
Satisfiability of ECTL∗ with constraints

Claudia Carapellea,1, Alexander Kartzowa,b,2,∗, Markus Lohreyb

aInstitut für Informatik, Universität Leipzig, Germany
bDepartment für Elektrotechnik und Informatik, Universität Siegen, Germany

Abstract

We show that satisfiability and finite satisfiability for ECTL∗ with equality-, order-, and modulo-constraints
over Z are decidable. Since ECTL∗ is a proper extension of CTL∗ this greatly improves the previously known
decidability results for certain fragments of CTL∗, e.g., the existential and positive fragments and EF. We
also show that our choice of local constraints is necessary for the result in the sense that if we add the
possibility to state non-local constraints over Z the resulting logic becomes undecidable.

Keywords: temporal logics with integer constraints, ECTL*, monadic second-order logic with the
bounding quantifier

1. Introduction

Temporal logics like LTL, CTL or CTL∗ are nowadays standard languages for specifying system properties
in model-checking. They are interpreted over node labeled graphs (Kripke structures), where the node labels
(also called atomic propositions) represent abstract properties of a system. Clearly, such an abstracted
system state does in general not contain all the information of the original system state. Consider for
instance a program that manipulates two integer variables x and y. A useful abstraction might be to
introduce atomic propositions v−232 , . . . , v232 for v ∈ {x, y}, where the meaning of vk for −232 < k < 232

is that the variable v ∈ {x, y} currently holds the value k, and v−232 (respectively, v232) means that the
current value of v is at most −232 (respectively, at least 232). It is evident that such an abstraction might
lead to incorrect results in model-checking.

To overcome these problems, extensions of temporal logics with constraints have been studied. Let us
explain the idea in the context of LTL. For a fixed relational structure A (typical examples for A are
number domains like the integers or rationals extended with certain relations) one adds atomic formulas
of the form R(Xi1x1, . . . ,X

ikxk) (so called constraints) to standard LTL. Here, R is (a name of) one of
the relations of the structure A, i1, . . . , ik ≥ 0, and x1, . . . , xk are variables that range over the universe
of A. An LTL-formula containing such constraints is interpreted over (infinite) paths of a standard Kripke
structure, where in addition every node (state) associates with each of the variables x1, . . . , xk an element
of A (one can think of A-registers attached to the system states). A constraint R(Xi1x1, . . . ,X

ikxk) holds
in a path s0 → s1 → s2 → · · · if the tuple (a1, . . . , ak), where aj is the value of variable xj at state sij ,
belongs to the A-relation R. In this way, the values of variables at different system states can be compared.
In our example from the first paragraph, one might choose for A the structure (Z, <,≡, (≡a)a∈Z), where <
is the usual order on Z, ≡ is the equality relation,3 ≡a is the unary predicate that only holds for a. This

∗Corresponding author
Email addresses: carapelle@informatik.uni-leipzig.de (Claudia Carapelle), kartzow@eti.uni-siegen.de (Alexander

Kartzow), lohrey@eti.uni-siegen.de (Markus Lohrey)
1Supported by the DFG Research Training Group 1763 (QuantLA).
2Supported by the DFG research project GELO.
3The reader might be confused by the fact we denote the equality relation with ≡. The reason is that later we have to

consider relational structures over the same signature, where ≡ is not necessarily the equality relation. To avoid confusion, we
have decided to use the symbol ≡ for the equality relation as part of relational structures.

Preprint submitted to Elsevier September 15, 2014

structure has infinitely many predicates, which is not a problem with respect to satisfiability because any
formula can only use finitely many of those predicates. Our main result actually is about an expansion of
(Z, <,≡, (≡a)a∈Z). Then, one might for instance write down a formula (<(x,X1y))U(≡100(y)) which holds
on a path if and only if there is a point of time where variable y holds the value 100 and for all previous
points of time t, the value of x at time t is strictly smaller than the value of y at time t+ 1.

In [13], Demri and Gascon studied LTL extended with constraints from a language IPC∗. If we disregard
succinctness aspects, these constraints are equivalent to constraints over the structure

Z = (Z, <,≡, (≡a)a∈Z, (≡a,b)0≤a<b), (1)

where ≡a,b denotes the unary relation {a+xb | x ∈ Z} (expressing that an integer is congruent to a modulo
b). The main result from [13] states that satisfiability of LTL with constraints from Z is decidable and in
fact PSPACE-complete, and hence has the same complexity as satisfiability for LTL without constraints. We
should remark that the PSPACE upper bound from [13] even holds for the succinct IPC∗-representation of
constraints used in [13].

In the same way as outlined for LTL above, constraints can be also added to logics as CTL, CTL∗ and even
its extension ECTL∗ (then, constraints R(Xi1x1, . . . ,X

ikxk) are path formulas). A weak form of CTL∗ with
constraints from Z (where only integer variables at the same state can be compared) was first introduced in
[7], where it is used to describe properties of infinite transition systems, represented by relational automata.
It is shown in [7] that the model checking problem for CTL∗ over relational automata is undecidable.

Demri and Gascon [13] asked whether satisfiability of CTL∗ with constraints from Z over Kripke struc-
tures is decidable. This problem was investigated in [5, 16], where several partial results where shown: If
we replace in Z the binary predicate < by unary predicates <c = {x | x < c} for c ∈ Z, then satisfiability
for CTL∗ has been shown decidable by [16]. For the full structure Z satisfiability has been shown decidable
for CEF+, the fragment of CTL∗ which contains the existential and universal fragment of CTL∗ as well as
EF, see [5] .

In this paper we deal with ECTL∗ [26, 27], which is a proper extension of CTL∗, where the CTL∗ path
formulas are replaced by the set of all regular properties of paths (represented by Büchi-automata or MSO-
formulas). We prove that ECTL∗ with constraints over Z is decidable. Our proof is divided into two steps.
The first step provides a tool to prove decidability of ECTL∗ with constraints over any structure A (called
a concrete domain) over a countable signature σ which satisfies the property that the complement of any of
its relations has to be definable in positive existential first-order logic over A (in this case we call A negation
closed). Let L be a logic that satisfies the following three properties:

1. Satisfiability of a given L-sentence over the class of infinite node-labeled trees is decidable.

2. L is closed under boolean combinations with monadic second-order formulas (MSO).

3. L is compatible with one dimensional first-order interpretations and with the k-copy operation.

A typical such logic is MSO itself. By Rabin’s seminal tree theorem [25], satisfiability of MSO-sentences
over infinite node-labeled trees is decidable, and Muchnik’s theorem (cf. [28]) implies compatability of MSO

with k-copying.
Assuming L has these properties, we prove that satisfiability of ECTL∗ with constraints over A is decidable

if one can compute from a given finite subsignature τ ⊆ σ an L-sentence ψτ (over the signature τ) such
that for every countable τ -structure B, B |= ψτ if and only if there is a homomorphism from B to A (i.e.,
a mapping from the domain of B to the domain of A that preserves all relations from τ). We say that
the structure A has the property EHD(L) if such a computable function τ 7→ ψτ exists. EHD stands for
“existence of homomorphism is definable”. For instance, the structure (Q, <,≡) has the property EHD(MSO)
(cf. Example 10).

It is not clear whether Z from (1) has the property EHD(MSO) (we conjecture that it does not). Hence, we
need a different logic. It turns out that Z has the property EHD(Bool(MSO,WMSO+B)), where WMSO+B

is the extension of weak monadic second-order logic (where only quantification over finite subsets is allowed)
with the bounding quantifier B and Bool(MSO,WMSO+B) stands for all Boolean combinations of MSO and
WMSO+B sentences. A formula BX ϕ holds in a structure A if and only if there exists a bound b ∈ N such

2

that for every finite subset B of the domain of A with A |= ϕ(B) we have |B| ≤ b. Recently, Bojańczyk
and Toruńczyk have shown that satisfiability of WMSO+B over infinite node-labeled trees is decidable
[3]. Thus, WMSO+B is a candidate logic for our method. Unfortunately, WMSO+B is not closed under
Boolean combinations with MSO-sentences. Thus, we consider the logic L = Bool(MSO,WMSO+B) that
consists of all Boolean combinations of MSO and WMSO+B-sentences. Fortunately, the decidability proof
for WMSO+B can be extended to L (cf. Section 2.3). Moreover, L is compatible with one-dimensional first-
order interpretations and with the k-copy operation (cf. Proposition 8). Thus, L is a suitable logic for our
approach that allows to show that satisfiability of ECTL∗ with constraints from Z is decidable. Our proof
that Z from (1) has the property EHD(Bool(MSO,WMSO+B)) actually only needs rather weak assumption
on the unary predicates (which are satisfied for the unary relations ≡a and ≡a,b), see Section 5.3.

While it would be extremely useful to add successor constraints (y = x + 1) to Z, this would lead to
undecidability even for LTL [12] and the very basic description logic ALC [22], which is basically multi-modal
logic. Nonetheless Z allows qualitative representation of increment, for example x = y+1 can be abstracted

by (y > x) ∧
∨2k−1
i=−2k(≡i,2k(x) ∧ ≡i+1,2k(y)) where k is a large natural number. This is why temporal logics

extended with constraints over Z seem to be a good compromise between (unexpressive) total abstraction
and (undecidable) high concretion.

Since satisfiability of pure ECTL∗ (without constraints) is non-elementary (which follows from the fact
that MSO over infinite words is non-elementary), the same lower complexity bound also holds for ECTL∗ with
constraints from Z. On the other hand, satisfiability of CTL∗ is 2EXPTIME-complete [15], but unfortunately,
our proof does not yield any complexity bound for satisfiability of CTL∗ with constraints from Z. The boolean
combinations of (WMSO+B)-sentences and MSO sentences that have to be checked for satisfiability (over
infinite trees) are of a simple structure, in particular their quantifier depth is not high, but no complexity
statement for satisfiability of WMSO+B is made in [3], and it seems to be difficult to analyze the algorithm
from [3] (although it seems to be elementary for a fixed quantifier depth). It is based on a construction for
cost functions over finite trees from [8], where the authors only note that their construction seems to have
very high complexity.

Let us stress that the approach to decide satisfiability of ECTL∗ with constraints via property EHD(L)
is rather general and not restricted to be used for the integers. For instance, we are currently working on
the application of this method on concrete domains that are treelike. Moreover, with a slight variation the
approach can also deal with finite satisfiability, i.e., with the problem whether a given formula has a model
whose underlying Kripke structure is finite. Recall that property EHD(L) requires that we can compute for
each finite subsignature τ a formula in L that describes the existence of a homomorphism to the τ -reduct
of the concrete domain. Analogously, let a σ-structure A have the property EHDfin(L) if we can compute
for each finite subsignature τ of σ a formula ϕτ in L such that ϕτ is satisfied by some structure B if and
only if there is a homomorphism from B to A whose image is finite. From the results in this paper it
follows that finite satisfiability of ECTL∗ with constraints over a concrete domain A is decidable if A is
negation-closed and has property EHDfin(L) for some logic L with the same properties as required in the
result for satisfiability. We use this fact to show that finite satisfiability of ECTL∗-formulas with constraints
over the integers is also decidable. Moreover, this result applies to finite satisfiability of ECTL∗-formulas
with constraints in any linear order.

A short conference version of this paper appeared in [6]. There, we only consider the fragment CTL∗ of
ECTL∗ and do not consider finite satisfiability.

1.1. Related work

In the area of knowledge representation, extensions of description logics with constraints from concrete
domains have been intensively studied, see [20] for a survey. In [21], it was shown that the extension of the
description logic ALC with constraints from (Q, <,≡) has a decidable (EXPTIME-complete) satisfiability
problem with respect to general TBoxes (also known as general concept inclusions). Such a TBox can be
seen as a second ALC-formula that has to hold in all nodes of a model. Our decidability proof is partly
inspired by the construction from [21], which in contrast to our proof is purely automata-theoretic. Further
results for description logics and concrete domains can be found in [22, 23].

