand, ip(x) is not the zero polynomial, then the algorithm accepts
with probability at least 116(d + r): With probability at least 12 the algorithm
chooses a polynomial(y) € A with p(a(y)) # 0. Note that the degree gf(a(y))

is at mostd2" < 297, For such a polynomiad(y) € A, the probability that the
chosen polynomiain(y) € M satisfiesp(a(y)) modm(y) # 0 is at least 18(d+r)

by Claim 2. Again, the success probability can be amplifietl/@ This concludes
the proof for the rindZq. O

Let us remark that usually Theorem 1.49 is proven withoutdaicgon to the uni-
variate case (Proposition 1.50). In this case, one has iy #ppso called Schwartz-
Zippel-DeMillo-Lipton Lemma [48, 153, 168] for multivatie polynomials. Except
for this detail, the above proof follows [84].

Theorem 1.49 and the above mentioned results from [85] i@y if there ex-
ists a language iDTIME(29(") that has circuit complexity™ then polynomial
identity testing belongs t®. There is also an implication that goes the other way
round: Kabanets and Impagliazzo [92] have shown that if pafyial identity test-
ing over the integers belongs® then one of the following conclusions holds:

e Thereis alanguage NEXPTIME = NTII\/IE(Z”ﬁ(l)) that does not have polyno-
mial size circuits.
e The permanentis not computable by polynomial size aritfoétcuits.

Both conclusions represent major open problem in complekiéory. Hence, al-
though it is quite plausible that polynomial identity testibelongs td? (by [85]), it
will be probably very hard to prove (by [92]).

We conclude this section with the following result from [6}ating that for the
ring Z, polynomial identity testing is equivalent to the problerhether a given
variable- free circuit evaluates to O.

Theorem 1.51.There is a logspace many-one reduction fihi (Z) to the follow-
ing problem:



24 1 Preliminaries from Theoretical Computer Science

input: A variable-free arithmetic circui¥’ over the ringZ.
question: Isval(¢’) = 0?

Proof. Let ¢ be an arithmetic circuit in normal form ové&r, and letn > 1 be the
number of gates o¥. We construct in polynomial time a variable-free arithroeti
circuit ¢” such thatal(%) = 0 if and only ifval(¢”) = 0. By Proposition 1.50 we

can assume th&f is univariate. Letal(4) = p(x) anda = 22" > 16. By iterated
squaring, one can easily constructin logspace a variabkeefrcuit that computes
By plugging in this circuit into&’, we obtain a variable-free circut’ that computes
p(a). Clearly, if p(x) =0 then als@(a) = 0. It remains to show thai(x) # 0 implies
p(a) # 0. Assume thap(x) = ax™+ ™ L aixX with a # 0. We haveai| < 22" for

0<i<m-1andm< 2" To show thatp(a) # O it suffices to show

m-1 .
| Z) agid| <a" < |ad™"|. (1.9
=
We have
m-1 . m-1 m__ m 1+2n
'S ad|<2¥ a':22”.u§22”.2i:am.2_
i s a—1 a a

Hence, (1.9) follows frona = 22" > 21+2".

1.3.8 The RAM Model of Computation

Efficient algorithms are not the main concern of this worle(#e text books [5, 42]
for background on efficient alogorithms). When we state éhatoblem belongs to
P we do not care about the actual polynomiéln) is as good ag’(n'%). Nev-
ertheless, we make occasionally more exact statementseamuining time of al-
gorithms. In these statements we implictly assume a moreegaivcomputational
model than Turing machines. Tim&(n) on a Turing machine with a single work
tape is very restrictive. A more realistic model that is maldser to a real computer
is therandom access machineriefly RAM

A RAM has registersg,r1, ... that store integers of arbitrary size. The input is
a tuple of(iq,...,ij) of integers. There are elementary instructions (that adldne
constant time) for the following tasks:

e loading input values into registers,

e doing arithmetic operations (addition, subtraction, nplittation) on register
contents,

e doing bitwise AND and OR on register contents,

e conditional jumps (if the content of a certain register i$10rt jump to thek-th
instruction, otherwise proceed with the next instructjon)
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e indirect addressing (copy the content of registento registerr;, wherec is the
content of register;. Herei andj are the arguments of the instruction.

A problem with this model is that one may produce with a seqga@fin+ 1 instruc-
tions numbers of size?2 (which need 2 bits):rg ;= 2;rg:=rg-rg;...rg:="ro-ro;
where we da multiplications. In particular, one can evaluate a vaeatbee arith-
metic circuit in linear time. On the other hand, in all our ey#es the bit length
of all registers will be linearly bounded in the input lengtvhich for an input tu-
ple(i,...,ij) can be defined a§'j:llog|ij|. Under this restriction, a RAM can be
easily simulated on a Turing machine with only a polynomlaibup.






Chapter 2

Preliminaries from Combinatorial Group
Theory

In this chapter, we recall basic definitions from combiniaiogroup theory. We
assume some basic knowledge of group theory, see for iresfaA®]. More back-
ground on combinatorial group theory can be found in [11®]16roups will be
written multiplicatively throughout this work and the gmigdentity will be denoted
with 1.

2.1 Free Groups

For an alphabef let ~! = {a~! | a<c I} be a disjoint copy of the alphabEt We
define(at)~! = a, and for a wordv = aya, - - - a, with n > 0 anday, ay, ..., a, €
rur-we define(aja---an)~t = at---a,a;; this defines an involution on
(F ur—1)*. We define the semi-Thue system

Rr={(aale)|acrur-1j. (2.1)

This system is clearly Noetherian and also locally confl@erd hence confluent.
The latter can be checked by considering overlapping lefihsides. The only pos-
sible overlapping of two left-hand sidesas'a for ac I Ul ~1. But regardless
whether we replacaa! or a—'a by &, we obtain fromaa'a the worda. This
shows local confluence.

Definition 2.1. Thefree group generated by is the quotient monoid
F(M)=(ur 4" /Re.

Hence, we obtair (I") by taking the setRR(Rr) of words that do not contain a
factor of the formaa* forac " U ~1. We simply call these wordsreduciblein
the following. If u andv are irreducible words, then the productwéandyv in the
free group is the unique irreducible word that is obtainedfthe concatenatiamv
by cancelling factors of the forma ' forac I Ul ~1 as long as possible.

27
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Clearly, the identity element d&F (I") is the empty word and the inverse of the
irreducible wordw is w—t. Forw € (I U ~1)* we denote the unique irreducible
word NFg- (w) with NF(w). The wordNF(w) is obtained fromw by cancelling
factors of the formaa™! for ac I Ul ~! as long as possible in any order. For
example, we havBiF (a—taa bblb) = a~lb.

2.2 Finitely Generated Groups and Finitely Presented Group

Definition 2.2 (finitely generated group).A groupG is finitely generatedif there
exists a finite se C G such that everg € G can be written as a produata; - - - an
with ag,a,,...,a, € AUAL. The setAis also called dinite generating sefor G.

Equivalently,G is finitely generated, if there exists a finite $etand a surjective
group homomorphist: F(I") — G.
For a subseB C G we denote with(B) the subgroup of5 generated bB, it
contains all productbibs - - b, with by, by, ..., by € BUB~L. Thenormal closure
of BC G, denoted by(B)® is the subgroup generated by all conjugates of elements
fromB, i.e.,
(B)® = ({gbg ' |g€ G,beB}).

Following common notation, the quotient groGy (B)® is also denoted withG |
B).

Definition 2.3 (presentation of a group, relator, finitely presented group)For a
setl” andRC F(I") we write (I" | R) for the group(F (") | R). The seRis called a
set ofrelatorsof the group(l" | R) and the paifI",R) is apresentatiorof the group
(G| R). Here,I" andR can be infinite. Ifr = {a4,...,an} andR={ry,...,rm} are
finite we also write(as,...,an | r1,...,rm) for (I | R). If G is finitely generated by
{ay,...,an} thenG can be written in the formay,...,a, | R) fora setRC F(I"),
which in general is infinite. A grou is finitely presentedf G is isomorphic to a
group(as,...,an | r1,..., ).

Example 2.4Consider the presentatigfia, b}, {[a,b],a* b?}). Here,
[a,b] = aba bt

is the commutator of a andb. The relator[a, b] specifies thag andb commute.
Moreover,a (resp.,b) generates a copy of the cyclic gro#p (resp.,Z;). Hence,
we have(a,b, | [a,b],a% b?) = Z4 x Z,.

Let us introduce some important classes of finitely preskgteups that will reoc-
cur later.

Example 2.5 (graph groupd)et (A,1) be afinite undirected graph, whdre Ax A
is the irreflexive and symmetric edge relation. Wit 1) we associate thgraph

group
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G(A1)=(A|[a,b] for (a,b) €1).

In other words: Two generators are allowed to commute if amgt d they are
adjacent in the graph. Graph groups are also knowigas-angled Artin group®r
free partially commutative group&or a survey on graph groups see [32].

Example 2.6 (Coxeter groups)etM = (my j)1<i j<n be a symmetri¢n x n)-matrix
overN such tham ; = 1 if and only ifi = j. The correspondinGoxeter groups

C(M) = (aq,...,an | (aa;)™ for 1 <i,j <n).

In particular,a? = 1 in C(M) for 1 < i < n. Traditionally, one writes the entrp
instead O in theCoxeter matrix Mand thenm; j becomes the order of the element
aaj. If m ; €{0,1,2} forall 1 <i, j <n, thenC(M) is called aright-angled Coxeter
group. In this case we can defir@M) also as(G(A,1) | @ for 1 < i < n), where
(A1) is the graph witthA = {ay,...,an} and(a;,a;) € | ifand only if m j = 2. The
book [20] provides a detailed introduction into Coxeterngrs.

Example 2.7 (automatic groupsljo define automatic groups, let us first define the
convolution of words. For an alphabatand two wordsu = aaz---am andv =
biby---by (with ag,...,am,b1,...,by € A) the convolution ux v is the following
word over the alphabéAuU {#}) x (AU{#})\ {(#.#) }, where #Z A, k= max{m,n},

g =#form<i <k, andb =#forn<i <k

uv=(ag,b1)(az,bz) - (ax, bx).

For a finitely generated grou@, anautomatic structurdor G consists of a triple
(I, A, (Aa)acruq1y), wherel is a finite generating set f@, A is a finite automaton
overl" U ~1 such that the canonical homomorphikmF (") — G is surjective on
L(A) (whereL(A) is viewed as a subset &f(I")), and for evenya € I U{1}, Ay is
a finite automaton over the alphalf€turm ~1U {#}) x (TUlr ~tu{#)\ {##)}
such that for all,v e L(A), u®v € L(Aa) if and only if h(ua) = h(v). Then, a group
G is automatidf it has an automatic structure. The book [57] provides aitid in-
troduction into automatic groups. Every automatic grodmigely presented. Graph
groups as well as Coxeter groups are automatic, see [75Ran@0], respectively.

Sometimes, we will write an identity = v instead of the relatonv! in a group
presentation. For instance, the graph grép,1) = (A| [a,b] for (a,b) € 1) could
be also written agA | ab= bafor (a,b) € I). Moreover, for wordsi,v e (I Ul —1)*
we say thatti=vin (I | R) if uv-! € (R)F("). This means that andv represent
the same group element ¢f | R).

We can also obtain the groyp | R) as a quotient monoid by taking the semi-
Thue systen8= Rr U{(r,&) |r € RUR}, whereR- was defined in (2.1). Then

(rR=(rurtys
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Clearly, every grougs can be written in the forny” | R). Simply takel” = G andR
as the kernel of the canonical homomorphisnt (G) — G. The notation(l” | R)
allows to define the free product of two groups in the follogwmay:

Definition 2.8 (free product).Let G; = (7 | Ry) andGy = (I | Rp) be groups with
NIy =0. Then theree product G« Gy is (M UM | R1URy).

One can think about the free produst « G, (where we assum&; NG, = {1})
as the set of all alternating sequenges; . .. dn, Where evenyg; belongs to either
G1\ {1} or G2\ {1}, andg; € G1 \ {1} if and only if gi11 € G2\ {1} for all 1 <
i <n—1. The product of two such sequences is computed in the harasaby
multiplying elements from the same group;(or G) as long as possible. Formally,
letg=0102---Om andh = hihy - - - hy be alternating sequences as described above.
If m=0, thengh=hand ifn = 0, thengh = g. Now, assume that,m > 0. If gn
andh; are from different groups, i.egm € G1 \ {1} if and only if h; € G\ {1},
thenghis the alternating sequengeys - - - gmh1hz - - - hy. Finally, assume thaj, and
h; are from the same group. Lktbe the maximal index & k < min{n,m} such
that for all 1<i <k, gm_i+1 = hfl. If k=m, thengh=hj1---hy, and ifk = n,
thengh=g;---gm_« (this includes the cask= m = n with gh = 1). Finally, if
k <min{m,n}, thengh= 01 - - gm_k_1(Im-«khi+1)hi+2-- - hn.

If Gis a group, anR is a subset o5« F (), then we write(G,I" | R) (or
(G,a1,...,an | R)If [ ={a&y,...,an}) for the group(G«F(I") | R).

2.3 Tietze Transformations

Already in 1908, Tietze came up with a semi-decision procedar checking
whether two group presentations yield isomorphic group4]His procedure con-
sists of four elementary transformation steps:

Definition 2.9 (Tietze transformations).Let (I',R) be a finite presentation of a

group.

e If re (RF(), then we say that the presentatidh RU {r}) is obtained from a
Tietze-type-1 transformatidnom (I", R). Intuitively, we add a redundant relator
to the presentation.

e If r € Ris such that € (R\ {r})F("), then we say that the presentatigh, R\
{r}) is obtained from &ietze-type-2 transformatidrom (I, R). Intuitively, we
remove a redundant relator from the presentation.

e Ifagrur—tandwe (rur—1* then we say that the presentation U
{a},Ru{a lw}) is obtained from dietze-type-3 transformatioinom (I, R).
Intuitively, we add a redundant generator to the presemtahlote that the new
relatora~'w defines the new generatasw (a word over the old generators).

e Ifacr andwe ((Fur—1)\{aa1})* such than*w c R, then we say that
the presentatiofi” \ {a}, ¢ (R)) is obtained from &ietze-type-4 transformation
from (I ,R). Here, ¢ is the homomorphism witip (a) = w, ¢ (a~1) = w1 and
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¢(c)=cforce (Fur—1)\ {aa1}. Intuitively, a= w holds in the grougr |
R), hencea is redundant an can be removed from the presentation.

Any of the above four transformations is callediatze transformation

It is not hard to see that if the finite group presentatidnS) is obtained by a finite
sequence of Tietze transformations fro0m R), then(I" | R) = (> | S). Tietze [161]
proved that also the converse holds:

Theorem 2.10.Let (I",R) and (X, S) be finite group presentations. Théh | R)
(Z |9 if and only if (2, S) can be obtained by a finite sequence of Tietze transfor-
mations from(I",R).

This resultimplies that the isomorphism problem for finitgenerated groups (i.e.,
the question, whether two given finite group presentatiéelsl jsomorphic groups)
is computably enumerable. We will use Tietze transfornmatio Chapter 6.

Example 2.11Consider the grouga,b | [a,b],a3,b?) = Zz x Z, = Zg = (c | c®).
Hence, we should be able to derive the presentatioh, {c®}) from the presenta-
tion ({a, b}, {[a,b],a3 b?}) using Tietze transformations. Here is a derivation:

1. A Tietze-type-3 transformation allows to go froffia, b}, {[a,b],a% b?}) to
({a,b,c},{[a,b],a3 b? ctab}). In the following, we only list the current set
of relators. Moreover, we write the relatdesb], a® b?,c-*abin the more read-
able formab=ba,a®=1,b?=1,c=ab.

2. Using a Tietze-type-1 transformation (adding the consagec = ba) followed
by a Tietze-type-2 transformation (removing the redundalatorab = ba), we
getc=ba a*=1,b’=1,c=ab

3. The relatorc = ab can be written ag = cb~. This allows to eliminate the
gzeneratoawith a Tietze-type-4 transformation. We get bcb ™2, (cb™1)3 =1,
b*=1.

4. Sinceb = b1 follows fromb? = 1, we getc = bch, (cb)® =1, b? = 1 using a
Tietze-type-1 and Tietze-type-2 transformations.

5. Next, cbcbeb= 1 can be replaced bg?b = 1 (sincebcb= c). We now have

c=bch c®b=1,b? =1, or equivalentlyc = bch, ¢ = b, b? = 1.

. A Tietze-type-4 transformation (eliminatityyieldsc = ¢/, ¢ = 1.

7. Finally, a Tietze-type-2 transformation allows to remdive relatoc = ¢/, and
we arrive at the presentatigiic}, {c}).

»

2.4 The Word Problem

Now that we have defined basic concepts from combinatomaigtheory and com-
plexity theory, it is time to introduce the word problem, whiis the fundamental
computational problem in combinatorial group theory. Bally, the word problem

for a finitely generated grou@ asks whether a given word over the generatois of
and their inverses represents the group identity. Hereeiottmal definition:
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Definition 2.12. Let G be a finitely generated group with a finite generating’set
henceG is isomorphic to(I" | R) for a set of relatork C (I U ~1)*. Theword
problem for G with respect tb, briefly WP(G, ") is the following problem:

input: Awordw € (Fur—1)

question:Doesw = 1 hold inG (i.e., doesv belong to(R)F(7))?

In the way we defined it, the word problem depends on the chgseerating set for
G. But if we are only interested in the decidability/comptgxaf word problems,
the actual generating set is not relevant:

Lemma 2.13.Let G be a finitely generated group and letand > be two finite
generating sets. ThetWP (G, ") <128 WP (G, 5).

Proof. LetG= (I' | R) = (= | S). There exists a homomorphigm (" U —1)* —
(Zuz~YH* with h(a=t) = h(a)~tforallac I Ul ~* that induces an isomorphism
from (I |R) to (X | S). Hence, for aworav € (I Ul ~1)* we havew = 1in (I |R)

if and only if h(w) = 1in (X | S). The lemma follows, since the homomorphibm
can be computed with a logspace transducer, see Example I25

Because of Lemma 2.13, it is justified to just speak of the wanablem forG,
briefly WP(G). It is not difficult to come up with a finitely generated grougitw
an undecidable word problem. For finitely presented grotlys,is a much harder
problem that was finally solved by Novikov [136] and indepenttly by Boone [22]
in the 1950’s:

Theorem 2.14.There is a finitely presented group with an undecidable woothp
lem.

A modern treatment of this result can be found [159]. In tloatext, we should
also mention the following celebrated result by Higman th&nown as Higman’s
embedding theorem [77]:

Theorem 2.15.Let G be a finitely generated group. Then G has a computably enu
merable word problem if and only if G can be embedded into #efinpresented
group.

An algebraic characterization of groups with a computaldedyproblem exists as
well; it goes back to Boone and Higman [23]:

Theorem 2.16.Let G be a finitely generated group. Then G has a computablé wor
problem if and only if G can be embedded into a simple subgadw@finitely pre-
sented group.

In this book, we are only interested in groups with a completalord problem. The
class of groups with a computable word problem contains ni@pprtant group
classes. Finitely presented groups with undecidable warblem are somehow ex-
otic. The relators of such a group encode the transitionioelaf a Turing machine
with an undecidable halting problem.

If a group G has a computable word problem, the next question adresses th
complexity of the word problem. Actually, for many classésggomoups, the word
problem can be solved in polynomial time. Here are some elesnp



2.4 The Word Problem 33

e word hyperbolic groups [68]: Dehn’s algorithm (see [119a@ter V.4]) solves
the word problem for these groups in linear time. Actualhe tord problem
for a hyperbolic group can be solved in real time (i.e., timeetibbound is the
length of the input word) on a Turing machine with several kvapes [81]. In
[25], it was shown that the word problem for a hyperbolic grdnelongs to the
circuit complexity clas$NC?. In [111] this upper bound was slightly improved
to LogCFL, which is the class of all languages that are logspace mapy-&
ducible to a context-free language. Actually, the argunierfit11] shows that
every group having a Cannon’s algorithm (a generalizatiddehn’s algorithm)
[64] has a word problem ihogCFL. Besides word hyperbolic groups, every
finitely generated nilpotent group has a Cannon'’s algoriidh

e graph groups, see Example 2.5: By [49, 167] the word probtera §raph group
can be solved in linear time on a RAM.

e automatic groups, see Example 2.7: The word problem canhsedso quadratic
time on a Turing machine.

Concerning space complexity, there is actually a big clagsaups, where the word
problem can be even solved in logarithmic space.

Definition 2.17. A groupG is linear, if there exist a field= and a dimensiod such
that G embeds into thgeneral linear groupGLy(F) (the group of all invertible
(d x d)-matrices over the fiel&).

The following result is shown in [108] for a field of characteristic 0 and in [156]
for a field of prime characteristic:

Theorem 2.18.Let G be a finitely generated linear group. Then the word pobl
for G belongs td..

The proof of Theorem 2.18 makes essential use of the follgwésult, which we
will use in Section 4.5. Implicitly it appears in [108] fordltase of a field of char-
acteristic 0, see also [156]. Recall that for a fiEldF (x1, . ..,Xm) denotes the field
of all fractions of polynomials fronf [xa, ..., Xm].

Theorem 2.19.Let G be a finitely generated linear group over a field F and let P
be the prime field of F (which is eith€} if F has characteristi® or Fy, if F has
prime characteristic p). Then, G is isomorphic to a group attrices over the field
P(X1,. .-, Xm)-

Proof. The proof uses a bit of field theory. L&t be a finitely generated subgroup
of GLn(F). Hence, there exists a finite subget_ F such that every matrix en-
try from a generator oG belongs toA. We can therefore replace the figfdby

the subfieldK generated bW. If we choose a maximal algebraically independent
subset{xi,...,xm} C A, thenK becomes isomorphic to a finite algebraic extension
of a field of fractionsP(xs,...,Xm), whereP is the prime field ofF, see e.g. [86,

p. 156]. Let[K : P(x1,...,Xm)] = d be the degree of this algebraic extension. The
field K can be also seen asdadimensional associative algebra over the base field
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P(xq,...,%m) (i.e., ad-dimensional vector space ov@(xs, ..., xm) with a multipli-
cation that together with the vector addition yields a ritrgcture). By the regular
representation for associative algebras [&7is isomorphic to a subring of the ring
Mg (P(X1,...,%m)) of (d x d)-matrices oveP(x,...,Xn). SinceK is a field, every
non-zero element A is thereby represented by a matrix fr@hg(P(X1,...,Xm)).
Hence, by replacing in the generator matriceSavery matrix entry by &d x d)-
matrix overP(xy,...,Xm), it follows that G is isomorphic to a finitely generated
subgroup ofGLyg(P(X1, ..., Xm)). O

Let us briefly sketch, how Theorem 2.18 for characteristi@af lbe deduced from
Theorem 2.19. By Theorem 2.19 it remains to show that anitye®tA; - - - A, = Idk
can be tested in logspace, whekg A, ... A, are from a fixed set ofk x k)-
matrices ove) (X, . ..,Xm). Thisidentity can be reduced to an iden®yB, - -- B, =
CiCy---Cp, whereBy,Cy,...,Bn,Cy are from a fixed set ofk x k)-matrices over
Z[xa,...,%m]. Let d be the maximal degree of a polynomial in this set. Hence,
in the product matrice8,B,---B, andC;C;---C, every polynomial has degree
at mostdn. It follows thatBiB;---B, = C1C;,---C, if and only if for everym-
tupleace {0,...,dn}™we haveB;(a)B,(a) - - - Bn(a) = C1(2)Cz(a) - - - Cn(3a) (We de-
note with Bj(a@) the integer matrix obtained by replacing every polynomighe
p(X1,...,Xm) of B; by p(a) and similarly for the matrice§;. Sincemis a constant
in our consideration, we can consider every tule {0,...,dn}™ one after the
other and thereby reuse the space needed for the previdestlgnce, it remains
to verify in logspace an identitB;,B, - -- B, = C1Cy - - -Cyy, whereBy,Cy,...,Bp,Cq
are(k x k)-matrices ovef with entries bounded in absolute valuerisif?). One can
easily show that every entry in the product matriBgB; - - - B, andC,C; - - - Cy has
sizen?(" . Using the Chinese remainder theorem, it suffices to théyvée iden-
tity modulo the first? prime numbers, wheree n? (1. Actually, we can check the
identity modulo all numbers,2.., p, wherep is the/-th prime number. Note that
has onlyZ'(logn) many bits. Hence, all computations can be done in logspace.

Examples of finitely generated linear groups are: finitelpegated polycyclic
groups, Coxeter groups, braid groups, and graph groupsd;iér all these groups
the word problem can be solved in logspace.

Finitely generatednetabelian grouga groupG is metabelian if it is has a nor-
mal abelian subgrouf such that the quotier@/A is abelian too) can be embedded
into finite direct products of linear groups [165]. Hencesaafor finitely gener-
ated metabelian groups the word problem can be solved ip&ags An interesting
class of groups, for which in general no efficient algoritron the word problem
is known, is the class abne-relator groupsi.e., groups of the form{l" | r) for
r € (FTur—1)*. By a famous result of Mangus [121] every one-relator groag h
a computable word problem, which moreover is primitive rstue [10, 29]. No
better general complexity bound is known. On the other haaeéxample of a one-
relator group with a provably hard word problem is known. ugtlso mention that
by recent results of Wise [166], every one relator group wgtision is linear, and
hence has a logspace word problem by Theorem 2.18.

By adapting the Novikov-Boone construction, Cannonito &adterdam proved
that for everyn > 0, there is a finitely presented gro@such that ()WP(G) is
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f

Fig. 2.1 The starting point for folding

computable but (ii) not within tha-th level of the Grzegorczyk hierarchy [27]. Re-
cently, it was even shown that for every computabléddéiere is a finitely presented
residually-finite group Grecall thatG is residually-finite if for everyg € G\ 1 there
exists a homomorphisim: G — H with H finite andh(g) # 1) such thaWP(G) is

at least as hard as[97]. McKinsey [126] has shown that every finitely presented
residually-finite group has a computable word problem.

2.5 The Dehn Function and the Word Search Problem

In this section, we will introduce the Dehn function of a gopwhose growth is
an important geometric invariant of a finitely presentedugroA beautiful survey
on Dehn functions can be found in [147]. Finally, we will Blyediscuss the word
search problem for a finitely presented group. This is amesioa of the word prob-
lem, where we not only ask whether a given wartepresents the identity 1, but, in
the positive case, also want to compute a witness (in formvahidkampen diagram)
for the fact thatv = 1.

Assume that we have a finitely presented gr&@ig- (I | R) whereR C (I' U
r—1)* is a finite set of cyclically reduced words of length at leaga irreducible
word w is cyclically reduced ifw is of the formavb for b # a~1). We also say
that the finite presentatioifi”, R) is reduced and it is easy to see that a given finite
presentation folG can be transformed (in polynomial time) into a reduced finite
presentation fo6. If an irreducible wordwv € (I U ~1)* represents the identity of
G, thenin the free group (I ), w belongs to the normal subgrotiR)™("). Hence, in
F(I") we can writew as a produdf]’_; ciric; * with ¢; € (F Ul ~1)* irreducible and
ri € RURL. The smallest numbeéirfor which we can writev as such a product is
also called thareaof w (with respect to the presentatiof, R)). The choice of the
term “area” can be explained as follows: Given the Wp'hﬁl cirici’l one obtains
a planar diagram as follows: Start with a (planar) bouqueshesvn in Figure 2.1.
Here, theci-labeled edge stands for a path(6fu " ~1)-labeled edges such that the
concatenation of the labels yields and similarly for the;-labeled loop. Moreover,
for everya-labeled edge there is a reversed-labeled edge. If we walk along the
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boundary of this bouquet in clockwise orientation, stariimthe base point 1 (this

is the so called boundary cycle), then we read exactly thed\{vﬁglciric(l. The
reduction of this word using the rewriting systdp for the free groug=(I") (see
(2.1)) yields the irreducible word. This reduction process on words translates into
a folding process on planar digrams. As long as the boundarg contains two
successive edgesand f, such that the label of is the inverse of the label a
then we fold these two edges into one edge and thereby igehéfinitial vertex

of e with the target vertex of . In case the initial vertex daf is already equal to the
target vertex off (this situation can arise for instance, when folding the dagai

for rr—1 for a relatorr), thene and f enclose a region, and we remove this whole
region including all edges and nodes within the region. Thaconfluent process,
i.e., the completely folded planar diagram obtained thig d@es not depend from
the chosen order of folding steps. Moreover, the boundagieayf the completely
folded planar diagram is labeled with the woxd Such a diagram is calledvan
Kampen diagranmfor w and its area is the number of cells (closed regions) [119].
Hence, the area of an irreducible wokdvith w =1 in G is the minimal area of a
van Kampen diagram fax. The boundary of any cell of a van Kampen diagram is
labeled with a relator or the inverse of a relator.

Example 2.20Let us consider the presentatiofa, b}, {aba 'b~'}) of Z x Z. Let
us fold the bouquet corresponding to

w=a (aba b 1)aba l(aba b t)ab!

which is (we do not show the inverse edges labeled Wii[)hor b—1):

3
a a
b

a b
1

The origin is labeled with 1 and the two thick edges are thésathat are folded

first. Hence, we get: b
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Folding the twob-labeled edges at the origin 1 yields the following diagram:

b A
a a

Two more folding steps yield the following diagrams:

bu
a  a
b _
Irptpt
4 b a a a
b~ b
b\ 1 7a

The right diagram is a van Kampen diagramtiéa—b—2a of area 2.

Definition 2.21 (Dehn function). Let (I",R) be a finite group presentation. The
Dehn function [ g : N — N of the group presentatidit , R) is defined as

Dr r(n) = max{aredgw) | wis irreducible,w e (R)F(") |w| < n}.

In other words:Dr r(n) is the maximal area of an irreducible word of length at
mostn that represents the identity &. Clearly, different finite presentations for
G may yield different Dehn functions. On the other hand([%,R;) and (I, Rz)
are two finite presentations for the groGpthen there exists a constant- 0 such
thatDr, r, (n) < c¢-Dr,r,(cn+c)+cn+c[61, Proposition 2.4]. Hence, whether the
Dehn function is linear, quadratic, cubic, exponentiat,,eloes not depend on the
chosen presentation for a group. For every infinite finitegspnted group the Dehn
function grows at least linear, and by [68], a group has aalirigehn function if
and only if it is hyperbolic. Moreover, every automatic gpcas a quadratic Dehn
function.

The following relationship between the Dehn function of aug and the com-
plexity of the word problem is folklore:

Proposition 2.22.Let D(n) be a Dehn function for the finitely presented group G.
Then the word problem for the group G can be solveNTAME (£ (D(n))).

Proof. LetG = (I' | R), where(I",R) is a reduced presentation. L&the be the set
of all cyclic permutations of words froRUR ! (a wordsis a cyclic permutation of
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w if there exist wordsl andv such thatv = uvands = vu). We define the semi-Thue
system
T=R-U{(uVv)|uvteRUR u#¢},

whereRr is from (2.1). Here is some intuition: Rules of the fofmv) with uv—1 €
RUR™! andu # ¢ allow to cut off cells from a van Kampen diagram that have a
nontrivial intersection with the boundary, wherés the part of the cell that belongs
to the boundary. Rulegaa™!,¢) allow to remove boundary edges where one
endpoint is only adjacent with edgeUsing this intuition, the following fact is not
hard to see, see e.g. [147]. For a given irreducible inputiwoof lengthn, w= 1

in (I | R) if and only if w can be rewritten withT to the empty word in at most
(m+1)Dr r(n) + n steps, wheren the maximal length of a relator iR (which is a
constant in our consideration). A nondeterministic Tuningchine simply guesses
such a sequence of rewrite steps. Moreover, successivagasiaps can be applied
within bounded distance in the following sense: If the wrodis rewritten toxvy
using the rul€u,v) € T, then (i) either = € and the next rewritten factor covers the
last symbol ofx or the first symbol ofy, or (i) v# € and the next rewritten factor
covers a position in. Hence, the whole reduction process can be carried out & tim
0 (Dr r(n)+n) on a Turing machine. The proposition follows, sifiger(n) grows

at least linear if " | R) is infinite. O

Another important and much more difficult result in this aoxitis the follow-
ing NP-analogue of Higman’s embedding theorem, which was showBilnet,
Ol'shanskii, and Rips [19]:

Theorem 2.23.For a finitely generated group G, the word problem belongblB
if and only if G can be embedded into a finitely presented gwitip a polynomial
Dehn function.