3

There are other extensions of temporal logics that allow to reason about structures with added data
values. In particular in the linear time setting several extensions that allow to specify properties of so called
data words like MTL [18], freeze LTL [14] and its extension TPTL [1]. In general, satisfiability for these logics
is undecidable and researchers have concentrated on fragments, see [14] for an overview.

1.2. Outline of the Paper

In the next section we recall basic fact, introduce our notation and present basic definitions concerning
structures, constraint structures and MSO logic with its variants WMSO+B and and constraint-path MSO.
Section 3 introduces syntax and semantics of our extension of ECTL∗ with constraints over an arbitrary
relational concrete domain. Section 4 contains the main technical core of our paper. It presents the relation
between satisfiability of ECTL∗ with constraints over some structure A and the question whether A has
property EHD(L) (as a byproduct, we also show that ECTL∗ with constraints has the tree model property).
We then use this result in Section 5 to prove that satisfiability of ECTL∗ with constraints in the integers
with order, equality, constants and modulo-predicates is decidable. We then turn to finite satisfiability in
Section 7 where we show that a formula has a finite model if and only if it has a model that only uses a
finite substructure of the concrete domain. This allows to reuse our results from the satisfiability case in
order to prove that finite satisfiability for ECTL∗ with constraints in any linear order or in Z from (1) is
decidable. The last section then shows that our results crucially rely on the fact that we only added local
constraints to ECTL∗. Even for the far weaker logic LTL adding a kind of future operator in constraints
leads to undecidability for every concrete domain that is an infinite linear order.

2. Basic Notions

We abbreviate the set {1, . . . , d} by [1, d]. For a function η : A → B and elements a ∈ A and b ∈ B,
η[a 7→ b] indicates the function which maps a to b and otherwise coincides with η.

2.1. Structures

Throughout this paper, we fix a countably infinite sets of atomic propositions P and function symbols
F. Function symbols are usually denoted by f1, f2, . . . , g1, g2, A Kripke structure (over P) is a triple
K = (D,→, ρ), where

(i) D is an arbitrary set of nodes,

(ii) → ⊆ D ×D is a binary relation such that for each u ∈ D there is a v ∈ D with u→ v, i.e., (D,→) is
a directed graph without dead ends, and

(iii) ρ : D → 2P is a labeling function that assigns to every node a finite set of atomic propositions such
that

⋃

v∈D ρ(v) is finite, i.e., only finitely many propositions appear in K.

A (relational) signature is a countable (finite or infinite) set σ of relation symbols. Every relation symbol
R ∈ σ has an associated arity ar(R) ≥ 1. A σ-structure is a pair A = (A, I), where A is a non-empty set
(the universe of the structure) and I maps every R ∈ σ to an ar(R)-ary relation over A.

Quite often, we identify the relation I(R) with the relation symbol R, and we specify a σ-structure as
(A,R1, R2, . . .) where σ = {R1, R2, . . .}.

Given A = (A,R1, R2, . . .) and given a subset B ⊆ A, for each Ri we define Ri↾B = Ri ∩ Bar(R) to be
the restriction of Ri to Bar(Ri). We write A↾B for the induced substructure (B,R1↾B, R2↾B, . . .).

We now introduce constraint graphs. These are two-sorted structures where one part is a Kripke-Structure
and the other part is some σ-structure called the concrete domain. The two are connected by (interpretations
of) the functions from F that send nodes from the Kripke-Structure to elements of the concrete domain.
Constraint graphs are the structures in which we evaluate the new logic ECTL∗ with constraints.

Definition 1. Let σ be a relational signature. An A-constraint graph C is a tuple (A,K, γ) where:

• A = (A, I) is a σ-structure (the concrete domain),

4

• K = (D,→, ρ) is a Kripke structure (called the underlying Kripke structure of C), and

• for each f ∈ F, γ(f) : D → A is the interpretation of the function symbol f connecting elements of
the Kripke structure with element from the concrete domain.

We will also write fC for the function γ(f). Moreover, we write constraint graph instead of A-constraint
graph if no confusion arises.

2.2. Trees and Paths

We first introduce the notion of Kripke trees and Kripke n-trees. Then we naturally lift the concept
of unfolding of Kripke structures into trees to the setting of constraint graphs and finally introduce our
notation on paths and their induced Kripke paths and constraint Kripke paths.

A Kripke tree is a Kripke structure of the form T = (D,→, ρ), where (D,→) is a rooted tree. Formally,
T is a Kripke tree if it is isomorphic to a Kripke structure of the form (D,→, ρ), where D ⊆ Γ∗ is a
prefix-closed set of strings over an alphabet Γ (of arbitrary cardinality) and u→ v if and only if v = ua for
some a ∈ Γ. In case D = [1, n]∗ for n ∈ N, we say that T is a Kripke n-tree. If moreover n = 1 then T
is a Kripke path. We call a constraint graph T = (A, T , γ) an A-constraint tree (respectively, A-constraint
n-tree, A-constraint path) if T is a Kripke tree (respectively, Kripke n-tree, Kripke path).

Fix a Kripke structure K = (D,→, ρ). An infinite K-path is an infinite sequence P = d0d1d2 · · · such
that di ∈ D and di → di+1 for all i ≥ 0. For i ≥ 0 we define the node P (i) = di. A finite K-path is a finite
non-empty prefix of an infinite K-path.

For d ∈ D, the unfolding of K from d, denoted by Unf(K, d), is the Kripke tree T = (T,→′, ρ′) where

• T is the set of finite K-paths P with P (0) = d,

• →′ is defined to be the extension of paths by a single edge, i.e., for finite paths P1 and P2 from T we
have P1 →′ P2 iff P2 = P1d

′ for a node d′ ∈ D, and

• ρ′ is given by “last-node semantics”, i.e., for every d0d1 · · · dn ∈ T we set ρ′(d0d1 · · ·dn) = ρ(dn).

The unfolding of a Kripke structure naturally lifts to constraint graphs. If C is an A-constraint graph with
underlying Kripke structure K = (D,→, ρ) and d ∈ D, then we denote by Unf(C, d) the A-constraint tree
with underlying Kripke tree Unf(K, d), where fUnf(C,d)(d0d1 · · ·dn) = fC(dn) for all f ∈ F and all finite paths
d0d1 · · · dn (d0 = d).

Given an infinite K-path P = d0d1d2 · · · , we naturally identify P with the substructure of T = Unf(K, d0)
induced by the finite non-empty prefixes of P . Thus, P naturally induces a Kripke path T ↾P , which we
usually denote by P . Moreover, for C a constraint graph with underlying Kripke structure K, P also induces
a constraint path P in C, whose underlying Kripke structure is P and where fP (f ∈ F) is obtained by
restricting fUnf(C,d0) to the non-empty finite prefixes of P . We call it the constraint path corresponding to
P and occasionally denote it with C↾P . Note that every constraint path in C is an induced subgraph of an
unfolding of C from some node d. We lift the position notation for paths to Kripke paths and constraint
paths by setting P(i) = P(i) = di for all i ≥ 0.

2.3. MSO, WMSO+B, and Constraint-Path-MSO

Throughout the paper, we fix countably infinite sets V0 and V1 of element variables and set vari-
ables, respectively. We usually denote variables of V0 by x, y, z, x0, x1, . . . , y0, y1, . . . and variables of V1 by
X,Y, Z,X0, X1, . . . , Y0, Y1,

Monadic second-order logic (MSO) is the extension of first-order logic where also quantification over
subsets of the underlying structure is allowed. Let us fix a signature σ. We define MSO-formulas over the
signature σ by the following grammar, where R ∈ σ:

ϕ ::= R(x1, . . . , xar(R)) | x = y | x ∈ X | ¬ϕ | (ϕ ∧ ϕ) | ∃xϕ | ∃X ϕ. (2)

5

MSO-formulas are evaluated in σ-structures in the usual way, where element variables range over elements
of the structure and set variables range over subsets of the universe. Weak monadic second-order logic
(WMSO) has the same syntax as MSO but second-order variables only range over finite subsets of the
underlying universe.

Finally, WMSO+B is the extension of WMSO by the additional quantifier BX ϕ (the bounding quantifier)
for X ∈ V1. The semantics of BX ϕ in the structure A = (A, I) is defined as follows: A |= BX ϕ(X) if and
only if there is a bound b ∈ N such that whenever A |= ϕ(B) for some finite subset B ⊆ A then |B| ≤ b.
The dual quantifier is denoted by U . It is called the unbounding quantifier and UX ϕ = ¬BX ϕ expresses
that there are arbitrarily large finite sets that satisfy ϕ.

Example 2. For later use, we state some example formulas. Let ϕ(x, y) be a WMSO-formula with two free
first-order variables x and y. Let A = (A, I) be a structure and let Eϕ = {(a, b) ∈ A×A | A |= ϕ(a, b)} be
the binary relation defined by ϕ(x, y). We define the WMSO-formula reachϕ(x1, x2) to be

∃Z ∀Y
[(

x1 ∈ Y ∧ (∀y ∀z (y ∈ Y ∧ z ∈ Z ∧ ϕ(y, z)) → z ∈ Y)
)

→ x2 ∈ Y
]

. (3)

It is straightforward to prove that A |= reachϕ(a, b) if and only if (a, b) ∈ E∗
ϕ, i.e., if we consider Eϕ as the

edge relation of the graph Gϕ = (A,Eϕ), then b is reachable from a in Gϕ. Note that reachϕ is the standard
MSO-formula for reachability but restricted to some finite induced subgraph. Thus, its semantic seen as an
MSO-formula is the same because b is reachable from a in the graph Gϕ if and only if it is in some finite
subgraph of Gϕ.

Given a set variable Z, we define reachZϕ (x1, x2) to be

x1 ∈ Z ∧ ∀Y ⊆ Z
[(
x1 ∈ Y ∧ ∀y ∀z (y ∈ Y ∧ z ∈ Z ∧ ϕ(y, z)) → z ∈ Y

)
→ x2 ∈ Y

]
.

For every finite subset B ⊆ A, we have A |= reachBϕ (a, b) iff b is reachable from a in the subgraph Gϕ↾B.

Note that A |= reachBϕ (a, b) implies that {a, b} ⊆ B.
Let ECycleϕ = ∃x∃y (reachϕ(x, y) ∧ ϕ(y, x)) be the WMSO-formula expressing that there is a cycle in

Gϕ. We now restrict our attention to the case that the graph Gϕ defined by ϕ(x, y) is acyclic. Hence, the
reflexive transitive closure E∗

ϕ is a partial order on A. Note that a finite set F ⊆ A is an Eϕ-path from a ∈ F
to b ∈ F if and only if (F, (Eϕ ∩ (F × F))∗) is a finite linear order with minimal element a and maximal
element b. Define the WMSO-formula Pathϕ(x1, x2, Z) as

∀x ∈ Z ∀y ∈ Z (reachZϕ(x, y) ∨ reachZϕ (y, x)) ∧ reachZϕ (x1, x) ∧ reachZϕ(x, x2).

For every structure A such that the graph Gϕ is acyclic, we have A |= Pathϕ(a, b, P) if and only if P contains
exactly the nodes that form an Eϕ-path from a to b.

We finally define the WMSO+B-formula

BPathsϕ(x, y) = BZ Pathϕ(x, y, Z). (4)

Under the assumption that Gϕ is acyclic, A |= BPathsϕ(a, b) if and only if there is a bound k ∈ N on the
length of any Eϕ-path from a to b.

Next, let Bool(MSO,WMSO+B) be the set of all Boolean combinations of MSO-formulas and (WMSO+B)-
formulas. We use the following result.