The Dehn function for a finitely presented groGponly yields an upper for the
complexity of the word problem. For instance, the Baum$&agtar group(a,b |
bab ! = a?) has an exponential Dehn function [57], but can be embeddedfie

linear groupGL2(Q) using

11 1/2 0
ar—><0 1>, br—>< 0 l)

Hence, by Theorem 2.18 the word problem farb | bab~! = a?) can be solved in
logarithmic space. An even more extreme example is the Blagnr@Gersten group
BG(1,2) = (a,b,t | bab ! =t,tat~* = a?), which was introduced by Baumslag [13]
as the first example of a non-cyclic group, all of whose finitetients are cyclic. Its
Dehn function is roughly a tower of Ig¢n) exponents and hence non-elementary
[61, 143]. Nevertheless, using power circuits [133], which a succinct represen-
tation of huge integers, the word problem for Bi2) can be solved in polynomial
time [53, 132]. In [38] examples of groups with a computabledvproblem are
constructed, for which the gap between the complexity oftbed problem and the
Dehn function is not bounded by a primitive recursive fuotiin [97] this result is
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further improved in two aspects: The gap is increased to ecyrsive function and
the group that realizes the gap is finitely presented anduaBby-finite.

Definition 2.24.Let (I ,R) be a finite reduced presentation anddet (I | R). The
word search problerfor (I, R), briefly WSP(I",R), is the following computational
problem with output:

input: An irreducible wordw € (M U —1)*
output:“no” if w+# 1 in G, otherwise irreducible words, ..., c, € (F Ul ~1)* and
r1,...,r, € RUR T such thav = M)f_, ciric t in F(I").

Hence, instead of just asking whether a given word repregéet identity ofG,
one also wants to have a proof for representing the idemtitiieé positive case. In-
stead of returning irreducible words, ...,c, € (T Ul ~1)* andry,...,r, € RUR !
such thatwv = ﬂlecirici’l in F(I"), one might also return a van Kampen diagram
with boundaryw. Both variants are equivalent with respect to polynomiakticom-
putations: From the worgl]{_; ciric;! one can compute in polynomial time a van
Kampen diagram with boundaw; and from a van Kampen diagram with boundary
w one can compute in polynomial time a WqTFﬁ:lcirici’l that is equal tav in the
free groupF (I).

Logspace many-one reductions between computationalgmablvith output are
defined as for decision problems. With this in mind, we get:

Lemma 2.25.Let (I",R) and (%, S) be two finite presentations witffi” | R) = (X |
S). ThenWSP(I" | R) is logspace many-one reducible\dSP(Z,S).

Proof. Let f be an isomorphism fron{l” | R) to (X | S). There exists a homo-
morphismg : F(I") — F(X) that inducest and similarly, there exists a homomor-
phismh: F(Z) — F(I") that inducesf 1. Assume we have an algorithm for solv-
ing WSP(Z,S) and we want to use this algorithm for solvigSP(I" ,R). So, let
W=a;---an € (FUr—1)* We havew= 1 in (I | R) if and only if g(w) = 1 in
(2] S). Hence, if our algorithm folWSP (X, R) outputs “no” on inputg(w), then
we can output “no” on inpuiv. Otherwise, the algorithm foiVSP (X, S) outputs a
representation

~

gw) = [aric*

in F(Z), wherer; € SUS™L. Hence, inF (I"), we have

4
h(g(w)) = h(g(a1))---h(g(an)) = _|jlh(0i)h(lri)h(ci)*1 (2.2)

Note that in the grougl” | R) we haveh(r) =1 for allr € S. Hence, inF(I") we
can write

ki
n(r) = [ chspusc
| JI:II 1,] M, i,

and thus
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.
h(ch(ri)h(c))* = ,Dlh(ci)di’j pi.idith(e) ™

with pi j € RUR™L. Here, the wordsl; ; and the numberk do not depend on the
inputw. By plugging these identities into (2.2) and renaming tteailténg word, we
obtain a representation

k
h(g(w)) = h(g(aa))---h(g(an)) = _udi pd* (2.3)

In the group(I" | R) we also havén(g(a)) = afor allac I Ul ~1. Hence, we can
write in F (")
{i
h(g(a)) *ai = []e.jaje ] = w
=1

with g j € RUR1. Again, the words j and the number§ do not depend on the
inputw. One can easily check that

h(g(an))*---h(g(as)) *ar---an =
W (@, "Wn_18n) (8 a1 Wn_280-180) - (a3 -+ @y 'wadp -+ an).

in F(I). Finally, we get

k
W=ag:an= |'|di pid " Wn (8, "Wn_18n) - (ay - @y Twadg - an),
i=

which is the desired representation farThe above process can be clearly accom-
plished by a logspace transducer]

By Lemma 2.25, it is justified to speak of the word search groblor the groufss,
briefly WSP(G).

Further results on the word search problem can be found ib][EXamples of
groups, for which the word search problem can be solved igrmohial time are
automatic groups and finitely generated nilpotent groupsabtomatic groups, the
standard proof that every automatic group is finitely presgand has a quadratic
Dehn function [57] yields a polynomial time algorithm foetivord search problem.
For finitely generated nilpotent groups it has been show62h that a finitely gen-
erated nilpotent group of clas$ias a Dehn function of growi#?(n°*1). This result
is shown in [62] by reducing a wona with w = 1 to the empty word by a sequence
of rewrite steps with a system of the kind used in the proofropBsition 2.22. This
sequence of rewrite steps is explicitly constructed in @2} the construction can
be carried out in polynomial time. Finally, the construcseduence of rewrite steps
directly translates into a van Kampen diagramvor



Chapter 3
Algorithms on Compressed Words

In this chapter, we will study circuits over a structure waa@®main is the sdt*
of all finite words over a finite alphabet. The operations usetie circuit include
the binary concatenation and all symbols frbnas constants. Such circuits are also
calledstraight-line programgSLPs). A straight-line program can be also viewed
as a context-free grammar [82] that produces only a singlel wéote that, as re-
marked in Section 1.3.7, the term “straight-line prograsréliso used for arithmetic
circuits. In this book, we use the term “straight-line praxg exclusively for cir-
cuits over free monoids. We will also consider extensiorg@fight-line programs,
where some additional operations on words may be used mitsi{so called CSLPs
and PCSLPs).

A main topic in this chapter will be algorithms that receigargput a word, which
is not given explicitly but as a straight-line program. Thaimresult of this chapter
states that for two given straight-line programs one carcklire polynomial time
whether they produce the same words. For further result$ 8s See [59, 114, 142,
150].

3.1 Straight-Line Programs and Extensions

Let us start with the definition of a PCSLP, which are the mestegal word circuits
that we consider in this book. Here “SLP” abbreviates “gin&iline program, and
“PC” stands for “projection and cut”.

Definition 3.1 (projection). For alphabet®l C I" let us define the projection ho-
momorphismiy : * — A* by m(a) =eforac "\ A andm(a) =aforac A.
Strictly speaking, we should denote this homomorphisniby, but the alphabet
I will be always clear from the context.

Definition 3.2 (cut operator). For natural numbers j € N and an arbitrary alpha-
betl", we define the mapping; : * — "* by ¢ j(w) =w/i : j] forallwe I*.

41
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Definition 3.3 (PCSLP, CSLP, SLP, C-expression, PC-expreiss). Let I be a
finite alphabet. We define the following structures with donfa*:

o = (I*,0,& (8)acr,(M)acr,(Cij)ijen)
PBr = (I'*,0,&,(8)acr,(Ci,j)ijen)
%I' = (r*aoa£7(a)a€r)

Here,o denotes the binary concatenation operator on word3CALPover the al-
phabet" is a.o--circuit. A CSLPover the alphabédt is aZr-circuit. An SLPover

the alphabef is a%r -circuit. A C-expressioris 4 -expression. AP C-expression
is an.a7 -expression.

PCSLPs and its restrictions will be denoted with letter®, C, - - -. For a (PC)SLP
A = (V,Srhg) over the alphabef we will also write (V,I",S rhs) to make the
alphabet explicit. Occasionally, we will consider PCSLHthaut a start variable.
For such a circuify, val(A) is not defined.

PCSLPs are the only circuits in this book, which are based stnugture with
infinitely many operations (due to the cut-operatgrg. Recall that when we de-
fined the size of a circuit we had to fix a sigiee(f) for each function symbol. In
case the underlying structure contains only finitely mangrapons (which is the
case forér), we can takaize(f) = 1 for all f. For the structurez let us define
size(Ci,j) = [logy(i)] + [log,(j)], which is the number of bits needed to specify the
numbers andj.

We will always writee]i : j] instead ofc; j(e) in right-hand sides of PCSLPs.
We will use the abbreviationX[: i] for X[1 :i] and X][i :] for X[i : l], whereX is
a variable withl = |valy (X)|, in right-hand sides. One may also allow exponential
expressions of the form\' for A € V andi € N in right-hand sides of PCSLPs.
Such an expression can be replacedlog,(i)] many ordinary right-hand sides.
For instance the definitioA := al® ca be replaced b¥g := a, Ay 1= A2, Ay := A2,

Az = A%, A := AzA;. Hence, if we represent exponents in binary notation, then
exponential expressions can be eliminated by a logspatsduaer.

Example 3.4We consider the PCSLR = ({A,B,C,D,E},{a,b,c},E,rhs with rhs
defined as follows:

rhgA) = ab rhgB) = ac rhgC) = BA
(D) = Mac} (C)py(C)  rhs[E) =D[2:4

Then we have:

val(A) = ab val(B) = ac val(C) = acab
val(D) =acacb  val(E) =val(A) =cac

The size of the PCSLP is the sum of the sizes of all right-hadebks



3.1 Straight-Line Programs and Extensions 43

rhs(A)| =
rhs(D))

and thereforeA| = 14.

2 rhs(B)| = 2 rhs(C)| = 2
4 rh(E)| = 1+ 1+2=14

CSLPs were calledomposition systenis [60]*, collage systemis [98], andinter-
val grammarsn [71]. Here, we prefer the name CSLP in order to be more stesi
in our terminology. Readers familiar with context-freemraars will notice that an
SLPA can be seen as a context-free grammar that generates theevsorgval(A).
If rhs(A) = a we also write (as usual for context-free grammars) a. Some early
references on SLPs are [59, 139, 142].

Definition 3.5 (derivation tree). Thederivation treeof the SLPA = (V, I, S rhs) is

a finite rooted ordered tree, where every node is labeledavdymbol fromv U T .
The root is labeled with the start varialfieand every node that is labeled with a
symbol from/l” is a leaf of the derivation tree. A node that is labeled wittaaable
Awith rhs(A) = ay--- an (Whereas, . ..,an € VUT) hasn children that are labeled
from left to right withay, ..., an.

Recall the definition of a circuit in normal form (Definition36), which also applies
to PCSLPs, CSLPs, and SLPs. In particular, we allow a rigimehside to be. For
SLPs that evaluate to a non-empty word, we can forbid the emiptd as a right-
hand side. An SLP in normal form without the empty word on atdigand side is a
context-free grammar in Chomsky normal form:

Definition 3.6 (Chomsky normal form). An SLP A = (V, I, S rhs) is in Chomsky
normal form if for all A€V, rhgA) belongs td” or has the fornBCwith B,C € V.

Example 3.7Consider the SLRA\ over the terminal alphabét, b} with variables
Ag,..., A7, where rh§A;) = a, rhgAy) = b and rhgA) = A_1A > for3<i <7.

The start variable ifz. Thenval(A) = abaababaabaabThe SLPA is in Chomsky
normal form andA| = 12.

We will make heavy use of the Chomsky normal form in this botikerefore, let
us outline an efficient algorithm for transforming a giverP/Shto Chomsky normal
form.

Proposition 3.8.For a given SLPA = (V,I", S rhs) with val(A) # € one can com-
pute in timeZ(JA]) (on a RAM) an SLPB in Chomsky normal form such that
val(A) = val(B).

Proof. The proof is similar to the transformation of a context-frgammar into
Chomsky normal form, and is divided into 4 steps.

Step 1.First, we compute in linear time an enumerat®nA,,...,A, of V such
that if A is smaller thar\; with respect to the hierarchical order, thea j, i.e., we
compute a topological sorting ¥f, see e.g. [42].

1 The formalism in [60] differs in some minor details from CSLP
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Step 2Using the toplogical sorting, we can compute the set of WdegE = {A €

V | vala(A) = €} in linear time: We set a bié(A) to zero for eaclA € V. Then we
go over the sequends,...,An. If rhs(A;)) only consists of variables and for each
variableAj in rhs(A;) we havee(A;) = 1 (this includes the case that (As) = &),
then we seg(A) := 1. At the end, we have = {A €V | e(A) = 1}. Then, we set
V :=V\ E and replace every occurrence of a variable fi6rim a right-hand side
by the empty word. The resulting SLP has no empty right-haheks

Step 3.Next, we replace every occurrence of a terminal synebell” in a right-
hand side rh@\) # a by a new variablé; with rhgA;) = a. At this point, every
right-hand side is either a single terminal symbol or a now® word over the set
of variablesv.

Step 4Right-hand sides of length at least 3 are split into rightéhsides of length
2 by introducing additional variables. For this, we have toamly once over all
right-hand sides; hence linear time suffices.

Step 5Finally, we remove right-hand sides consisting of a singléable (so called
chain productions). Le€ := {A €V | rhgA) € V}. Then, we go over the s&tin
topological order and thereby redefine (dvs:= rhs(rhg(A)) for everyA € C. The
resulting SLP is in Chomsky normal formO

A simple induction shows that for every SIAPof sizemone hagval(A)| < (3™3)
[31, proof of Lemma 1]. On the other hand, it is straightfordveo define an SLP
B in Chomsky normal form of sizer2such thafval(B)| > 2". Hence, an SLP can
be seen as a compressed representation of the word it gesyeaati exponential
compression rates can be achieved in this way.

3.2 Algorithms for Words Represented by SLPs

In this section, we will see some simple polynomial time aildpns for words that
are represented by SLPs. In the next section, we will showv@®i Ps and un-
der certain restrictions also PCSLPs can be transformealynpmial time into
equivalent SLPs. Hence, all algorithmic problems from $i@istion can be solved in
polynomial time for CSLPs and PCSLPs (under some restnisjias well.

Proposition 3.9.The following time bounds hold for the RAM model:

(1) Given an SLRA = (V, Z,S rhs), one can compute all alphabettph(valy (A))
forAcV intimed(|A]).

(2) Givenan SLRA = (V, 2, S rhs), one can compute all lengthal, (A)| for AcV
intime O (|A]).

(3) Given an SLPA and a numberl < i < |val(A)|, one compute the symbol
val(A)[i] in time &'(|A|) (this problem is in facP-complete [107]).

(4) Given an SLRA over the terminal alphabédt and a free monoid homomorphism
p:*— XZ* one can compute an SIPsuch thatval(B) = p(val(A)) in time
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O(|A|-maxX{|p(a)| | a€ I"}). Moreover, this computation is also possible by a
logspace transducer.

(5) Given an SLPA over the terminal alphabeX and a symbol a& X one can
compute the numbenax{0} U{p| val(A)[p] = a}) (i.e., the maximal position
on whichval(A) contains an a) in tim&’'(|A|).

(6) Given an SLPA over the terminal alphabeX, a subalphabef” C > and a
numberl <i < |m-(val(A))|, one can compute the minimal positidr< p <
|val(A)| with |75 (val(A)[1: p])| =i (i.e., the position of the i-th occurrence of a
letter from/l™ in val(A)) in time O'(]A]).

Proof. By Proposition 3.8, we can assume that= (V,2,S rhs) is in Chomsky
normal form. First, we compute in linear time an enumerafi@,, ..., A, of V
such that ifA; is smaller tharA; with respect to the hierarchical order, thieq j,
see also the proof of Proposition 3.8.

For (1), letus assume that= {ay,...,am}. A subset o2 can be represented by
a bit vector of lengthm, and the union of two subsets can be computed as the bitwise
OR of the corresponding bit vectors. Note that the bitwisei©&n elementary op-
eration in our RAM model, see Section 1.3.8. Hence, we stwredch nonterminal
A €V a bit vectorb; of lengthm, which is initially set to the 0-vector. Then we go
over all nonterminals in the ordéq, Ay, ..., An. If rhs(A;) = a; then we set th¢-th
bit of bj to 1. If rhgAj) = AjAc with j,k < i then we seb; to the bitwise OR ob;
andby.

Basically, the same algorithm works for (2), except thatow stores a natural
number. If rhéA;) = a; then we seby; := 1. If rhs(A)) = AjA with j,k < i then
we seth; := bj + by. Note that the number of bits of each numbeis bounded by
& (log(vals (A)))) < O(|A]).

For (3), the algorithm walks down in the derivation treefcio positioni. By (2),
we can assume that for eveye V, the lengthval, (A)| is available. At each stage,
the algorithm stores a numbprand a variablé of A such that I< p < |valg (A)].
Initially, p=1i, andA is the start variable aof. If rhs(A) = BC, then there are two
cases: If 1< p < |valy(B)|, then we continue with positiop and the variablé.
Otherwise, we havéval, (B)|+1 < p < |valy (A)|, and we continue with position
p — |valy(B)]| (this number can be computed using the algorithm from theipus
point) and variabl€. Finally, if rhg/A) = a, then we must havp = 1 and we output
the terminal symbcé.

For (4) we only have to replace in each right-hand sidé efrery occurrence of
a terminal symbol by(a).

For (5) letpai = max({0}U{k| valy (A)[K] = a}) for each 1< i < n. We compute
all valuespai for 1 <i < n. First, we compute for each variabde the alphabet
alph(valy (A)) (represented by a bit vector according to the proof of (1)) e
length|val (A)| (see (2)) in timeZ(|A|). Then, we compute the positiops; as
follows: If rhs(A)) = b € X we setp,j = 1 if b=a andp,; = 0 otherwise. For a
variableA; with rhs(Aj) = AjA. (j,k < i) we set:
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0 if a¢ alph(valg(A))
Pai = § Paj if a € alph(vala(A))\ alph(vals (Ak))
Ivaly (Aj)|+ pak  if @€ alph(vala(AK)).

Finally, the proof of (6) is similar to the proof of (3). By (&nd (4) we can
assume that for everx € V the lengthgval, (A)| and| 1t (val (A))| are available.
We start with setting a variablpto 0 and another variablgto i (wherei is from
(6)). Then we walk down in the derivation tree fiar If we are currently at a variable
A€V and rh$A) = BC, then there are two cases: If<lq < |77 (vals (B))|, then
we we continue at variabB and do not change the valuespéndg. On the other
hand, if |- (valy (B))| < q < |- (vala(A))], then we sep := p+ |valy(B)| and
g:=q— | (valy(B))| and continue at variable. Finally, if we arrive at a variable
Awith rhgA) € Z, then we terminate and output the current value.of

This concludes the proof of the propositiorna

Point (4) from Proposition 3.9 can be extended to mappinggeed by determin-
istic rational transducers, as long as we only require thpudBLP to be computed
in polynomial time (and not logspace).deterministic rational transducef is a
tuple.7 = (Q,Z,I",d,00,F), where

Qs a finite set of states,

2 is the (finite) input alphabet,

I" is the (finite) output alphabet,

0 C Qx> xI*xQis a finite set of transitions such that for everg Q and
a € X there exists at most one transition of the fafpa, w, p) in d,

e (o € Qis theinitial state, and

e F C Qis the set of final states.

We defined as the smallest subset@fx Z* x I'* x Q such that:

° (q,e,s,q)eSforallqu,
e 5C9,and R ~
e If (q,u,v,p),(p,u,V,r) €9, then alsqg,uu,w,r) € d.

Then, for every statp € Q and every input wordi € >*, there is at most one state
g € Q and at most one worde I * such tha{p, u,v,q) € 5. Hence, we can define a
partial mappind[.7] : Z* — I * by (i) [.7](u) = vif there is a final statq € F such
that (qo,u,Vv,q) € 5 and (i) [-7(u) = undefined in all other cases. We define the
sizeof the transduce? = (Q,Z,I",8,0o,F) as|.7| = |Q| + ¥ qawp)es (W +1).

Theorem 3.10.From a given SLRA\ over the terminal alphabef and a given de-
terministic rational transducerZ with input alphabet: one can compute in time
O(|A|-|.7]) an SLPB such thatval(B) = [ ] (val(A)).

Proof. LetA = (V, X, S rhs), which is without loss of generality in Chomsky normal
form, and.7 = (Q,Z,I",9,qo,F). In a first step we compute inductively over the
hierarchical order ofA for every variableA € V and every stat@ € Q the unique
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states(p,A) € Q such tha(p,val(A),v,s(p,A)) € 5 for some words € I'*. If such a
wordv does not exist, we setp,A) = undefined. If rh6A) = a € X then there is at
most one transitio(p, a,w,q) € o and we se$(p,A) = q if such a transition exists.
If rhs(A) = BC and for every state € Q the states(q,B) ands(qg,C) are already
defined, then we setp,A) = s(s(p, B),C) for all p € Q (if s(p,B) is undefined, or
g=s(p,B) is defined bus(q,C) is undefined, then cleark(p,A) is undefined too).
This first phase needs tin@(|V| - |Q|).

Now we can define the SLB. The variables oB are all pairs(p,A) € Q xV
such thats(p,A) is defined. The right-hand sides for these variables are etkfin
as follows: LetA €V, p € Q, ands(p,A) = q. If rhs(A) = a € Z, then there is
exactly one transitioip,a,w,q) € & and we set rhigp,A)) = w. If rhs(A) = BC,
thens(p,B) = r must be defined. We set 1tig,A)) = (p,B)(r,C). This second
phase needs tim€(|V|- ¥ qawp)es(IW +1)). O

We will also need the following simple related result:

Theorem 3.11.For a given SLPA and a given nondeterministic finite automaton
o =(Q,%,3,00,F) we can check in time'(|A| - |Q|®) whethewal(A) € L(«7).

Proof. We can assume th&@ = {1,...,n} andqgp = 1. This allows to represent
the set of transitions of the automaten by boolean matriceM,, one for each
symbola € Z. The matrixM, has a 1 at entryi, j) if and only if (i,a, ) € 8. We
can now evaluate the SLR = (V, X, S rhs) (which is without loss of generality in
Chomsky normal form) over boolean matrices. Formally, fcgrg variableA € V
of A we define a boolean matrMp as follows: If rhgA) = a € 5 thenMa = M.
If rhs(A) = BC, thenMa = MgMc. Since a multiplication of two booleam x n)-
matrices can be done in tinré, we need timeZ(|V| - n®) to compute all matrices
Ma.

Now, val(A) € L(«) if and only if there is a final states F such that entry1,i)
of the matrixMgis 1. O

In [15, 124] it was shown that there exists a fixed regular leaggeL such that it
is P-complete to check for a given SL& whetherval(A) € L; see also the remark
after Theorem 4.10.

The following lemma will be crucial for our applications obmpressed word
problems. It generalizes point (4) from Proposition 3.9.

Lemma 3.12.For a given sequencé®s,..., ¢, of free monoid homomorphisms
¢ ' —r*(1<i<n)and an SLPA over the alphabef’ one can compute
in logarithmic space an SLB such thawal(B) = ¢1(¢2(--- dn(val(A))---)).

Proof. We compute in logarithmic space SLPs for the wopd&po (- - - ¢n(a))) for
allac I". Then, one can take the union of all these SLPs (assuminthtsiavariable
sets are pairwise disjoint) and replace in the 31 Bvery occurrence of a symbal
by the start variable of the SLP g (¢2(--- ¢n(a)---)).

Let us take variabled; 5, where 0<i <nandaec I", and define
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a ifi=0
Ai1a-A-1a, 10<i<nand¢i(@)=a;--am

rhS(Ai,a) = {

By induction oni one can easily show thaal(A; a) = ¢1(¢2(--- ¢i(a)---)). O

We conclude this chapter with a simple problem for words clwtiecomes difficult
for SLPs.

Theorem 3.13.The following problem i&P-complete:

input: Two SLP<\ andB over the terminal alphabedta, b}.
output: Is there a position i such thaal(A)[i] = val(B)[i] = b?

Proof. Itis clear that the problem belongsiid®: We can guess a positioiand then
verify val(A)[i] = val(B)]i] in polynomial time.

For NP-hardness, we use a construction from [112]. We reduce fr&iB-S
SETSUM, see Example 1.42. Let= (wy,...,Wy) be a tuple of natural numbers
and lett € N; all numbers are encoded in binary. For a bit vectar {0,1}" of
lengthn let us definex- W = x3wy + XoWo + - - - + XoWy. Note that SUBSETSUM
is the question, whether there exists a bit vectar {0,1}" with X-W =t. Let
1 be the constant-1 vectdt, 1,...,1) of lengthk, let Wy = (wy,...,wg), and let
Sc=1c-We =Wy +---+w for L< k< n. Finally, lets= s, = Wy +Wo + - - - + Wy,

and define the word - _
S(V_V) _ J—l aX-Wbasfx-W'
xe{0,1}"

Here, the producflzc(o1;n means that we concatenate all woedS’ba®*" for
x € {0,1}" and the order of concatenation is the lexicographic ordef®a}",
where the right-most bit has highest significance. For exeme have

S(2,3,5) = ba'? a’ba’ a’ba’ a’ha® a°ba’ a’ba’ a®ha? a%b
= ba'%ba''ba*?ba'®at?ba‘bal?b.

Let us show that there is an SI4Pof size polynomial iny | ; log(w;) for the word
S(W). Note thaty ] ;log(wi) is roughly the length of the binary encoding of the
tuplew. The SLPA contains variabledy, ..., A, with

ths(A) = ba®""b
rhs(Agi1) = A@® S$T+1A (1<k<n-—1).

Here we use binary coded numbers as exponents. These parebe ®asily re-
moved by ordinary right-hand sides as remarked earliere&aisatA can be com-
puted by a logspace transducer frenm ..., w, it suffices to compute all numbers
s1,...,S inlogspace. This is an instance of the iterated additioblera (compute
the sum of a given tuple of binary encoded numbers), whicbrgs to the cir-
cuit complexity clasg C°. Every function inTC® can be computed by a logspace
transducer, see [163] for details.
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Let A, be the start variable of. We prove by induction ok that

valy (Ay) = ( |'l aX'kaaSX“"’k) akh.
%e{0,1}K\{I}

The casek = 1 is clear, sincesaly (A1) = ba®™"ib = ba*a®h = aba® %a’tb. For
k+ 1 < nwe obtain the following:

< |_1 a)_('v_vk+1 baS)_('V_Vk+l> aSK+1 b
X {01} {Tia}

— ( |_| a’_"V_kaasx"’_"k) ( rl Wkt Wk+1bas’_("’_"kwk+1>awk+1askb
%e{0,1}k %e{0,114\ {1}

valy (Ag)a® a"k+valy (Ac)

= valy (Ak)as’sﬁwkﬂvalA (Ak) = V3|A(Ak+1).

Fork = nwe finally get

val(A) = valg (An) = j‘| a"ba " = S(W).
%e{0,1}"

Our second SLB satisfies
val(B) = (alba®1)?".

It is straightforward to construct such an SLP in logspaoefthe binary represen-
tations ofs andt. Clearly, there exists a bit vect@ire {0,1}" with X-W = if and
only if there is a positiom with val(A)[i] = val(B)[i] = b. This concludes the proof.
O

3.3 Transforming CSLPs and PCSLPs into SLPs

CSLPs and PCSLPs are sometimes more convenient than SLRse Otiner hand,
in this section we will see that CSLPs can be transformed ipnoonial time into
SLPs. The same holds for PCSLPs if we restrict applicatibpsaection operators
suitably.

The following result was shown by Hagenah in his PhD thesi$ (in German),
see also [151].

Theorem 3.14.From a given CSLPA = (V,,I ,rhsy) (without start variable)
in normal form with n variables one can compute in tifi¢n?) an SLPB =
(Vis, I, rhsg) (without start variable) of size(n?) such thaty{ C Vg andvalg (X) =
valy (X) forall X € Vy.
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Proof. Let us writeV and rhs forV, and rhg, respectively, in the following.
Let h be the height ofA. The idea is to push cut-operators downwards (towards
smaller variables in the hierarchical order). First we catephe lengths of all words
vals (A) for A€ V. This is possible in time’(n) as for SLPs, see Proposition 3.9.
Choose a variabl@ € V such that rh@A) = BJi : j] but every smaller variabl€
(smaller with respect to the hierarchical order) has noopgrator in its right-hand
side. We show that we can eliminate the cut-operator ifiAhand thereby ob-
tain a CSLPA’ = (V/,I",Srhs) in normal form such tha¥ C V’, V' \V| < 2h,
valy (A) = valy/ (A) for all A€V, and the height of\’ is bounded by the height of
A. By iterating this transformation, we can eliminate all-operators and transform
A'into an equivalent SLP of siZé |+ &'(h|V]) (the elimination of each cut-operator
increases the size by(h)).

If rhs(B) =a foraec ', then we set rhi®\) = aif i=j =1 and rh$A) = ¢
otherwise. Now assume that (B3 = CD (recall that we assume thatis in normal
form). Letm= |val(C)| andn = |val(D)|. There are three cases:

Case 1. < m. We redefine rhid\) = C[i, j].
Case 2. > n+ 1. We redefine ri@\) = D[i —m, j —m.

Case 3. i< mandj > m. In this case we introduce two new variab@&sandD’,
redefine rhA) = C'D’, and set rh&C’) = CJi ;] and rh$D’) = D[: i —m|.

By iterating this process, we arrive at one of the following situations:

(i) After several applications of Case 1 and 2 we haveAhs= X[k 1] and
rhs(X) =aec I" for some variabl&X € V.
(i) We arrive at Case 3 for the first time.

In situation (i) we are done (and have not introduced any revafles). So assume
that we arrive in situation (ii). We have introduced two nearigblesC’ andD’'.
Let us deal withC’' (with D" we deal analogously). We have set(®3 = Cfi :]. If
rhsC) =aforae I, then we set rHE€') = aif i = 1 and rh$C) = ¢ otherwise.
Now assume that rf€) = EF for E,F € V. Letm= |val(E)| andn = |val(F)|. We
distinguish two cases:

Case 1. K m. We introduce a new variable, redefine rh&C’) = E'F, setrh$E’) =
E[i :], and continue withe’.

Case 2. > m. We redefine rh€’) = F[: i — m| and continue wittC'.

By iterating this process we finally eliminate the cut-operaNote that in each step
at most one new variable is introduced (in Case 1). There&dmmostd variables
are introduced. Since we have to do an analogous procedur?, fae introduce at
most Zh new variables in total. Clearly, our process does not irsgeélae height of
the CSLP. Moreover, the resulting CSLP is again in normahfexcept for variables
X with rhgX) = €. But these variables can be eliminated at the end. This pitree
theorem. O
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Theorem 3.14 cannot be generalized to PCSLPs, simply betaesize of a small-
est SLP that is equivalent to a given PCSLP may be exponémtiaé size of the
PCSLP. Here is an example:

Example 3.15Forn > 1 let us define the PCSLP
An=({A1,...,An,Ans1}, Mo, Ag,hs)

with Th = {ag,...,an}, hA) = M, (Aiz1)Ai1 for 1 <i <n, and rh$An,1) =
ajay---an, whered; = {&a,...,an} \ {a}. This PCSLP generates the word

val(Ap) = m(aga---an), (3.1)

AClh

where all subsetd C I, are listed in a kind of lexicographic order (the precise orde
is not important for the following argument). L&, be an SLP withval(A,) =
val(Bp). By [31, Lemma 3]yval(By) contains at most- |B,| many different factors
of lengthk. But from (3.1) we see thatl(A,) = val(Bp) contains at IeaSQ[nya)

many factors of lengthin/2]. Hence|B,| must be at leasin/2]~*- ([n7zw)’ which
is exponential im.

Nevertheless, under certain restrictions we can transtogiven PCSLP into an
equivalent SLP:

Lemma 3.16.Let p be a constant. Then there exists a polynomial time @hgor
for the following problem:

input: Finite alphabetd,...,l, and a PCSLPA = (V,, I ,rhsy) (without start
variable) over = Uip:ll'i suchthatd € {Iy,...,lp} for every subexpression of the
form my (o) that appears in a right-hand side &f.

output: An SLM = (V, I ,rhsp) (without start variable) ovef such thaty C Vg
andvaly (X) = valg(X) for every Xe Vy.

Proof. Since for a CSLP an equivalent SLP can be constructed in poijad time
by Theorem 3.14, it suffices to construct in polynomial tim€&LP B with the
desired properties from the statement of the lemma. Let

¢={(\h|KC{1,...,p}uU{r}.

ieK

Note thaté” has constant size. L& = {Xa | X €V, A € €'} be the set of variables
of B. We identifyX € V, with X € V3. The right-hand side mapping shsvill be
defined in such a way thatlg (Xa) = m (valy (X)).

If rhsy(X) =a e, then we set rhgXy) = m(a) € {€,a}. If rhsy (X) =YZ
then we set rhg(Xa) = YaZa. If rhsy (X) = mo(Y) with © € {Iq,..., I}, then we
setrhg(Xa) = Yano. Note thatA N O € 7.

Finally, consider the case rh&X) =Y[i : j]. We set rhg(Xa) = Ya[k: ¢], where
k= |m(val(Y)[:i—1])|+ 1 and¢ = |m(val(Y)[: j])|. These lengths can be com-
puted in polynomial time as follows: Implicitly, we have @édy computed a CSLP,
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which generates the workal(Y). Hence, by adding a single definition, we obtain a
CSLP for the wordsal(Y)[: i — 1]. Using Theorem 3.14 we can transform this CSLP
in polynomial time into an equivalent SLP, which can be tfamaed in polynomial
time into an SLP for the wordr, (val(Y)[: i —1]) by Proposition 3.9(4). From this
SLP we can compute the lendtip (val(Y)[: i — 1])| in polynomial time by Proposi-
tion 3.9 (the SLP for the wordal(Y)[: i — 1] is not used in the further computation).
The length|ma (val(Y)[: j])| can be computed similarly. Since the sizezfs con-
stant, the above construction works in polynomial timel

In the proof of Lemma 3.16, it is crucial thatis a fixed constant, i.e., not part of
the input. Otherwise the construction would lead to an egptial blow-up. Exam-
ple 3.15 shows that this is unavoidable.

By Theorem 3.14, all algorithmic problems for SLP-represdiwords consid-
ered in Section 3.2 can be solved in polynomial time for C$&presented words
as well. The same applies to PCSLPs under the restrictiothéalphabet from
Lemma 3.16.

3.4 Compressed Equality Checking

The most basic task for SLP-compressed words is equalitgkaing: Given two
SLPs A andB, doesval(A) = val(B) hold? Clearly, a simple decompress-and-
compare strategy is very inefficient. It takes exponenimaktto computeval(A)
andval(B). Nevertheless a polynomial time algorithm exists. This \wakepen-
dently discovered by Hirshfeld, Jerrum, and Moller [80], Wteorn, Sundar, and
Uhrig [128], and Plandowski [139].

Theorem 3.17 ([80, 128, 139])The following problem belongs &

input: Two SLP<\ andB
question: Doesal(A) = val(B) hold?

A natural generalization of checking equality of two wordspiattern matching.
In the classicapattern matching problenit is asked for given wordg (usually
called the pattern) and(usually called the text), whetheris a factor oft. There
are several linear time algorithms for this problem on ungmssed words, most
notably the well-known Knuth-Morris-Pratt algorithm [99 is therefore natural to
ask, whether a polynomial time algorithm for pattern matgton SLP-compressed
words exists; this problem is sometimes calfely compressed pattern matching
and is defined as follows:

input Two SLPsA andB

question:ls val(A) a factor ofval(B)?

The first polynomial time algorithm for fully compressedteah matching was pre-
sented in [96], further improvements with respect to thenimg time were achieved
in [59, 89, 106, 130]. In this book, we will only need the weakbeorem 3.17.
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In the rest of this section, we will prove Theorem 3.17. Sittoe result is so
fundamental for the rest of the book, we will also analyzegtezise running time
of our algorithm (using the RAM model from Section 1.3.8).rG@ilgorithm will
use Jez’s recompression technique [89]. This techniqueusad in [89] to give
the currently fastest algorithm for fully compressed patteatching. Basically, our
algorithm can be seen as a simplification of the algorithrmf[89].2 We start with
several definitions.

Letse 2t be a non-empty word over a finite alphalzetWe define the word
block(s) as follows: Assume that = aj*a)?---ag with ay,...,a € 5, & # &1

forall 1<i <kandn >0 for all 1 <i < k. Thenblock(s) = (1n1)a(2nz) : ~~af(n“),

wherea™ al™® .. a™ are new symbols. For instance, for= aabbbaccbwe

haveblock(s) = a@b®aVc@ bl For the symboa® we will simply write a. Let
us seblock(g) = €.

For a partition> = 5} &>, we denote withs[>|, 5;] the word that is obtained from
sby replacing every occurrence of a factdrin swith a € 2; andb € 2, by the new
symbol(ab). For instance, fos = abcbabcadand %) = {a,c} and%; = {b,d} we
haves||, %] = (ab)(cb)(ab)c(ad). Since two different occurrences of factors from
5, must occupy disjoints sets of positionssirthe words[ 5}, 5] is well-defined?

Obviously, for all wordss,t € >* we have

(s=t <= block(s) =block(t)) and (s=t < 9%,%]|=1t[5,%]). (3.2)

In the rest of this section, we assume that all SAPs (V, X, S rhs) are in a kind of
generalized Chomsky normal form: We require that for evamnyableA € V, rhgA)
is either of the formu € ™, uBvwith u,v € =* andB €V, or uBvCwwith u,v,w €
2* andB,C € V. In other words, every right-hand side is non-empty andaiostat
most two occurrences of variables. In particular, we onlysider SLPs that produce
non-empty word. This is not a crucial restriction for chexkthe equalitywal(A) =
val(B), since we can first check easily in polynomial time, whethéfA) or val(B)
produce the empty string.

Following Jez’s recompression technique [89], our stnatéor checking an
equalityval(A) = val(B) is to compute fromA andB two SLPsA’ andB’ such
thatval(A) = (block(val(A)))[%, %] andval(B’) = (block(val(B)))[%, %], where
the partition is chosen in such a way that the total lerjgéf(A’)| + |val(B')| is
bounded byc- (|val(A)| + |val(B)|) for some constant < 1. This process is iter-
ated. After at most logval(A)|+ |val(B)|) € €(|A| + |B|) many iterations it must
terminate with two SLPs, one of which produces a string ofterone. Checking
equality of the two words produced by these SLPs is easy. Tdia difficulty of
this approach is to bound the size of the two SLPs during ttusess.

2 Using a refined analysis, Jez moreover achieves a bettaingitime in [89] compared to our
algorithm.

8 More formally, one can define the semi-Thue systRm: {(ab, (ab)) [ac ,b e 5}, It is
Noetherian and confluent, and we ha{&, 2;| = NFg(s).
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Algorithm 1: CompressBlocks\)

input : SLPA = (V,X,Srhs)
output: SLPB with val(B) = block(val(A))
let A1, A, ...,Am be an enumeration &f in hierarchical order
for i :=1tomdo
if rhs(Aj) =ue Z* then
| rhs(A) := block(u)
else ifrhs(Aj) = uBv withuv e Z* and Be V then
| rhs(A) := block(u) Bblock(v)
else
let rhgA)) = uBvCwwith u,v,w € >* andB,C e V
rhs(A;) := block(u) Bblock(v)Cblock (w)
end

end
for i:=1tom—1do
if rhs(A) is of the form &) then
replace every occurrence &f in a right-hand side bg®
removeA; from the SLP
else
let rhgA;) be of the forma® ab(!)
if o = ¢then
‘ replace every occurrence Af in a right-hand side ba®b()
removeA; from the SLP
else
replace every occurrence Af in a right-hand side ba® A;b(")

rhs(A) :=a

end
end
replace every factartlc¥) (c € {a,b}) in a right-hand side bg(i+k

end

Lemma 3.18.Given an SLR\, alph(block(val(A))) contains at mostA | many dif-
ferent symbols.

Proof. A block in s=val(A) is a maximal factor of the forrg]i, j] = a" forae X
(maximal in the sense that eithier 1 orsfi — 1] # a, and eithelj = || or §[j + 1] #

a). We have to show thatcontains at mostA| different blocks. To every block"
that is a factor ofs we can assign a unique variabdesuch thata" is a factor of
valy (A) buta” is not a factor of any wordal, (B), whereB is a variable that occurs
in rhgA). But there are at mosths(A)| such blocks. Summing over all variables
yields the lemma. O

Lemma 3.19.Given an SLPA, one can compute in timé&(|A|) an SLPB such
thatval(B) = block(val(A)). Moreover, ifA has m variables, theB has at most m
variables andB| < |A|+4m.

Proof. LetA = (V, X, S rhs) (where every right-hand side is non-empty and contains
at most two variables) and 1&g, Ay, ..., An be an enumeration &f that respects
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the hierarchical order of: If Aj occurs in rhé§Aj) theni < j. Such an enumeration
can be produced in tim€(|A|); itis equivalent to the problem of computing a topo-
logical sorting of an acyclic graph, see e.g. [42, SectiodR2Ve can assume that
Am =S Leta (respectivelyh;) be the first (respectively, last) symbol afl, (A).
Moreover, letp be the homomorphism with(ak)) = a for allae = andk > 1.
Consider Algorithm 1 (CompressBlock). It gradually modiftee input SLPA.
Let Ap be the SLP before the second for-loop is executed for thetifingt, and let
Aj be the SLP produced after<li < m— 1 iterations of the second for-loop. Finally
let B = A1 be the output SLP. Hence(val(Ag)) = ¢ (block(val(A))) = val(A).
By induction on 0< i < m— 1 we prove the following invariants:

(i) Forall 1< j <iwe have: Ifblock(valy(Aj)) has length at most two, they
does no longer occur iA;. On the other hand, Block(val, (Aj)) = a®ub)
with u # ¢, thenvaly, (Aj) = u.

(i) Foralli+1< j<m, we havep(valy, (Aj)) =vals(A;j) and rhg, (A;) does not
contain a factor of the forra(Pa(@. Moreover, every occurrence of a variable
A with 1 < k < i in rhsy, (Aj) has a symbol of the frora,” on its left and a

symbol of the fornb? on its right.

Fori = 0, (i) and (ii) clearly hold. Now assume that (i) and (ii) hdlor some
0 <i < m-2 and consider thé + 1)-th iteration of the for-loop. Only the right-
hand sides of variables frol, 1,...,Amn are modified. Hence, (i) still holds for
all variablesAy,...,A after the(i + 1)-th iteration. In order to prove the remain-
ing points, note that all variables in th$A;;1) are amondAy,...,A;} and hence
satisfy point (i) after the-th iteration. MoroverA ;1 satisfies (ii) after thé-th iter-
ation. We getaly, (Ai11) = block(valy (Ai+1)) and rhg, (Aiy1) either has the form
aP) = block(valg (Ai11)) ora®ab®), wherea® (respectivelyb()) is the first (re-
spectively, last) symbol oblock(valy(Ai+1)). Using this, it is straightforward to
verify (i) for Ai11 as well as (i) for all variablesy ., ..., An.

Note thatB has at mostn variables (no new variables are introduced) and that
the length of a right-hand side éf increases by at most 4 in the constructiorBof
Every right-hand side aofi contains at most two variables, and for each occurrence
of a variable in a right-hand side we add one symbol on thaalaftone symbol on
the right. Hence, we géB| < |A|+4m. O

Let us now analyze words2,, 2] for a partition> = >, 5 %,.

Lemma 3.20.For a word s€ >* which does not contain factor of the form aa with
ac X (i.e.,block(s) = s) there exists a partitiod = >, 2, such thais[3}, % ]| <
(3|5 +1)/4.

Proof. The following probabilistic argumentis given in [90]. Let ajay - - - a,. We
put each symbah € X with probability 1/2 into % and with probability ¥2 into
2. Hence, for every position4 i < n—1, the probability thatya; ;1 € 55 is 1/4
(here, we need; # a;1). By linearity of expectations (for which we do not need
independence), the expected number of positiods KX n— 1 with aja;;1 € 512,
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is (n—1)/4. Hence, there exists a partitian= >, W >, for which there are at least
(n—1)/4 many positions X i <n—1withaa;1 € 5 5. For this partition, we get
821, %] <n—(n—1)/4=(3n+1)/4. O

Next, we show that for an SLP-represented string one can etengppartition as in
Lemma 3.20 in linear time:

Lemma 3.21.Assume that the alphabét is an initial segment of the natural
numbers. Given an SLR over the terminal alphabeX such that s= val(A) =
block(val(A)), one can compute in timé&(|A|) a partition X = % ¥ % such that
[s[Z, 2 ]| < (3|5 +1)/4.

Proof. Let n = |A|. First note that the word = val(A) contains at mosh many
different digrams (= factors of length 2). The argument mikir to the proof of
Lemma 3.18: To each digraab of swe can assign a unique varial#lesuch thatb

is a factor ofval (A) butabis not a factor of any wordal, (B), whereB is a variable
that occurs in rh@\). But there are at mogths(A)| — 1 such factors. Summing over
all variables yields the statement.

Consider Algorithm 2 (CountingDigrams), which computesdach lettea € >
a list R(a) that contains all pairgb,v) such that the digrarab occurs ins and the
number of positions X i < |s| — 1 such thasi,i + 1] = abis equal tov. By the
remark in the preceding paragraph, the total number ofe=nini all listsR(a) (a €
%) is bounded byn. The algorithm first computes a topological sortifvg...,An
of the variables with respect to the hierarchical order.nTlitecomputes for every
A € V the numbew; of occurrences ofy in the derivation tree of\. This part of
the algorithm is taken from [65]. Next, an arrByf at mostm entries is computed.
This array contains all triple@, b, i), where rhéA;) = Aj A (for somej,k < i), the
last symbol ofvals (A;) is a and the first symbol ofial, (Ay) is b. Note that for
each occurrence @b in s there exists a unique noden the derivation tree of\
such that the occurrence ab is belowyv, but it is neither below the left child of
nor below the right child of. If vis labeled withA; and rh$A;) = AjAy, then the
last (respectively, first) symbol &; (respectivelyAy) must bea (respectivelyp).
Hence, the total number of occurrencesibfin sis the sum of all numbeng such
that(a,b,i) occurs in the arraR.

In order to compute the listR(a), the arrayB is sorted using radix sort on the
lexicographic order oix x X (the first two components froi-entries), where the
second>-component has higher priority. Radix sort is an algoritimat tallows to
sort an array ofn manyk-ary numbers having digits in time &(dm+dk) on a
RAM, see [42]. To apply radix sort in our situation, we neegléissumption that the
alphabet> is an initial segment of natural numbers, see also [90]. Thaatix sort
needs timeZ/(m+ |X|) < €(]A]) to sort the arrayd. From the sorted arra@ it is
easy to compute the lisR(a) for all a € X in a single pass ovél.

Completely analogous to the ligi&a), one can also compute in linear time lists
L(a) (a€ Z), wherelL(a) contains all pairgb,v) such that the digrarbaoccurs in
sand the number of positions<i < |s| — 1 such thas]i,i + 1] = abis equal tov.
Both listsR(a) andL(a) are needed in Algorithm 3 (ComputePartition) (see again
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Algorithm 2 : CountingDigramms

Data: SLPA = (V, X, S rhs) with val(A) = block(val(A))
transformA into Chomsky normal form in time'(|A|)
let A1, Az, ...,Am be an enumeration &f in hierarchical order
fori:=1to m—1do
| vi:=0
end
Vmi=1
for i := mdownto 2do
if rhs(A)) = AjAc then
Vj =V Vi
Vi i= VW + Vi
end
end
c:=0
for i :=1to mdo
if rhs(Aj) =ac X then
| first(i) :=a; last(i) :=a
else
let rhgA) = AjA with j k<
first(i) := first(]); last(i) := last(k)
a:=last(]); b:=first(k)
c:=c+1
Blc] := (a,b,i)
end

end
sort arrayB using radix sort on the lexicographic order on tuples fibm X x {1,...,m},
ignoring the last component, and @be the resulting array (of length< m)
for ae > do
| R(a) :=empty list
end
for i:=1tocdo
letC[i] = (a,b,i)
if i =1 or C[i — 1] is not of the form(a, b, j) for some jthen
| append tdR(a) the entry(b,v)
else
let the last entry ifR(a) be (b,v)
replace this entry byb,v+v;)
end
end

[90]) for computing a partitiorr = 2, W ;. The two set2| andZ; are stored as bit
maps, i.e., arrays of lengflx|, where thea-th array entry is 0 or 1, depending on
whethera belongs ta>; (respectively?;). Here, we need again the assumption that
Z={1...,12}.

ComputePartition first computes in a greedy way a partifios > W 2, such
that the number of positions<di < || — 1 with gi,i + 1] € 5%, U %, 5 is at least
(|s|—1)/2. For this the algorithm goes over all symbols frarand makes for every
a€ > agreedy choice. If for the current seisandZ, the number of occurrences of
digrams fromaZ; U 2, ais at least as large as the number of occurrences of digrams
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Algorithm 3: ComputePartitiof¥)

Data: SLPA = (V, X, S rhs) with val(A) = block(val(A))
compute listL(a) andR(a) for all a € X using Algorithm 2
5:=0;% =0, =0
for ae 2 do
| 13:=0;ra:=0
end
for ae 2 do
if ra > 15 then
2 =2 U{a}
for (b,v) € L(a) do
| lp:i=lp+vVv
end
for (b,v) € R(a) do
| Ib = |b+V
end

else

2 =2 u{a}

for (b,v) € L(a) do
| Trpi=rp+Vv

end

for (b,v) € R(a) do
| Trpi=rp+Vv

end

end

end

if Yacs 3 oy xmnr@ V> Yacs Y (bv)e(s xN)nr@) Y then
| (Z|7ZI'):: (ZI‘7Z|)
end

fromaZz U 2 a, then the algorithm putsinto 2, otherwisea is put intoX,. To make
this choice, the algorithm stores (and correctly updateshumber of occurrences
of digrams froma; U 2,a (resp.,a2| U 2ja) in the variabler, (resp.,la). These
variables are updated using the lists) andR(a).

Since the number of positions<i < |s — 1 with gi,i + 1] € 55 U X 5 is at
least(|s| — 1)/2, there exist at leasts| — 1) /4 positions with s[i,i + 1] € % %; or
there exist at leagts| — 1) /4 positiond with g[i,i + 1] € %, 5. The last if-statement
in Algorithm 3 selects the partition which yields more digr@ccurrences. Note
that the sund acs, Y (bv)e(s xN)nR(a) V €an be computed in linear time since the sets
2 and 2, are stored as bit maps and the total length of all Ki&) is at mosin. A
similar remark applies to the SUfhes; 3 (bv)e (s xN)R@) V- O

Since we have to deal with two SLPs that have to be checkedjfality, we need
a simple adaptation of Lemma 3.21 for two SLPs:

Lemma 3.22.There is an algorithmComputePartitiofd,B) that computes for
given SLPs\ andB over the terminal alphabeX with s:= val(A) = block(val(A))
andt:=val(B) = block(val(B)) intime &' (|A| +|B|) a partition such thats[ %, % ]|+
[t[21, 2¢]| < (8| + [t]) /4 +5/4.
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Algorithm 4 : CompressPai(4,, 2, %)

Data: SLPA = (V, 2, S rhs) with val(A) = block(val(A)) and a partition® = 3| & ;.
let A1, Az, ...,Am be an enumeration &f in hierarchical order
fori:=1tom—1do
if rhs(Ay) is of the form @ for a € X; then
replace every occurrence Af in a right-hand side bpA
| A a
end
if rhs(A)) is of the formBb for b € % then
‘ replace every occurrence Af in a right-hand side bjb
ths(A) =
end
if rhs(Aj) = € then
replace every occurrence &f in a right-hand side by
‘ removeA; from the SLP
end

end
replace every occurrence of a facaiye 2 2; in a right-hand side byab)

Proof. By taking the disjoint union of all productions éfandB we can easily con-
struct an SLRC of size 0 (]A| + |B|) such thaval(C) = st=: u. With Lemma 3.21
we obtain a partitiolr = %, U %, such thatu[2), % ]| < (3|u|+1)/4= (3(|9 +]t]) +
1)/4. On the other hand, we hawgs;, 5| > |s[%, %/ ]| + [t[%, %/ ]| — 1. Hence, we
get(s[2i, ||+ [t[2, ]| < 3(|s + [t]))/4+5/4. O

Lemma 3.23.Given an SLPA over the terminal alphabeX such thatval(A) =
block(val(A)) and a partition> = %, U %, one can compute in tim&(|A|) an SLP
B such thatval(B) = val(A)[%}, %]. Moreover, ifA has m variables, theB has at
most m variables anfB| < |A| +4m.

Proof. Let A = (V,X,S rhs) and letA1, A, ..., Ay be an enumeration &f that re-
spects the hierarchical order &f If A; occurs in rhéAj) theni < j. We can as-
sume thatS = An. Let g (respectivelyfy;) be the first (respectively, last) symbol
of valg (A)). Consider Algorithm 4 (CompressPairs) and lebe the output SLP
of this algorithm. The proof thatal(B) = val(A)[%}, %] is similar to the proof of
Lemma 3.19.

For a wordw € X* define the wordgop, (w) andpop, (w) as follows:

pop;(§) =€ popr(€) = €
popj(au) =auforac 2j,ue =* pop,(ua) =uaforae %,,ue =*
pop(au) =uforae Z,ue >* pop;(ua)=uforae %,ue z*

Moreover, letpop(w) = pop)(pop,(W)) = pop; (pop;(w)). Note that for a single
symbola we havepop(a) = €.

Let A; be the SLP afteriterations of the for-loop (&£ i < m—1). HenceAg = A.
By induction on 0< i < m—1 one can easily prove the following invariants:
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Algorithm 5: CheckEquality

Data: SLPsA andB
while |val(A)| > 1and |val(B)| > 1 do
A := CompressBlocks\)
B := CompressBlockd)
let " be the union of the terminal alphabetsfiofindB
(N, Iy) := ComputePartitiofd,, B)
A := CompressPaifa\, 1, ;)
B := CompressPai(®, 7, ;)
end
check whetheval(A) = val(B)

(i) For all 1< j <i we have: Ifpop(valy(Aj)) = &, then variableA; does no
longer occur ind;. Otherwiseyaly, (Aj) = pop(vala(Aj)).

(i) Foralli+1< j<mwe havevaly (Aj) = valy(A;j). Moreover, every occur-
rence in rhg, (A;j) of a variableA, with 1 <k <i anday € 2; (respectively,
by € %) is preceded (respectively, followed) by (respectivelyby).

Hence, we haveal(A) = val(An_1). Moreover, for every factorization A3 of a
right-hand side fron#\,_; we have:

e Eithera does not end with a symbol fro orvaly, . , (Ai) does not start with a
symbol fromz;.

e Eitherf3 does not start with a symbol frol} orvaly,, , (Ai) does not end with a
symbol fromz;.

This implies that for the final SLM, which results from replacing in all right-
hand sides of\n, all occurrences of factorab € % %, by (ab), we haveval(B) =
val(A)[%, %] for every variable.

Note thatB has at mosin variables (no new variables are introduced) and that
the length of a right-hand side éf increases by at most 4 in the constructiorBof
Every right-hand side of contains at most two variables, and for each occurrence
of a variable in a right-hand side we introduce at most onet®jran the left and
right. Hence, we geB| < |A|+4m. O

Proof of Theorem 3.17Assume that we have two SLRsandB over the same ter-
minal alphabef and letm:= |val(A)| andn:= |val(BB)|. Moreover, letk (respec-
tively, I) be the number of variables @f (respectivelyB). Algorithm 5 (Check-
Equality) checks whetheral(A) = val(B). Correctness of the algorithm follows
from observation (3.2). It remains to analyze the runningetdf the algorithm. By
Lemma 3.22, the number of iterations of the while-loop ismbed by (log(n+
m)) < O(JA| + |B|). Let Aj andB; be the SLPs after iterations of the while-
loop. The number of variables @f; (respectivelyB;) is at mostk (respectively,
I). Hence, by Lemma 3.19 and 3.23, the sizé\pfrespectivelyB;) can be bounded
by |A|+4ki € O((|A|+|B|)?) (respectively|B| + 4li € G((|A|+ |B|)?)). Since the
i-th iteration takes time (| Aj| + Bj|), the total running time ig’ ((|A| + [B|)3). O
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3.5 2-level PCSLPs

For our algorithms in Chapter 5, it is useful to consider PES§lwhich are divided
into two layers.

Definition 3.24 (2-level PCSLP)A 2-level PCSLRs a tupleA = (Up, Lo, ", S rhs)
such that the following holds:

e Up, Lo, andl" are pairwise disjoint finite alphabe®¢ Up, and rhs UpULo —
PC(UpULo,In).

e The tuple(Up,Lo,Srhsly,) is a PCSLP over the terminal alphaket

e The tuple(Lo, I ,rhs,) is an SLP (without start variable) over the terminal al-
phabet™.

The setUp (respectively,Lo) is called the set ofipper level variableqlower
level variable¥ of A. Moreover, we seV¥ = UpU Lo and call it the set of vari-
ables ofA. The PCSLP(Up, Lo, S rhsly,) is called theupper part ofA, briefly
up(A), and the SLP (without start variablélo,l",rhs[ ) is the lower part of
A, briefly, lo(A). The upper level evaluation mappingal, : PC(Up,Lo) — Lo*
of A is defined asuvaly = val ). The evaluation mappingal, is defined by
valp (X) = valig(s) (valypa) (X)) for X € Up andvaly (X) = valig(4)(X) for X € Lo.
Finally, we setval(A) = val, (S). We define the size of as|A| = S xoy [rhg(X)].

Example 3.25Let A = ({F,G,H},{A,B,C,D,E},{a,b,c},H,rhg be a two-level
PCSLP withUp = {F,G,H} andLo = {A,B,C,D, E}, where the mapping rhs de-
fined as follows:

rhgA) =a rhgB) =b rhgC) =
rhs(D) = AB rhsE) =

rhs(F) = EABCDEA

rhs(G) = F[2: 6]

rhs(H) = macp1(G)

Then we have

Up(A) = ({FaGaH}a{Av BachvE}aHarhSTUp) and
lo(A) = ({A,B,C,D,E},{a,b,c},rhsf,).

Theuvaly-values for the upper level variables are:

uvaly (F) = EABCDEA
uvaly (G) = ABCDE
uvaly (H) = ACD

Thevaly-values for all variables of are:
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valpy(A)=a valpy(B) =b valp,(C)=c
valg(D)=ab  valy(E)=ac
valy (F) = valy (EABCDEA = acabcabaca
valy (G) = val, (ABCDE) = abcabac
val(A) = valy (H) = valy (ACD) = acab

Note thatval, (G) is different fromval, (F)[2 : 6] = cabca



Chapter 4
The Compressed Word Problem

In this chapter, we introduce the main topic of this book, ajnthe compressed
word problem for a finitely generated group. This is the variaf the word prob-
lem, where the input word is not written down explicitly, lgiwen by an SLP. Since
the input word is given in a more succinct way, the compresgad problem for
a groupG may have a higher computational complexity than the wordblera for
G, and in Section 4.8 we will see such a group. In Section 4.1 esvghat the
complexity of the compressed word problem is preserved vgoémg to a finitely
generated subgroup or a finite extension. Section 4.2 denatesthat an efficient
algorithm for the compressed word problem for a gra@bipeads to efficient al-
gorithms for (ordinary) word problems for various groupsiged from G (auto-
morphism groups, semidirect products, and other groumsidas). The remaining
Sections 4.3-4.8 study the complexity of the compressed wowblem in various
classes of groups (finite groups, free groups, finitely gatieerlinear groups, finitely
generated nilpotent groups, wreath products).

4.1 The Compressed Word Problem and Basic Closure
Properties

Let us start with the definition of the compressed word proble

Definition 4.1. Let G be a finitely generated group and fix a finite generating set
for G. Thecompressed word problefar G with respect td™, briefly CWP(G, "),

is the following decision problem:

input: An SLP A over the terminal alphabé&tu ™ 2.

question:Doesval(A) = 1 hold inG?

In CWP(G,I"), the input size is of course the siz&| of the SLPA. As for the
(uncompressed) word problem, the complexity of the congaesvord problem
does not depend on the chosen generating set:

63
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Lemma 4.2.Let G be a finitely generated group and feand 2 be two generating
sets. Thel€WP (G, I") <199 CWP(G, X).

Proof. LetG= (I' | R) = (> | S). There exists a homomorphigm (" ur —1)* —
(Zuz~YH* with h(a=t) = h(a)~! for allac I Ul ~* that induces an isomorphism
from (I | R) to (2 | S). Hence, for aworav € (I Ul ~1)* we havew = 1in (I |R)
ifand only ifh(w) = 1in (X | S). The lemma follows, since by Proposition 3.9(4) we
can compute from a given SLRover” Ul ~1 in logarithmic space an SLB over

> U >~ such thatval(B) = h(val(A)). This gives a logspace many-one reduction
from CWP(G, ") to CWP(G,%). O

By Lemma 4.2, we can just speak about the compressed worteprdbr G, briefly
CWP(G).

Before we consider the compressed word problem in specificgy we prove
two preservation results. Recall the reducibility relaidrom Section 1.3.3. By the
following simple proposition, the complexity of the comgsed word problem is
preserved when going to a finitely generated subgroup:

Proposition 4.3.Assume that H is a finitely generated subgroup of the finiteh g
erated group G. TheBWP(H) <13 CWP(G).

Proof. Choose a generating getfor G that contains a generating sefor H. Then
forawordw e (S US~1)* we havew=1inH ifand only ifw=1inG. O

By the following result from [116], the complexity of the cpmessed word problem
is also preserved when going to a finite extension:

Theorem 4.4.Assume that K is a finitely generated subgroup of the groupd su
that the indeXG : K] is finite (hence, G is finitely generated too). THaKP(G) <F,
CWP(K).

Proof. Letl be afinite generating set fsrand let> be a finite generating set f&.
Leth: (Xux~1)* — G be the canonical morphism. LKy, . .., Kg, be a list of the
cosets oK, where without loss of generalityy = 1. Let.«Z be the coset automaton
of K. This is an NFA over the alphab&tu >—! and with state sefKgs,...,Kgn}.
The initial and final state i = Kg; and the triplg(Kgi,a,Kgj) (a€ Suz 1) isa
transition of< if and only if Kgia = Kg;. Note that this automaton accepts a word
we (Zuz~h*if and only if h(w) € K. Since by Theorem 3.11 it can be checked
in polynomial time whether the word generated by a given Sf Rccepted by a
given NFA (here, we even have a fixed NEA), we can check in polynomial time
whetherh(val(A)) € K for a given SLPA.

Now let A = (V,Z U >~% S rhs) be an SLP in Chomsky normal form over the
alphabets U Z~1. We want to check whetheml(A) = 1 in G. First, we check in
polynomial time, whetheh(val(A)) € K. If not, we reject immediately (formally,
since we have to construct a polynomial time many-one réatuétom CWP(G)
to CWP(K), we should output some fixed SLP overJ " ~* that evaluates to an
element oK\ {1}). Otherwise, we will constructin polynomial time an SBRver
the generating sét U™ ! of K, which computes the same group elementas
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The set of variables d8 is the set of triples
W= {[g,Ag;l[AeV,1<i,j <n, gih(vals(A)gj* € K}.

By the above observation, this set can be computed in poliaidime. Now, let

us define the right-hand sides for the varialtgsA, g;l] € W. First, assume that
rhs(A) = a, whereac SUS 1. Hencegiagj*l € K, and we set rH$g;, A, gjfl]) =W,
wherew € (T Ul —1)* is such thath(w) = giagj*1 (we do not have to com-
pute this wordw; it is a fixed word that does not depend on the input). Now
assume that rti8) = BC. In polynomial time, we can determine the unigke
such thatgih(val, (B)) belongs to the cosedgx. Thus,gih(vala(B))g.* € K, i.e.,
[6i,B,g, 1] € W. We set

rhs([gi, A, g; ']) = [91,B, 9, 1[0.C. ;1.

Note that
gih(valy (A))g;* = gih(val4(B))g, *ach(vala (C))g; ™.

Hence, sincgjih(val, (A))g; * andgih(val, (B))g, * both belong to the subgroug
we also haveyh(val, (C))g; * € K, i.e.,[0¢,C.g; ] € W. Finally, let[g;,S.g; '] =
[1,S 1] be the start variable @&. Since we assume thiagval(A)) = h(valy(S)) €K,
we have[1,S1] € W. It is easy to prove that for every variablg, A, g;l] ew,
valg([gi,A,gj ']) represents the group elemagit(val, (A))g; *. Thus,val(A) =1
in G if and only if val(B) = 1 in K, which is an instance cfWP(K). This proves
the theorem. O

The reducibility relation<FP, in Theorem 4.4 cannot be replaced by the stronger

relationglrgg (unlessP = L) because there exists a finite gra@pvith a P-complete
compressed word problem, see Theorem 4.10 (fakel in Theorem 4.4).