Theorem 3 (cf. [3]). One can decide whether for a given n ∈ N and a formula ϕ ∈ Bool(MSO,WMSO+B)
there is a Kripke n-tree K such that K |= ϕ.

Proof. This theorem follows from results of Bojańczyk and Toruńczyk [3, 4]. They introduced puzzles
which can be seen as pairs P = (A,C), where A is a parity tree automaton and C is an unboundedness
condition C which specifies a certain set of infinite paths labeled by states of A. A puzzle accepts a tree T
if there is an accepting run ρ of A on T such that for each infinite path π occurring in ρ, π ∈ C holds. In
particular, ordinary parity tree automata can be seen as puzzles with the trivial unboundedness condition.
The proof of Theorem 3 combines the following results.

6

Lemma 4 ([3]). From a given (WMSO+B)-formula ϕ and n ∈ N one can construct a puzzle Pϕ such that
ϕ is satisfied by some Kripke n-tree iff Pϕ is nonempty.

Lemma 5 ([3]). Emptiness of puzzles is decidable.

Lemma 6 (Lemma 17 of [4]). Puzzles are effectively closed under intersection.

Using these results, it is easy to prove Theorem 3: Let ϕ ∈ Bool(MSO,WMSO+B). First, ϕ can be effectively
transformed into a disjunction

∨n
i=1(ϕi ∧ ψi) where ϕi ∈ MSO and ψi ∈ WMSO+B for all i. By Lemma 4,

we can construct a puzzle Pi for ψi. The MSO-formula ϕi can be translated into a parity tree automaton
Ai [25]. Using Lemma 6 we compute a puzzle P ′

i recognizing the intersection of Pi and Ai. Clearly, ϕ is
satisfiable over Kripke n-trees if and only if there is an i such that ϕi ∧ψi is satisfiable over Kripke n-trees,
if and only if there is an i such that P ′

i is nonempty. By Lemma 5, the latter condition is decidable which
concludes the proof of the theorem. �

Besides classical MSO we use also a constraint version of MSO, denoted as MSO(σ) for some relational
signature σ. MSO(σ) is the usual MSO for (colored) infinite paths with the successor function S extended
by atomic formulas that describe local constraints over the concrete domain. Thus, given a σ-structure A,
MSO(σ) can be evaluated over the class of A-constraint paths. The set of MSO(σ)-formulas is defined by
the following grammar:

ψ ::= p(x) | x1 = S(x2) | x ∈ X | ¬ψ | (ψ ∧ ψ) | ∃xψ | ∃X ψ | R(f1S
i1(x), . . . , fkS

ik(x)) (5)

where p ∈ P, x, x1, x2 ∈ V0 are element variables, X ∈ V1 is a set variable, R ∈ σ is a relation symbol
of arity k, i1, . . . , ik ∈ N and f1, . . . , fk ∈ F. We call θ = R(f1S

i1(x), . . . , fkS
ik(x)) an atomic constraint,

and we define d(θ) = max{i1, . . . , ik} to be the depth of θ. Note that the same element variable x is used
in all arguments of a constraint. We use a different syntax for constraints than the one we indicated in
the introduction of the paper (which, in turn, coincides with the one used in [6, 13, 16]). We choose this
different presentation to adapt the constraints to the MSO setting as opposed to temporal logic. Therefore
the successor function S takes the place of the next operator X, and we introduce a variable x to indicate
the position at which we are evaluating the constraint, which was not needed in the old setting.

Remark 7. Setting τ = {S} ∪ P, where S is a unary function symbol and all elements of P are considered
to be unary predicates, MSO(σ) is MSO over τ extended by atomic constraints over σ.

As already mentioned MSO(σ)-formulas are interpreted over A-constraint paths for some σ-structure A.
Let σ be some signature, A = (A, I) a σ-structure, P an A-constraint path with underlying Kripke path
P = (D,→, ρ), and let η : (V0 ∪ V1) → (D ∪ 2D) be a valuation function mapping element variables
to elements and set variables to sets. The satisfaction relation |=MSO(σ) is mostly defined as expected by
structural induction interpreting S by the successor function in P (to keep notation simple, we write S also
for the successor function in P induced by →).

• (P, η) |=MSO(σ) p(x) iff p ∈ ρ(η(x)).

• (P, η) |=MSO(σ) x1 = S(x2) iff η(x1) = S(η(x2)).

• (P, η) |=MSO(σ) x ∈ X iff η(x) ∈ η(X).

• (P, η) |=MSO(σ) ¬ψ iff it is not the case that (P, η) |=MSO(σ) ψ.

• (P, η) |=MSO(σ) (ψ1 ∧ ψ2) iff (P, η) |=MSO(σ) ψ1 and (P, η) |=MSO(σ) ψ2.

• (P, η) |=MSO(σ) ∃xψ iff there is a d ∈ D such that (P, η[x 7→ d]) |=MSO(σ) ψ.

• (P, η) |=MSO(σ) ∃X ψ iff there is an E ⊆ D such that (P, η[X 7→ E]) |=MSO(σ) ψ.

7

• (P, η) |=MSO(σ) R(f1S
i1(x), . . . , fkS

ik(x)) iff (fP
1 (Si1(η(x))), . . . , fP

k (Sik(η(x)))) ∈ I(R).

For an MSO(σ)-formula ψ the satisfaction relation only depends on the variables occurring freely in ψ. This
motivates the following notation. If ψ(X1, X2, . . . , Xm) is an MSO(σ)-formula where X1, . . . , Xm are the
only free variables, we write P |=MSO(σ) ψ(A1, . . . , Am) if and only if, for every valuation function η such
that η(Xi) = Ai, we have (P, η) |=MSO(σ) ψ. Moreover, we write |= instead of |=MSO(σ) if no confusion arises.

We will use some abbreviations in MSO(σ) with the obvious semantics. In particular, we will use formulas
of the form p(Si(x)) for i ≥ 0 and p ∈ P, stating that the node Si(x) satisfies the proposition p.

2.4. Bool(MSO,WMSO + B) and the k-Copy Operation

In this section we show a technical result stating that Bool(MSO,WMSO+B) is compatible with the k-
copy operation. The proof basically copies the known proofs for MSO and WMSO extended by a translation
of bounding quantifiers. Readers that are not interested in the proof details can safely skip them. We will
need this result later in Section 4.

We first define the k-copy operation. Let k ∈ N be some number and A = (A, I) some structure over the
signature σ that does not contain relation symbols ∼, P1, P2, . . . , Pk (∼ is binary and all Pi are unary). The
k-copy of A, denoted by copyk(A), is the (σ ∪ {∼, P1, P2, . . . , Pk})-structure (A× {1, 2, . . . , k}, J) where

• for all R ∈ σ of arity m, J(R) = {((a1, i), (a2, i), . . . (am, i)) | (a1, a2, . . . , am) ∈ I(R), 1 ≤ i ≤ k},

• J(∼) = {((a, i1), (a, i2)) | a ∈ A, 1 ≤ i1, i2 ≤ k}, and

• for each 1 ≤ m ≤ k, J(Pm) = {(a,m) | a ∈ A}.

Proposition 8. Let k ∈ N be some number, A = (A, I) some infinite structure over the signature σ,
and τ = σ ∪ {∼, P1, P2, . . . , Pk} an extension of σ by one fresh binary relation symbol ∼ and k fresh
unary relation symbols P1, . . . , Pk. Given a Bool(MSO,WMSO+B) sentence ϕ over τ , we can compute a
Bool(MSO,WMSO+B) sentence ϕk over σ such that copyk(A) |= ϕ if and only if A |= ϕk.

Proof. The proof is in 3 steps. We only do it for WMSO+B in order to avoid handling a finite and an
infinite version of existential set quantification. The extension to Bool(MSO,WMSO+B) is straightforward.
Instead of dealing with the bounding quantifier B directly, we deal with the unbounding quantifier U . This
suffices since a bounding quantifier is equivalent to a negated unbounding quantifier. First we define a
formula ϕ̂. It uses element variables x, x′ (respectively, set variables X1, . . . , Xk) for every element variable
x (respectively, set variable X) used in ϕ. In addition, ϕ̂ uses element variables y1, . . . , yk that identify the k
different copies of A from the k-copy of A (for this purpose y1, . . . , yk are always assigned pairwise different
values). Then we prove a strong connection between evaluations of ϕ on copyk(A) and of ϕ̂ on A. Finally,
we create ϕk from ϕ̂ by quantification over the parameters y1, y2, . . . , yk and show that ϕk has the desired
property.

Step 1. We define ϕ̂ from ϕ by case distinction on the structure of ϕ.

1. If ϕ = Pi(x) for some 1 ≤ i ≤ k, then ϕ̂ := (x′ = yi).

2. If ϕ = x1 ∼ x2 then ϕ̂ := (x1 = x2).

3. If ϕ = R(x1, x2, . . . , xr) for some R ∈ σ, then ϕ̂ := R(x1, x2, . . . , xr) ∧ (x′1 = x′2 = · · · = x′r).

4. If ϕ = x ∈ X , then ϕ̂ :=
∨k
i=1(x

′ = yi ∧ x ∈ X i)

5. If ϕ = ψ ∧ χ, then ϕ̂ := ψ̂ ∧ χ̂.

6. If ϕ = ¬ψ then ϕ̂ := ¬ψ̂.

7. If ϕ = ∃xψ then ϕ̂ = ∃x∃x′ (
∨k
i=1 x

′ = yi ∧ ψ̂).

8. If ϕ = ∃X ψ then ϕ̂ = ∃X1 ∃X2 · · · ∃Xk ψ̂.

9. If ϕ = UX ψ then ϕ̂ =
∨k
i=1 UX i ∃X1 ∃X2 . . .∃X i−1 ∃X i+1 · · · ∃Xk ψ̂.

8

Step 2. Let ϕ(x1, . . . , xn, X1, . . . , Xm) be a WMSO+B formula. Fix some â1, . . . , âk ∈ A such that âi 6= âj
for i 6= j (recall that we assume A to be infinite), a1, . . . , an ∈ A, k1, . . . , kn ∈ {1, . . . , k}, and finite subsets
A1

1, . . . , A
k
1 , A

1
2, . . . , A

k
2 , . . . , A

k
m ⊆ A. Fix a variable assignment ηk (in copyk(A)) such that ηk(xi) = (ai, ki)

and ηk(Xi) =
⋃k
j=1 A

j
i × {j}. Fix another variable assignment η (in A) such that η(yi) = âi, η(xi) = ai,

η(x′i) = âki and η(Xj
i) = Aji We claim that (copyk(A), ηk) |= ϕ if and only if (A, η) |= ϕ̂.

The proof is by structural induction. Most cases are straightforward and can be copied from compatability
proofs of (W)MSO with the k-copy operation (see [9]). The new case is the unbounding quantifier. For this
case assume that ϕ = UX ψ. By definition (copyk(A), ηk) |= ϕ if and only if for all n ∈ N there is a finite
set S ⊆ A × {1, . . . , k} such that |S| ≥ n and (copyk(A), ηk[X 7→ S]) |= ψ. By induction hypothesis this is
the case if and only if for all n ∈ N there are finite sets S1, . . . , Sk ⊆ A such that |S1| + · · · + |Sk| ≥ n and

(A, η[X1 7→ S1, . . . , Xk 7→ Sk]) |= ψ̂.

Noting that this means that one of the sets has size at least n
k
, this statement is equivalent to the statement

that for all n′ ∈ N there are a 1 ≤ j ≤ k and finite sets S1, . . . , Sk such that |Sj | ≥ n′ and

(A, η[X1 7→ S1, . . . , Xk 7→ Sk]) |= ψ̂.