4.2 From the Compressed Word Problem to the Word Problem

It turns out that an efficient algorithm for the compresseddyzroblem for a group

G can be used to solve efficiently the (uncompressed) wordl@moln certain
groups derived front. Hence, the compressed word problem is useful for the so-
lution of the ordinary word problem. In this section, we mesthree results of
this type. All three results are formulated in terms of dertaducibilities, see Sec-
tion 1.3.3.

Definition 4.5 (Aut(G)). For a groupG, Aut(G) denotes theutomorphism group
of G, which consists of all automorphisms Gfwith composition of functions as
the group operation.

Recall from Definition 1.27 the definition e_f't?cg.
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Theorem 4.6 (cf [151]).Let G be a finitely generated group and let H be a finitely
generated subgroup @&ut(G). ThenWP(H) g'g’cg CWP(G).

Proof. Let > be a finite generating set f@&, where without loss of generaligyc >
impliesa™! € 5. Let H be generated by the finite s&tC Aut(G), where again
¢ € Aimpliesgp 1€ A

For a given input wordg;¢>--- ¢ (with ¢; € A for 1 <i < n we have to
check whether the composition ¢f, ¢,,..., ¢, (in that order) is the identity iso-
morphism in order to solve the word problem fer But this is equivalent to
On(pn-1(---91(a)---)) =ain Gforallac 2.

SinceZ is closed under inverses, evaliye A can be viewed as a homomorphism
onX*. Hence, by Lemma 3.12 we can compute in logarithmic spacé Bri\§ over
the alphabeZ such thawal(Aa) = ¢n(dn_1(---¢1(a)---))aL. Thus, the composi-
tion of ¢1,¢o,..., ¢, is the identity if and only if for alla € X, val(Az) =1 in G.
Since|Z| is a constant in our consideration, we obtai (H) g'g’g CWP(G). O

It should be noted that there are finitely generated (evetelfyinpresented) groups
G, whereAut(G) is not finitely generated, see e.g. [105]. Therefore, weintsh
Theorem 4.6 to a finitely generated subgroupof(G).

Definition 4.7 (semidirect product). Let K and Q be groups and lep : Q —
Aut(K) be a group homomorphism. Then teemidirect product K«y Q is the
group with the domairK x Q and the following multiplication:(k,q)(¢, p) =
(k- (¢(0)(¢)),qp), where- denotes the multiplication il{ (note thatp (q) € Aut(K)
and hence (q)(¢) € K).

The following result is stated in [116].

Theorem 4.8.Let K and Q be finitely generated groups andetQ — Aut(K) be a
homomorphism. Then, for the semidirect produetQ we havéVP (K x4 Q) <0
{WP(Q), CWP(K)}.

Proof. Let us consider a wortks,q1)(ke,q2) - - - (kn,On), wherek; (respectivelygq;)
is a generator oK (respectivelyQ). In K x4 Q we have

(k1,01)(K2,G2) -+ (Kn, 0n) = (B1(k1)B2(k2) - - - 6n(Kn), 0102 - On),

where6 € Aut(K) is the automorphism defined by

=0 0-1)=¢(n) - ¢(di-1)

for 1 <i < n (note thatf; = idk). By Lemma 3.12, we can compute in log-
arithmic space an SLRA over the generators df, which produces the word
B1(k1)62(k2) - - - Bn(kn). We havelky, 01) (K2, 02) - - - (Kn, On) = 1inK ¢ Qif and only

if q102---0n =1 in Q andval(A) = 1 in K. This proves the proposition.0

The semidirect produd® = K x¢ Q is a an extension df by Q, i.e.,K is a normal
subgroup ofs with quotientG/K ~ Q. A reasonable generalization of Theorem 4.8
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would beWP(G) <8 (WP(G/K),CWP(K)). But this cannot be true: there exist
finitely generated group§, Q, andK such that (i)Q = G/K, (ii) Q andK have
computable word problems, and (i has an undecidable word problem [14]. On
the other hand, if we require additionally, th@tis finitely presented (in facQ
recursively presented suffices), th@mmust have a computable word problem [36].
For the special case that the quotient G/K has a polynomial time word search
problem (see Definition 2.24), we can prove the following:

Theorem 4.9.Let K be a finitely generated normal subgroup of G such thagtie
tient Q= G/K is finitely presented, has a polynomial Dehn function, #/&P(Q)
can be solved in polynomial time. Th&P(G) <k, CWP(K).

Proof. Let > be a finite generating set f& and [etQ = G/K = (I | R) with I a
finite generating set fa@ andR C (I U ~1)* a finite set of relators foD. Let ¢ :
G — Q be the canonical surjective homomorphism and choose a mgippQ — G
with h(1) =1 and¢ (h(a)) = afor a€ Q. The set= Uh(I") generate$ and there
exists a so called factor sét: Q x Q — K such thath(a)h(b) = f(a,b)h(ab) for
a,b € Q. Note that in generdl is not a homomorphism.

Let us take a worev € (XU Z~tuh(r ur —1))* and factorizew as

w = wph(ag)wih(az) - - - wn_1h(an)wy

withw; € (ZUZ~h)*(0<i<nyandag crur-t(1<i<n).

The wordajay - --a, € (I U ~1)* represents the group elemeniw) € Q. In a
first step, we check in polynomial time, whethgiw) = 1 in Q. Note thatWP(Q)
can be solved in polynomial time, since it reduceSusP (Q).

If ¢(w)#1in Q, we know thatw # 1 in G. Hence, assume that(w) =
aiaz---ap = 1 in Q for the rest of the proof. Hencey represents an element of
the normal subgrould. Our goal will be to construct in polynomial time an SICP
over the alphabeX U5 ~1 such thatv = val(C) in G. Hencew = 1 in G if and only
if val(C) =1inK.

We first construct in polynomial time (usinySP(Q)) a representation

m
ajap---an = rluiriufl in the free groug- (), (4.1)
i=
wherery,...,rm € RUR™ ! are relators or inverse relators fQr
Consider the semi-Thue system
S={(aa l¢) (g,aa ) |acrur yu{(re)|re RUR .

For every rulglv,w) € S, we havep (h(v)) = ¢ (h(w)) in Q; hereh is extended to a
homomorphisnh : (M U ~1)* — G. Hence, there exists a wosgy € (X UZ 1)~
such that(v) = h(w)s,w in G. Let us fix these words,.

Using the identity (4.1), we can construct in polynomialgisnderivation

aj@y---an =Up —slU] —slpy —sg - =gl =& (4.2)
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of polynomial length im.

Note thath(az)h(ay) - - - h(an) represents an elementiéfin G. Using the deriva-
tion (4.2), we will compute in polynomial time an SlPover> U X~ (the monoid
generating set of the normal subgrdtpsuch that in the grou@ we have

h(az)h(az)---h(an) = val(A). (4.3)
For this, we will compute for every € i < k an SLPA; over> U >~1 such that
h(ap)h(ag) - --h(an) = h(u)val(A;)

in the groupG. Clearly, forAy we choose an SLP that generates the empty word.
For the induction step, let us take<Oi < k and assume that we have an SAP
such thah(ag)h(az) - - -h(an) = h(u)val(A;) in the groupG. Sinceu; —su;1 there
exists a rule(v,w) € Sandx,y € (I Ul ~)* such that; = xvy andu; 1 = xwy.
Sinceh(v) = h(w)s,w in G, we get

in the groupG. SinceK is a normal subgroup d8, the wordh(y)~*s,wh(y) can
be certainly rewritten as a word ovErU 1. At this point, we need the following
claim:

Claim. Given wordsh(b)h(by) - --h(bj) with by,....b; € T Ul ~Landcicy -~ ¢ €
(Zux~1)*, we can construct in polynomial time an SBRover > U > ~1 such that
h(bj)~*---h(bz) *h(by) *cico- - coh(by)h(by) - h(bj) = val(B)

in the groupG.

Proof of the claimlt suffices to construct in polynomial time SLBgsuch that
h(bj)~*---h(bz) *h(by) tcih(by)h(by) - h(bj) = val(B;)

in the groupG. ThenB can be defined as an SLP that generates the concatenation
vaI(Bl) T V3|(B[).

Forbe rur—tlet ¢ : K — K be the automorphism d¢f defined by, (x) =
h(b)~1xh(b). Thus, we have

h(bj)~*---h(b2) ~*h(by) *eih(by)h(bz) -~ h(bj) = W (-~ o, (Y (€1)) - --)
An application of Lemma 3.12 therefore proves the claim.

Using our claim, we can construct in polynomial time an S.Bver> U >~ such
that
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h(y) " 'suwh(y) = val(B)

in the groupG (note that the wordg is a suffix of the wordy; that was constructed
in polynomial time before). Hence, in the groGpwve have

h(as)h(e)- - h(an) = h(ui)val(A)
= h(ui+1)(h(y)'suwh(y))val(A)
= h(uj1)val(B)val(A;).

Hence, we can defin; ;1 as an SLP that produces the concatenatid(B)val (A ).
Now, we can finish the proof of the theorem. We have

w = Woh(ag )wih(az)wzh(ag) - - - Wn—_1h(an)wn
= wo (h(ag)wih(as) %) (h(ar)h(az)wh(az) *h(ag) 1)
(h(ag) - h(an)wnh(an) *---h(a1) 1) (h(a1)---h(an))

in the groupG. Using our claim, we can compute in polynomial time for every
1<i<nanSLPB; over>UZX>"1such that

w = woval(By) - val(Bn)(h(a1) -~ h(an)) 2> woval(By) - --val (Bn)val(A),

where the SLR\ over> U X~ was computed in polynomial time before. Hence, to
check whethew = 1inK, it suffices to check whetherval(B;) - - - val(Bp)val(A) =
1in the normal subgroug. But this is an instance ¢fWP(K), since one can easily
construct an SLP fowgval(By1) - - - val(Bp)val(A) from wg, By,...,Bn, andA. This
concludes the proof. O

Theorem 4.9 is stated in [116] for the special case @&tan automatic group.

4.3 The Compressed Word Problem in Finite Groups

The simplest finitely genertated groups are the finite gro8pdet us continue our
investigations on the compressed word problem with finiteigs.

Theorem 4.10.For every finite group GCWP(G) can be solved in polynomial time.
Moreover, if G is a non-solvable finite group, th€EWP (G) is P-complete.

Proof. The first statement is an immediate corollary of Theorem:3ChboseG is
the generating set fd. The set of all words oveB that evaluate to the identity
in the finite group can be accepted by a finite automaton (wéte setG). Hence,
for a given SLPA over the alphabe® we can check in polynomial time, whether
val(A) evaluates to the identity @3.

The second statement is implicitly shown in [15] and is basedarrington’s
proof of NC!-completeness of the word problem for a finite non-solvabtig
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[11]. Let G be a finite non-solvable group. Hence, there exists a supdtosuch
thatH = [H,H] ([H,H] is the commutator subgroup &, i.e., the subgroup gener-
ated by all commutatomba *b~! with a,b € G). We can without loss of generality
assume tha® = H and thusG = [G, G]. We choose the generating €&t {1} for
G. We proveP-hardness o€ WP (G) by a reduction from circuit value problem, see
Example 1.40. So, &t be a boolean circuit. Since can be expressed with and
-, we can assume that has nov-gates. We now construct an SlAPas follows:
For every gateéA of the circuit% and every non-trivial group elemegte G\ {1}
we introduce a variabl8g in the SLPA. We will havevals (Ag) = 1in G if gateA
evaluates to 0 andhl, (Ag) = g in G if gate A evaluates to 1. IA is an input gate
of the circuit@, then we set rigyy) = ¢ if gateAis labeled with 0 and ri{g\y) = ¢

if gate Ais labeled with 1. Next, assume thais a—-gate and leB be the unique
input gate forA. We set rhgAg) = By-10. Finally, letA be anA-gate and leB andC
be the two input gates fak. SinceG = [G, G|, we can writeg as a product of com-
mutatorsy = ", (g thgihi), where without loss of generality< |G| (which is

a constant in our consideration) agdhs,...,0n,hn € G\ {1}. We define

n

th(Ag) = I_!(Bgrlchrl Bg Chy )-

Note that ifB evaluates to 0, then for all L i < n, valy (By-1) = valy(Bg) =1in
the groupG. Hence, also

vaIA(Bgifl)valA(Chifl)valA(Bgi)vaIA(Chi) =1
in G and thusraly (Ag) = 1in G. If C evaluates to 0, we can argue analogously. On
the other hand, if botB andC evaluate to 1, then forall £ i <n,

valy (By-1)vals (G,-1)vals (Bg Jvals (Cr) = g th lgih

in G. Henceyaly (Ag) =gin G.

Finally, if O is the output gate of the circu##, then we add a new variab&
to A (the start variable) and set ths- Oqg~! for an arbitraryg € G\ {1}. We get
val(A) =1 inGif and only if the circuit# evaluates to 1. It is not hard to show that
the SLPA can be constructed with a logspace transducer from theitigtu O

From Theorem 4.10 it follows that there exists a fixed reglalaguage. for which
it is P-complete to check whethenl(A) € L for a given SLPA (see the remark
after Theorem 3.11): Take any non-solvable finite gr@uf.g.,G = As). Then the
set of all words oveG \ {1} whose productir is 1 is a regular language.

For a finite solvable group, the compressed word problem ligeiy to be P-
hard. Theorem 4.2 from [15] implies that the compressed oothlem for a finite
solvable group belongs to the complexity cl&4ST, which is the class of all prob-
lems that aréC*-reducible to the problem of computing the determinant df/army
integer matrix. It is known thaDET C NC?; see [163] for more details concerning
these classes.
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4.4 The Compressed Word Problem in Free Groups

In this section, we prove that the compressed word problera free group can be
solved in polynomial time. This was shown in [110]. Later, wi# prove more gen-
eral results (see Chapter 5.1). Nevertheless, we decigeds$ent details for the free
group case since it shows the principal ideas for other nemtetical constructions
in Chapter 5.1 and 6. Recall the definition of CSLPs (Definia3).

Theorem 4.11.The compressed word problem for a finitely generated freegro
belongs tdP.

Proof. Consider a free grouB(I") with I" finite, and letA = (V, Ul ~1,Srhs,)
be an SLP in Chomsky normal form over the terminal alphdbet™ —. We will
compute in polynomial time a CSLB = (V,I" UI" =1, Srhs;) such thatal(B) =
NF(val(A)) (recall the definition of the normal form mappihgr from Section 2.1).
By Theorem 3.14 one can transform in polynomial tithéto an equivalent SLP
B'. Thenyval(A) =1inF(I")ifand only ifval(B") = &, which can be easily checked
in polynomial time. The right-hand side mappingghsill be defined inductively
over the hierarchical order @f in such a way thatalg (A) = NF(valy (A)) for every
AcV.

Consider a variablé € V. If rhsy (A) =ac ' U 1, then we set rhigA) = a.
Now assume that rhgA) = BC for variablesB,C € V. So, for the current CSLB
we already havealg (B) = NF(valy (B)) andvalg(C) = NF(val,(C)). Using The-
orem 3.14 for the current CSLIB, we can construct in polynomial time two SLPs
Bg andB¢ such thavalg(B) = val(Bg) andvalg (C) = val(Bc).

Let val(Bg) = u andval(Bc) = v. By Proposition 3.9(2) we can compute the
lengthsm = |u| andn = |v| in polynomial time. Leix be the longest word such that
there exist’ andVv with u = u'’x andv = x"1v. Then,NF(valy (A)) = uV. If we
can compute the length= |x| in polynomial time, then we can define g{#\) =
B[1:m—KC[k+1:n].

Hence, it remains to compute the lengthxaf polynomial time. This can be done
using a binary search approach. First, from the 8gRve can easily compute (by
inverting all right-hand sides) an SLIB, such thaval(Bg) = u~t. Then, it remains
to compute the length of the longest common prefixafBg) andval(Bc). We
first check in polynomial time whethenl(Bg) = val(Bc) using Theorem 3.17. If
this holds, therx| = m = n. Now assume thatal(Bg) # val(Bc). We can assume
thatm = nis a power of 2. If e.gm < nand Z is the smallest power of 2 that is at
leastn, then modifyBj andBc such that they generate words'b? ™ andvb? "
whereb ¢ I Ul ~1is a new symbol.

So, assume thah = n = 2% Note that 2 < 2n. We start our binary search with
¢ = p=2%"1and check in polynomial time (using Theorem 3.17 and 3.14tdr
val(Bg)[1 : ¢] = val(Bc)[1 : £]. If this is true, we sep := p/2 and( := (+ p, oth-
erwise sefp := p/2 and/ := ¢ — p. We continue untip = 1/2, then/ is the length
of x. The number of iterations is€ &'(logn) and hence bounded §(|A|). This
proves the theorem.O
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Schleimer proved a far reaching generalization of Theordrh:4

Theorem 4.12 (cf. [152]).For every word hyperbolic group GCWP(G) can be
solved in polynomial time.

In Chapter 5.1 we prove another generalization of Theordrh:4or every graph
groupG, CWP(G) can be solved in polynomial time (Corollary 5.6).

We can also show that the compressed word problem for a foeggf rank at
least 2 isP-complete:

Theorem 4.13.The compressed word problem for a finitely generated freemad
rank at least 2 i>-complete.

Proof. It suffices to proveP-hardness fofF, = F({a,b}), which will be done by
a reduction from the monotone circuit value problem, seentpta 1.40. Letr =
{a,b}.

Robinson has shown in [148, Theorem 6.3] that the (uncompavord prob-
lem for F» is NC!-hard. We will use the following facts from his proof: Let
x,y € (FUlr—1)* such thatx| = |y| = kand|X|a— [X|5-1 = |Y|a— |¥|o-2 = 0. Then,
if we interpretx andy as elements frorf,, the following holds:

(
(

Note that the words on the right of these equivalences haghel & and that the
number ofa’s minus the number ci's is again 0.

Now let ¢ be a monotone Boolean circuit. Without loss of generalityose
assume tha¥ is layered, i.e., the gates @f are partitioned inta layers and a
gate in layer > 1 receives its inputs from layér- 1 see, e.g., [67, Problem A.1.6].
Layer 1 contains the input gates and lageontains the unique output gate. We now
construct an SLR as follows. For every gateof ¢, G contains two variables,
andA, 1. We will havevaly (A;) = 1 in Ry if and only if gatez of the circuit evaluates
to 1. The variablé\, 1 evaluates to the inverse @il (Az) in F,. Moreover, we will
have|valy (A;)| = |vals (A, 1)| = 2-16 L if zis located in thé-th layer of the circuit
@a<i<n.

For every input gat& in layer 1 we define the right-hand sidesfgfandA, 1 as
follows:

x=1)V(y=1 <& a*xakya*xla¥kyl=1
x=DA(y=1) <« a *xa*ya *xay=1

aa ! if gatexis labeled with 1
b?  if gatexis labeled with 0

rhs(Ax) = {

aa ! if gatexis labeled with 1
b=2 if gatexis labeled with 0

rhs(A 1) = {

If zis anV-gate in tha-th layer { > 2) with input gatex andy from the (i — 1)-th
layer, then the right-hand sides &y andA, 1 are
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ths(A,) = a ®1% *A@%1% *Aa 019 %A 1219 A ; and
2 2 2 2
rhy(A, 1) = Aja 818 "ARBI A 1a 610 A 18010

Note that the binary codings of the exponentd6-2 have polynomial length and
hence each of the above productions can be replaced by ansegakordinary
productions. Moreover, ifal(Ay)| = 2-16 -2 foru € {x,x 1,y,y 1} (which is true
if x andy are located in the first layer, i.6.= 2), then|val(A;)| = |val(A,1)| =
2.16-1. If zis anA-gate in thei-th layer { > 2) with input gates andy, then the
right-hand sides foA; andA, 1 are

- - . .
ths(A;) = a 16 °A,a016 “A 2 616 °A 3616 °A and

i 2 i 2 i 2 i 2

rhs(Arl) :A)F1876'18 Axflas'l6| A)F1876'16| Ax71a6'16| .

Once again, these definitions can be replaced by sequenoediadiry definitions.
Let o be the unique output gate of the circdit Then, by the result from [148], the
circuit ¢ evaluates to 1 if and only ifaly (Ag) =1 inF. O

Let us conclude this section with a slight generalizatioif loéorem 4.11 to a uni-
form setting, where the rank of the free group is part of thitn

Theorem 4.14.The following problem i®-complete:

input: A finite alphabef” and an SLPA over the alphabef U ~1.
question: Doesal(A) =1 hold in F(I)?

Proof. By Theorem 4.13 it suffices to prove membershipitet!” = {ay,...,an}.
Then the mappindy with h(a;) = alba™' extends to an embedding &f(I") into
F(a,b), see e.g. [119, Proposition 3.1]. By Proposition 3.9(4) we compute an
SLPB for h(val(A)) from A and/” in polynomial time. This proves the theorem by
Theorem 4.11. O

4.5 The Compressed Word Problem for Finitely Generated
Linear Groups

Recall the definition of the randomized complexity clad®PsandcoRPfrom Sec-
tion 1.3.7. These classes are located betweamd NP. Moreover, there is some
evidence from complexity theory th= RP = coRP. This makes the following
result from [116] for finitely generated linear groups i&ing:

Theorem 4.15.Let G be a finitely generated linear group. Then, the compiess
word problem for G belongs tcoRP.

Proof. Let G be linear over the fieldF. Assume first thaF has characteristic O.
Recall the polynomial identity testing proble?iiT (Z) € coRP, see Definition 1.48
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and Theorem 1.49. Sina®RP s closed under polynomial time many-one reduc-
tions, it suffices to sho@WP(G) <k, PIT(Z). LetI" be a finite generating set Gf
and letA = (V, S rhs) be an SLP in Chomsky normal form ovéru ™ ~1. By Theo-
rem 2.19 we can assume tltais a finitely generated group 0dl x d)-matrices over
the field of fraction€Q(x1, ..., X). Let Ma be the matrix corresponding to generator
ae Ul ~1. These matrices are fixed; they are not part of the input. \Wevcie My
asmNa, whereNy is a(d x d)-matrix overZixy, ..., andp(Xa,...,Xn) is
the same polynomial ovét for all generatorg. ForA €V letnp be the length of the
word valy (A); it can be computed in polynomial time for evelye V by Proposi-
tion 3.9(2). From the SLR we can now build in polynomial time arithmetic circuits
%, (1<i,j <d)inthe variablesy, ..., x, such thaval(¢j) =0forall 1<i,j <d

if and only if val(A) = 1 in G. For this, we associat¥ defined circuit variables;
(1<i,j <d)with every SLP-variablé\ € V. The circuit variabled j will evaluate

to entry (i, j) of the matrixp(xy,...,%n) "avaly (A). If rhs(A) =ac T Ul ! then
rhs(A; j) is set to entry(i, j) of the matrixNa. If rhs(A) = BC, then we set

d
rhs(Aiyj) = Z Bi’ka’j.
k=1

Finally, we set the output variable of the circ@i{j to § ; fori # j and toS j; —
p(Xa,...,X,)"s fori=j.

From the circuitss; j we can easily construct an arithmetic circuit for the poly-
nomial o

p(X1,. -, X%, Y,2) = z yZlval(% ;).
1<1,)<d

Then p(Xy,...,%n,Y,2) is the zero polynomial if and only if every polynomial
val(%i,j) is the zero polynomial.

The same arguments applyhf has prime characteristip. In that case (using
again Theorem 2.19) we can sh@WP(G) <k PIT(Z;). By Theorem 1.49, also
polynomial identity testing over the coefficient rig belongs tccoRP. O

Examples of finitely generated linear groups are: finitelyegated polycyclic
groups (which include finitely generated nilpotent groug@X)xeter groups, braid
groups, and graph groups. Hence, for all these groups th@ressed word prob-
lem belongs t@oRP. The same holds for finitely generated metabelian groupggsin
they embed into finite direct products of linear groups [1&%)r finitely generated
nilpotent groups, Coxeter groups, and graph groups, weshiw that the com-
pressed word problem even belong®t¢rheorem 4.19, Corollary 5.6 and 5.7). In
the next section, we will present a concrete group for whitthdompressed word
problem is equivalent (with respect to polynomial time mame reductions) to
polynomial identity testing over the ririg.
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4.6 The Compressed Word Problem foiSL3(7Z)

Recall that thespecial linear grougbLy(Z) is the group of al{d x d)-matrices over
Z with determinant 1. The grouplL,(Z) is virtually free (has a free subgroup of
finite index). Hence, by Theorem 4.4 and 4.11 its compressad yroblem can
be solved in polynomial time. F&l3(Z), the complexity of the compressed word
problem exactly coincides with the complexity of polynohidentity testing over
Z, which is not known to be iiP.

Theorem 4.16.CWP(SL3(Z)) andPIT(Z) are polynomial time many-one reducible
to each other.

Proof. SinceSL3(Z) is linear over the field) of characteristic zero, the proof of
Theorem 4.15 shows th&WP(SL3(Z)) <, PIT(Z).

The proof forPIT(Z) <k CWP(SL3(Z)) is based on a construction from Ben-Or
and Cleve [16], which can be seen as an arithmetic versiomuafrigyton’s construc-
tion (that we used in the proof of Theorem 4.10.) By Theoreb1 it suffices to
construct in polynomial time from a variable-free arithinedrcuit € = (V, S,rhs)
overZ an SLPA over generators dfL3(Z) such thatval(¢) = 0 if and only if
val(A) evaluates to the identity matrix.

The SLPA contains for every gatd € V and allb € {—1,1} and 1<i,j <3
with i # j a variableA; j . Let us denote the matrix to whidk ; , evaluates with
A jpas well. The SLR\ is constructed in such a way that for every column vector
(x1,%2,%3)" € Z2 the following holds for the vectdiy1, Y2, Y3)" = A j p(X1,X2,X3)

Vi =X +b-valg(A) -x; andyx = x for k€ {1,2,3}\ {j}.

Consider a gaté of the variable-free arithmetic circuit. Without loss of gener-
ality assume tha# is in normal form. We make a case distinction on the rightehan
side ofA.

Case 1rhgA) = ce {—1,1}. Then we set ri\ j ) = Id3+ M; j b.c, Wherelds is
the (3 x 3) identity matrix and all entries in the matri4; ; c are 0, except for the
entry at positior{(i, j), which isb-c.

Case 2rhg(A) = B+C. Then we set i@ j p) = Bi j sCi j.b-
Case 3rhgA) =B-C. Let{k} ={1,2,3}\ {i, j}. Then we set

rhs(Aij1) = Bk j-1Cik1Bkj.1Cik -1

rhsg(Aj—1) = Bxj,—1Cik—1Bk j1Cik1

If (y1,¥2,¥3)" = Aij1(X1, %2, %3)" = By} -1Cik 1Bk j1Cik —1(X1,X2,X3)T, then we
gety;j = Xj, Yk = X+ valy (B) - Xj — valg (B) - Xj = X, and

Vi =X — valg (C) - %+ valy (C) - (X + valg (B) - Xj) = X + valg (C) - valy (B) - Xj.

Similarly, if (y1,y2,¥3)" = A j—1(X1,%2,X3) " =By j,~1Ci k —1Bx j 1Gi k 1(X1, X2, X3) T,
then we gey; = X;j, Yk = X+ valy(B) - Xj — valy (B) - X; = X, and
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Vi = X +valz(C) - X« — valy (C) - (X + valz (B) - Xj) = X — valy (C) - valg (B) - Xj.

Finally, letS; 21 be the start variable of. Then, we haveal(¢) = 0 if and only
if for all (xq,%2,%3) € Z2 we haveS; »1(x1,%2,%3)" = (X1 + val(%) - X, X2, X3) =
(x1,%2,x3) if and only if val(A) evaluates tdds. This proves the theorem.O

4.7 The Compressed Word Problem for Finitely Generated
Nilpotent Groups

Let us first recall the definition of a nilpotent group.

Definition 4.17 (lower central series, nilpotent group).The lower central series
of the groupG is the sequence of subgroups= G; > G, > Gz > --- whereGj; 1 =
[Gi,G] (which is the subgroup oB; generated by all commutatogs *h—gh for
g € Gi andh € G; by induction one can show that inde€d., < G;). The groupG
is nilpotent if there exists> 1 with G; = 1.

Robinson [148] has shown that the word problem for a finitedyperated linear
group belongs to the circuit complexity clab€° C L. Moreover, every nilpotent
groupis linear, see e.g. [95]. Hence, by Theorem 4.15 thecessed word problem
for a finitely generated nilpotent group belongstdRP. This upper bound was im-
proved in [74] toP. Our proof of this result uses a fact about unitriangularioas.
Recall that ad x d)-matrixM = (&; j)1<i j<d OVerZ is unitriangular ifg; j = 1 for
all1<i<danda j=0fori> j,ie., all entries below the diagonal are zero. For
a matrixM = (& j)1<ij<a OVerZ let [M| = ¥ 1 j<qlai j|. Itis straightforward to
show that|M; - My| < d?|My] - |Ma| for two (d x d)-matricesM; andM,, see [108,
Lemma 3]. Hence, for a product of matrices we have

M1 - Mz Mp| < d2(mfl>||v|1| - |Ma|- - |Mn].

The estimate in the following proposition is very rough buffisient for our pur-
pose:

Proposition 4.18.Let My,...,Mny, be a unitriangular(d x d)-matrices ove#Z with
m> 2d and let n= max{|M;| | 1 <i < m}. For the product of these matrices we
have

IMiMz- M| <d +(d—1) <d ml> dd-2nd-1,
Proof. Let A; = M; — Idq, this is a matrix which has only zeros on the diagonal and
below. Hence any product of at leastnany matriceg\ is zero. We get

m

MlMZ"'Mm:lD(AiJer): z A

i IC{1,...m},|l|<d I€
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We havelAi| < nand hence

T A < d@1-0 A < dd1-Dpll
] ]

for | # 0. Finally, we get
=1 /m\ L
IMiM32 -+ Mp| < d + Zl ( )dz('l)n'

(the summand is due to|ldg| = d). Since we assumma > 2d we have(T) < (™))
forall1<i<d-1.Hence, we get

MMy M| < d+ (d— 1) < dT1> G242,

a

Theorem 4.19.Let G be a finitely generated nilpotent group. THBNP (G) can be
solved in polynomial time.

Proof. Let G be a finitely generated nilpotent group. ThH@has a finitely generated
torsion-free nilpotent subgrou such that the indejG : H] is finite [95, Theorem
17.2.2]. By Theorem 4.4, it suffices to sol@VP(H) in polynomial time. Let”
be a finite generating set fét. There existgl > 1 such that the finitely generated
torsion-free nilpotent groud can be embedded into the grouip 4(Z) of unitrian-
gular (d x d)-matrices ovefZ [95, Theorem 17.2.5]. Lep : H — UTy(Z) be this
embedding. Len = max{|¢(a)| | ac I Ul ~}. Note thatn andd are constants in
our consideration.

If the wordw € (I U ~1)* is given by an SLPA = (V,[  UT "1 Srhs) in
Chomsky normal form of sizen, we can evaluate the SLP bottom-up in the group
UTy(Z) as follows: For every variablé € V we compute the matrig (val(A)). If
rhgA) = BC and the matriceg (val(B)) and¢ (val(C)) are already computed, then
¢ (val(A)) is set to the product of these two matrices. Sihey (A)| < |w| < 2™,
Proposition 4.18 implies

m ,
|¢(val(A))| <d+(d—1) (dz— 1) g2d-2)pd-1  o0(m)

Hence, every entry in the matrig(val(A)) can be represented wittf(m) bits.
Therefore, the evaluation can be accomplished in polynidima. 0O

By [9], the automorphism group of a finitely generated niguatgroup is finitely
generated (even finitely presented) and hence, by TheorEdnhés a polynomial
time word problem.
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4.8 Wreath Products: Easy Word Problem but Difficult
Compressed Word Problem

In this section, we will present a gro@) for which the word problem can be solved
in logarithmic space, but the compressed word problecoléP-hard, and thus not
solvable in polynomial time unle$d= NP (which is equivalent t&®> = coNP). We
start with the definition of a wreath product of two groups:

Definition 4.20 (wreath product).Let G andH be groups. Consider the direct sum

K :@Hgv

geG

whereHjy is a copy ofH. We viewK as the set
H(©) = {f:G— H | f(g) # 1 for only finitely manyg € G}

of all mappings fronG to H with finite support together with pointwise multiplica-
tion as the group operation, i.€f; f2)(g) = f1(g) f2(g). The groupG has a natural
left action onH(®) given by

gf(a) = f(ga)
wheref € H(®) andg, a c G. The corresponding homomorphigmG — Aut(H(®))
is defined byp (g)(f) = gf forge G andf € H(®). The corresponding semidirect
productH (®) x4 G is thewreath product HG.* In other words:

e Elements oH G are pairg f,g), whereg € G andf ¢ H(®),
e The multiplication inH G is defined as follows: Letf;,01),(f2,02) € H1G.
Then(f1,01)(f2,02) = (f,0102), wheref (a) = f1(a) f2(g; *a).