By the pigeon hole principle, we can rewrite this to the statement that there is a 1 ≤ j ≤ k such that

(A, η) |= UXj ∃X1 . . .∃Xj−1 ∃Xj+1 . . .∃Xk ψ̂.

This is evidently equivalent to

(A, η) |=
k∨

i=1

UX i ∃X1 ∃X2 . . . ∃X i−1 ∃X i+1 . . .∃Xk ψ̂,

i.e., (A, η) |= ϕ̂.

Step 3. Finally, for a sentence ϕ set ϕk = ∃y 1∃y 2 · · · ∃y k
∧

1≤i<j≤k yi 6= yj∧ϕ̂. Using the claim from Step 2,
it is clear that for all structures A with at least k elements we have

copyk(A) |= ϕ if and only if A |= ϕk.

This concludes the proof. �

2.5. Existence of Homomorphisms

Recall from the introduction that our decidability proof for ECTL∗ with constraints over a structure A
is based on the fact we can express in a suitable logic the existence of a homomorphism into A. In this
subsection we introduce some formal terminology related to homomorphisms.

For a subsignature τ ⊆ σ, a τ -structure B = (B, J) and a σ-structure A = (A, I), a homomorphism
from B to A is a mapping h : B → A such that for all R ∈ τ and all tuples (b1, . . . , bar(R)) ∈ J(R) we have
(h(b1), . . . , h(bar(R))) ∈ I(R). We write B � A if there is a homomorphism from B to A.

Definition 9. Let L be a logic (e.g. MSO or Bool(MSO,WMSO+B)). A σ-structure A has the property
EHD(L) (existence of homomorphisms to A is L-definable) if there is a computable function that maps every
finite subsignature τ ⊆ σ to an L-sentence ϕτ such that for every countable τ -structure B we have: B � A
if and only if B |= ϕτ .

Example 10. , The structure Q = (Q, <,≡), where ≡ is equality, has the property EHD(WMSO) (and
EHD(MSO)). In [21] it is implicitly shown that for a countable {<,≡}-structure B = (B, J),4 B � Q if and
only if there does not exist (a, b) ∈ J(<) such that (b, a) ∈ (J(<) ∪ J(≡) ∪ J(≡)−1)∗. This condition can
be easily expressed in WMSO using the reach-construction from Example 2.

4A remark concerning the equality relation should be made at this point. In the structure Q, we mean with ≡ the equality
relation, whereas in B, the relation J(≡) can be any binary relation. Nevertheless, in MSO we have a built-in equality, see the
MSO-syntax from (2). This is one more reason, why we decided, to denote the equality relation as part of a structure with ≡

instead of ≡. In the structure B the MSO-formulas x = y and x ≡ y have, in general, different semantics.

9

3. ECTL
∗ with constraints

Extended computation tree logic (ECTL∗) is a branching time temporal logic first introduced in [26, 27]
as an extension of CTL∗. As the latter, ECTL∗ is interpreted on Kripke structures, but while CTL∗ allows
to specify LTL properties of infinite paths of such models, ECTL∗ can describe regular (i.e., MSO-definable)
properties of paths. In its original formulation, ECTL∗ uses Büchiautomata to replace the classical CTL∗ path
formulas. In this work, instead of automata, we use MSO-formulas. Given the famous result of Büchithat
MSO and Büchiautomata are equi-expressive on paths, we obtain an expressively equivalent logic. We use the
formulation using MSO because it provides a simpler framework to add constraints. What we present below
is an enhanced version of ECTL∗, which we call σ-constraint ECTL∗, or in short ECTL∗(σ). In ECTL∗(σ)
the path-formulas come from MSO(σ) defined in (5). Let σ be a signature. We define ECTL∗(σ)-formulas
by the following grammar:

ϕ ::= Eψ(ϕ, . . . , ϕ
︸ ︷︷ ︸

m times

) | (ϕ ∧ ϕ) | ¬ϕ (6)

where ψ(X1, . . . , Xm) is an MSO(σ)-formula over the signature P ∪ {S} in which only the set variables
X1, . . . , Xm ∈ V1 are allowed to occur freely.

As anticipated above, ECTL∗(σ)-formulas are evaluated over some node of an A-constraint graph. Let C

be an A-constraint graph with underlying Kripke structure K = (D,→, ρ). Given d ∈ D, for an ECTL∗(σ)-
formula ϕ, we define (C, d) |= ϕ inductively by:

• (C, d) |= ϕ1 ∧ ϕ2 iff (C, d) |= ϕ1 and (C, d) |= ϕ2 .

• (C, d) |= ¬ϕ iff it is not the case that (C, d) |= ϕ.

• (C, d) |= Eψ(ϕ1, . . . , ϕm) iff there is an infinite K-path P = d0d1d2 · · · with d0 = d, whose correspond-
ing A-constraint path P satisfies P |=MSO(σ) ψ(A1, . . . , Am) where Ai = {d0 · · · dn | n ≥ 0, (C, dn) |=
ϕi} for 1 ≤ i ≤ m.

Note that for checking (C, d) |= ϕ we may ignore all propositions p ∈ P and all function symbols f ∈ F that
do not occur in ϕ.

Remark 11. The reader might miss atomic propositions p ∈ P in (6). They can be obtained using MSO(σ).
More precisely, MSO can express the fact that a position x is the initial position of a path using the formula
pos0(x) = ∀y (x 6= S(y)), then the ECTL∗(σ)-formula E ∃x (pos0(x) ∧ p(x)) states that in the current node
there starts a path whose first node satisfies p, i.e., the current node satisfies p.

Looking back at the semantics for MSO(σ), see (5), note that the role of the concrete domain A and of the
functions fC (f ∈ F), for both MSO(σ) and ECTL∗(σ) are restricted to the semantics of atomic constraints.
Ordinary ECTL∗-formulas (ECTL∗(σ)-formulas without atomic constraints) are interpreted over a pair (K, d),
where K is a Kripke structure, and the rules are the same as above (just ignoring the concrete domain and
the function symbols from F).

We define the usual abbreviations:

θ1 ∨ θ2 := ¬(¬θ1 ∧ ¬θ2) (for both ECTL∗ and MSO formulas)

θ1 → θ2 := ¬θ1 ∨ θ2

Aψ := ¬E¬ψ (universal path quantifier)

∀xψ := ¬∃x¬ψ

∀X ψ := ¬∃X ¬ψ.

Note that (C, d) |= Aψ(ϕ1, . . . , ϕm) if and only if for all infinite K-paths P = d0d1d2 · · · with d0 = d, we
have for the corresponding constraint path P:

P |=MSO(σ) ψ(A1, . . . , Am) where Ai = {d0d1 · · · dn | n ∈ N and (C, dn) |= ϕi} for 1 ≤ i ≤ m.

10

Using this extended set of operators we can put every formula into a semantically equivalent negation normal
form, where ¬ only occurs in front of atomic MSO(σ)-formulas (i.e., formulas of the form p(x), x = S(y),
x ∈ X or atomic constraints). We additionally eliminate subformulas of the form ¬(x ∈ Xi) where Xi

is one of the set variables X1, . . . , Xm that occurs freely in ϕ as follows: Suppose θ = Eψ(ϕ1, . . . , ϕm) is
a subformula of ϕ. Then we replace θ with the equivalent formula Eψ′(ϕ1, . . . , ϕm,¬ϕ1, . . . ,¬ϕm), where
ψ′(X1, . . . , Xm, Y1, . . . , Ym) is obtained from ψ by replacing all occurrences of ¬(x ∈ Xi) by x ∈ Yi for
1 ≤ i ≤ m.

We give in the following some examples of classical CTL∗ expressible specifications formulated in ECTL∗.
Recall that in monadic second-order logic the binary predicate < can be derived from the successor function.

Example 12. Response to an impulse: In all computations, every occurrence of p is eventually followed by
an occurrence of q.

CTL∗ : AG (p → F q) ECTL∗ : A [∀x (p(x) → ∃y (x < y ∧ q(y)))].

Absence of unsolicited responses: In all computations q does not occur unless preceded by p.

CTL∗ : A (F q → (¬q)U p) ECTL∗ : A [∀x (q(x) → ∃y (y ≤ x ∧ p(y)))].

Existence of a stabilizing computation: There is a computation where eventually p holds in every state.

CTL∗ : E FG p ECTL∗ : E [∃x∀y (x < y → p(y))].

We illustrate in the following example that the nesting of path quantifiers in a CTL∗-formula results in the
nesting of MSO-formulas inside the corresponding ECTL∗-formula.

Example 13. The CTL∗-formula E G (p → AXq) expresses the existence of a path P such that every
successor of a p-labeled node on P is labeled with q. Let ϕ be the ECTL∗-formula stating that on all
paths q holds in the next state: ϕ = A∃x (pos0(x) ∧ q(S(x))), where we use pos0 to denote the first
position of a path (see Remark 11). Then the required property is expressed by the formula Eψ(ϕ), where
ψ(X) = ∀z (p(z) → z ∈ X). All together we obtain the formula

E ∀z
(
p(z) → z ∈

[
A∃x (pos0(x) ∧ q(S(x)))

])
.

In the following example we exploit the higher expressive power of ECTL∗ to express a system requirement
which cannot be formulated in CTL∗.

Example 14. There is a computation path where p holds in all even positions. The following MSO-formula
describes the set X of even positions of a path:

even(X) := ∃x (pos0(x) ∧ x ∈ X ∧ S(x) /∈ X) ∧ ∀x (x ∈ X ↔ S(S(x)) ∈ X) .

The following ECTL∗-formula describes the required property:

E [∃X even(X) ∧ ∀z (z ∈ X → p(z))].

Wolper [29] proved that no CTL∗-formula expresses this property.

Example 15. We show that it is possible, using constraints over (Z, <), to write an ECTL∗({<})-formula
which can only be satisfied by an infinite (Z, <)-constraint graph (we use the infix notation for <):

ϕ = E [∀x f1x < f1S(x)]. (7)

We are forcing the existence of a path P on which fP
1 (x) is strictly smaller than fP

1 (y) whenever x→ y in
P. This ensures that the domain of P is infinite.

We remark that the last example shows that ECTL∗(σ) is strictly more expressive than ECTL∗ in the following
sense: Let us denote with L(ϕ) the set of all underlying Kripke structures of (Z, <)-constraint graphs, which
satisfy ϕ. Then L(ϕ) for ϕ from (7) is not empty and it does not contain any finite Kripke structure. On
the other hand it is well known that ECTL∗ enjoys the finite model property, and therefore cannot define
L(ϕ).

11

4. Satisfiability of constraint ECTL
∗ over a concrete domain

Let us now introduce the central notion of satisfiability: We say that an ECTL∗(σ)-formula ϕ is A-
satisfiable if there is an A-constraint graph C with underlying Kripke structure K = (D,→, ρ) and a node
v ∈ D such that (C, v) |= ϕ. In the following we first show that every satisfiable ECTL∗(σ)-formula always
has a nice model, namely a tree-model, where the branching degree is bounded by a constant that can be
computed from the formula. The proof of this property is analogous to the proof of the tree model property
for ECTL∗ or CTL∗. Readers that are familiar with one of them can safely skip Lemmas 16 and 17 as well
as the proof of Theorem 18.

Lemma 16. Let C = (A,K, γ) be a constraint graph, d0 a node of K and ϕ an ECTL∗(σ)-formula. If
P = d0d1 · · · dn is an element of Unf(C, d0), then (C, dn) |= ϕ if and only if (Unf(C, d0), P) |= ϕ.

Proof. The proof is an easy induction on the structure of the formula using the fact that any constraint
path in C starting at a node reachable from d0 corresponds to a constraint path in Unf(C, d0) and vice versa.

�

For similar reasons, we can duplicate subtrees of a constraint tree T without affecting the set of satisfied
formulas which allows to increase the branching degree of the model arbitrarily.