The following intuition might be helpful: An elemeft,g) € H:G can be thought of
as a finite multiset of elements Bf\ {1} that are sitting at certain elements®{the
mappingf) together with the distinguished elemergt G, which can be thought of
as a cursor moving ife. If we want to compute the produtt;,g1)(f2,92), we do
this as follows: First, we shift the finite collection bf-elements that corresponds
to the mappind, by g; (the result is the mapping f2): If the element e H\ {1}
is sitting ata € G (i.e., f2(a) = h), then we removén from a and put it to the
new locationg;a € H. This new collection corresponds to the mappijg a —
fz(gila). After this shift, we multiply the two collections ¢f-elements pointwise:
Ifin a € G the elementd; andh; are sitting (i.e. f1(a) = hy andf;(a) = hy), then
we put the produdt; h; into the locatiora. Finally, the new distinguishe@-element
(the new cursor position) becomgsy,.

Assume thaH = (X | Ry) andG = (I | Rg) with NI = 0. Then we have

H1G= (SUT |RgURyU{[waw t.b] |abe Z,we (TUr 1" w#1inG}),

1 This wreath product is also called the restricted wreathlpeo since only finitely supported
mappings fronG to H are considered and not all mappings.
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see e.g. [125]. In terms of the above intuition, the reldteaw . b] (recall that
[x,y] = xyx~1y~1) expresses that the following two actions have the sameteffe

e (i) Moving the cursor to (thé&s-element represented bwj (i) multiplying the
H-element at the new cursor position wah(iii) moving the cursor back to the
origin, and (iv) finally multiplying theH-element at the origin with.

e (i) Multiplying the H-element at the current cursor with(ii) moving the cursor
tow, (iii) multiplying the H-element at the new cursor position wéthand finally
(iv) moving the cursor back to the origin.

If G andH are finitely generated, then albtx G is finitely generated. On the other
hand,H ! G is finitely presented if and only if one of the following twoses holds:
(i) H =1 andG is finitely presented or (iiH is finitely presented an@ is finite, see
[12]. The complexity of the word problem for wreath produetss studied in [164].

Theorem 4.21.If G is finitely generated non-abelian afd< H, thenCWP(GiH)
is coNP-hard.

Proof. It suffices to prove the theorem for the wreath prodde?. Letg,h € G
such thatgh # hg and letZ be generated by We prove the theorem by a reduc-
tion from the problem from Theorem 3.13. Hence, 4eandB be SLPs over the
alphabet{a,b}. Letn = |val(A)| andm= |val(B)|. Moreover, letA; (respectively,
B1) be the SLP that results frod by replacing every occurrence of the symhbol
by theZ-generatot and every occurrence of the symimby tg (respectivelyth).
Similarly, let A, (respectivelyB,) be the SLP that results froma by replacing ev-
ery occurrence of the symbalby t and every occurrence of the symltoby tg—!
(respectivelyth—1). From these SLPs is it easy to construct in logspace anGLP
such that

val(C) = val(Aq)t "val(By)t Mval(A)t "val(By)t™™

(SLPs fort~" andt~™ can be obtained in logspace by replacingsiandB, respec-
tively, all occurrences o& andb by t—1). Then, if there is no positione N such
thatval(A)[i] = val(B)[i] = b, we haveval(C) =1 in G1Z. On the other hand, if
there is a position € N such thawal(A)[i] = val(B)[i] = b, then, if (f,0) € G1Z is
the element represented by the weund(C), we havef (i) = ghg~*h~! + 1. Hence
val(C)#1inGZ. O

If Gis afinite group, then the word problem 8¢ Z can be solved in logspace. This
follows from [164], where it has been shown thaGif andG, are groups for which
the word problem belongs to the circuit complexity classifarm) NC* (and this
is the case for finite groups aff, then also the word problem f@1 G, belongs
to NC! C L. Hence, for a finite non-abelian gro@ the word problem foG:Z
belongs ta_ but the compressed word problencisNP-hard. Another group with
an easy word problem but difficult compressed word problefh@mpson’s group

F = (X0,X1,X2, ... | XnXk = XXn1 for all k < ny.

This group is actually finitely presentel:= (a,b | [ab~1,a 1ba],[ab 1, a 2ba?]).
The groupF has several other nice representations, e.g. by piecwiesa home-
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omorphisms of the unit intervgD, 1] or by certain tree diagrams, see [26] for more
details. Thompson'’s group is a subgroup of Thompson’s grol for which the
word problem belongs to the circuit complexity cla&€* [18], which satisfies
NL CACtCNC2CP.

Theorem 4.22.CWP(F) is coNP-hard.

Proof. It is known that the wreath produEt: Z is a subgroup oF [69]. SinceF is
non-abelian, the theorem follows from Theorem 4.21L.

If GandH are finitely generated abelian groups, then the wreath jgtdtiuG is
metabelianki(®) is a normal subgroup df G with (H:G)/H(®) = G). Hence, as
remarked earlietd ¢ G can be embedded into a direct product of linear groups and
CWP(HG) belongs tacoRP. This fact can be slightly extended:

Corollary 4.23. For every finitely generated abelian group H and every figitgn-
erated virtually abelian group H (i.e., H is a finite extensiof a finitely generated
abelian group) CWP(H G) belongs tacoRP.

Proof. Assume thaK is a finitely generated subgroup of indesn G. ThenH™ K
is isomorphic to a subgroup of inder in H: G (see e.g. [118]). IH is finitely
generated abelian théii" is finitely generated abelian too and theref6P(H™;
K) belongs tocoRP. Finally, we can apply Theorem 4.4 and the fact t@RP is
closed undexP. 0O

It is well known that ifN is a normal subgroup db, then alsgN,N] is a normal
subgroup of5. Hence, one can consider the quotient gr@/fiN, N]. The following
result of Magnus [122] has many applications in combinat@ioup theory.

Theorem 4.24 (Magnus embedding theorem).et K be a free group of rank k and
let N be a normal subgroup okFThen k/[N,N] embeds into the wreath product
ZX) (Fe/N).

We can use the Magnus embedding theorem to get:

Theorem 4.25.Let K be a free group of rank k and let N be a normal subgroup
of K such that k/N is finitely generated virtually abelian. Th&WP (F¢/[N,N])
belongs tacoRP.

Proof. By the Magnus embedding theorem, the gréyp[N,N] embeds into the
wreath producZ¥: (F/N). For the latter group, the compressed word problem be-
longs tocoRPby Corollary 4.23. O



Chapter 5

The Compressed Word Problem in Graph
Products

In this chapter we will introduce an important operation ombinatorial group
theory: graph products. A graph product is specified by afinitdirected graph,
where every node is labeled with a group. The graph prodecifgd by this group-
labeled graph is obtained by taking the free product of alugs appearing in the
graph, but elements from adjacent groups are allowed to agmrithis operation
generalizes free products as well as direct products. Ggemlps were introduced
by Green in her thesis [66]. Further results for graph présloan be found in [54,
75, 83, 129].

The main result of this chapter states that there is a polyalcime Turing-
reduction from the compressed word problem for a graph pttduhe compressed
word problems of the groups labeling the nodes of the grapk.material of this
chapter is taken from [74].

5.1 Graph Products

In this section, we formally define graph products and stagenain result of this
chapter.

Definition 5.1 ((in)dependence alphabet)An independence alphabet is a pair
(A1), whereA is an arbitrary set antl C A x A is an irreflexive and symmet-
ric relation onA. Thedependence alphabassociated with{A, 1) is (A,D), where

D = (Ax A)\ |. Note that the relatiod is reflexive.

Let us fix for this subsection &nite independence alphab@iV,E) with W =
{1,...,n} and finitely generated grouf® fori € {1,...,n}. LetG; = (I; | R;) with
[Nl =0fori# j.

Definition 5.2 (graph product). The graph productdefined by(W, E, (Gj)iew) IS
the following group:

81
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G(W.E, (Gj)iew) = <Lnjl'. | LnJRaU U {lab]lac Zi,bezj}>

i=1 =1 (ij)eE

In other words: We take the free product of all the gro@s. .., Gy but elements
X € Gj,y € Gj with (i, j) € E are allowed to commute.

Clearly, if everyG; is finitely generated (respectively, finitely presente@)tthe
same holds foG(W, E, (Gj)iew). If E=0, thenG(W, E, (Gi)icw) is the free product
G1xGax---xGp and if (W,E) is a complete graph, the&(W, E, (Gj)iew) is the
direct producf]iL; Gi. In this sense, the graph product construction generdtiees
and direct products.

Note that graph groups (see Example 2.5) are exactly théagrayplucts of copies
of Z. Graph products of copies @f/27 are known asight-angled Coxeter groups
see [56] for more details.

Recently, it was shown that the word problem for a graph pcodfigroups with
logspace word problem can be solved in logspace too [51]:

Theorem 5.3.Let (W, E) be a fixed finite independence alphabet and for every i
W let G be a finitely generated group. WP(G;) € L for all i € W, then also
WP(G(W,E, (Gj)iew)) € L.

Recall the definition of polynomial time Turing reducibjli® (Definition 1.29).
The main result of this chapter is:

Theorem 5.4.Let (W, E) be a finite independence alphabet and for everyV let
G;i be a finitely generated group. Then we have

CWP(G(W,E, (G))iew)) <F {CWP(G)) | i e W}.
By taking(W,E) = ({1,2},0), we get:

Corollary 5.5. Let G; and G, be finitely generated groups. ThEWP (G xGy) <P
{CWP(Gy),CWP(G)}.

By takingG, = Z (respectivelyZ/2Z) for everyi € W, we get:

Corollary 5.6. For every graph group G (respectively, right-angled Coret®up
G), CWP(G) belongs tcP.

Building on results from [155], Laurence has shown in [10#ttautomorphism
groups of graph groups are finitely generated. Recently,[Bélyproved that auto-
morphism groups of graph groups are in fact finitely preser@rther structural
results on automorphism groups of graph groups can be fauigBi 34]. Gen-
eralizing the main result from [102], it was shown in [43] thiae automorphism
group of a graph product of finitely generated Abelian grasgmitely generated.
In particular, the automorphism group of a right-angled &ex group is finitely
generated. From Corollary 5.6 and Theorem 4.6 it follows the word problem



5.2 Trace Monoids 83

for the automorphism group of a graph group or a right-an@lexeter group can
be solved in polynomial time. More generally, Theorem 4.6 & yield a poly-
nomial time algorithm for the word problem of a finitely geatd subgroup of
Aut(G(W,E, (Gi)icw)), Where every vertex grou@; has a polynomial time com-
pressed word problem. It is not clear, whether the full graup(G (W, E, (Gj)icw))
is finitely generated in case every grolipt(G;) is finitely generated.

Proposition 4.3, Theorem 4.4, and Corollary 5.6 imply tloaglvery finite exten-
sionG of a subgroup of a graph group (one also says@aeirtually embedds into
a graph group)CWP(G) belongs tdP. Recently, this class of groups turned out be
very rich. It contains the following classes of groups:

Coxeter groups (not only right-angled ones) [72]
one-relator groups with torsion [166]

fully residually free groups [166]

fundamental groups of hyperbolic 3-manifolds [2]

Hence, we can state the following corollary:

Corollary 5.7. For every group from one of the following classes the congaes
word problem belongs tB: Coxeter groups, one-relator groups with torsion, fully
residually free groups, fundamental groups of hyperbolio@&nifolds.

The existence of a polynomial time algorithm for the compegksword problem of
a fully residually free groups was also shown by Macdona®{[1

5.2 Trace Monoids

5.2.1 General definitions

Our approach to the compressed word problem for graph ptedlilt be based on

the theory of traces (partially commutative words). In tb#ofving we introduce
some notions from trace theory, see [49, 55] for more detadisus fix an indepen-
dence alphabé€t, |) and let(>,D) be the corresponding dependence alphabet, see
Definition 5.1. The sek may be infinite, but most of the time, it will be finite in this
chapter.

Definition 5.8 (trace monoid).Thetrace monoidVi(Z,1) is defined as the quotient
monoidM(Z,1) = >*/{(ab,ba) | (a,b) € |}. Its elements are callddaces

Trace monoids are known to be cancellative. We denofe/pyhe trace represented
by the wordw € >*. The tracgg]; is the empty trace; itis the identity of the monoid
M(Z,1) and we denote it simply bg. Since the relation&b, ba) do not change the
length or the alphabet of a word, we can defifygh([w];) = alph(w) and|[w},| =
|w|. Forae X letl(a) = {be X | (a,b) € I} be the letters that commute withand
D(a) = 2\ I(a). For tracess,v e M(Z,1) with alph(u) x alph(v) C | we also write
ulv.
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Definition 5.9 (independence clique)An independence cliquis a subsefA C >
such thata,b) € for all a,b € A with a+# b. For afiniteindependence cliqu#&, we
write [A]; for the tracdajaz - - - an]|, whereay, ay, . .., @, is an arbitrary enumeration
of A (the precise enumeration is not important).

The following lemma is known as Levi's Lemma. It is one of theshfundamental
facts for trace monoids, see e.qg. [55, p 74]:

Lemma 5.10 (Levi's Lemma).Let w,...,Un,V1,...,Vq € M. Then yuz---um =
ViVo - - - Vp if and only if there exist yy € M (1 <i <m, 1< j <n) such that

o Ui =W W2 W, forevery 1<i<m,
e Vj =W W Wnmjforevery 1< j <n,and
° (le,Wkg)El|f1§|<k§mandn21>ezl

The situation in the lemma will be visualized by a diagramhaf following kind.
Thei-th column corresponds 1, the j-th row corresponds tg;, and the intersec-
tion of thei-th column and thg-th row represents; ;. Furthermoren; ; andw
are independent if one of them is left-above the other one.

Vn|[W1n|W2n|W3n|...|Wmn

V3||W1 3|W2 3|W3 3. . . |Wm3
V2|[W1 2|W2 2|W3 2f. . . |Wm 2
V1|[W11|W2 1|W3 1. ..|Wm1

fur[uw|us|...] um|

A convenient representation for traces aependence graphsvhich are node-
labeled directed acyclic graphs. For a wave: >* the dependence grajihy, has
vertex set{1,...,|w|} where the nodéis labeled withw[i]. There is an edge from
vertexi to j if and only if i < j and(w[i],w[j]) € D. It is easy to see that for two
wordsw,w € Z* we have[w], = [w], if and only if Dy, andD,, are isomorphic
node-labeled graphs. Hence, we can spedkedependence graph of a trace.

Example 5.11We consider the following independence alphglxet ):
e——d——bD
Then the corresponding dependence alphabet is:
AWAN
b

C

d

We consider the words = aeadbacddandv = eaabdcaebThen the dependence
graphsDy, of u andDy of v look as follows, where we label the vertexith the
letteruli] (respectivelyy]i]):
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a——2a a——a
Dy e »p—»a Dy e— sp—wra—=h
d C—d—d d cC—»€

Note that we only show Hasse diagrams and hence omit fomiosténe edge from
the firstd to the lastd in Dy,.

Definition 5.12 (downward-closed set, convex setlet E,, be the edge relation
for the dependence grafh, for a tracew. A subsetvV C {1,...,|w|} is called
downward-closedf (i, j) € Eyandj € V impliesi € V. AsubsetV C {1,...,|w|}
is calledconvexif (i, j),(j,k) € Ej, andi,k eV impliesj € V.

Definition 5.13 (projection homomorphism).ForA C > we define therojection
homomorphisni, : M(Z,1) — M(A,IN(A xA)) by my(a) =€ forae 2\ A and
m(a)=aforacA.

With this definition, we get the following projection lemma:

Lemma 5.14.For u,v € M(Z,1) we have u=v if and only if 14 ) (U) = T4 p) (V)
for all (a,b) € D.

5.2.2 The Prefix and Suffix Order on Traces.

Definition 5.15 (prefix and suffix of a trace).Letu,v € M(X,). Thenu is aprefix
(respectivelysuffiy of vif there exists somes € M(X,1) such thauw= v (respec-
tively, wu=v) in M(Z, 1), for shortu <p v (respectivelyu <s V).

Prefixes of a trace exactly correspond to downward-closed subsets of the depen
dence graph af.

Definition 5.16 UV, ullsV, u\pV, u\sV). Theprefix infimurm(respectivelysuffix
infimum) ur, v (respectivelyusv) is the largest traces with respect to< (re-
spectively,=<s) such thatw <, u andw <, v (respectivelyw <s u andw <sv); it
always exists [41]. Withu\p v (respectivelyu \sv) we denote the unique traee
such thau = (Ul v)w (respectivelyu = w(ursv)). Uniqueness follows from the
fact thatM(Z,1) is cancellative.

Note thatu\pv=u\, (urpVv) andu\sv=u\s(ufsv).
Definition 5.17 (min(u) and max(u)). Foru e M(Z,1), we define

min(u) = {a€ X |a=pu} and
maxu) = {a€ X |a=<su}.
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Clearly, minu) and maxu) are finite independence cliques dnan(u)]; <, uand
[max(u)]; <su. Occasionally, we will identify the tracdsin(u)]; and [max(u)];
with the independence cliques nir) and maxu), respectively.

Example 5.18We continue Example 5.11 above. We have,v= [aeadbag =:w
and its dependence graph is:

Furthermore we have miw) = {a,d, e} and maxw) = {a,c}.
We also need the following lemma from [109]:

Lemma 5.19.For u,v € M(Z,1) we have u=,, v if and only if the wordt, 5, (u) is
a prefix of the wordt, p (v) for all (a,b) € D.

5.2.3 Trace Rewriting Systems.

Trace rewriting systems are defined analogously to seméeBystems (i.e., word
rewriting systems).

Definition 5.20 (trace rewriting system).A trace rewriting system Bver the trace
monoidM(Z,1) is a finite subset oM(Z,1) x M(Z,1) [49]. We define theone-
step rewrite relation—g C M(2,1) x M(Z,1) by:x —rYyif and only if there are
u,ve M(2,1)and(4,r) € Rsuch thak = ufv andy = urv.

As for semi-Thue systems, we say that the trace rewritinteayR is Noetherian
(confluent, locally confluent) i#~g is Noetherian (confluent, locally confluent). Let
IRR(R) = IRR(—R) (the set ofirreducible traceswith respect tdR) andNFgr(w) =
NF_(w) (if Ris Noetherian and confluent) be thermal formof the tracev. Trace
rewriting systems are studied in detail in [49].

5.2.4 Confluent and Terminating Trace Rewriting Systems for
Graph Products

Let us fix for this subsection &nite independence alphabéiV,E) with W =
{1,...,n} and finitely generated group for i € {1,...,n}. For pairwise disjoint
nonempty set€;, . ..,C, we define the independence relation

E[C1,....Cal= |J GixC; (5.1)

(i,j)eE
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on the alphabdt)! ; C;. Every independence clique @f)' ;Ci,E[Cy,...,Cpn]) has
size at mosh. We define a (possibly infinite) independence alphabet &4in1[00]:
Let
n
A =Gi\{1} and A=[JA.
i=1
We assume thady, ..., A, are pairwise disjoint. We fix the independence relation

| =E[Ar,.., A

on A for the rest of this subsection. The independence alph@hé} is the only
independence alphabet in this chapter, which may be infilditdVI(A, 1) we define
the trace rewriting system

R= U ({([aal]he) lae A}U{([ab);,[c]i) |a,b,ce A,ab=cin Gi}) (5.2)
i=1

Clearly,Ris terminating (it reduces the length of traces). The follaplemma was
shown in [100]:

Lemma 5.21.The trace rewriting system R is confluent.

Proof. SinceR is terminating, it suffices by Newman’s Lemma [134] to shoatth
Ris locally confluent, i.e., for ak s, s, € M(A,I) with s —r s; ands —gr s, there
existss' € M(A,l) with sy —5 s ands; —xS.

Thus, assume that—gr s ands —r S. Hence,s = tja;bju; ands = tjrju; for
i €{1,2}, where(ahi,ri) € R. Thus,r; € AU{e}. By applying Levi's Lemma 5.10
to the identityt;a;byu; = toasbous, we obtain the following diagram:

Uz [[W2| O1 V2
aby|lp2| t |02
t2 ||Vi| P1 W1

|| ta [asbs [uy |

Thus,w;lw,. Since the trace monoid is cancellative, we can assumevy = &
for the further arguments. Assume tlaath; € Ag, with g; € {1,...,n}. Let us first
consider the cage# €. Thus,01 = 02 = 0, 11,12 € AgU{€}, andclw; forall c € Ag
andi € {1,2}. Moreover, since; | p, but both traces only contain symbols fré,
we havepy =g orpp =€ and similarlygy =corgp=c. lf pr=p=q1 =0 =

€ thenajb; =t = ayby, and hencea; = ry. We gets; = Woriwy = wirowp = Sp.
Otherwise, sinc@yb; cannot be a proper factor agb, and vice versa, we obtain
up to symmetry the following diagram (recall that we asswme v, = €):

Uo (W2 bj_ &
a2b2 az b2 =l &
to & & W1

Tl abr ]
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Thus,s; = apWoriwy; = WiagriWe and s, = wirawobg = warabiwe. In the group
Gg we haveayr; = aa by = aphyby = robs. But this implies thas; ands, can be
reduced to the same trace. This concludes thetcgse

Now assume that= €. Thus, we have the following diagram:

Up W] O1 | €
aby|p2| € |%2
2 [€] P1 W
[tz Jaubsfus
If also p1 = €, the diagram looks as follows:

Us [[wolagby| €
bl p2| £ |
L [e] € |w

[t aabr ]

In particular,wigpla; implying wigzlri. We have to show tha = poworiwigp
ands, = wiroweag by can be reduced to the same trace. We gaver wirowors.
Moreover with the independencies listed above, we obtain

Sp = P2aWor1Wil2 = PaWoW1 02l = Wy P2QoWalp —Rr W1laWor;.

If one of the tracey, g1, or gy is empty, then we can argue analogously. Thus, we
may assume that;, p2, g, andgy are nonempty. It followg; = a3, g1 = by, p2 =

ap, andgy = by. Then all traces frorjwy, o, a3b1, axb, } are pairwise independent,
from which it follows again easily that; ands, can be reduced twyworir,. O

SinceR is terminating and confluent it defines unique normal formgerAatively
to Definition 5.2, one can define the graph prod&(¥, E, (Gi)iew) of G1,...,Gq
as the quotient monoid

G(W,E, (Gi)iew) = M(A1)/R.

The following lemma is important for solving the word proimén a graph product
G= G(W7 Ea (Gi)iEW):

Lemma5.22.Let uv € A*. Then u= v in G if and only ifNFr([u];) = NFr([V];).
In particular we have u=1in G if and only ifNFr([u];) = €.

Proof. The if-direction is trivial. Let on the other handv € A* and suppose that
u=v in G. By definition this is the case if and only [fij, and[v], represent the
same element fromI(A,1)/Rand are hence congruent. SifrReroduces a normal
form for elements from the same congruence class, this @sphatNFr([u];) =
NFR([V]|). O

On the trace monoi®I(A,1) we can define a natural involution' : M(A,I) —
M(A,1). For a lettera € Ay, a~* is the inverse ofa in the groupGg. This de-
fines an involution oA, which can be extended to the trace monbidA, 1) by

[ag---an) P =[ayt -t
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For the normal form of the product of twR-irreducible traces we have the fol-
lowing lemma, which was shown in [54] (equation (21) in thegfrof Lemma 22)
using a slightly different notation.

Lemma 5.23.Let uv € IRR(R) be irreducible traces frovI(A, ). Let x=u\sv 1,
y=V\pu 1 X =x\smaxx) and y = y\pmin(y). Then

NFgr(uv) = X' NFr(max(x) min(y))y’.

Before we prove this lemma, let us give some intuition. Simesdv both belong
to IRR(R), rules ofR can be only applied at the border ofandv. We haveu =
x(ursv—1) andv = (u=trpv)y. Moreover(urisv-1)~1 = (u=1rpv) and(u=1rpv)

is the longest tracp for which there exist tracesandy with u= xp~* andv = py.
This means thativ — xy, and in the tracety no rule of the form(jaa™1];, &) can
be applied. Hence, only rules of the forffabj;,c) € R can be applied and rule
application can only occur at the border betw&emdy.

Proof of Lemma 5.23s remarked above, we haue= x(urisv—1) andv= (u=1rp
v)y. Moreover,(ursv-1)=1 = (u=1rpv) and (u=1ri,v) is the longest trace for
which there exist tracesandy with u = xp~! andv = py.

With X' andy’ as defined in the lemma we get

uv= X maxx)(ursv-1)(u 1y v)maxy)y —x X max(x) maxy)y
— X NFr(max(x) min(y))y'.

Let g = NFr(maxx)min(y)) € IRR(R). It remains to show that'qy € IRR(R).
Note that also(,y € IRR(R) (sinceX is a prefix ofu € IRR(R) andy’ is a suffix of
ve IRR(R)).

Recall that magx) and mir(y) are independence cliques. Moreover, there cannot
exista € max(x) with a-1 € min(y), because thia could be moved téu=1r1,v). It
follows thatg contains a symbol fromA if and only if Az N (max(x) Umin(y)) # 0.

In order to get a contradiction, let us assume that there &b, r) € R and
tracesq, gz such tha'qy = giabgp. By Levi's Lemma 5.10 and’, g,y € IRR(R)
we obtain up to symmetry one of the following two diagrams:

2 ||S2|02|t2 2 (|$2|02|t2
abllale|b abllalb|e
Z||S1|01|ta Zy[|s1|01|ta

X|aly X|aly

Assume that,b € Ay (0 € W). Let us first consider the left diagram. Sinek;,
blgy, and q = 0102, we obtainalg and thusal max(x). Furthermore, from the
diagram we obtain alsbls,. Thus,als,, which impliesa € maxx). Together
with almax(x) it follows that a € max(x'max(x)) = max(x), which contradicts
almax(x).

Now let us consider the right diagram. Again we have max(x'). Further-
more,alqy, i.e.,blg;. Henceb € min(g) NAg. Recall thatj= NFr(max(x) min(y)).
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Hence, there are two possibilities: Either there exdStsmax(x) NAg orb € min(y)
andblmaxX). If & € maxx) N Ay, thenx = X' maxx) would contain the fac-
tor [ad];, which contradictx € IRR(R). If b € min(y) andblmaxx), then also
al max(x), which impliesa € max(x' maxx)) = maxx); the same contradiction as
in the previous paragraphO

Note that in Lemma 5.28nax(x)| as well as/min(y)| are bounded by = |W]|.
Hence, there are at mostrewrite steps in the derivation &fFg(maxx) min(y))
from max(x) min(y).

5.2.5 Simple Facts for Compressed Traces.

SLPs allow to represent traces in a succinct way. In this@ecive collect some
tools for manipulating SLP-represented traces. Thess twitllbe important in or-
der to solve the compressed word problem for a graph product.

Lemma 5.24.The following problem can be decided in polynomial time:

input: A finite independence alphab,|) and SLPsA andB over the terminal
alphabet>.
question: Doegval(A)]; = [val(B)], hold?

Proof. From A andB we can compute by Proposition 3.9(4) in polynomial time for
all (a,b) € D SLPsA,p andBgp with val(Aap) = Mg py(val(A)) andval(Bap) =
Tiapy(val(BB)). By Lemma 5.14, it suffices to cheekl(Aap) = val(Bap), which is
possible in polynomial time by Theorem 3.171

The previous lemma is slightly generalized by the followamg:

Lemma 5.25.The following problem can be decided in polynomial time:

input: A finite independence alphabe,|) and SLPsA andB over the terminal
alphabet>.
question: Doegval(A)]; < [val(B)]; hold?

Proof. ComputeA,, andB, |, as above. By Lemma 5.19, we have to check for all
(a,b) € D, whether the wordial(A,p) is a prefix of the wordral(B,p). But this
can be easily reduced to an equivalence check: Computeyn@uiial time/, , =
[val(Aap)| (using Proposition 3.9(2)) and an SIR , with val(Cap) = val(Bap)|:
Lap) (using Theorem 3.14). Finally check in polynomial time wiestval(Cyp) =
val(Aap) for all (a,b) € D using Theorem 3.17.0

Lemma 5.26.There is a polynomial time algorithm for the following prebi:

input: A finite independence alphaliét, | ) and an SLPA over the alphabek.
output: The setsax([val(A)];) andmin([val(A)],)
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Proof. Without loss of generality we can assume that (V, X, S rhs) is in Chom-
sky normal form. We show how to compute nipxl(A)];). First we compute
alph(val(A)) in polynomial time using Proposition 3.9(1). Fare alph(val(A))
let pa € {1,...,|val(A)|} maximal such thatal(A)[pa] = a. These numbers can
be computed in polynomial time by Proposition 3.9(5). Usiftgeorem 3.14 we
compute in polynomial time an SLB such thatval(B) = val(A)[pa+ 1 : Then

a € max[val(A)];) if and only if alalph(val(B)). This property can be checked
in polynomial time by computinglph(val(B)) (using Proposition 3.9(1)). Repeat-
ing this procedure for alh € alph(val(A)) we get the set majval(A)];). The set
min([val(A)];) can be determined similarly.O

For the following, recall the definition of a C-expressiorefbition 3.3).

Lemma 5.27.There is a polynomial time algorithm for the following prebi:

input: A finite independence alphaldét, | ) and an SLPA over the terminal alpha-
bet>.

output: C-expressionsr and 3 with Var(a) = Var(B) = {S} (where S is the
start variable ofA), [valy(a)]; = [val(A)]; \s max(val(A)];), and [valy(B)]i =
[val(A)]i \pmin([val(A)]r)

Moreover,|a| (respectivelyi3]) can be bounded bg'(|min([val(A)];)|-log,(|val(A)]))
(respectivelyZ'([max(|val(A)]))| - log,(|val(A)))).

Proof. We show how to compute the expressimrin polynomial time; for(3 one
can argue analogously. By Lemma 5.26 we can find the sef[m4)];) in poly-
nomial time. Letps € {1,...,|val(A)|} be maximal such thatal(A)[pa] = a for
ac max[val(A)];) and let{ky,...,km} = {pa| @a€ max(|val(A)];)} with ky < kp <
--- < km. These numbers can be computed in polynomial time by Propo$i.9(5).
We set

o=9:k —19ki+1:ky—1]---Gkm-1+1:km—1|Skm+1].

Then|valg (a)]; = [val(A)]; \smax([val(A)];). Since the positionls, . .., kn are rep-
resented in binary, each of them nee@fog,(|val(A)|)) many bits. Hencéa|
can be bounded by’(m-log,(|val(A)])). Sincem = |max([val(A)];)| we have
la| < &(Imax([val(A)]1)| -logy([val(A)])). O

5.3 The Compressed Word Problem for Graph Products

In this section, we will prove Theorem 5.4. Our techniqué gdneralize our algo-
rithm for free groups (Theorem 4.11). There are two aspadizh make the proof
of Theorem 5.4 more complicated than the proof of Theorerh fhdfree groups:

e We have to deal with partial commutation, i.e., traces exdtef words.



92 5 The Compressed Word Problem in Graph Products

e \We have to prove a preservation theorem: Whereas Theorelrdédls with a
fixed group (a finitely generated free group), e(i € W) in Theorem 5.4 are
arbitrary finitely generated groups and we have to reducedhgressed word
problem for the graph product to the compressed word prabfemthe groups
Gi.

Let us fix thefinite independence alphab@t/, E) with W = {1,...,n} and finitely

generated groupG; for i € {1,...,n} for the rest of this section. Let furthermore

2; be a finite generating set f@; for i € {1,...,n}. Without loss of generality we

can assume thaf does not contain the identity element and that =; = 0 for

i # j. We defineZ = |, 5;. Let G denote the graph produGt(W, E, (G;)icw) for

the rest of this section. Moreover, 18, A, |, andR have the same meaning as in

Section 5.2.4. Note thaf; C A forall1 <i<n.

Recall the definition of a 2-level PCSLP (Definition 3.24).r Ebe following
discussion, let us fix a 2-level PCSLP

B = (Up,Lo,ZUZ "1 Srhs)

over the terminal alphab&tu >~ (the monoid generating set of our graph product
G). We introduce several properties fbr

Definition 5.28 (pure). The 2-level PCSLH is pureif for every X € Lo there ex-
istsi € W such thatalg(X) € (5 UZ™1)" andvalg(X) # 1 in G (hencevalg(X)
represents a group element from theApet

For the following notations, assume tliais pure. Then, we can define the mapping
typeg : Lo — W by type (X) =i if valg(X) € (5 U Zifl)Jr. Fori e W let

Lo(i) = {X € Lo | typeg(X) =i}.

Then the setko(1),...,Lo(n) form a partition ofLo. Moreover, using (5.1) on page
86 we can define an independence relatipan Lo by

Iz = E[Lo(1),...,Lo(n)].

Definition 5.29 (nicely projecting).The 2-level PCSLI is nicely projecting if for
every subexpression of the form (a) (A C Lo) that appears in a right-hand side
of up(BB), there exist& C W with A = J;k Lo(i).

This condition will be needed in order to apply Lemma 3.16téN\tbat the number
of all setsJjck Lo(i) with K C W is bounded by 2= /(1) (the size ofWV is a fixed
constant in our consideration).

Definition 5.30 (irredundant). The 2-level PCSLI is irredundant if for allX,Y €
Lo such thatX # Y andtypeg(X) = typeg(Y) =i, we havevalg(X) # valg(Y) in
the groupG;.

One can think of a pure and irredundant 2-level PC8&L&s a PCSLP, where the
terminal alphabetis afinite sub$e A, with A= Uiy Gi \ {1} from Section 5.2.4:
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Takeup(B), replace every variabl € Lo(i) (i € W) by the group element froi@®;
represented byalg(X), and remove the lower pald(B). Moreover, each element
fromBNA; (i € W) is represented by a unique SLP over the terminal alphghet

Zi’l (namely the lower patio(B) with the appropriate start variable).¥ is pure

but not irredundant then, using the compressed word prabfemthe groupss;

as oracles, one can compute a pure and irredundant 2-le\&LPC such that
val(B) = val(C) in G as follows: IfB contains two variableX,Y € Lo such that

X £Y, typeg(X) = typeg(Y) =i andvalg (X) = valg(Y) in Gj, one has to replacé

in all right-hand sides b¥X. Note that this process does not change the set of upper
level variables of3.

Definition 5.31 (saturated).The 2-level PCSLB is saturatedf for every X € Lo
with type (X) = i, there exist¥ € Lo with typeg(Y) =i andvalg(Y) = valg(X)~*
in Gi.

If B is pure, irredundant and saturated, then for every Lo with typeg(X) =i,

there must be a uniqué € Lo with typeg(Y) =i andvalg(Y) = valg(X)~1in G

(we may havey = X in casevalg(X)2 = 1in Gj). ThisY is denoted byx 1, and we
define(Xg---Xn) "t =Xt X Hor Xy, ..., X € Lo.

Definition 5.32 (well-formed). The 2-level PCSLH is well-formed if it is pure,
irredundant, saturated, and nicely projecting.

Assume thaB is well-formed. We call a traces € M(Lo, I) reducedif it contains
no factor[Y Z;, withY,Z € Lo andtypeg(Y) = typeg(Z). Note that[X; - - - Xm]i, €
M(Lo, ) with Xy,...,Xm € Lo is reduced if and only ifa; - - - am|i € IRR(R), where
a; € A'is the group element represented g (X;) for 1 < j < m. A variable
X € UpU Lo is reduced if eitheiX € Lo or X € Up and the tracduval(X)]; is
reduced. FinallyB is reduced, if every variablg of B is reduced. We have:

Lemma 5.33.LetB be a well-formed and reduced 2-level PCSLP. The(B) = 1
in G if and only ifuval(B) = €.

Proof. Clearly, if uval(B) = ¢, then alsoval(B) = € and hencesal(B) =1 in G.
For the other direction we assume thatl(B) = X; - - - Xy for somem > 0. Since

B is pure there arey,...,am € A such thatval(X;) represents the group element
a fori e {1,...,m}. SinceB is reduced, we havl; - --am)| € IRR(R) and hence
NFr([a1---am)i) =[a1---am|i # €. From Lemma 5.22 it follows that; - --am # 1

in Gand henceal(B) #1inG. O

Together with Lemma 5.33, the following proposition can bedito solve the com-
pressed word problem for the graph prodGct

Proposition 5.34.Given an SLPA over U >~ we can compute a well-formed
and reduced 2-level PCSLUP with val(A) = val(B) in G in polynomial time using
oracle access to the decision proble@&/P(G;) (1 <i <n).
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Proof. Let A = (V4,Z U>"1,Srhs,) be the given input SLP oveX U1 We
assume without loss of generality thfais in Chomsky normal form. Moreover, we
exclude the trivial case that rh&S) € U Z~1. We construct a sequence of 2-level
PCSLP&A| = (Upj,LoJ-,ZUZ*l,Srhsj) (0 < j <r < |V4]) such that the following
holds forall 0< j <'r:

(a) Aj is well-formed.

(b) [Aj| <2-[A[+O(j-|A]) <2-[A[+ O(IVa]-|A])

(c) val(A) =val(Aj)inGforall0< j <r.

(d) If X € Up; is not reduced, then riisX) € (Up; ULoj)?.
(€) |uval(Aj)] < |val(A)]

Moreover, the final 2-level PCSLB = A, will be reduced. Let us writeype; for
typey, andl; for 1, in the following.

During the construction oA, from Aj, we will replace the right-hand side
Y Z(Y,Z € Up;ULoj) for a non-reduced (with respect f) variableX € Up; by
a new right-hand side of siz€(|A|[), so thatX is reduced in\j.1 andvaly, (X) =
ValAjJrl(X) in G. All other right-hand sides for upper level variables wid kept,
and constantly many new lower level variables will be added.

We start the construction with the 2-level PCSLP

({X eVy | thsy(X) e VZ}, {X eV, |thgy(X) e SUZ 1}, sUS L S rhsy).

Note thatSis an upper level variable in this system (which is required-level
PCSLPs) since we assume z(S) ¢ > U Z~1. Moreover, the system is pure and
nicely projecting (there are no projection operations ghtihand sides), but not
necessarily irredundant and saturated. The latter twoeptigg can be easily en-
forced by adding for every variab) with rhs, (X) =a € XU X! a variableX 1
for a~! and then eliminating redundant lower level variables. Twlting 2-level
PCSLPAy is well-formed and satisfigg\o| < 2- |A| andval(Ap) = val(A). Hence
(a), (b), and (c) are satisfied and also (d) and (e) clearlg.hol

For the inductive step of the construction, assume that we t@nstructed j =
(Upj,Loj, XU X1 Srhsj) and letX € Up;, Y,Z € Upj ULoj such that rhgX) =
Y Z, X is not reduced, but andZ are already reduced. In order to makeeduced,
we will apply Lemma 5.23. The following proposition, whosegf is postponed to
the next Section 5.3.1, makes this application possible.

Proposition 5.35.Let(W, E) be a fixed independence alphabet withAW1, ..., n}.
The following problem can be solved in polynomial time:

input: Pairwise disjoint finite alphabets,, ..., M, an SLPB over the terminal al-
phabet” = (J{'_, [7, and two variables Y and Z froi.

output: PC-expressions, 8 with Var(a) = Var(8) = {Y} such that the following
holds, where = E[l7,...,]:

(1) For every subexpression of the forx(y) in a and there exists KC {1,...,n}
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(2) [valp(a)]y = [valg(Y)]a \p[vals(2)]s
(3) [valg(B)]s = [valg(Y)]aMp [valz(2)]s
(4) |a|,|B| < &(log|val(B)|)

An analogous statement can be shown for the operatioaadrls which refer to
the suffix order on traces. Actually, we only need the PC-esgiona for the trace
difference.

In order to apply Proposition 5.35 to our situation we transf the upper
level partup(A;) into an equivalent SLEC over the terminal alphabéb; using
Lemma 3.16. This is possible, sindg is nicely projecting by (a). Every upper level
variable ofAj is also present i and we havealy,; (C) = valc(C) for everyC €
Up;. The SLPC can be constructed in time polynomially boundedup(A ;)| and
hence inA|. Note that we havéval(C)| = |uval(A;)| < |val(A)| < 214 by (e). We
can add taC symbolsy ~* andZ~* such thavalc (Y1) = valc (Y) ™t = uvaly, (Y) !
andvalc(Z 1) =valc(Z) ! = uvaly; (Z)~*. In caseY € Loj (respectivelyZ € Loj),
the symboly —1 (respectivelyZ 1) is already present (singg; is saturated).

Now we setlj = Loj(i) and apply Proposition 5.35 (and the analogous statement
for \s ands) to I; (i € W) andC to obtain two PC-expressiomsandf such that
lal,|B] < O(JA]), Var(a) = {Y}, Var(B) = {Z},and

valc(a))i; = [valc(Y)]i; \slvalc(Z )]y,
alc(B)]i; = [vale(Z)]i; \plvalc(Y )],

But due to the correspondence betwéemnd up(4 ), this meansuval denotes
uvaly;)
J

1

3

[uval(a)]i; = [uval(Y)];; \s[uvaI(Z)]G

[uval(B)]1; = [uval(Z)};; \p[uval(Y)];; .

Moreover, for every subexpression of the form(y) in a or 3 there existK C
{1,...,n} with A = {J;ck Loj(i). Intuitively, a and represent the parts afal(Y)
anduval(Z) that remain after cancellation in the graph group genetatele alpha-
betLoj. HenceJuval(a)];; [uval(B)]i; does not contain a factor of the for[hﬁX*l]”
for X € Loj. Using Lemma 5.26 we can compute the 3&tgx = max([uval(a)];;)
andVmin = min(uval(B)]i;) in polynomial time. In order to apply Lemma 5.26 we
have to compute, using Lemma 3.16, temporary SLPs for thelsvomal(a) and
uval(B). These SLPs are temporary in the sense that they are notchémdine
next iteration of the algorithm. Recall thétax andVmin are subsets dfoj. Since
every independence clique @foj, ;) has size at mosiW| = n= (1), we have
|Vmax|7 |Vmin| = ﬁ(l)-

Next, Lemma 5.27 allows us to compute in polynomial time R@ressions
a’,B’ such thavar(a’) = Var(a) = {Y}, Var(B’) = Var(B) = {Z}, and
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[uval(a/)]“ = [uval(a)]|j \s[Vmax]lj,
[uval(B)]i; = [uval(B)]i; \ p [Viin]i; -

The length bound in Lemma 5.27 implies that|,|3’| < &(]A|). Moreover, for
every 1<i < nwe must havéVmaxN Loj(i)| < 1 and|VminNLoj(i)| < 1. Let

Vinax = {X € Vinax | type;j (X) ¢ type;(Vimin) },
Vinin = {X € Vimin | type;j(X) ¢ typej(Vimax) }-

If (X1,X2) € Vimax x Vmin is such thatype;(X1) = type;(X2) = i, then by the def-
inition of [uval(a)];; and[uval(B)]i;, we must haveval(X1)val(Xz) # 1 in Gi (no
further cancellation is possible in the prodiwstal(a)};; [uval(B)]);). For each such
pair we add a new lower level variab¥, x, to Loj with right-hand sideX;X»; let
V' be the set of these new variables. Clegkly| < n= £(1). Finally, the right-hand

side forX is changed to the PC-expression
y= a/\/max\/\/min B,a (5-3)

where vy, (respectivelyV, vi,;,) is an arbitrary word that enumerates all vari-
ables fromV,,,, (respectively’, V... ). We havely| = [a’| + |B'| + O0(1) < O(|A]).
Clearly,y evaluates irG to the same group element\as,, (X). By adding at most
[V'| = €(1) many further lower level variables, we obtain a saturatesiesy. The
resulting 2-level PCSLP is not necessarily irredundaritthis can be ensured, as
explained in the paragraph after Definition 5.30, usinglerealls to the compressed
word problems for the vertex grouf®s (this does not increase the size of the 2-level
PCSLP). The resulting 2-level PCSLP is pure, irredundard, saturated, but not
necessarily nicely projecting, because of the new lowesl leariables fronV/’. But
note that these variables do not occur in the scope of a gimjeaperatons ; they
only occur in the word¥' in (5.3). Hence, we may add the new lower level variables
to the appropriate sets appearing in projection operatorthat the 2-level PCSLP
becomes nicely projecting as well. The resulting 2-leveBBR isA | 4; it is well-
formed. Its size can be bounded|ay;| + O'(|A|) <2-|A|+O(j-|A])+ O(|A]) <
2-1A|+0((j+1)-]A|); hence (a) and (b) above hold far, ;. Moreover, in the
groupG we haveval(Aj;1) = val(Aj) = val(A), hence (c) holds. Lemma 5.23 im-
plies thatX is reduced i ; which implies property (d) foA 1. Finally, for (e)
note thatuval(Aj 1)| < [uval(Aj)| < |val(A)].

After r < |V,| steps, our construction yields the well-formed and red@ckbel
PCSLPA; with val(A;) = val(A) in G. This proves Proposition 5.340

We can now easily finish the proof of Theorem 5.4.

Proof of Theorem 5.4.et A be an SLP over the monoid generating Set > 1
of the graph produdB. By Proposition 5.34 we can translateinto a reduced and
well-formed 2-level PCSLMB with val(A) = val(B) in G. This translation can be
done in polynomial time using oracle access to the probl@wiB (G;) fori e W. By
Lemma 5.33, we haveal(A) = 1 in G if and only if uval(B) = €. By Lemma 3.16
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we can translatep(B) in polynomial time into an equivalent SLP, for which it is
trivial to check whether it produces the empty word. ThisyeoTheorem 5.4. 0

5.3.1 Proof of Proposition 5.35

We will prove Proposition 5.35 in this section. Recall tha fixed the finite undi-
rected grapkiW, E) withW = {1,...,n}.

Proposition 5.35 (restated)Let (W, E) be a fixed independence alphabet withA
{1,...,n}. The following problem can be solved in polynomial time:

input: Pairwise disjoint finite alphabets,..., [, an SLPB over the terminal al-
phabet” = (J{'; [7, and two variables Y and Z froii.

output: PC-expressions, 3 with Var(a) = Var(B) = {Y} such that the following
holds, where & E[,..., My

(1) For every subexpression of the formp(y) in a or 3 there exists KE W with
A =Uiex Ii-

(2) [valg(a)]i = [valg(Y)]i \p[vale(Z)]i

(3) [valg(B)]i = [valg(Y)]i Mp[vals (Z)];

(4) |al,|B| < &(log|val(B)))

In the following, we will write \ andn for \, andrp, respectively. Moreover, if

A = ek [T, we will write 1 for the projection morphism, : " — M. Let us fix

r=Ul.hiandletl =E[,...,MH.

Letse r* be a word and) C {1,...,|s|} a set of positions irs. Below, we
identify the dependence grajih with the edge relation dbs. We are looking for
a succinct representation for the set of all positiprssich thaBlj € J: (j, p) € Ds.
This is the set of positionp for which there exists a path in the dependence graph
Ds from some positiorj € J to positionp. Fori € W define

pos(s,J,i) =min({[s|+1} U {p|1<p<]ss[p] € [i,3j € J:(],p) € D}).

Example 5.36To ease the reading we will consider the\&et {a, b, c,d, e} instead
of W = {1,...,5}. The dependence relati@nis:

VAN

Let Iy = {x} for x € W. We consider the following word, where we write the
position number on top of each symbol:



98 5 The Compressed Word Problem in Graph Products

123456 7 8 9101112131415
s=dbcdbacdbdeabdc

The dependence graph®looks as follows:

d——=d

a— \
><></

LetJ = {5,6,9}. We want to determingos(s,J,4). In the following picture of the
dependence graph sfve mark positions frond with boxes and all positiong ¢ J
with (j, p) € D for somej € J with circles.

The positions with letters fromy = {d} which depend from positions frodhare
{8,10,14} with the minimum 8, hencpos(s,J,4) = 8.
For the setl = {6,9} we get the following picture fopos(s, J,4):

d——=d

\/\/

Since there are no positions with letters fror= {d} which depend from positions
from J, it follows thatpos(s,J,4) = |§| + 1 = 16.

Instead ofpos(s, {p},i), we simply writepos(s, p,i). Note thatpos(s,0,i) = |s| + 1.
The definition ofpos(s,J,i) and the fact that symbols from a dgtare pairwise
dependent implies:

Lemma5.37.Let se * and JC {1,...,|s/}. Then for every positiofs < p < ||
the following two properties are equivalent:

e JjeJ:(j,p) €D}
e If s[p] € i then p> pos(s,J,i).

We will also need the following lemma:

Lemma 5.38.For a given SLPA, a positionl < p < |val(A)| and i€ W, we can
compute the positiopos(val(A), p,i) in polynomial time.
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Proof. We first need a few definitions: L& = (W x W) \ E be the dependence
relation for our fixed independence alphab#tE). A path in(W,D) (viewed as an
undirected graph) is callesimplg if it does not visit a node twice. Fgre W let
Z; be the set of all simple paths in the dependence alpt{s¥&) that start in the
nodej. The path, which only consists of the nofleelongs to#?;. The size of each
setZ; is bounded by ¥'/|W/!, which is a fixed constant in our consideration.

Let us now fixA, p, andi as in the lemma. By Proposition 3.9(3), we can
compute in polynomial time the unique nogle W such thatval(A)[p] € I;. For
a simple pathp € &; let us definepos(p,p) € {1,...,|val(A)| + 1} inductively.
Let p = (j1,]2,---,j¢) With j = j1. If £ =1, thenpos(p,p) = p. Otherwise let
p' = (j1,j2,---,]je—1) and letpos(p, p) be the smallest positiogp> pos(p, p’) such
thatval(A)[qg] € I, if such a position exists, otherwipes(p, p) = |val(A)| + 1.

We can compute the positigros(p, p) in polynomial time as follows: Assume
that the positiong’ = pos(p,p’) is already computed. Using Theorem 3.14 we
can compute in polynomial time an SL& with val(A’) = val(A)[d + 1 :]. Then
pos(p,p) is the smallest position imal(A’) that carries a letter frorfyj,. This posi-
tion can be computed in polynomial time using a straightmdwariation of Propo-
sition 3.9(5). This shows that the numhwess(p, p) can be computed in polynomial
time for every simple patp € ;. Finally, pos(val(A), p,i) is the minimum over
all these positions for all simple paths frgntoi. O

Let us now come back to the problem of constructing PC-esjas, which eval-
uates tolvalg(Y)]; \ [valg(Z)]i and [valg(Y)]; M [valg(Z)];. Let us first solve this
problem for explicitly given words. Then we will argue thatralgorithm leads to a
polynomial time algorithm for SLP-represented input wotdsnce, les,t € I * be
words. Our goal is to compute wordls, diff € * such thafinf], = [g], M1 ]t], and

[diff]y = [ \ [t];-
In Algorithm 6 (Compute-Infimum-Difference) we accumul#te wordsnf and
diff by determining for every position frodt, ..., |s|} (viewed as a node of the de-

pendence grapBs) whether it belongs téinf]; or [diff];. For this, we will store a
current positior? in the words, which will increase during the computation. Ini-
tially, we set¢ := 1 and inf = ¢, diff := €. At the end, we hav@nf], = [g); M]t], and
(diff]r = [s]i \ [t]i.
For a set of positionK = {/1,..., 4} C{1,...,|9} with {1 <l < --- <l we
define the word
SIK = s[q] -+ - S[y].

Consider a specific iteration of the while-loop body in algon Compute-Infimum-
Difference and let denote the value of the corresponding program variableeat th
beginning of the iteration. Assume in the following tiiff, C {1,...,¢— 1} is the

set of all positions fron{1,...,¢ — 1}, which belong to the differendg|; \ [t], i.e.,
they do not belong to the common prefg 1 [t];. Moreover, let

Inf, = {1,...,¢— 1} \ Diff,
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Algorithm 6 : Compute-Infimum-Difference

input :wordss,t e "
output: wordsinf, diff € I'* such thafinf]; = [s], 1 [t]; and[diff]; = [, \ [t],

(=1, (stores a position in 9
inf:=¢; (stores a word)
diff :=¢; (stores a word)
for i e W do

| pos(i):=|g+1; (stores positions in g
end

while ¢ < |s| do

U:={ieW|pos(i) <}
next := min({pos(i) | i e W\U}U{|s| +1});
jr=maxi|{—-1<i<next—1[infry (Sl 2 [th}; (%)
inf ;= inf my\y (s[¢: ]])
diff :=diff 1y ([0 j])s[j +1] ; (let gg+1=¢)
for i ¢ W do

| pos(i) :==min{pos(i),pos(s, j + 1,i)} ; (let pos(s|s+1,i)=]s+1)
end
li=j+2

end

be the set of all positions frodt, ..., ¢ — 1}, which belong to the trace prefig); 1
[t]i. Thus,Inf, is downward-closed iDs, which means thaf, j) € D andj € Inf,
imply i € Inf,. Moreover, we havés|Inf,]; < [s]; M t];. Note that the algorithm
neither stores the sé&liff, nor the setnf,. This will be important later, when the
input wordss andt are represented by SLPs, because theBigtsandInf, may be
of exponential size in that case /finf, diff, andpos(i) (i € W) denote the values of
the corresponding program variables at the beginning oftineent iteration of the
while-loop, then the algorithm will maintain the followirtgio invariants:

(11) inf = s]Inf,, diff = s|Diffy,
(12)  pos(i) = pos(s, Diff,i) forall i e W

In each iteration of the while-loop, we investigate the salmwof s from posi-
tion ¢ to the next position of the formpos(i), and we determine for each posi-
tion from some initial segment of this interval, whether &ldngs to[s|; M t]; or
[sli \ [t]i- More precisely, we search for the largest posiian{¢—1,... next — 1}
such thatfinf iy ([ @ j])]i is a trace prefix oft];. Recall thatinf = sfInf; is
the already collected part of the common trace prefix. We tgodé and diff by
inf :=inf y\y (S[¢ : j]) anddiff := diff 7y (s[£ : j])s]j + 1].

Before we prove that the algorithm indeed preserves theianvis (11) and (12),
let us first consider a detailed example.

Example 5.39To ease the reading we will consider the 8ét= {a,b,c,d, e, f,g}
instead oV = {1,...,7} together with the following dependence relat@n
C—d—9
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Let Iy = {x} for all x e W. We consider the following words:

1234567 89 1011121314151617
s=fbgccgbcceagfe fdg
t=bcgc fgbeaggfedTfbg

The dependence graphs[gf and]t]; look as follows:

f re—>f—>e—f
Ds //'a
[
g-+g »gQ \dag
f e—»f—>e—»f
D¢

g9—9—9 ~d—9

We want to determingpt ands\ pt using algorithm Compute-Infimum-Difference.
Initially, we set/ = 1, inf = diff = &, andpos(x) = |s|+1 = 18 for allx € W. Since
¢ < || the while loop is executed.

First iteration: The algorithm first sets
U=0 and next=18

Hence, we have
infyy(sf:next—1]) = [fbgccgbcceagfefdg
1234567 891011121314151617
Here, we denote with|” the position betweerinf and iy (S[¢ : next — 1]). The
algorithm computes the largest numbex( < 17 such thafinf g,y ([¢ @ j])]i is
a trace prefix oft];. From the dependence graphs above it can be easily seen that
j =7.We have
infiyu(si¢:j]) = [fbgccghb
diff ry(sfe: j))ej+1] = C,

which are the new values farf anddiff, respectively. Moreover, thes-values are
reset as follows:

pos(a) = pos(b) = 18, pos(c) = 8, pos(d) = 16,
pos(e) = pos(f) =18, pos(g) = 17.
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Finally, ¢ is set to 9. Sincé = 9 < |s| the while loop is repeated.

Second iterationThe algorithm first sets
U={c} and next=16.

We have
inf Ty 1 (S[9: 1) = eagfef

fbgccghb |
1234567 8 9101112131415
Searching for the largest positiédr- 1 = 8 < j < 15= next — 1 such that the trace
[inf Ty (S[¢ - j])]1 is a prefix offt]; givesj = 15. We have

inf My ()(s9:19) = fbgccgb | eagfef

diff 1y (59 : 19))5[16] = cc d,

which are the new values forf anddiff. Thepos-values do not change in the second
iteration, i.e., we still have

pos(a) = pos(b) = 18, pos(c) = 8, pos(d) = 16,
pos(e) = pos(f) =18, pos(g) = 17.

Finally, ¢ is set to 17. Sincé < |g| the while loop is repeated.

Third iteration: The algorithm first sets

U={cd} and next=17

We have
infy\y(s[17:16) = fbgccghb eagfelf
12345678 910111213141516
We find j = 16. We have
infiy\y(s[17:16) = fbgccghb eagfelf
diff iy (s[17 : 16)s[17] = cc d g

Also in the third iteration, theos-values do not change. Finallis set to 18. Since
¢ > || the algorithm stops and producpsf]; = [fbgccgbeagfelf and [diff]; =
[ccdd. These traces are indefst] M [t]; and]s; \ [t]i. This is visualized in the next
picture with[s|; M t]; on the left side of the dotted line afs}; \ [t]; on the right side.

i

f e—>f4.e4>f///

DS a‘//,/’/
b—»C—»C—»b(/
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Let us now prove the correctness of the algorithm. We staht invariant (11):
Lemma 5.40.Algorithm Compute-Infimum-Difference preserves invar{&h).

Proof. Let us take/ € {1,...,|s|} and assume that the invariants (I11) and (12) hold
at the beginning of an execution of the body of the while-ldgence,

e inf = s[Infy, diff = s[Diff,, and
e pos(i) = pos(s,Diff,,i) foralli € W.

We have to show that invariant (11) holds after the executibthe loop body as
well. As in the algorithm, let:

U = {i €W | pos(s, Diff,i) < £}, (5.4)
next = min({pos(s,Diff,,i) | e W\ U} U{|g +1}), (5.5)
j=max{i|{—1<i<next—1[infryy (s i)l = [th}. (5.6)

We have to prove the following statements:

e Apositionpe {¢,..., |} belongs to the common trace prefig M|t]; if and only
if s[p] € I for somei € W\ U.
e If j+1<|g,thenj+1 does not belong to the common trace prédjx[t]; .

For the first point, assume thslp] € 7, where/ < p < j andi € U. By definition of
U in (5.4), we havevos(s,Diffy,i) < ¢ < p. Lemma 5.37 implies that there exists a
path inDs from some position iliff, to positionp. Since positions iDiff, do not
belong to[s]; M|t];, positionp does not belong tfs); M t]; as well.

For the other direction, consider the set of positions

P={p|¢<p<j.9p] €Tliforsomei e W\U}.

We claim thatinf, UP is a downward-closed subsety. Since[s|(Inf, UP)]; =
[inf T\ (S[€ 2 j])]i = [t]i by (5.6), this implies that all positions fromindeed be-
long to[s]; M[t]);. Thatinf, UP is downward-closed iDs follows from the following
three facts:

e Inf; is downward-closed iDs.

e There does not exist a path from a nodeDiff, to a node fromP: As-
sume that such a path, ending jinc P, would exist. Lets[p] € [ with i €
W\ U. Lemma 5.37 impliegpos(s, Diff,i) < p. Moreover,i € W\ U implies
pos(s, Diffy,i) > ¢ by (5.4). Hence{ < pos(s, Diff;,i) < p < j < next, where the
last inequality follows from (5.6). But this contradictsetidefinition ofnext in
(5.5).

e There does not exist a path from a noddn..., j} \ Pto a node of: We have
{£,...;i}\P={p|£<p<j,9gp] €T for somei €U }. Lemma5.37 and the def-
inition of U from (5.4) imply that every node frofY, ..., j} \ P can be reached
via a path starting iDiff,. Hence, the existence of a path frqm...,j} \ P to
P contradicts the previous point.
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It remains to be shown that positignt- 1 does not belong to the common trace
prefix[g; M[t]; in casej + 1 < |g]. We distinguish several casesj i next — 1, then
j+1=next = pos(s,Diff,,i) for somei € W\ U by (5.5). Hence, there exists a path
from Diff, to j + 1 in Ds. Thereforej + 1 cannot belong t¢s|; M [t];. Now, assume
thatj < next—1.If §[j + 1] € I for somei € U, then (5.4) impliepos(s, Diff,i) <
¢ < j+1. Lemma 5.37 again yields the existence of a path ffdiffi, to j + 1.
Finally, lets[j + 1] € I; for somel € W\ U. Maximality of j in (5.6) implies that the
trace

[inf T (1€, § + 1)) )1 = [inf T (1€ 1))l + 1]

is not a trace prefix oft];. Since we already know that the tra@ef 7,y (S[¢ : j])]i
consists exactly of those positions frdr, ..., j} that belong to the common trace
prefix[s]; M t];, this implies tha + 1 does not belong tfs); M [t];. O

Lemma 5.41.Algorithm Compute-Infimum-Difference preserves invar{).

Proof. We consider a specific iteration of the while loop and assumag(1) and
(12) hold at the beginning of the loop, i.e.,

e inf = s|Inf,, diff = s[Diff, and
e pos(i) = pos(s,Diff,,i) foralli € W.

We infer that (12) holds after the execution of the loop. Uehext, andj be defined

by (5.4)—(5.6). Let’ = j + 2 > ¢ be the new value of after the execution of the
loop body and let € W. We have to show thatos(s, Diff,i) is the new value of
pos(i) after the execution of the loop body. Since we already knowdiyma 5.40

that (11) holds after the execution of the loop, we have

s|Diffy = diff iy (s[¢: j]) s[j + 1] = (sIDiff) iy (s[¢ = j]) s[j + 1],
which means that
Diffy =Diff,U{p|{<p<j,IFkeU:gpel}tu{j+1} (5.7)

(in casej = ||, we omit{j + 1} from the right-hand side). Hence, we have to show
that
pos(s, Diff#,i) = min{pos(s, Diffy,i),pos(s,{j+1},i)}. (5.8)

foralli e W. By (5.7),Diff,U{]j + 1} C Diff,, which implies
pos(s, Diff #,1) < min{pos(s, Diff,i), pos(s, j + 1,i)}.
It remains to show that
pos(s, Diff #,i) > min{pos(s, Diff,i), pos(s, j + 1,i)}.
The case thatos(s, Diff,i) = |g + 1 is trivial. Hence, assume thads(s, Diff i) <
|s| and consider a path Ds from a positionp € Diff» to a positiorg < |s| such that

s[q] € I;. It suffices to show that there is a path from a positiobiff, U{j + 1} to
p (then, there exists a path frobiff, U {j + 1} to q as well). By (5.7), we have
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Algorithm 7 : Compute-Compressed-Infimum-Difference

input : SLPB and two variable¥ andZ
output: PC-expressiong, 8 with val(a) = [val(Y)]; M[val(Z)], and
val(B) = [val(Y)]i \ [val(Z)];
(=1
a=¢
B:=c¢
for i e W do
| pos(i):=|val(Y)|+1
end
while ¢ < |val(Y)| do

U:={ieW]|pos(i) < ¢}
next := min({pos(i) [i e W\U}U{|val(Y)|+1})
jr=max{i | £—1<i<next—1 |val(aomy(Y[£:i])] < [val(Z)]i}; (%)
o= a0 Ty (VI )
B:=Bomu(Y[¢:]j])oY[j+1]; (let val(Y)[val(Y)|+1] =€)
for i e W do
| pos(i) :=min{pos(i),pos(val(Y), j+1,i)} ; (**)
end
=]+2
end

peDDiff,u{p|¢<p<j,dkeU:gp e i}u{j+1}.

The casep € Diff,U{j + 1} is trivial. Hence, assume that< p < j ands[p] € lk
for somek € U. From (5.4), we gepos(s, Diffy,k) < ¢ < p. Lemma 5.37 implies
that there exists a path frobiff, top. O

Lemma 5.42.The number of iterations of the while-loop in algorithm Cartg
Infimum-Difference is bounded B¥/|+1=n+1= 0(1).