Lemma 17. Let T be a constraint tree. There is a constraint tree Tω such that

• every node of Tω has infinitely many successors,

• T and Tω satisfy the same ECTL∗(σ)-formulas at their roots, and

• if d is a node and ϕ = Eψ(ϕ1, . . . , ϕk) is a formula such that (Tω, d) |= ϕ, then there are infinitely many
paths starting at d which witness the path quantifier, i.e., there are infinitely many paths P = d0d1d2 · · ·
in Tω with d0 = d and P |= ψ(A1, . . . , Ak) for Ai = {d0 · · · dn | n ≥ 0, (Tω, dn) |= ϕi} (1 ≤ i ≤ m).

Proof. Let T = (A, T , γ) be some constraint tree where T = (T,→, ρ). Without loss of generality we
assume that T ⊆ D∗ for some set D such that → is the extension of words over D by one letter. We define
a Kripke tree Tω = (Tω,→ω, ρω) and a constraint tree Tω = (A, Tω, γω) where

• Tω ⊆ (D×N)∗ such that d̄ = (d1, n1)(d2, n2) . . . (di, ni) ∈ Tω if and only if π1(d̄) ∈ T , where π1 denotes
element-wise projection to the first component,

• →ω is extension by one element from D × N,

• ρω = ρ ◦ π1, and

• γω(f) = γ(f) ◦ π1 for all f ∈ F.

Note that the mappings ρω and γω(f) apply the mappings ρ and γ(f), respectively, to the path of first
components of a path from Tω.

Since Tω is basically an infinite copy of T everywhere, where projection to the first component translates
between the two structures, rather simple inductions prove the following facts.

1. Let Pω be an infinite path in Tω, A1, A2, . . . , Ak subsets of Pω and ϕ ∈ MSO(σ). Let Pω be the
constraint path corresponding to Pω and let P = π1(Pω) be the path in T obtained by element-wise
projection of Pω to the first component. Finally, let P be the constraint path corresponding to P .
Then we have

Pω |= ϕ(A1, . . . , Ak) ⇐⇒ P |= ϕ(π1(A1), . . . , π1(Ak)).

2. For d̄ = (d1, n1)(d2, n2) . . . (dk, nk) ∈ Tω and ϕ some ECTL∗(σ)-formula we have

(Tω, d̄) |= ϕ ⇐⇒ (T, π1(d̄)) |= ϕ.

12

The second part particularly implies that every path quantifier that is satisfied at some node in Tω is
witnessed by infinitely many paths in Tω starting at this node. �

From now on, #E (ϕ) denotes the number of different subformulas of the form Eψ in the ECTL∗(σ)-formula
ϕ. Then ECTL∗(σ) has the following tree model property:

Theorem 18. Let ϕ be an ECTL∗(σ)-formula in negation normal form and let A = (A, I) be a σ-structure.
Then ϕ is A-satisfiable if and only if there is an A-constraint (#E (ϕ)+1)-tree T with root r and (T, r) |= ϕ.

Proof. Let e = #E (ϕ) + 1. Due to the previous lemmas, we can assume that C = (A,K, γ) is an A-
constraint tree with K = (D,→, ρ) a Kripke tree over P with root r where every node d ∈ D has infinitely
many successors such that for every formula Eψ with (C, d) |= Eψ there are infinitely many pairwise disjoint
(except for node d) paths starting at d that witness this path quantifier. We prune C such that it is
isomorphic to an A-constraint e-tree model of ϕ.

We inductively define the domain D′ of our new tree. For the initial step, choose a constraint path P of
C arbitrarily and add its domain to D′.

For the inductive step we repeat the following procedure until every node has e successors. Let d ∈ D′

be a node with less than e successors (in D′). Our inductive definition ensures that d then has exactly 1
successor. Let Eψ1(ϕ

1
1, . . . , ϕ

1
m1

), . . . ,Eψk(ϕ
k
1 , . . . , ϕ

k
mk

) be the existential subformulas of ϕ which hold true
in (C, d). Then for each 1 ≤ j ≤ k there is a constraint path Pj in C with Pj(0) = d and disjoint from

D′ \ {d} such that Pj |=MSO(σ) ψ(Aj1, . . . , A
j
mj

), where Aji = {Pj(n) | n ≥ 0, (C,Pj(n)) |= ϕji}. For each
j ∈ {k + 1, k + 2, . . . , e− 1} choose further constraint paths Pj of C with Pj(0) = d that are disjoint from
D′ \ {d} and the other paths (except for their origin d). Add the domains of P1,P2, . . . ,Pe−1 to D′ and
continue the construction with the next node of the resulting D′ that has only one successor.

The limit of this process results in a subset D′ ⊆ D such that D′ induces a Kripke e-subtree T = K↾D′

and a constraint subtree T = (A, T , γ′), where γ′(f) = γ(f)↾D′ for all f ∈ F. We prove (T, r) |= ϕ by
showing the following stronger claim using structural induction on the formula ϕ.

(1) Given a subformula θ ∈ ECTL∗(σ) of ϕ and d ∈ D′ such that (C, d) |= θ, then (T, d) |= θ.

(2) For all MSO(σ)-formulas ψ that are subformulas of ϕ, all constraint paths P in T and all subsets
A1, . . . , Am, B1, . . . , Bm of the domain of P such that Aj ⊆ Bj for all 1 ≤ j ≤ m, and all valuation
functions η,

(P, η[(Xj → Aj)1≤j≤m]]) |=MSO(σ) ψ =⇒ (P, η[(Xj → Bj)1≤j≤m]]) |=MSO(σ) ψ, (8)

where we assume that Xi only occurs freely in ψ (we can rename bounded occurrences).

Recall that ϕ is in negation normal form. Hence, the proof only needs to consider the following cases.

• The cases θ = ϕ1 ∧ ϕ2 and θ = ϕ1 ∨ ϕ2 in (1) are straightforward by induction.

• Let θ = Eψ(ϕ1, . . . , ϕm) in (1). Note that only X1, . . . , Xm are allowed to occur freely in ψ. Let
d ∈ D′ be such that (C, d) |= Eψ(ϕ1, . . . , ϕm). By construction of T, there is a constraint path
P in T (which is simultaneously in C) with P(0) = d such that P |=MSO(σ) ψ(A1, . . . , Am), where
Ai = {P(n) | n ≥ 0, (C,P(n)) |= ϕi}. Let Bi = {P(n) | n ≥ 0, (T,P(n)) |= ϕi}. By the inductive
hypothesis for the ϕi (point (1)), we have Ai ⊆ Bi. Thus, using the inductive hypothesis (point (2))
for ψ, we obtain P |=MSO(σ) ψ(B1, . . . , Bm). Hence, (T, d) |= Eψ(ϕ1, . . . , ϕm) as desired.

• Let θ = Aψ(ϕ1, . . . , ϕm) in (1). In order to get (T, d) |= θ, we need to show that every constraint path
P in T that starts in d satisfies P |=MSO(σ) ψ(B1, . . . , Bm), where Bi = {P(n) | n ≥ 0, (T,P(n)) |= ϕi}.
So let P be a constraint path in T (and hence in C as well) with P(0) = d. Since (C, d) |= θ, we can
deduce that P |=MSO(σ) ψ(A1, . . . , Am), where Ai = {P(n) | n ≥ 0, (C,P(n)) |= ϕi}. By inductive
hypothesis for point (1), we conclude that Ai ⊆ Bi and by the inductive hypothesis for point (2) we
conclude that P |=MSO(σ) ψ(B1, . . . , Bm). Hence, we get (T, d) |= θ.

13

This completes the inductive step for point (1). We continue with the inductive step for point (2), i.e.,
for MSO(σ)-subformulas ψ of ϕ. To simplify notation we write ηA for η[(Xj → Aj)1≤j≤m]] and ηB for
η[(Xj → Bj)1≤j≤m]].

• If ψ = p(x) (¬p(x), respectively) for some p ∈ P, then by definition we have: (P, ηA) |=MSO(σ) p(x) if
and only if p ∈ ρ(ηA(x)) if and only if p ∈ ρ(ηB(x)) if and only if (P, ηB) |=MSO(σ) p(x).

• Similarly, if ψ is of the form x = S(y), x 6= S(y), x ∈ X , or x 6∈ X for X ∈ V1 \{X1, . . . , Xm}, we have
(P, ηA) |=MSO(σ) ψ if and only if (P, ηB) |=MSO(σ) ψ because ψ does not depend on the interpretations
of X1, . . . , Xm.

• Let ψ = (x ∈ Xi) for some 1 ≤ i ≤ m. Then (P, ηA) |=MSO(σ) x ∈ Xi implies ηA(x) ∈ Ai and whence
(using Ai ⊆ Bi) ηB(x) ∈ Bi, i.e., (P, ηB) |=MSO(σ) x ∈ Xi.

• The cases ψ = ψ1 ∨ ψ2 and ψ = ψ1 ∧ ψ2 follow from inductive hypothesis.

• Assume that ψ = ∃xψ1 and that (P, ηA) |= ψ. Then there is a d in the domain of P such that
(P, ηA[x 7→ a]) |=MSO(σ) ψ1. By the inductive hypothesis this implies (P, ηB[x 7→ a]) |=MSO(σ) ψ1 and
therefore (P, ηB) |= ∃xψ1.

• The cases ψ = ∀xψ1, ψ = ∃X ψ1 and ψ = ∀X ψ1 (note that X must be different from X1, . . . , Xm

since X only occurs freely in ψ) are proven analogously to the previous case.

• Let ψ = R(f1S
i1(x), . . . , fkS

ik(x)) or its negation. Since ηA and ηB agree on x, this case is trivial.

This concludes the proof of the theorem. �

Given a concrete domain A = (A, I), with SATECTL∗(A) we denote the following computational problem:
Is a given formula ϕ ∈ ECTL∗(σ) A-satisfiable? The main result of this section gives a criterion on the
concrete domain A that implies decidability of the problem SATECTL∗(A). To state this criterion, we need
one further technical condition:

Definition 19. The σ-structure A = (A, I) is negation-closed if the complement of every relation I(R) is
effectively definable by a positive existential first-order formula. Formally, A is negation-closed, if there is
a computable function that maps each relation symbol R ∈ σ to a positive existential first-order formula
ϕR(x1, . . . , xar(R)) (i.e., a formula that is built up from atomic formulas using ∧, ∨, and ∃) such that

Aar(R) \ I(R) = {(a1, . . . , aar(R)) | A |= ϕR(a1, . . . , aar(R))}.

Example 20. The structure Z = (Z, <,≡, (≡a)a∈Z, (≡a,b)0≤a<b) from (1) is negation-closed (we write
x = a instead of ≡a(x) and similarly for ≡a,b). We have for instance:

• x 6= y if and only if x < y ∨ y < x.

• x 6= a if and only if ∃y ∈ Z(y = a ∧ (x < y ∨ y < x)).

• x 6≡ a mod b if and only if x ≡ c mod b for some 0 ≤ c < b with a 6= c, i.e.,
∨

0≤c<b
a6=c

x ≡ c mod b.

Now we can state the main result of this section:

Theorem 21. Let A be a σ-structure that has property EHD(Bool(MSO,WMSO+B)) (see Definition 9) and
is negation-closed. Then the problem SATECTL∗(A) is decidable.

We say that an ECTL∗(σ)-formula ϕ is in strong negation normal form if it is in negation normal form and
there is no subformula ¬θ where θ is an atomic constraint.

Let us fix an ECTL∗(σ)-formula ϕ in negation normal form and a negation-closed σ-structure A for the
rest of this section. We want to check whether ϕ is A-satisfiable. First, we reduce our problem to formulas
in strong negation normal form:

14

Lemma 22. Let A = (A, I) be a negation-closed σ-structure with universe A. From a given ECTL∗(σ)-
formula ϕ one can compute an ECTL∗(σ)-formula ϕ̂ in strong negation normal form such that ϕ is A-
satisfiable if and only if ϕ̂ is A-satisfiable.

Proof. We can assume that ϕ is in negation normal form. Using induction, it suffices to eliminate a single
negated atomic constraint θ = ¬R(f1S

i1(x), . . . , fkS
ik(x)) in ϕ, where k = ar(R). Let d = max{i1, . . . , ik}

be the depth of the constraint θ. Since A is negation-closed, we can compute a positive quantifier-
free first-order formula ψ(y1, y2, . . . , yk, z1, z2, . . . , zm) such that A |= ¬R(a1, . . . , ak) if and only if A |=
∃z1 · · · ∃zm ψ(a1, . . . , ak, z1, . . . , zm). Let g1, . . . , gm ∈ F be fresh function symbols not occurring in ϕ. We
define the ECTL∗(σ)-formula ϕ̂ by replacing in ϕ every occurrence of the negated constraint θ by the formula

ψ(f1S
i1(x), . . . , fkS

ik(x), g1S
d(x), . . . , gmS

d(x)),

i.e., we replace in the positive quantifier-free formula ψ(y1, y2, . . . , yk, z1, z2, . . . , zm) every occurrence of a
variable yj (respectively, zj) by fjS

ij (x) (respectively, gjS
d(x)).

We have to prove that
ϕ̂ is A-satisfiable ⇐⇒ ϕ is A-satisfiable.

Proof of =⇒. If ϕ is A-satisfiable, then by Theorem 18 there is an A-constraint e-tree T with (T, ε) |= ϕ and
underlying Kripke e-tree T = ([1, e]∗,→, ρ). We modify T and obtain a new constraint tree S by replacing
the interpretations of the fresh function symbols g1, . . . , gm as follows. Consider w, v ∈ [1, e]∗ such that
|v| = d. Let vp be the prefix of v of length ip for 1 ≤ p ≤ k.

• If (fT
1 (wv1), . . . , f

T
k (wvk)) /∈ I(R), we can fix values a1, . . . , am ∈ A such that

A |= ψ(fT
1 (wv1), . . . , f

T
k (wvk), a1, . . . , am).

In this case we set gq(wv) = aq for all 1 ≤ q ≤ m.

• If (fT
1 (wv1), . . . , f

T
k (wvk)) ∈ I(R), we choose gq(wv) ∈ A arbitrarily for all 1 ≤ q ≤ m.

• Finally, for all w ∈ [1, e]∗ such that |w| < d we choose gq(w) ∈ A arbitrarily for all 1 ≤ q ≤ m.

By induction on the structure of ϕ we prove that (S, ε) |= ϕ̂. All steps are trivial except for the case that the
subformula is precisely θ = ¬R(f1S

i1(x), . . . , fkS
ik(x)). In this case let P be a Kripke path in T inducing

the constraint path P in T and the constraint path N in S and let η be a valuation function such that
(P, η) |=MSO(σ) θ. Thus, setting a = η(x), we get (fP

1 (Si1(a)), . . . , fP
k (Sik(a))) /∈ I(R). According to our

definition of gq, we have set gq(S
d(a)) = aq for all 1 ≤ q ≤ m, where a1, . . . , am ∈ A such that

A |= ψ(fP
1 (Si1(a)), . . . , fP

k (Si1(a)), a1, . . . , ak).

Thus, it follows directly that

(N, η) |=MSO(σ) ψ(f1S
i1(x), . . . , fkS

ik(x), g1S
d(x), . . . , gmS

d(x)),

which concludes the first direction.

Proof of ⇐=. In order to prove that ϕ is A-satisfiable if ϕ̂ is A-satisfiable, let us assume that C is an
A-constraint graph such that (C, d) |= ϕ̂ for some node d. In order to show (C, d) |= ϕ by induction on the
structure of ϕ, we end up (after several trivial steps) with the following claim: For every constraint path P

and valuation function η,

(P, η) |=MSO(σ) ψ(f1S
i1(x), . . . , fkS

ik(x), g1S
d(x), . . . , gmS

d(x)) (9)

implies (P, η) |=MSO(σ) θ. Assuming (9), there are values, namely gT
i (Sd(η(x))) (1 ≤ i ≤ m) witnessing

A |= ∃z1 · · · ∃zm ψ(a1, . . . , ak, z1, . . . , zm),

where aj = fT
j (Sij (η(x))). By choice of ψ this implies that A |= ¬R(a1, . . . , ak). Hence, we have

(P, η) |=MSO(σ) ¬R(f1S
i1(x), . . . , fkS

ik(x)), i.e., (P, η) |=MSO(σ) θ. �

15

Example 23. Let us consider Z = (Z, <,≡, (≡a)a∈Z, (≡a,b)0≤a<b) from (1). As we saw in Example 20, this
is a negation-closed structure over the infinite signature σ = {<,≡} ∪ {≡a| a ∈ Z} ∪ {≡a,b| 0 ≤ a < b}. Let
ϕ = E (∀x¬(f(x) = 3)) be the ECTL∗(σ)-formula expressing the fact that there exists a path on which f
never assumes value 3 (we write f(x) = 3 instead of ≡3 (fx)). The strong negation normal form of ϕ is

ϕ̂ = E
[
∀x

(
g(x) = 3 ∧

(
f(x) < g(x) ∨ g(x) < f(x)

)]
.

Before we start with technical details, let us briefly sketch how we relate satisfiability for formulas in strong
negation normal form with the property EHD(L) where L is some logic like Bool(MSO,WMSO+B) that
has the properties mentioned in the introduction. The leading idea for solving satisfiability for ECTL∗(σ)
formulas is to split the search for a model into two steps.

The first step is to describe all the Kripke trees that satisfy the structural requirements of a given
ECTL∗(σ) formula ϕ. With structural requirements we mean, roughly speaking, all those parts of ϕ that
can also be expressed in pure ECTL∗. The second step is to find interpretations of the functions f ∈ F such
that also the constraints from ϕ are satisfied by the resulting constraint graph.

In order to accomplish the first step, we define from ϕ a pure ECTL∗-formula ϕa which we call the
abstraction of ϕ. This formula ϕa results from ϕ by replacing each atomic constraint with a fresh atomic
proposition not occurring in ϕ so far. Every Kripke tree T that satisfies ϕa then satisfies all the structural
requirements of ϕ and is marked by new propositions at those positions where a model of ϕ would have to
satisfy certain requirements with respect to the values assigned by the functions from F.

For the second step we can use the new propositions and extract from every tree model T of ϕa a
σ-structure B such that B encodes all the constraints imposed by ϕ in the sense that we can equip T with
interpretations of the functions from F such that the resulting A-constraint tree satisfies ϕ if and only if
there is a homomorphism from B to A.

If A has property EHD(L) for some logic L satisfying the requirements mentioned in the introduction,
we can compile our two steps into the question whether a certain L-formula has a tree model. This L-
formula requires that all its models encode the Kripke tree T satisfying ϕa as well as the the corresponding
σ-structure B allowing a homomorphism to A.

For the following definitions let us fix an ECTL∗(σ)-formula ϕ in which only the atomic constraints
θ1, . . . , θn occur. Let di be the depth of θi. Moreover, let Fϕ be the set of function symbols from F

appearing in ϕ.

Definition 24. We define ϕa as the ordinary ECTL∗-formula that is obtained from ϕ by replacing every
occurrence of a constraint θi by the MSO(σ)-formula pi(S

di(x)). The same definition is also used for an
MSO(σ)-subformula of ϕ.

Example 25. Given the ECTL∗({<,≡})-formula

ϕ = E [∀x (q1(x) → (f1(x) < f2(S
2(x))))] ∧ A [∃x (q2(x) ∧ f1(S(x)) = f2(x))]

we replace the atomic constraints with the propositional variables p1 and p2 to obtain the abstracted ECTL∗-
formula

ϕa = E [∀x (q1(x) → p1(S
2(x)))] ∧ A [∃x (q2(x) ∧ p2(S(x)))].

Definition 26. Given an constraint e-tree T with underlying Kripke e-tree T = ([1, e]∗,→, ρ) and ρ(u) ∩
{p1, . . . , pn} = ∅ for all u ∈ [1, e]∗, we define the Kripke e-tree Ta = ([1, e]∗,→, ρa), where ρa(u) contains

• all propositions from ρ(u) and

• all propositions pj (1 ≤ j ≤ n) such that, assuming θj = R(f1S
i1(x), . . . , fkS

ik(x)) and dj =
max{i1, . . . , ik}, we have:

– u = wv with |v| = dj , and

– (fT
1 (wv1), . . . , f

T
k (wvk)) ∈ I(R), where vl denotes the prefix of v of length il.

16

p1p2

p1

p1p2

p1 p2

p1

p2 p1p2 p2

1 2

2 2 1 3

3 3 2 0 2 0 3 0

0 4 2 2 0 2 0 3 0 2 0 0 4 4 3 3

≡

≡

≡ ≡ ≡ ≡

<

<

<

< <

Figure 1: The (N, <,≡)-constraint 2-tree T from Example 29, the Kripke 2-tree Ta, and the structure GTa .

Hence, the fact that proposition pj labels node wv with |v| = dj means that the constraint θj holds along
every path that starts in node w and descends in the tree down via node wv.

Definition 27. Given a Kripke e-tree T = ([1, e]∗,→, ρ) (where the new propositions p1, . . . , pn are allowed
to occur in T) we define a countable σ-structure GT = ([1, e]∗ × Fϕ, J) as follows: The interpretation J(R)
of the relation symbol R ∈ σ contains all k-tuples (where k = ar(r)) ((wv1, f1), . . . , (wvk, fk)) for which
there are 1 ≤ j ≤ n and v ∈ [1, e]dj such that pj ∈ ρ(wv), and θj = R(f1S

i1(x), . . . , fkS
ik(x)), where vl still

denotes the prefix of v of length il.

Remark 28. Setting k = |Fϕ| one can easily write down a one-dimensional first-order interpretations which
interprets GT in copyk(T).

Example 29. Figure 1 shows an example, where we assume that e = 2 and n = 2, θ1 = [f1x < f2S(x)], and
θ2 = [f1S(x) = f2S(x)]. The figure shows a portion of an (N, <,≡)-constraint 2-tree T = ((N, <,≡), T ,F).
The edges of the Kripke 2-tree T are dotted. We assume that T is defined over the empty set of propositions.
The node to the left (respectively, right) of a tree node w is labeled by the value fT

1 (w) (respectively, fT
2 (w)).

The figure shows the labeling of tree nodes with the two new propositions p1 and p2 (corresponding to θ1
and θ2) as well as the {<,≡}-structure GTa .

Lemma 30. Let ϕ be an ECTL∗(σ)-formula in strong negation normal form. The formula ϕ is A-satisfiable
if and only if there is a Kripke (#E (ϕ) + 1)-tree T such that (T , ε) |= ϕa and GT � A.

Proof. Let A = (A, I), e = (#E (ϕ) + 1), and let Fϕ, n, θj , and dj (1 ≤ j ≤ n) be defined as above.

Proof of ⇒. Assume that ϕ is A-satisfiable. By Theorem 18 there is a constraint e-tree T = (A, T , γ) with
T = ([1, e]∗,→, ρ) such that (T, ε) |= ϕ. Take the Kripke e-tree Ta = ([1, e]∗,→, ρa).