Proof. We claim that in each execution of the loop body except forltis¢ one,
the setU = {i € W | pos(i) < ¢} strictly grows, which proves the lemma. Let us
consider an execution of the loop body. Note that for everyV, positionpos(i)
cannotincrease. There are two cases to distinguigh<Ifiext — 1, then the symbol
[j + 1] must belong to some alphab®&twith i € W\ U due to the maximality of
j in line (*) of the algorithm. Clearlypos(s,{j+1},i) = j + 1, hencepos(i) will
be set to a value j + 1 in the loop body. Since the new valdavill be j + 2, the
new selJ will also containi, i.e.,U strictly grows. Ifj = next — 1 < |g|, then again,
sincej+ 1= next = pos(i) for somei € W\ U and the new valué will be j+2,
the sel strictly grows. Finally, ifj = next — 1= |g|, then? will be set to|s| 4+ 2 and
the algorithm terminates.Ol

Algorithm Compute-Infimum-Difference for computifg \ [t]; and[g], M [t]; leads

to Algorithm 7 (Compute-Compressed-Infimum-Differeneefjch computes PC-
expressions for (we writeal for valg in the following) [val(Y)]; M [val(Z)]; and
[val(Y)]i \ [val(Z)];. For better readability we denote the concatenation ojoerat
in PC-expressions by in Algorithm 7. The idea is to consider the statements
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for updatinginf anddiff in algorithm Compute-Infimum-Difference as statements
for computing PC-expressiors and 8 with [val(a)]; = [val(Y)]; M [val(Z)]; and
[val(B)]; = [val(Y)]i \ [val(Z)]. So, (2) and (3) from Proposition 5.35 are satisfied.
Moreover, property (1) follows directly from the constriact of a andf3. For the
size estimate in (4), note that by Lemma 5.42and are concatenations @f(1)
many expressions of the formx (Y[p1, p2]). Moreover, each of the positiops and

p2 is bounded byval(Y)| < |val(B)| and hence needs onl(log|val(B)|) many
bits.

It remains to argue that Algorithm 7 can be implemented shel it runs in
polynomial time. By Lemma 5.42, the number of iterations loé toop body is
bounded by the constajW/| + 1. Hence, it suffices to show that a single iteration
only needs polynomial time. The conditidral(a o myy\y (Y[ : j]))li = [val(Z)]i in
line (*) of Algorithm 7 can be checked in polynomial time by rena 5.25. For
this, note that by Lemma 3.16 we can compute in polynomiat t&m SLP for the
word val(a o miy\y (Y[¢ : j])). Hence, the numberin line (*) can be computed in
polynomial time via binary search in the same way as in thefwbTheorem 4.11
for free groups. Finally, the positigsos(val(Y), j +1,i) in line (**) of Algorithm 7
can be computed in polynomial time by Lemma 5.38. This cahedithe proof of
Proposition 5.35 and hence the proof of Theorem 5.4, whi¢chasmain result of
this chapter.



Chapter 6

The Compressed Word Problem in
HNN-Extensions

In this chapter we prove two further important transfer tieees for the compressed
word problem:

e The compressed word problem for a multiple HNN-extensioa bfase group
H over finite associated subgroups is polynomial time Tureducible to the
compressed word problem féf.

e The compressed word problem for an amalgamated producbapdi; andH;
with finite amalgamated subgroups is polynomial time Tusnieducible to the
compressed word problems fdg andH,.

“HNN” stands for the authors Higman, B.H. Neumann and, H. iNaan of [78],
where they introduced HNN-extension. An HNN-extensiongedfied by a base
groupH and two isomorphic subgroupsandB (the associated subgroup) together
with an isomorphismp : A — B. One would like to extend this isomorphism to
an automorphism ohl. But in general this is not possible. BHt embedds into a
group on whichg is extended to an automorphism. This group is obtained flom
by adding a new generatblthe so called stable letter) together with the relations
t~tat = ¢(a) for all a € A. Thus, conjugation oA by t gives the isomorphisnp.
This operation can be generalized to multiple HNN-extemsiavhere several stable
letters are added in one step.

The amalgamated free product of two grodfhsandH, with isomorphic sub-
groupsA; andA; and an isomorphism : A; — Ay is obtained by identifying in the
free product; x Hz the elementa and¢ (a) for all a € A;.

HNN-extension and amalgamated free products are extramplyrtant in com-
binatorial group theory. For instance, finitely presentesligs with an undecidable
word problem (see Theorem 2.14) can be constructed frongfi@agps using a se-
ries of HNN-extensions. Bass-Serre theory [154] relatesatttion of a group on a
tree with an iterated decomposition of the group via HNNeastons and amalga-
mated free products. By Stallings famous end theorem [1&bTihitely generated
group has infinitely many ends (a certain geometric invanéa group) if and only
if the group can be written as an HNN-extension with finiteoagsted subgroups or
an amalgamated free product with finite amalgamated supgrou

107
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In contrast to general HNN-extensions and amalgamatediptedhe restriction
to finite associated (respectively, amalgamated) subgrsuglgorithmically tame.
It is not too difficult to show that the word problem for an HN#¢tensionG with
base group and finite associated subgroups is polynomial time Turidgc#le to
the word problem foH, and a similar result holds for amalgamated free products.
By the results of this chapter, this tameness also holdsdrcétmpressed setting.
The material of this chapter is taken from [73], which is pairispired by the work
from [117] on solving equations in HNN-extensions.

6.1 HNN-extensions

We introduce multiple HNN-extensions in this section. Lstfix throughout this
chapter @ase group H= (5 | R). Let us also fix isomorphic subgroups B; < H
(1 <i<n)andisomorphismé; : Aj — B;. Leth: (ZUZ*l)* — H be the canonical
morphism, which maps a wond € (X U Z~1)* to the element oH it represents.
Letty,...,t, symbols which do not belong to the grodp It is common to writeal
an abbreviation fot af.

Definition 6.1 (multiple HNN-extension). The (multiple) HNN-extensiodefined
by H andAs, By, ..., Ay, B, is the group

G=(Ht,... th|a =¢i(a) (1<i<nach)). (6.1)
The first important result about HNN-extensions is:

Theorem 6.2 (cf. [78]).For two words yv € (XU X~1)* we have u=v in G if and
only ifu=vinH. Hence, H is a subgroup of G.

In this chapter, we will be only concerned with the case thlagraupsAg, ..., A,
are finite and thak is finite, i.e.,H is finitely generated. In this situation, we may
assume that ;(AjUB;) C Z. We say tha#y andB; areassociated subgrousthe
HNN-extensionG. For the following, the notation&;(+1) = A; andAi(—1) = B;
are useful. Note thap® : Ai(a) — Ai(—a) for a € {+1,—1}.

Definition 6.3 (setRedH, ¢1,...,¢n) of Britton-reduced words). We say that a
wordu e (ZUZ Uty t; ... tn,ty1})* is Britton-reducedafter John Britton) if

u does not contain a factor of the fom®wt® for a € {1,-1}, we (SUZ~1)*
andh(w) € Ai(a). With RedH, ¢4, ..., ¢n) we denote the set of all Britton-reduced
words.

For a wordu € (U X 2 U {tg,t; ;... ,ta,t;1})* let write 7g(u) for the projec-
tion 7T{tl’t]?17m’tn’tn—l}(u) of u'to the alphabefts,t; %, ..., tn,t; 1}, see Definition 3.1.
The following lemma provides a necessary and sufficient itimmdfor equality of
Britton-reduced words in an HNN-extension, it follows éadrom [119, Theo-
rem 2.1]:
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t92 t‘a3

01 up i2 uz i3 U3 194
i1 ig
Uo Ug
C1 C2 C3 Ca Cs Ce
Vo Va
ag Y Y v ag
§ 1 \Z1 192 2 193 V3 f; 4
12 13

Fig. 6.1 Avan Kampen diagram for the identitit " ust; 2 Unt; > Ut Us = votﬁlvltﬁzvztﬁ3V3tﬁ‘v4
in the HNN-extensionH, ty,....t, | i = ¢i(a) (1 <i < n,acA)). Light-shaded (respectively,
dark-shaded) faces represent relationd iftespectively, relations of the forot” =t ¢ (c) with
ceA(a)).

Lemma 6.4.Let u= uoti‘i’lul---ti‘:é uy and v= votﬁlvl---tﬁ:“vm be Britton-reduced
words such thatgl...,Us, Vo, ...,Vm€ (ZUZ"Y)* ag,...,ap,B1,...,Bm € {1, -1},
andig,..., iz j1,---, jm € {1,...,n}. Then u=v in the HNN-extension G from (6.1)
if and only if the following hold:

o 715(U)=TE(V) (i.e.,=m, k= jx, anday = P for 1 <k < ¥)
e there existg,...,Com € Ur_;(AcUBy) such that:

— WCkr1 = CokVk in H for 0 < k < ¢ (here we setg= Cyp, 1 =1)
— Cx-1€ Ay (ax) and ox = ¢ (Cok—1) € A (—ai) for L< k< £

The second condition of the lemma is visualized in Figureb§.a van Kampen di-
agram foruv—1. The elementsy, ..., Cy, in such a van Kampen diagram will be also
called theconnecting elementblote that Theorem 6.2 is an immediate consequence
of Lemma 6.4 since every worde (XU X ~1)* is Britton-reduced.

We give a proof of Lemma 6.4, following [50]:

Proof of Lemma 6.4If a van Kampen diagram as in Figure 6.1 exists, then clearly
u=vin G. For the other direction let us define the infinite alphdbet H \ {1} U
{t,t=1}. For every 1<i < nlet X (resp.Y;) be a traversal for the cosets Af
(resp.,B;). This means that evelly € H can be uniquely written ds = ax (resp.,
h=hy) forae A andx e X (resp.b € B; andy €Y;). We can assume tha&lX NY;

for all 1 <i < n. We define an infinite semi-Thue syste®rover " by the rules
below, where K i <n,g,he H\ {1},ac A\ {1},be B\ {1},xe€ X, andy € Y.
Moreover, forg,h € H\ {1} we denote withg- h either the empty word in case
g=h"torthe producgh< H\ {1}. Similarly, the element & X NY; is identified
with the empty word.

itloe tloe (6.2)
gh—gh G(gi@y—ay tlax—d@ix (63
Then the following three points can be easily checked:

o */SX=G
e Sis Noetherian and confluent.
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e If wis Brittion-reduced ant —s W, thenw is Britton-reduced as well.

Now assume that = vin G. Hence, there exists € IRR(S) such thau —gw and

v —&w. But sinceu andv are Britton-reduced, only rules of the form (6.3) can be
applied in the derivations —§w andv —gw. These derivations can be seen as
van Kampen diagrams as in Figure 6.1 v andwv 1, respectively. By gluing
these diagrams together along tlgath, we obtain a van Kampen diagram as in
Figure 6.1. O

The semi-Thue system in (6.2) and (6.3) can be used to givdyaqmial time
Turing-reduction from the word problem f@ to the word problem foH in case
the groupsA; andB; are finite.

Example 6.5Consider the HNN-extensio® = (a,t | t~1a’t = a°). This is the
BaumslagSolitar group B8, 3). We haveG = (Z,t | t~Ixt = ¢ (x) (x € 2Z)), where
¢ : 27 — 37 is defined byp (2x) = 3x. The wordu = ta’t ~1a% is Britton-reduced,
whereas the word = ta’t~*at is not Britton-reduced. We hawe= a* =taf in G
andu =ta’tlatin G.

The following lemma can be used in order to compute a Britexhiced word for
the group element represented by the concatenation of tittmBreduced words.
Recall that for a free group an irreducible word equivalentite concatenation
of two irreducible wordsu andv can be computed by computing longest words
Ui =ap---am andvg = a,;l~ . aIl such thatu = ugu; andv = vgpvi. Thenugv, is
irreducible. The same idea holds in the HNN-extengidinom (6.1).

Lemma 6.6.Assume that &= uoti‘i’lul . 'tii"Un and v= votﬁlvl . ~tﬁ:‘vm are Britton-
reduced words. Let(d, V) be the largest number & 0 such that

(@) Aiy_g.1(An—d+1) = Ajg(—Bu) (We set A, (any1) = Ajp(—Bo) = 1) and
(b) there exists & Aj,(—fBq) with

t_an— d+1

B .. Ba _
in—d+1 tj " Va-atj =c¢

a
Un—d+1° & "UnVo

in the group G from (6.1) (note that this condition is satidfier d = 0).
Moreover, let €u,v) € Aj,(—Bq) be the element ¢ in (b) (for¢ d(u,v)). Then

ay On—d(uv) Bd(uw)+1 B
Uofi, “Ur -+~ ° o7 (Un—d(u) €U V) Va(u) g Va(uw) 417~ EiVim

is a Britton-reduced word equal to uv in G.

Lemma 6.6 is visualized by Figure 6.2.

6.2 The Main Computational Problems

The main goal of this chapter is to show that the compressed wmblem for
an HNN-extension of the form (6.1) is polynomial time Turiregducible to the
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Fig. 6.2 Lemma 6.6

compressed word problem féf. In fact, we will prove the existence of such a
reduction for a slightly more general problem, which weadtice below.

For the further consideration, let us fix the finitely genedagroupH together
with the finite subgroupA andB. Let X be a finite generating set féf. These data
are fixed, i.e., they will not belong to the input of computagl problems.

In the following, when writing down a multiple HNN-extensio

(Hty,...,ta|@" = ¢i(a) (1<i<nacA), (6.4)

we assume implicitly that everg; is in fact an isomorphism between subgroups
A; < A andB; < B. Hence,¢; can be viewed as partial isomorphism from our
fixed subgroup to our fixed subgroup, and (6.4) is in fact an abbreviation for the
group
(Hty,...,ta| @ = ¢i(a) (1<i<nacdome))).

Note that there is only a fixed number of partial isomorphifmom A to B, but we
allow ¢j = ¢; fori # jin (6.4).

Let us introduce several restrictions and extensior®WP (G). Our most gen-
eral problem is the following computational probl€faWP (H, A, B) (the letter “U”
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stands for “uniform”, meaning that a list of partial isombigms fromA to B is part
of the input):

input; Partial isomorphismg; : A— B (1 <i <n)and an SLP\ over the alphabet
Sustuit ety )

question:Doesval(A) = 1 hold in(H,ty,...,ty | @i = ¢i(a) (1 <i<nacA))?
The restriction of this probleld CWP(H, A, B) to Britton-reduced input words is
denoted bRUCWP(H, A, B). Itis formally defined as the following problem:

input: Partial isomorphismg; : A— B (1 <i <n) and SLP<A, B over the alphabet
Sustuftytyh . te,t Y} such thaval(A),val(B) € RedH, @1, ..., ¢n).
questionDoesval(A) = val(B) holdin(H,ty,...,th| i = ¢i(a) (1<i<n,acA))?
Let us now consider a fixed list of partial isomorphisfns..., ¢, : A— B. Then
RCWP(H,A,B, $1,...,¢n) is the following computational problem:

input: Two SLPsA andB over the alphabeX US 1 U {ty,t; %,. .. ,th,t; %} such that
val(A),val(B) € RedH, ¢1,...,¢n).

questionDoesval(A) =val(B) holdin(H,ty,...,ty| @i = ¢j(a) (1<i<n,acA))?
The main result of this chapter is:

Theorem 6.7.UCWP(H,A,B) < CWP(H).

The rest of Chapter 6 is concerned with the proof of TheoréMn 6.

Let us first consider the special case of the compressed wolzgm for an
HNN-extension of the form (6.1) witHl = A; =--- = A, =By = --- = By finite. In
this case, we can even assume that the finite grb(qgpresented by its multiplica-
tion table) is part of the input:

Lemma 6.8.The following problem can be solved in polynomial time:

input: A finite group H, automorphisngs : H — H (1 <i <n), and an SLR\ over
the alphabet HU {ts,t; ;.. .t t71}.

question: Doesal(A) = 1 hold in (H,ty,....ty | i = ¢i(h) (1 <i<nheH))?

Proof. Let s € (HU {t1,t; %,.. .tn,t;1})*. From the relators of the grou@ =
(H,ty,...,ta | Wi = ¢i(h) (1 <i < nheH)) it follows that there exists a unique
h € H with s= rg(s)h in G. Hences= 1 in G if and only if 7g(s) = 1 in the free
groupF (ti,...,ty) andh=1inH.

Now, let A be an SLP over the alphabitu {t;,t; ;.. .t,,t71}. Without loss
of generality assume that is in Chomsky normal form. We can produce an
SLP for the projectiorvg(val(A)) (see Proposition 3.9(4)) and check in polyno-
mial time whether this SLP produces a word that is the idgimithe free group
F(t1,...,tn), See Theorem 4.14. Hence, it suffices to compute for eveighlaiA
of A the uniqueha € H with val(A) = rg(val(A))ha in G. We compute the elements
ha bottom up. The case that the right-hand sideAds a terminal symbol from
HuU {ts,t; ;.. .tn,t; 1} is clear. Hence, assume that (Ag= BC and assume that
hg, hc € H are already computed. [@ we have:

val(A) = val(B)val(C) = rg(val(B))hg g (val(C))hc.
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Thus, it suffices to compute the unigbhes H with hgrg(val(C)) = r&(val(C))hin
G. Note that if7g (val(C)) =tt72 - --t", then

h= 0" (-- (3% (he)) ) = (4% 42") he).

The automorphisni = ¢gl - ¢ii’” can be easily computed from an SICPfor the
word 7% (val(C)) by replacing inC the terminal symbat; (respectivelyt(l) by ¢
(respectivelyqbfl). This allows to computé bottom-up and then to computéhg).
O

Note that the grougH,ty,...,ta | hi = ¢i(h) (1 <i < n,heH)) is the semidirect
productH x4 F, whereF =F(ty,...,ty) is the free group generated tay. . . ,t, and
the homomorphismp : F — Aut(H) is defined by (ti) = ¢;.

6.3 Reducing to Britton-Reduced Sequences

As afirst step in the proof of Theorem 6.7, we show that thelprab CWP(H, A, B)
is polynomial time Turing-reducible to the probldtd CWP(H,A,B), where all in-
put words are assumed to be Britton-reduced. Later, it vélirbportant that the
Turing-reduction fromUCWP(H,A,B) to RUCWP(H,A,B) does not change the
list of partial isomorphismgs,...,¢n: A— B.

Lemma 6.9.We haveUCWP(H,A, B) <f RUCWP(H,A B). More precisely, there
is a polynomial time Turing-reduction from the probl&@WP (H, A, B) to the prob-
lem RUCWP(H,A,B) that on input(¢1,...,¢n,A) only asksRUCWP(H,A,B)-
queries of the forni¢s, ..., ¢y, A, B’) (thus, the list of partial isomorphisms is not
changed).

Proof. Consider partial isomorphisngs : A— B (1 <i <n) and let
G: <Hatla"'7tn | ati = ¢i(a) (1 S I S n7a€ A))

Moreover, letA be an SLP in Chomsky normal form over the alphabet> 1 U
{tl,til, ...,tn,t71}. Using oracle access ®UCWP(H, A, B), we will construct a
CSLPA’ with val(A’) = val(A) in G andval(A’) Britton-reduced, on which finally
theRUCWP(H, A, B)-oracle can be asked whetheit(A’) = 1 in G. The system\’
has the same variables Ashut for every variableX, valy/ (X) is Britton-reduced
andval(A’, X) = valy (X) in G.

Assume thak is a variable ofA with rhgX) =Y Z, whereY andZ were al-
ready processed during our reduction process. Henl{®,) andval(Z) are Britton-
reduced. Let

Val(Y) = uOtiCl(lU]_ .. -'[SKU[ and vaI(Z) = Votﬁlvl " 'thnTVm-
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with up,...,Us,Vo,...,Vm € (ZUZH)* and ay,...,az,Br,...,B € {—1,1}. For
1 <k </ (respectively, I< k < m) let p(k) (respectivelyg(k)) be the unique po-
sition within val(Y) (respectivelyyal(Z)) such thatal(Y)[: p(k)] = uoti‘i’lul- . -ti‘i"

(respectivelyyval(Z)[: q(k)] = votﬁlvl---tﬁk). By Proposition 3.9(6) the positions

p(k) andq(k) can be computed in polynomial time fram

According to Lemma 6.6 it suffices to fintl= d(val(Y),val(Z)) € N andc =
c(val(Y),val(Z)) € AUB in polynomial time. This can be done, using binary search:
First, compute mifl,m}. For a given numbek < min{¢,m} we want to check
whether

ap_ ap
t, o ) UzVothll = 'kaltﬁk EA, 1 (Ar-kt1) = Aj(—B)  (6.5)

in the groupG. Note that (6.5) is equivalentt[f;fl1 = tj’kﬁk and

Jee A (—B) : (val(Y)[p(f —k+1) ) te = val(Z)[: q(k)]. (6.6)

The two sides of this equation are Britton-reduced wordstaechumber of pos-
sible valuex € A, (—p) is bounded by a constant. Hence, (6.6) is equivalent to a
constant number ®UCWP (H, A, B)-instances that can be computed in polynomial
time.

In order to find with binary search the valdéi.e. the largest > 0 such that (6.5)
holds), one has to observe that (6.5) implies that (6.5) latdds for every smaller
valuek; this follows from Lemma 6.4. Frord, we can compute in polynomial time
the positiong(¢ — d+ 1) andqg(d). Then, according to Lemma 6.6, the word

val(Y)[: p(¢ —d+1) — 1] cval(Z)[q(d) + 1 ]

is Britton-reduced and equal tal(Y)val(Z) in G. Hence, we can set
rhgX) :=Y[: p(¢ —d+1)—1]cZ[q(d)+1].

This concludes the proof of the lemmal

The above proof can be also used in order to derive the fatigwiatement:

Lemma 6.10.Let@,...,¢n : A— B be fixed partial isomorphisms. Then, the prob-
lemCWP((H.ty,...,t, | @ = ¢i(a) (L <i < n,acA))) is polynomial time Turing-
reducible to the problerRCWP(H,A, B, ¢1,...,¢n).

6.4 Reduction to a Constant Number of Stable Letters

In this section, we show that the number of different stadtiefs can be reduced to
a constant. For this, it is important to note that the assediaubgroup#,B < H
do not belong to the input; so their size is a fixed constant.
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Fix the constan® = 2-|A|! - 2/l for the rest of Chapter 6. Note that the num-
ber of HNN-extensions of the foritH, ta,... .t | ai = ¢i(a) (L<i<kacA))
with k < ¢ is a constant in our consideration. The following lemma stog
RUCWP(H,A,B) can be reduced in polynomial time to one of the problems
RCWP(H,A,B, y1,..., k). Moreover, we can determine in polynomial time, which
of these problems arises.

Lemma 6.11.There exists a polynomial time algorithm for the following:

input: Partial isomorphismsy,...,¢n : A— B and SLPsA,B over the alphabet
SUZtu{ty,th . ta,ty 1) such thawal(A),val(B) € RedH, ¢1,..., ¢n).

output: Partial isomorphismg, ..., g : A— B where k< d and SLPs\/, B’ over
the alphabes U XU {ts,t; %,.. .t t, } such that:

e Foreveryl <i <kthere existd < j < nwith i = ¢;.

e val(A'),val(B') € RedH, yn,..., k)

e val(A) =val(B) in (H,ty,....tn | & = ¢i(a) (L<i < n,aecA) if and only if
val(A’) =val(B) in (H,ty,... ,tx | a = ¢i(a) (1 <i<kacA).

Proof. Fix an instancé ¢y, ..., ¢n, A,B) of the problemRUCWP(H,A,B). In par-
ticular, val(A),val(B) € RedH, ¢1,...,¢n). Define the functiorr : {1,...,n} —
{1,...,n} by

T(i) = min{k| ¢ = ¢i }.

This mapping can be easily computed in polynomial time frdra sequence
#1,...,¢n. Assume without loss of generality that the rangeras {1,...,y} for
somey < n. Note thaty < |Al! - 2/A = $. For eveny; (1 < i < y) we take two stable
letterst; o andt; 1. Hence, the total number of stable letters is at ndostve define
the HNN-extension

G = <H7tl,07tl,lv---’tV,OvtV,l | ati‘k = ¢i (a) (1 <i< Vak € {07 1},&6 A))

This HNN-extension has2< & many stable letters; it is the HNN-extension
(Htg,... .t | & = gi(a) (L<i<kacA)) from the lemma.

It is straightforward to construct a deterministic ratibtransducer, which
transforms the input Word)ti‘ilultiZZUZtg3u3 MU (With Up, ..., Um € (ZUZ )"
and 1<iq,...,im < n) into the word

a a a. am
[7T(W) = Uoty, 1 Uty oUzteiy) 113t ) mmod 2Um:

Claim: Letu,v € RedH,¢1,...,¢n) be Britton-reduced. Then algp7](u) and
[7](v) are Britton-reduced. Moreover, the following are equingle

(@ u=vin(H,ty,....ta| @i = ¢i(a) (L<i<nach)
(b) [Z(u) = [Z](v) in the HNN-extensios’ and g (u) = 75(Vv).
Proof of the claimLetu = ugt us ---t;"u; andv = votﬁlvl . -tfn’:‘vm. The first state-

ment is obvious due to the fact tHa?] (u) does not contain a subword of the form
ti‘f’k\A/tﬁk for k € {0,1}, and similarly for[ .7 (v).



116 6 The Compressed Word Problem in HNN-Extensions

For (a) = (b) assume thati=vin (H,ty,....tn |ai = ¢i(a) (1<i<nac
A)). Lemma 6.4 impliesg(u) = 15(v) (i.e., £ =m, a1 = B1,...,0m = Bm, i1 =
i1,---,im = jm), and that there exists a van Kampen diagram of the folloviéng:

a t_0’2 U
a1 u i ) o
t'l 1.2, W tlm
Uo .
Co C3 Cy Cs -~ Com_1 (1—)
Vo P
a1 Y I o~
til Vi ta2' Vo tim

i2

The relators of5’ imply that the following is a valid van Kampen diagram@h

£ trino {am
1(iq),1 ui N e SRR 7(im),mmod 2
Um
C2 C3 |[Cs Cs --+  Com-1 ($)
Vm
ap 3 - NG SURNIUISIRRSSEE a
tr(il),l Vi tg(2i2),o V2 tr(rinm),m mod 2

Hence,[ 7] (u) = [Z](v) in G.

For (b) = (a) assume thdf.7](u) = [Z](v) in G and g (u) = 7E(Vv). We have
already argued thdt.7]|(u) and [.7])(v) are Britton-reduced. Henc,71(u) =
[ZT(v) in G"implies that there exists a van Kampen diagram of the fagrmSince
15(u) = 1£(v) we can obtain a diagram of the forfh) by replacing the dark-shaded
t-faces in($) by the correspondingfaces ofG. This proofs the claim.

By the previous claim].7 ] (val(A)) and[[.Z] (val(B)) are Britton-reduced. More-
over, SLPsA’ andB’ for these words can be computed in polynomial time by
Theorem 3.10. In casg(val(A)) # mg(val(B)) (this can be checked in polyno-
mial time by Proposition 3.9(4) and Theorem 3.17) we chobssé SLPs such that
e.g.val(A’) = t; andval(B’) = t; *. Hence,val(A’) = val(B') in G’ if and only if
val(A) = val(B) in (H,ty,....tn | & = ¢i(a)(L < i < n,a€ A)). This proves the
lemma. O

Due to Lemma 6.11 it suffices to concentrate our effort on leml of the form
RCWP(H,A B, ¢1,...,¢x), wherek < d. Let

Go=(H,t1,....tc|a = ¢i(a) (1<i<kacA) (6.7)

and let us choosee {1,...,k} such thatjdom(¢;)| is maximal. Without loss of
generality assume that 1. Let dor{¢1) = A1 < Aand letB; = ¢1(A1) < Bbe the
range ofg;. We writet for t; in the following and define

I_ZZU{'[z,...,'[k}.

We can write our HNN-extensioBq from (6.7) as
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GO = <K7t | at = 4)1(3) (aE Al))a (68)

where
K=(Ht,. . t|ad =¢i(a) 2<i<kacA)). (6.9)

The latter grougX is generated by . We may havéc= 1 in which cas&K = H. The
goal of the next three Sections 6.5-6.7 is to prove the fatigwrucial lemma:

Lemma 6.12.RCWP(H,A,B, ¢1,...,¢x) is polynomial time Turing-reducible to
the problemKRCWP(H,A, B, ¢, ..., ¢ ) andRUCWP (A, Aq,Ay).

6.5 Abstracting from the Base GroupK

Our aim in this subsection will be to reduce the compressed \wmblem forGq
from (6.8) to the compressed word problem for another gradygre we have ab-
stracted from most of the concrete structure of the basepdfan (6.9).

Let us consider an inpy#\, B) for RCWP(H,A,B, ¢1,.. ., ¢x) with k < 5. With-
out loss of generality assume thiat= 8. Thus, A andB are SLPs over the al-
phabets U TU{ty,t; .. ts,t5 1 = T ur ~Tu{t,t=1} with val(A),val(B) €
RedH, ¢1,...,95). Hence, we also hawal(A),val(B) € RedK, ¢1).

Without loss of generality we may assume thgfval(A)) = rg(val(B)). This
property can be checked in polynomial time using Propasi8®(4) and Theo-
rem 3.17. If it is not satisfied then we haval(A) # val(B) in Go. Hence, there are
m>0,ay,...,am € {1,—1}, and wordslg, Vp. . . , Um,Vm € (I U ~1)* such that

val(A) = ugt®uy - - -t*muy, and (6.10)
val(B) = vot@vy - - -t ™y, (6.11)

One might think that the number of different wonds(respectivelyy;) may grow
exponentially in the size of (respectivelyB). But we will see that this is actually
not the case.

Let us replace every occurrencetbf(a € {1,—1}) in A andB by aa't%aa?,
wherea e I is arbitrary. This is to ensure that any two occurrences witmls from
{t,t~1} are separated by a non-empty word oer " ~1, i.e., we can assume that
Uo, V0, - - -, Um,Vm € (MU ~1)* in (6.10) and (6.11).

Our first goal is to transformi (and similarlyB) into an equivalent SLP that
generates in a first phase a word of the fofgtf1 X, - - - t*mX,, whereX; is a further
variable that generates in a second phase the wazd /™ U ~1)*. This is similar
to the notion of a 2-level PCSLP from Definition 3.24. Assuthattthe SLPA =
(U, {t,t=1Yur ur-1srhs isin Chomsky normal form.

In afirst step, we remove every variables U from A such that rhéx) € {t,t~1}
by replacingX in all right-hand sides of by rhgX). Now, all right-hand sides of
A are of the forn¥ Z,t9Z, Yt?, orxe T U ~1, whereY,Z c U.

Next we split the set) of variables ofA into two parts:
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Uk={XeU|valX)e(rurbH*} and U =U\U2

The subscripK refers to the fact that every variable frdux defines an element
from the new base grould < Gy, whereas the subscriptrefers to the fact that
every variable fronlJ; generates a word wheié-generators as well asor t—1
occurs.

Now we manipulate all right-hand sides for variables fromin a bottom-up
process. Thereby we add further variableSo whereas the séi; will not change.
At each stage, the tuple

A¢ := (Up, {t,t 71} UUk, S rhsly,)

is a CSLP that generates a word frdldk ) "t (Uk )™ - - -tm(Uk ) *.

Consider a variablX € U; such that every variable in := rhgX) is already
processed, buX is not yet processed. Uf is of the formt?Z or Yt?, then there is
nothing to do. Now assume that=Y Z such thaty andZ are already processed.
Consider the last symbab € {t,t =1} UUk of valy, (Y) and the first symbobr €
{t,t=1} U Uk of val, (Z) (these symbols can be computed in polynomial time). If
eitherw € {t,t~1} or a € {t,t~1}, then again nothing is to do. Otherwise,a
Uk. We now setUx := Uk U{X'}, whereX' is a fresh variable with riX’) = wa.
Finally, we redefine riiX) :=Y[: £ — 1]X'Z[2 3], wherel = |valy, (Y)].

When all variables front); are processed, we transform the final CSAPIn
polynomial time into an equivalent SLP using Theorem 3.1¢t Wis denote this
SLP again byd\;. Moreover, let

Ak := Uk, T U L rhsiy,).
This is an SLP without initial variable. The constructiorpiies that
val(A¢) = Xot Xy - - - tImX, (6.12)

with Xo, ..., Xm € Uk andvaly, (Xc) = u;. Note that the number of differeis is

polynomially bounded, simply because the gt was computed in polynomial

time. Hence, also the number of differenin (6.10) is polynomially bounded.
For the SLPB the same procedure yields the following data:

e AnSLPB; = (W, {t,t 1} UV, S rhs]y,) such thaval(B;) = Yoto1Yy - - - tmYp,
e AnSLPBk = (Vk, U ~1 rhsly, ) without initial variable such tha, ..., Ym €
Vk andvalg, () = vi.