We claim that h : [1, e]∗×Fϕ → A given by h(w, f) = fT(w) is a homomorphism from GTa to A. For this,
assume that the tuple ((wv1, f1), . . . , (wvk, fk)) belongs to the interpretation of R in GTa . By Definition 27
there are 1 ≤ j ≤ n and v ∈ [1, e]dj such that pj ∈ ρa(wv), θj = R(f1S

i1(x), . . . , fkS
ik(x)), and vl is the

prefix of v of length jl for each 1 ≤ l ≤ k. Since pj ∈ ρa(wv), Definition 26 implies

(h(wv1, f1), . . . , h(wvk, fk)) = (fT
1 (wv1), . . . , f

T
k (wvk)) ∈ I(R).

Hence, h is indeed a homomorphism.
In order to show (Ta, ε) |= ϕa we prove simultaneously by structural induction on the formula that

(1) For all ECTL∗(σ)-subformulas χ of ϕ and v ∈ [1, e]∗, if (T, v) |= χ, then (Ta, v) |= χa, and

(2) for all MSO(σ)-subformulas ψ of ϕ, all paths P in T , all valuation functions η, and all subsets A1, . . . , Ak,
B1, . . . , Bk ⊆ P such that Ai ⊆ Bi for all 1 ≤ i ≤ k,

if (P, η[(Xi → Ai)1≤i≤k]) |=MSO(σ) ψ then (Pa, η[(Xi → Bi)1≤i≤k]) |=MSO(σ) ψ
a,

17

where P is the constraint path induced by P in T, Pa is the Kripke path induced by P in Ta, and we
assume that X1, . . . , Xk only appear freely in ϕ.

We have to consider the following cases, where we write ηA and ηB for the valuations η[(Xj → Aj)1≤j≤m]]
and η[(Xj → Bj)1≤j≤m]], respectively.

• Assume that χ = Eψ(ϕ1, . . . , ϕm), whence χa = Eψa(ϕa1 , . . . , ϕ
a
m). Since (T, v) |= θ, we know

that there is an infinite constraint path P with P(0) = v such that P |= ψ(A1, . . . , Am), where
Ai = {P(n) | n ≥ 0, (T,P(n)) |= ϕi}. We can use the induction hypothesis (point (1)) on ϕ1, . . . , ϕm
to obtain that, for all n ∈ N and 1 ≤ i ≤ m, if (T,P(n)) |= ϕi then (Ta,P(n)) |= ϕai . So, if we
define Bi = {P(n) | n ≥ 0, (Ta,P(n)) |= ϕai }, we can deduce that Ai ⊆ Bi. Applying point (2) of the
induction hypothesis we conclude that Pa |= ψa(B1, . . . , Bm), where Pa denotes the Kripke path in
Ta that corresponds to P.

• The case χ = Aψ(ϕ1, . . . , ϕm) is treated analogously to the previous one replacing “there is” by “for
all”.

• Assume that ψ = θj for some atomic constraint θj = R(f1S
i1(x), . . . , fkS

ik(x)) of depth dj =
max{i1, . . . , ik}. In this case we want to show that (P, ηA) |=MSO(σ) θj implies (Pa, ηB) |=MSO(σ)

pj(S
dj (x)). Let a = η(x) and a′ = Sdj (a). Note that ηA(x) = ηB(x) = a. If (P, ηA) |=MSO(σ)

R(f1(S
i1(x)), . . . , fk(S

ik(x))), then (fP
1 S

i1(a), . . . , fP
k S

ik(a)) ∈ I(R), and this, by Definition 26 im-
plies that pj ∈ ρa(a′) which implies (Pa, ηB) |=MSO(σ) pj(S

dj (x)).

• All other steps are trivial.

Proof of ⇐. For the other direction, assume that there are a Kripke e-tree T = ([1, e]∗,→, ρT) such that
(T , ε) |= ϕa, and a homomorphism h : [1, e]∗ × Fϕ → A from GT to A = (A, I). Define the A-constraint
graph T = (A, T ′, γ), where

• T ′ is obtained from T by removing the propositions corresponding to atomic constraints, i.e., T ′ =
([1, e]∗,→, ρ) with ρ(v) = ρT (v) \ {p1, . . . , pn} for all v ∈ [1, e]∗,

• fT(v) = h(v, f) for all f ∈ Fϕ and v ∈ [1, e]∗, and

• fT is an arbitrary function for all f ∈ F \ Fϕ.

We claim that (T, ε) |= ϕ. Again by structural induction, we prove the following claim.

1. For all ECTL∗(σ)-subformulas χ of ϕ and v ∈ [1, e]∗, if (T , v) |= χa, then (T, v) |= χ, and

2. for all MSO(σ)-subformulas ψ of ϕ, all paths P in T , all valuation functions η, and all subsets
A1, . . . , Ak, B1, . . . , Bk ⊆ P such that Bi ⊆ Ai for all 1 ≤ i ≤ k,

(P , η[(Xi → Bi)1≤i≤k]) |=MSO(σ) ψ
a then (P, η[(Xi → Ai)1≤i≤k]) |=MSO(σ) ψ,

where P is the Kripke path induced by P in T , P is the constraint path induced by P in T, and we
assume that X1, . . . , Xk only appear freely in ϕ.

All steps are trivial except for the case that χ is the constraint θj = R(f1S
i1(x), . . . , fkS

ik(x)) of depth
dj . In this case, we have χa = pj(S

dj (x)). Assume that (P , η[(Xi → Bi)1≤i≤k]) |=MSO(σ) pj(S
dj (x)). By

definition of GT (Definition 27), this implies that the tuple ((Si1 (η(x)), f1), . . . , (S
ik(η(x)), fk)) belongs to

the interpretation of R in GT . Now, since h is a homomorphism we conclude that

(h(Si1(η(x)), f1), . . . , h(S
ik(η(x)), fk)) = (fT

1 (Si1(η(x))), . . . , fT
k (Sik(η(x)))) ∈ I(R),

and thus
(P, η[(Xi → Ai)1≤i≤k]) |=MSO(σ) R(f1S

i1(x), . . . , fkS
ik(x))

as desired. �

18

Let θ = ϕa for the further discussion. Hence, θ is an ordinary ECTL∗-formula, where negations only occur
in front of propositions from P \ {p1, . . . , pn} or atomic MSO-formulas, and e = #E (θ) + 1. By Lemma 30,
we have to check, whether there is a Kripke e-tree T such that

(T , ε) |= θ and GT � A.

Let τ ⊆ σ be the finite subsignature consisting of all predicate symbols that occur in our initial ECTL∗(σ)-
formula ϕ. Note that GT is actually a τ -structure. Since the concrete domain A has the property
EHD(Bool(MSO,WMSO+B)), one can compute from τ a Bool(MSO,WMSO+B)-sentence α such that for
every countable τ -structure B we have B |= α if and only if B � A. Since GT is countable, our new goal is
to decide whether there is a Kripke e-tree T such that

(T , ε) |= θ and GT |= α

Given the fact that every ECTL∗-formula can be effectively transformed into an equivalent MSO-formula
with a single free first-order variable [11, 17], and since the root ε of a tree is first-order definable, we get
an MSO-sentence ψ such that (T , ε) |= θ if and only if T |= ψ. Hence, we have to check whether there is a
Kripke e-tree T such that

T |= ψ and GT |= α.

Since Bool(MSO,WMSO+B) is compatible with first-order interpretations (which is trivial) and with the
k-copy operation (Proposition 8), we can compute from α a Bool(MSO,WMSO+B)-sentence α′ and from α′

another Bool(MSO,WMSO+B)-sentence β such that for k = |Fϕ| we have:

GT |= α
Rmk. 28
⇐====⇒ copyk(T) |= α′ Prop. 8

⇐===⇒ T |= β.

Thus, we have to check whether there is a Kripke e-tree T such that T |= ψ ∧ β, where ψ ∧ β is a
Bool(MSO,WMSO+B)-sentence. By Theorem 3 this is decidable, which completes the proof of Theorem 21.

5. Concrete domains over the integers

The main technical result of this section is:

Proposition 31. The concrete domain Z = (Z, <,≡, (≡a)a∈Z, (≡a,b)0≤a<b) from (1) has the property
EHD(Bool(MSO,WMSO+B)).

Since Z is negation-closed (see Example 20), the following result (our main result) follows by Theorem 21:

Theorem 32. SATECTL∗(Z) is decidable.

We prove Proposition 31 in three steps. First, we show that (Z, <) has the property EHD(WMSO+B). In
a second step we extend this result to the structure (Z, <,≡). Finally we add a countable set of unary
predicates satisfying certain computability requirements, and show that Z is an instance of this case.

5.1. Z with order-constraints

Our first goal is to prove:

Proposition 33. (Z, <), (N, <) and (Z \ N, <) have the property EHD(WMSO+B).

As a preparation of the proof, we first define some terminology and then we characterize structures that
allow homomorphisms to (Z, <) in terms of their paths. Let A = (A, I) be a countable {<}-structure and
set E = I(<). When talking about paths, we always refer to finite directed E-paths. The length of a path
(a0, a1, . . . , an) is n. For S ⊆ A and x ∈ A \ S, a path from x to S is a path from x to some node y ∈ S. A
path from S to x is defined symmetrically.

19

Lemma 34. We have A � (Z, <) if and only if

(H1) A does not contain cycles, and

(H2) for all a, b ∈ A there is an n ∈ N such that the length of each path from a to b is bounded by n.

Proof.

(⇒) Let us first show the “only if” direction of the lemma. Suppose h is a homomorphism from A to
(Z, <). Heading for a contradiction, suppose that there is a cycle (a0, . . . , ak) in A, i.e., (a0, . . . , ak) is
a path such that (ak, a0) ∈ E. Setting zi = h(ai), this implies zi < zi+1 for 0 ≤ i ≤ k − 1 and zk < z0
which is a contradiction. Hence, (H1) holds.

Suppose now that a, b ∈ A are such that for every n ∈ N there is a path of length at least n from a
to b. If d = h(b) − h(a), we can find a path (a0, a1 . . . , ak) with a0 = a, ak = b and k > d. Since h is
a homomorphism, this path is mapped to an increasing sequence of integers h(a) = h(a0) < h(a1) <
· · · < h(ak) = h(b). But this contradicts h(b) − h(a) = d < k. Hence, (H2) holds.

(⇐) For the “if” direction of the lemma assume that A is acyclic (property (H1)) and that (H2) holds. Fix
an enumeration a0, a1, a2, . . . of the countable set A. For n ≥ 0 let

Sn = {a ∈ A | ∃i, j ≤ n : (ai, a), (a, aj) ∈ E∗}.

We claim that Sn has the following properties.

(P1) Sn is convex w.r.t. the partial order E∗: If a, c ∈ Sn and (a, b), (b, c) ∈ E∗, then b ∈ Sn.

(P2) For a ∈ A \ Sn all paths between a and Sn are “one-way”, i.e., there are not b, c ∈ Sn such that
(b, a), (a, c) ∈ E∗.

(P3) For all a ∈ A \ Sn there is a bound c ∈ N such that all paths between a and Sn have length at
most c. Let can ∈ N be the smallest such bound (hence, we have can = 0 if there is no path between
a and Sn).

(P1) is obvious and moreover implies (P2). To see (P3), assume that there are only paths from Sn to
a but not the other way round (see (P2)); the other case is symmetric. If there is no bound on the
length of paths from Sn to a, then by definition of Sn, there is no bound on the length of paths from
{a0, . . . , an} to a. By the pigeon principle, there is a 0 ≤ i ≤ n such that there is no bound on the
length of paths from ai to a. But this contradicts property (H2).

We build the homomorphism h inductively. For every n ≥ 0 we define functions hn : Sn → Z such
that the following invariants hold for all n ≥ 0.

(I1) If n > 0 then hn(a) = hn−1(a) for all a ∈ Sn−1.

(I2) hn(Sn) is bounded in Z, i.e., there are z1, z2 ∈ Z such that hn(Sn) ⊆ [z1, z2].