Without loss of generality assume that NVk = 0. LetWk = U UVk. We assume
that we have a single right-hand side mapping rhs with dotdainvt UUk U Vk.
Let C = Wk, Ul 1 rhsjw ), In the following, forZ € Wk we write val(Z) for
vale(Z) € (Tur—4H*.

Let us next consider the free prod&dik ) = Aq By. Recall tha# (respectively,
B,) is the domain (respectively, range) of the partial isorh@m¢;. Clearly, in this
free productd; andB; have trivial intersection (evenfip; "B | > 1inH). We now
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define the finite set of relators

& = {Zlclzz’lcgl | Z1,Z5 €Wk, C1,C0 € AU Bl,vaI(Zl) CL= sza|(22) in K}.

(6.13)

We can compute the sét in polynomial time using oracle accessG@WP(K) or

alternatively, by Lemma 6.10, using oracle acces®EWP(H,A B, ¢,,...,dx).

This is the only step, where we need oracle acce®CWP (H,A B, ¢o, ..., ¢x) in

the proof of Lemma 6.12. Note that the relaﬂzclzz’lcz’l stands for the relation

Z1C1 = CoZ>.

Consider the group

G = (F(Wk)*A1# Byt | &t at=¢1(a) (ac Ar))
= ((F(\Wk) A1 +B1)/N,t | @ = ¢1(a) (ac Ay)),

where
N — <éo>F(V\4()*A1*B]_

is the normal closure of in F(Wk ) * A1 * B;. We can define a homomorphism
Y:FWk)*xAgxBy — K

by ¢(Z) = val(Z) for Z ¢ Wk, (a) = aforac Aq, andy(b) = b for b € B;. Of
course, the restrictions @ to A; as well asB; are injective. Moreover, for every
relatorZ;c1Z, e, t € & we havey(Zi¢1Z,1c;t) = val(Zy)cpval(Z2) “*c;t = 1in
K. Thus,y defines a homomorphism

A~

U:(F(Wk)*Ap#B1)/N — K.

Moreover,A; NN = 1: If ac€ NNA; theny(a) € ¢ (N) = 1; thusa = 1, sincey is
injective onA;. Similarly, B "N = 1. This means tha; andB; can be naturally
embedded iiF (Wk ) A3 xB1) /N and¢1 : Ay — B3 can be considered as an isomor-
phism between the images of this embeddin@i(\Wk ) = A; xB1) /N. Therefore, the
above group3; is an HNN-extension with base grogp (Wk ) = A1« B1)/N < Gj.
Moreover, : (F (W) * A1 xB1)/N — K can be lifted to a homomorphism

l:l\l :G1— Gp=(K,t]| a = o1(a) (acAy)).

Here,Gg is from (6.8).

The idea for the construction @, is to abstract as far as possible from the
concrete structure of the original base gréup/Ne only keep thosK-relations that
are necessary to prove (or disprove) thdfA) = val(B) in the groupGy. These are
the relators fron®’.

Lemma 6.13.We haveval(At),val(Bt) € Red (F (Wk ) A1 B1)/N, ¢1).

Proof. Recall thaval(A),val(B) € Red K, ¢;). Consider for instance a factortX;t
of val(A¢) from (6.12). IfX; = ain (F (Wk ) x A1 x B1) /N for somea € Ay, then after
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applying® we haveval(X;) = u; = ain K. Henceyal(A) from (6.10) would not be
Britton-reduced. O

Lemma 6.14.The following statements are equivalent:

(@) val(A) = val(B) in Go from (6.8).
(b) val(At) = val(By) in Gy

Proof. For (b) = (a) assume that/aI(At) val(Bt) in Gi. We obtain inGg:
val(A) = @(val(Ar)) = @(val(Bt)) = val(B).

For (a) = (b) assume thatal(A) = val(B) in the groupGp. Sinceval(A) and
val(B) are Britton-reduced ang (val(A)) = rg(val(B)), we obtain a van Kampen
diagram of the form:

to1 Uy 92 U o an
Uo "
C1 C2 C3 Cy Cs -+ Com1
Vo )
e v 02 v e tam

In this diagram, we can replace every light-shaded faceesemting thé-relation
UiCgir1 = C2iVi, by aface representing the validrelationX;cyi 11 = C5Y;, see (6.13).
We obtain the following van Kampen diagram, which shows th#tA;) = val(B;)
in Gyp:

Xg 12 X

por A e U P2 an
o Xm
C1 C2 C3 Cy Cs --- Com_1 ( N )
Yo b
to1 ¥ R o

Y1 102 Y,
This proves the lemma.O

By Lemma 6.14, it remains to check, whethei(A;) = val(B;) in the HNN-
extensionGy, whereval(A¢) andval(B;) are both Britton-reduced.

6.6 Eliminating letters from By U {t,t~1}

Recall the Tietze transformations from Section 2.3. We c@tlie defining relations
b=t"1¢; 1 (b)t (b By\ {1}) of G; for Tietze transformations of type 4. For this,
note thatA; "By = {1} in the groupF (W ) * Ay * B1. In this way we eliminate in
the groupG; the generators frorB; \ {1}. After this transformation, we may have
apart from relations of the form

Zyag = apZy with ag,ap € Ay (6.14)



6.6 Eliminating letters fronBy U {t,t~'} 121
also defining relations of the forms

thflalt = axZy
Z1a1 = tflathZ
Zit tagt = ttantZ,,
whereay, a; € A (here and in the following, we implicitly assume all validatons

aiay = ato get the structure of the free fact®t). We can replace these relations by
relations of the following types

Zit ta; = apZot ™t (6.15)
tZ1a1 = aptZy (6.16)
tZit ta; = agtZot ™t (6.17)

and end up with the group
Gy = (F(Wk) % Aq,t | (6.14) — (6.17))
that is isomorphic t@;. Let us now introduce for eve € Wk the new generators
(zt™Y, [tZ), 1zt Y
together with the defining relations
[zt =2zt [tz] =tz, [tzt Y =tzt L. (6.18)

Formally, we make a Tietze-type-3 transformation. Thiewad to replace the defin-
ing relations (6.15)—(6.17) by

[Zit Yay = ap[Zot 1] (6.19)
[tZ1]a; = ap[tZy)] (6.20)
[tZyt Yay = apftZot 1 (6.21)

leading to the group
Gz = (F({Z,[zt7Y,[tZ],[tZt Y)|Z e Wk }) * At | (6.14),(6.18) — (6.21)). (6.22)
Finally, we can eliminatéandt—! by replacing (6.18) by
(tZ] = [zt Y7122, [tzt ™Y = [tz)z Y[zt Y, (6.23)
which is a Tietze-type-4 transformation. It yields the grou

Gs= (F({Z, [zt 1], [tZ],[tzt '] | Z e Wk }) * A1 | (6.14), (6.19)-(6.21), (6.23)
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Fig. 6.3 The transitions of the deterministic rational transduger

Since each transformation fro®y to G4 is a Tietze transformatioit; is isomor-
phic to G4. We now want to rewrite the SLP&; andB; into new SLPs over the
generators 06,4. This can be done with a deterministic rational transduZethat
reads a worKot 71 X;t92 X, - - - tmX,$ from the input tape, where $ is an end marker
and

e replaces every occurrence of a fadt§rwith o1 # —1 by the symboltX],

e replaces every occurrence of a fackt—* with a; # 1 by the symbo[Xt—1],
and finally

e replaces every occurrence of a fadi¥t —* by the symboltXit—1].

The set of states of the transduc®ris {¢,t,qs } U{Z,tZ | Z € Wk }, and the transi-
tions are shown in Figure 6.3 (for &l Z’ € W). The initial state i€ and the unique
final state isq;. By Theorem 3.10 we can construct in polynomial time SLP$ tha
generate the words7 || (val(A¢)$) and[[7 ] (val(B;)$).

Let Gs be the group that is obtained by removing the relations jérBie above
presentation of the groupy, i.e.,

Gs = (F({Z,[zt "], [tZ), [tzt ] | Z e Wk }) * A1 | (6.14), (6.19)~(6.2}) (6.24)

Lemma 6.15.The following statements are equivalent:

(@) val(A) = val(B) in Gg

(b) val(At) = val(By) in Gy

(©) [Z](val(A))$) =[] (val (Br)$) in Gq
(d) [Z](val(A)$) = [7](val(B)$) in Gs

Proof. The equivalence of (a) and (b) was stated in Lemma 6.14. Tingagnce of
(b) and (c) is clear sinc&; andG, are isomorphic and the transduc&rrewrites a
word over the generators & into a word over the generators@f,. Moreover, (d)
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implies (c) because we omit one type of relations, nameB3)6 when going from

Gs to G4. It remains to prove that (a) implies (d).Jél(A) = val(B) in G, then, as
argued in the proof of Lemma 6.14, we obtain a van Kampen dragf the form
(%) (page 120) in the grou@;. The boundary of every light-shaded face is labeled
with a relation fromé&. We obtain a van Kampen diagram 7] (val(A¢)$) =
[Z](val(B:)$) in Gs by removing all vertical edges that connect (i) target nodes
of t-labeled edges or (ii) source nodeg of-labeled edges. The boundary cycle of
every remaining face is labeled with a relator of type (6 dr4)6.19)—(6.21), which
are the relators oBs. An example is shown below.O

Example 6.16Let us give an example of the transformation from a diagrathef
form (3 ) into a van Kampen diagram for the groGg. Assume that the diagram in
G, is:

t1 Xt X

. t
X4
by a b3 ag a by
Y
N t
i1 Y2 i1 Y3
Then we obtain the following van Kampen diagram in the grGgp
[tXat™ 1] [Xot™ 1] e X3
X [t
a1 a az a4
Y
0 1 b Y [tY4]
['[Yl'[ ] Wztfl] Y3

Only the relations (6.14) and (6.19)—(6.21) are used indl@gram.

For the further considerations, we denote the SLPs for thels\p7 ] (val(A¢)$)
and[ 7] (val(B;)$) again withA andB, respectively. It remains to check whether
val(A) = val(B) in Gs. Let

¥ ={Z,]2t71,tZ),[tzt Y | Z e Wk}

and let us redefine the set of defining relatighas the set of all defining relations
of the form (6.14), (6.19)—(6.21). Thus,

Gs = (F(Z2)*A| &),

where every defining relation i#f is of the formZ;a; = a7, for 23,7, € 2 and
ap,ap € Al
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6.7 Transforming Gs into an HNN-Extension

By further Tietze transformations we show that the gr@sp= (F(2)x A1 | &)
is an HNN-extension with the base groAp and associated subgroupsandA;.
This will prove Lemma 6.12. To this end, let us take a relafea; = a,Z, with
Z1 # Zp. With a Tietze-type-4 transformation we can eliminZteby replacing it
with a; 17,a;. Subwords of the formad with a,a € A; that arise after this transfor-
mation can of course be multiplied out in the finite gra\ypWe carry out the same
replacementy — aglzlal also in the SLP4 andB, which increases the size of the
SLPs only by an additive constant, and repeat these stefes. gdlynomially many
Tietze transformations we obtain a group presentationyevakk defining relations
have the forn¥ = a;Zap, i.e.ap = Z*lailz. We can write this group presentation
as

Ge=(A1,Z1,...,Zm| Z *aZ = ¢i(a) (L<i<mac domgh))).

Note that every mappingy is a partial automorphism ofy; since it results from
the conjugation by some element in our initial group. Hefi&gis indeed an HNN-
extension oveA;.

We can now finish the proof of Lemma 6.12.

Proof of Lemma 6.12Ne have to show that the probleRCWP(H,A, B, ¢1,..., ¢k)

is polynomial time Turing-reducible to the probleREWP(H,A,B, ¢2, ..., ¢x) and
RUCWP(A1,A1,A1). Using oracle access to the probl&@WP(H,A, B, ¢, ..., ¢k)
(which was necessary for computing the set of defining @tat®” from (6.13)),
we have computed in polynomial time from a givREWP(H,A, B, ¢1,...,Pk)-
instance arlJCWP(Aq,A1,Aq)-instance, which is a positive instance if and only
if the originalRCWP(H,A,B, ¢1, ..., ¢x)-instance is positive. A final application of
Lemma 6.9 allows to redudéCWP (Aq, A1, A1) to RUCWP (A, A1, A1). This proves
Lemma6.12. O

6.8 Final Step in the Proof of Theorem 6.7

We now apply Lemma 6.11 to the probleRUCWP(A1,A1,A1) (one of the two
target problems in Lemma 6.12). An input for this problem cenreduced in
polynomial time to an instance of a probld®CWP (A, A1, A, Y, ..., Yk), where
U, WU Ay — Ag andk < 2|Aq]! - 2Rl < 2|A1- 2IAl = 5. Our current HNN-
extension is

Gy = (A, tg, ..., t | ai = Gi(a) (1<i<kaecdomu))).

We next separate the (constantly many) stable letters.,tx that occur in the
RCWP(A1,A1,A1, 1, ..., Yx)-instance into two setsty,...,tx} = S US, where
S = {ti [dom(gh) = A1} andS, = {t1,...,t} \ Si. Without loss of generality as-
sume tha&, = {ti,...,t,}. Then we can write the HNN-extensi®y as



6.8 Final Step in the Proof of Theorem 6.7 125
Gr=(Hty,... .t/ | =yi(a) (1<i<laecdomy))), (6.25)

where
H/ = <A1;t€+17"'atk | ati = Lpi(a) (€+1§ I S k,a€A1)>-

Note that (i)|[dom(gx)| < |Aq] for every 1< i < ¢ and that (ii)Ay = dom(y) for
everyl+1<i <k By Lemma 6.8CWP(H’) can be solved in polynomial time.
The groupH’ is in fact the semidirect produét x¢ F(t.:1,...,t), where the ho-
momorphismp : F(t;.1,...,t) — Aut(Aq) is defined byp (i) = . Recall also that

at the end of Section 6.4; was chosen to be of maximal cardinality among the do-
mains of all partial isomorphisnis, ..., ¢x. The following proposition summarizes
what we have shown so far:

Proposition 6.17.Let ¢1,...,¢x : A — B be partial isomorphisms, where<k 9,
A; = dom(¢1), and without loss of generalityd;| > |[dom(¢;)| for 1 <i <k. The
problemRCWP(H,A B, ¢1,...,¢x) is polynomial time Turing-reducible to the fol-
lowing (constantly many) decision problems:

(1) RCWP(H,AB, ¢2, ..., ¢)

(2) RCWP (A1 x¢ F,A1, A1, Y, ..., y), where F is a free group of rank at most
¢ : F — Aut(A;) is ahomomorphisnd,< J, andyn, ..., Y, : A — Ag are partial
automorphisms wittdom(¢x)| < |Aq|forall 1 <i<¢

Note that indeed, in (2) there are only constantly many sieut products of
the formA; x4 F and thatCWP(A; x¢ F) can be solved in polynomial time by
Lemma 6.8.

Now, we have all tools needed to prove the main theorem ottiapter:

Proof of Theorem 6.7y Lemma 6.9 and Lemma 6.11 it suffices to solve a prob-
lem RCWP(H,A,B,¢1,...,¢x) (with k < J) in polynomial time. For this we apply
Proposition 6.17 repeatedly, i.e., we apply PropositidrY o the two target prob-
lems (1) and (2) from the proposition again. Note that in #rgét problems one of
the two properties holds:

e The maximal size of an associated subgroup is smaller thidaeiimput instance.
e The maximal size of an associated subgroup is the same as inght instance
but the number of stable letters is smaller than in the inpstaince.

This implies that aftefA|- & = 2. |A| - |Al - 24 (which is a fixed constant) many
applications of Proposition 6.17 we have reduB&WP (H,A,B, ¢1, ..., ¢x) to the
problemsCWP(H) andCWP(C x4 F), whereC <A, F is a free group of rank at
mostd, and¢ : F — Aut(C) is a homomorphism. Note that this is still a polynomial
time Turing-reduction, since the composition of a constamber of polynomial
time Turing-reductions is again a polynomial time Turireghuction. O
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6.9 Amalgamated Products

In this section we prove a transfer theorem for the compdessed problem for
an amalgamated free product, where the amalgamated sytsgaoifinite. We will
deduce this result from our transfer theorem for HNN-extams Let us start with
the definition of an amalgamated free product:

Definition 6.18 (amalgamated free product)Let H; andH, be two groups with
subgroup®\; < Hj; andA; < Hy. Let ¢ : A; — Ay be an isomorphism. Thamal-
gamated free product ofHand H,, amalgamating the subgroupg and A by the
isomorphismp, is the groupgc = (Hy «Ha |a= ¢ (a) (a€ A1)).

Theorem 6.19.L.et G= (Hy«Hy | a= ¢(a) (a € A;)) be an amalgamated free
product of finitely generated groups;@nd & with Ay < Gz a finite subgroup.
ThenCWP(G) <F {CWP(H;),CWP(Hp)}.

Proof. Itis well known [119, Theorem 2.6, p. 187] th@tcan be embedded into the
HNN-extension
G := (HixHyt|a = ¢(a) (ac Ay))

by the homomaorphisn®d with
-1 B
D(x) = {t xt if xeH;

X if x € Ho.

Given an SLPA over generators db, we can compute in polynomial time an SLP
B with val(B) = @(val(A)), see Proposition 3.9(4). We obtain

val(A) =1iInG < ®(val(A)) =1in ®(G)
< val(B)=1inG.

By Theorem 6.7 and Corollary 5.8WP(G') is polynomial time Turing-reducible
to the problem&WP (H1) andCWP(Hy). O



Chapter 7
Outlook

We conclude this book with a few remarks about topics rel&deitie compressed
word problem for groups, which could not be covered for spaesons.

In this book, we focused on the compressed word problem foups. But it
makes perfectly sense to study the compressed word problefinitely generated
monoids as well. IM is a finitely generated monoid with a finite generating>Set
then the compressed word problem fdrasks, whether for given SLPs andB
overZ, val(A) = val(B) holds inM. As for groups, the complexity of this problem
is independent of the concrete generating set.

Implicitly, we have seen some complexity statements forp@ssed word prob-
lems for monoids. Theorem 3.17 states that the compressetprablem for a free
monoid can be solved in polynomial time, and Lemma 5.24 gdizes this state-
ment to trace monoids. In [113] it was shown that the comeictesord problem for
any finitely generated free inverse monoid of rank at leastt®dmplete for the level
MY of the polynomial time hierarchy. Inverse monoids are andrtent class of
monoids that have inverses in a weaker sense than groupssea@ 03]. The poly-
nomial time hierarchy is a hierarchy of complexity classesveenP andPSPACE
that is believed to be proper. In particular, the cIHébcontainsNP andcoNP, and
it is conjectured that these inclusions are proper. Thenargtiword problem for a
free inverse monoid can be solved in logarithmic space [115]

We have seen that the compressed word problem for a géocgn be used in
order to solve the word problem for the automorphism grAup(G) (or a finitely
generated subgroup éiut(G)), see Theorem 4.6. Compression techniques can be
also used in order to solve the word problem for the outerraatphism group
Out(G) (the quotient ofAut(G) by the inner automorphism group, which consists
of all conjugations — g'xgfor g € G). Schleimer proved in [151] that for a finitely
generated free group, the word problem foOut(F) can be solved in polynomial
time. For this, he proved that a variant of the compressegugany problem for
F can be solved in polynomial time, for which he used a polyrabiiine pattern
matching algorithm for compressed words, c.f. Section B1474], Schleimer’s
result was generalized to graph groups and graph products.

127
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In the proofs of Theorem 4.6—4.9, we basically used strdigbtprograms as
a compact representation of long words that occur as iniateedata structures
in algorithms. This leads to the idea of using other spemdlisuccinct data struc-
tures to store intermediate results. In the context of waobiems, we mentioned
power circuits in Section 2.5. These are succinct reprasiens of huge integers
(towers of exponents). Power circuits were designed toestile word probem in
groups like the Baumslag-Gersten group@@) = (a,b,t | babt =t,tat~! = a°)
or Higman’s groupHs = (ap,a,ap,a3 | aapa; * = a3, axa1a, . = af,agapay - =
a%,aoagagl = a%). In these groups, standard algorithms for HNN-extensi8mnis-(
ton reduction) yield big powe, and power circuits can be used to store the expo-
nentn succinctly, see [53, 132]. An interesting project for fi@uvork might be to
combine SLPs with power circuits, so that words of huge leifghd not just singly
exponential length as for SLPs) can be produced.

Apart from the solution of word problems, the formalism afagght-line pro-
grams turned out to be useful also for other algebraic datiproblems, in par-
ticular for the solution of word equations. word equationover a finitely gener-
ated monoidV (generated by the finite sét) is a pair of the form(U,V), where
U,V € (F uX)*. Here X is afinite set of variables. This word equatiosévablef
there exists a mapping: X — I * such thao (U) = o (V) in M, where we extend
to a morphism oril” UX)* by settingo(a) = aforac I'. The mappingr is called a
solutionof (U,V). In his seminal paper [123], Makanin proved that one cand#eci
whether a given word equation over a free monoid is solvatid,in [140] he ex-
tended this result to free groups. Since the work of Makahmupper bound on the
complexity of solvability of word equations (in free moneidnd free groups) was
improved several times. An important step was done by Plaskicand Rytter in
[141]. To state their result, we need a few definitions (wesgswefer to equations
in free monoids below). Lat be a solution for a word equatigb, V). We say that
o is minimal if for every solutiono’ of (U,V) we have|o(U)| < |o’(U)|. We say
that|o(U)] is the length of a minimal solution ¢, V).

Theorem 7.1 ([141]).Let(U,V) be a word equation and let# |UV|. Assume that
(U,V) has a solution and let N be the length of a minimal solutiofiLbV). Then,
for every minimal solutiow of (U,V), the wordog (U) can be generated by an SLP
of size @n?log?(N)(logn+ loglogN)).

Thus, minimal solutions for word equations are highly coesgible.

In combination with other ingredients, Plandowski used drben 7.1 to show
that solvability of word equations over a free monoid be®tgPSPACE [140].
This is the currently best known upper bound. Solvabilitywofd equations in a free
monoid is easily seen to Bé¢P-hard, and it has been repeatedly conjectured that the
precise complexity idlP too. In [91], Jez applied his recompression technique from
[88, 89] (see Section 3.4) to word equations and obtainedtamativePSPACE
algorithm for solving word equations over a free monoid.i@ueéz [70] proved that
solvability of word equations over free groups belongB8PACE as well. Further
results regarding the compressibility of solutions of wegiiations can be found in
[52].
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Acronyms and Notations

equivalence relation generated by, see p. 2
one-step rewrite relation, see p. 3 and 86
transition relation between configurations of
the Turing machind/, see p. 5

polynomial time many-one reducible, see p. 10
logspace many-one reducible, see p. 10
polynomial time bounded conjunctively reducible,
seep. 11

logspace bounded conjunctively reducible, see
p.11

polynomial time Turing-reducible, see p. 11
prefix order on traces, see p. 85

suffix order on traces, see p. 85

commutator ok andb, see p. 28

subgroup generated IB; see p. 28

normal closure oB C G, see p. 28

wreath product oH andG, see p. 78
semidirect product ok andQ, see p. 66

length of the words, see p. 1

number of occurrences of symlzoin the word

s seep.1

symbol at positioniin s, see p. 1

factor ofsfrom positioni to positionj, see p. 1
suffix of s starting at positiom, see p. 1

prefix of sending at position, see p. 1
equivalence class afwith respect to—g, see
p.3

see p. 53

mapping computed by the deterministic ratio-
nal transducey, see p. 46

prefix infimum of the traces andv, see p. 85
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accept
alph(s)
Aut(G)
block(s)
BPP

C-expression
C(M)

char(R)
coC

coRP
CSLP
CWP(G)

CWP(G,I")

D(a)
Drr

Dw

DFA
DSPACE(f)

DTIME(f)

Acronyms and Notations

suffix infimum of the tracea andv, see p. 85
unique tracew such thatu = (urfpv)w, see
p. 85
unique tracew such thatu = w(ufsv), see
p. 85
trace represented by the wongd see p. 83
set of finite words ovefr and free monoid gen-
erated by, see p. 1
set of finite non-empty words ovér, see p. 1
quotient of[ * by the semi-Thue systeR see
p.3
group presented by ,R), see p. 28
trace represented by the independence clique
A,seep. 84
empty word, see p. 1
projection homomorphism, see p. 41 and 85
set of accepting configurations, see p. 5
set of letters that occur in the wosdsee p. 1
automorphism group dg, see p. 65
see p. 53
bounded error probabilistic polynomial time,
seep. 18

see p. 42
Coxeter group defined by the matriM, see
p. 29
characteristic of the ring, see p. 19
set of all complements of languages from the
classC, see p. 9
co-randomized polynomial time, see p. 18
straight-line program with cut, see p. 42
compressed word problem for the gro@psee
p. 64
compressed word problem for the grd@pvith
respect to the generating getsee p. 63
set of letter not commuting with, see p. 83
Dehn function for the group presentatign, R),
see p. 37
dependence graph for the wosgsee p. 84
deterministic finite automaton, see p. 2
class of languages that can be decided by-an
space bounded deterministic Turing machine,
seep.8
class of languages that can be decided by an
f-time bounded deterministic Turing machine,
seep.8



Acronyms and Notations

E[Cy,...,Cil
F(r)
G(Al)

G(W,E, (Gi)iew)
GL4(F)
graph(%)

I(a)

init(x)

IRR(—)

IRR(R)

NFA
NL
NP
NSPACE(f)

NTIME(f)

P
7

PC-expression
PCSLP

PIT(R)

pos(s,J,i)
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see p. 86
free group generated by, see p. 27
graph group defined by the grapgh,l), see
p. 29
graph product, see p. 82
general linear group of dimensiahover the
field F, see p. 33
edge relation of the circui’, see p. 14
set of letter commuting with, see p. 83
initial configuration for inpui, see p. 5
set of irreducible elements with respect to the
relation—, see p. 3
set of irreducible words or traces with respect
toR, see p. 3and 86
deterministic logspace, see p. 9
language accepted by the NEA, see p. 2
language accepted by the Turing machivig
seep. 6
lower part of the 2-level PCSLR, see p. 61
trace monoid defined b§z, 1), see p. 83
maximal symbols of the traag see p. 85
minimal symbols of the trace, see p. 85
normal form ofa with respect to the relation
—,seep.3
normal form ofswith respect to the semi-Thue
system or trace rewrite systelR) see p. 3 and
86
nondeterministic finite automaton, see p. 2
nondeterministic logspace, see p. 9
nondeterministic polynomial time, see p. 9
class of languages that can be decided by an
f-space bounded nondeterministic Turing ma-
chine, see p. 8
class of languages that can be decided by an
f-time bounded nondeterministic Turing ma-
chine, see p. 8
deterministic polynomial time, see p. 9
simple paths in a dependence alphabet that
start at nodg, see p. 99

see p. 42
straight-line program with projection and cut,
see p. 42
polynomial identity testing for the ring, see
p. 20
see p. 97
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PSPACE
RAM

RCWP(H7A5 B7 ¢1a . 'a¢n)

Rec(Hv¢’1, RRE) ¢’n)
rhs

RP
RUCWP(H,A, B)
SAT

SLa(Z)

SLP
SUBSETSUM
UCWP(H,A,B)
up(A)

valZ

Var(e)

WP(G)
WP(G,I")

WSP(G)
WSP(G,In)

ZPP

Acronyms and Notations

polynomial space, see p. 9
random access machine, see p. 24

see p. 112

set of Britton-reduced words, see p. 108
right-hand side mapping of a circuit, see p. 14
randomized polynomial time, see p. 17

see p. 112

boolean satisfiability problem, see p. 17
special linear group of dimensiath over the
ring Z, see p. 75

straight-line program, see p. 42

subset sum problem, see p. 17

see p. 111

upper part of the 2-level PCSL&, see p. 61
evaluation mapping of the circu#’ in the al-
gebra«/, see p. 14

variables that occur in the expressiensee
p. 13

word problem for the groufs, see p. 32

word problem for the grouf® with respect to
the generating sé€t, see p. 32

word search problem for the gro@ see p. 40
word search problem for the gro@with re-
spect to the generating g€t see p. 39
zeror-error probabilistic polynomial time, see
p. 18
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2-level PCSLP, 61

accepting configurations, 5
algebra, 14

alphabet, 1

alphabet of a word, 1
amalgamated free product, 125
area, 35

arithmetic circuit, 19

automatic group, 29

automatic structure for group, 29
automorphism group, 65

boolean circuit, 16

bounded error probabilistic polynomial time,

18
Britton-reduced word, 108

C-expression, 42

characteristic of the rin&, 19
Chomsky normal form, 43

circuit, 14

circuit in normal form, 15

circuit value problem, 16
co-randomized polynomial time, 18
commutator, 28

complete language, 12
compressed word problem, 63
computable language, 7
computably enumerable, 6
computation of a Turing machine, 6
concatenation of words, 1
configuration, 5

confluent, 2

connecting elements, 109

convex set, 85

convolution of words, 29

Coxeter group, 29
Coxeter matrix, 29
CSLP, 42

decidable language, 7

Dehn function, 37

dependence alphabet, 81
dependence graphs, 84
derivation tree, 43

deterministic finite automaton, 2

deterministic rational transducer, 46

deterministic Turing machine, 4
DFA, 2
downward-closed set, 85

empty word, 1
expression, 13

factor of a word, 1

finite word, 1

finitely generated group, 28
finitely presented group, 28

free group, 27

free monoid, 1

free partially commutative grou, 29
free product of groups, 30

general linear group, 33

graph accessibility problem, 16
graph group, 28

graph product, 81

hard language, 12

height of a circuit, 14
hierarchical order of a circuit, 14
HNN-extension, 108

independence alphabet, 81

141



142

independence clique, 84
initial configuration, 5

irreducible element with respect te, 3

Index
quotient monoid, 3

RAM, 24

irreducible trace with respect to trace rewritingrandom access machine, 24

system, 86

irreducible word in free group, 27
irreducible word with respect to semi-Thue

system, 3

irredundant 2-level PCSLP, 92

language, 1
length of a word, 1
Levi's Lemma, 84
locally confluent, 2

logspace bounded conjunctively reducible, 11
logspace many-one reducibility, 10

logspace transducer, 10
lower level variables, 61
lower central series, 75

lower part of a 2-level PCSLP, 61

Magnus embedding theorem, 80

metabelian, 34

monotone circuit value problem, 16

Newman’s lemma, 3
NFA, 2

nicely projecting 2-level PCSLP, 92

nilpotent group, 75
Noetherian, 2

nondeterministic finite automaton, 2
nondeterministic Turing machine, 4

normal closure, 28
normal form of a trace, 86
normal form of a word, 3

one-relator group, 34

one-step rewrite relation, 3, 86

oracle Turing machine, 11

PC-expression, 42
PCSLP, 42
polynomial identity testing, 20

polynomial time bounded conjunctively

reducible, 11

polynomial time many-one reducibility, 10
polynomial time transducer, 10
polynomial time Turing-reducible, 11

prefix infimum, 85

prefix of a trace, 85
presentation of a group, 28
PRIMES, 16

problem, 7

projection homomorphism, 41, 85

pure 2-level PCSLP, 92

randomized polynomial time, 17
recompression technique, 53
recursive language, 7
recursively enumerable, 6
regular language, 2

relator of a group, 28
residually-finite group, 34
right-angled Artin group, 29

SAT, 17

saturated 2-level PCSLP, 93
semi-Thue system, 3
semidirect product, 66
simple path, 98

size of a circuit, 15

SLP, 42

space bounded, 8

special linear group, 74
SUBSETSUM, 17
successful computation, 6
suffix infimum, 85

suffix of a trace, 85

terminating, 2

Tietze transformations, 30
time bounded, 8

trace monoid, 83

trace rewriting system, 86
transducer, 6

Turing machine with output, 6

undecidable language, 7

undirected graph accessibility problem, 16

unitriangular matrix, 76

univariate arithmetic circuit, 19

universality problem for nondeterministic
finite automata, 17

upper part of a 2-level PCSLP, 61

upper level variables, 61

van Kampen diagram, 35
variable-free arithmetic circuit, 19

well-formed 2-level PCSLP, 93
word equation, 128

word problem, 32

word search problem, 38
wreath product, 78

zero-error probabilistic polynomial time, 18