(I3) hn is a homomorphism from the induced subgraph A↾Sn to (Z, <).

For n = 0 we have S0 = {a0}. We set h0(a0) = 0 (any other integer would be also fine). Properties
(I1)–(I3) are easily verified. For n > 0, there are four cases.

1. an ∈ Sn−1, thus Sn = Sn−1. We set hn = hn−1. Clearly, (I1)–(I3) hold for n.

2. an /∈ Sn−1 and there is no path from an to Sn−1 or vice versa. We set hn(an) := 0. Since
Sn = Sn−1 ∪ {an}, (I1)–(I3) follow easily from the induction hypothesis.

3. an /∈ Sn−1 and there is a path from an to Sn−1. Then, by (P2) there are no paths from Sn−1 to
an. Hence, we have

Sn = Sn−1 ∪ {a ∈ A | ∃b ∈ Sn−1 : (an, a), (a, b) ∈ E∗}.

We have to define the value hn(a) for all a ∈ A \ Sn−1 that lie along a path from an to Sn−1. By
(I2) there are z1, z2 ∈ Z with hn−1(Sn−1) ⊆ [z1, z2]. Recall the definition of can−1 from (P3). For

20

all a ∈ A \ Sn−1 that lie on a path from an to Sn−1, we set hn(a) = z1 − can−1. Since there are
paths from a to Sn−1, we have can−1 > 0. Hence, for all a ∈ Sn \ Sn−1, hn(a) < z1. Let us check
that hn : Sn → Z satisfy (I1)– (I3): Invariant (I1) holds by definition of hn. For (I2) note that
hn(Sn) ⊆ [z1 − cann−1, z2].
It remains to show (I3), i.e., that hn is a homomorphism from A↾Sn to (Z, <). Hence, we have
to show that h(b1) < h(b2) for all (b1, b2) ∈ E ∩ (Sn × Sn).

– If b1, b2 ∈ Sn−1, then hn(b1) = hn−1(b1) < hn−1(b2) = hn(b2) by the induction hypothesis.

– If b1 ∈ Sn \ Sn−1 and b2 ∈ Sn−1, we know that hn(b2) = hn−1(b2) ≥ z1 while hn(b1) < z1 by
construction. Hence, we have hn(b1) < hn(b2).

– If b2 ∈ Sn \ Sn−1 and b1 ∈ Sn−1, then (b1, b2) ∈ E contradicts (P2) because b2 is on a path
from an to Sn−1 and (b1, b2) is a path in the opposite direction.

– If both b1 and b2 belong to Sn \Sn−1 then hn(bi) = z1−c
bi
n−1 for i ∈ {1, 2} Since (b1, b2) ∈ E,

we have cb1n−1 > cb2n−1. This implies hn(b1) < hn(b2).

4. an /∈ Sn−1 and there is a path from Sn−1 to an. For all

a ∈ Sn \ Sn−1 = {a ∈ A \ Sn−1 | a belongs to a path from Sn−1 to an},

set hn(a) = z2 + can−1. The rest of the argument is analogous to the previous case.

This concludes the construction of hn. Thanks to (I1), the limit function h =
⋃

i∈N hi exists. By (I3)
and A =

⋃

i∈N Si, h is a homomorphism from A to (Z, <). �

A result similar to Lemma 34 holds for (N, <). Here the characterization of homomorphisms relies on the
fact that if some element a is mapped to n ∈ N by some homomorphism, then a path leading to a is at most
of length n.

Lemma 35. We have A � (N, <) if and only if

(H1) A does not contain cycles, and

(H2) for all a ∈ A there is an n ∈ N such that the length of each path ending in a is bounded by n.

Proof. If h : A→ N is a homomorphism and a ∈ A then every path ending in a can be of length at most
h(a). Moreover, A must be acyclic by the same argument that we used for (Z, <).

For the other direction assume that A is acyclic and for each a ∈ A there is some ca ∈ N such that the
longest path leading to a has length ca. Define h(a) = ca. It is rather straightforward to show that h is a
homomorphism. �

Proof (Proposition 33). For (Z, <), we translate the conditions (H1) and (H2) from Lemma 34 into
WMSO+B. Cycles are excluded by the sentence ¬ECycle< (Example 2). Moreover, for an acyclic {<}-
structure A we have A |= ∀x∀y BPaths<(x, y) (see also Example 2) if and only if for all a, b ∈ A there is a
bound n ∈ N on the length of paths from a to b. Thus,

A � (Z, <) if and only if A |= ¬ECycle< ∧ ∀x∀y BPaths<(x, y).

Similarly, using Lemma 35, we obtain that

A � (N, <) if and only if A |= ¬ECycle< ∧ ∀y BZ ∃xPath<(x, y, Z).

Since (Z \ N, <) is (N, <) with reversed order, one proves analogously that

A � (Z \N,<) if and only if A |= ¬ECycle< ∧ ∀xBZ ∃y Path<(x, y, Z).
�

21

5.2. Z with order- and equality-constraints

In this section, we extend Proposition 33 to the negation-closed structure (Z, <,≡). For this purpose,
given a structure A = (A, I) over the signature {≡}⊎σ we define the quotient of A, obtained by contracting
all the ≡-paths (note that I(≡) is usually not the identity relation on A).

Definition 36. Let ∼ = (I(≡) ∪ I(≡)−1)∗ be the smallest equivalence relation on A that contains I(≡).
We denote the ∼-quotient of A by Ã = (Ã, Ĩ): It is a σ-structure with domain Ã = {[a] | a ∈ A} the set of
all ∼-equivalence classes. For all R ∈ σ of arity k, we define Ĩ(R) as the set of k-tuples ([a1], . . . , [ak]) for
which there are b1 ∈ [a1], . . . , bk ∈ [ak] such that (b1, . . . , bk) ∈ I(R).

Remark 37. Let A = (A, I) be a {<,≡}-structure and Ã = (Ã, Ĩ) its quotient. In this case we have that
([a], [b]) ∈ Ĩ(<) iff there are a′ ∼ a and b′ ∼ b such that (a′, b′) ∈ I(<). Since ∼ is the reflexive and transitive
closure of the first-order definable relation I(≡)∪ I(≡)−1, we can construct a WMSO-formula ϕ̃(x, y) (using
the reach-construction from Example 2) that defines ∼. That is, ∼ is WMSO-definable (and MSO-definable
as well).

Let C = (C, J) be a structure over the signature {≡} ∪ σ where J(≡) is real equality, i.e., J(≡) = {(c, c) |
c ∈ C}. In this case the quotient C̃ = (C̃, J̃) is isomorphic to the reduct of C with signature σ. Whenever ≡
is interpreted as real equality in the target structure, taking the quotient of a structure is compatible with
the existence of homomorphisms in the following sense.

Lemma 38. Let C = (C, J) be a concrete domain over {≡}⊎σ where J(≡) is real equality. Then, for every
τ ⊆ σ, and every ({≡} ∪ τ)-structure A = (A, I),

1. A � C if and only if Ã � C̃.

2. C has the property EHD(Bool(MSO,WMSO+B)) if and only if C̃ does.

Proof.

1. For the direction (⇒) let h : A → C be a homomorphism. We show that g : Ã → C̃, defined by
g([a]) = h(a), is a homomorphism as well. Notice that the mapping g is well defined: [a] = [b] implies
(a, b) ∈ (I(≡) ∪ I(≡)−1)∗. Since h is a homomorphism, (h(a), h(b)) ∈ J(≡), i.e., h(a) = h(b).
Then let ([a1], . . . , [ak]) ∈ Ĩ(R) for some R ∈ τ . By definition of Ĩ, there are b1 ∈ [a1], . . . , bk ∈ [ak]
such that (b1, . . . , bk) ∈ I(R). Therefore (g([a1]), . . . , g([ak])) = (h(b1), . . . , h(bk)), and since h is a
homomorphism, (h(b1), . . . , h(bk)) ∈ J(R) = J̃(R) as wanted.

For the direction (⇐) let h : Ã → C̃ be a homomorphism. We define g : A → C by g(a) = h([a]). Then
let R ∈ τ and b1, . . . , bk ∈ A such that (b1, . . . , bk) ∈ I(R). This implies that ([b1], . . . , [bk]) ∈ Ĩ(R)
and therefore (h([b1]), . . . , h([bk])) = (g(b1), . . . , g(bk)) ∈ J(R).
Finally, if a, b ∈ A are such that (a, b) ∈ I(≡), then [a] = [b]. Therefore g(a) = h([a]) = h([b]) = g(b),
i.e., (g(a), g(b)) ∈ J(≡). This proves that g is a homomorphism.

2. Let L = Bool(MSO,WMSO+B)) in the following arguments. Since C̃ is a reduct of C, it is clear that
property EHD(L) for C implies property EHD(L) for C̃. For the other direction, assume that C̃ has
the property EHD(L). Let τ ⊆ σ ⊎ {≡} be a finite subsignature. If τ does not contain ≡ then, by
the property EHD(L) for C̃, there exists an L-sentence ψτ such that for every τ -structure A we have
A |= ψτ if and only if A � C̃. But the latter is equivalent to A � C (since τ does not contain ≡).
Hence, we can assume that τ contains ≡. Let τ ′ = τ \ {≡}. Since C̃ has property EHD(L), we can find
an L-sentence ψτ ′ , such that every τ ′-structure A,

A |= ψτ ′ ⇐⇒ A � C̃. (10)

By Remark 37 there is an L-formula ϕ̃(x, y) that defines the equivalence relation ∼. Let θ̃τ be the
L-sentence obtained by replacing in ψτ ′ every occurrence of an atomic formula R(x1, . . . , xk) for R ∈ τ ′

by
R̃(x1, . . . , xk) := ∃z1 · · · ∃zk (ϕ̃(z1, x1) ∧ · · · ∧ ϕ̃(zk, xk) ∧R(z1, . . . , zk)).

22

We claim that for every τ -structure B = (B, I),

B |= θ̃τ ⇐⇒ B̃ |= ψτ ′ . (11)

Using this claim, we obtain

B |= θ̃τ ⇐⇒ B̃ |= ψτ ′

(10)
⇐=⇒ B̃ � C̃

1.
⇐⇒ B � C,

which implies that B has the property EHD(L), as wanted.
The proof of (11) is by induction on the structure of the formula, the only non-trivial case being
B |= R̃(a1, . . . , ak) if and only if B̃ |= R([a1], . . . , [ak]). Note that B̃ |= R([a1], . . . , [ak]) if and only if
there are b1, . . . , bk ∈ B such that bj ∼ aj and B |= R(b1, . . . , bk), which is exactly what R̃(a1, . . . , ak)
expresses. �

An application of the previous lemma to Proposition 33 directly yields the following results.

Proposition 39. (Z, <,≡), (N, <,≡), and (Z \ N, <,≡) have property EHD(WMSO+B).

5.3. Adding Unary Predicates

We now lift our result to expansions of (Z, <,≡) by unary predicates that satisfy some computability
assumptions. For the rest of this section, we fix a signature σ of unary predicates (not containing the symbols
≡ and <) and a (σ ∪ {≡, <})-structure Zσ = (Z, I) where I(≡) and I(<) are interpreted as expected.

Definition 40. We call a finite subset P̄ ⊆ σ bounded below (bounded above, respectively) if
⋂

P∈P̄ I(P) is
bounded below (bounded above, respectively).

We next define properties (C1) and (C2) that imply property EHD(Bool(MSO,WMSO+B)) for Zσ.

(C1) The bounds of P̄ ⊆ σ are effectively computable in the sense that we can decide, given a finite subset
P̄ ⊆ σ, whether P̄ is bounded below (above, respectively) and that we can compute, given a finite
subset P̄ ⊆ σ that is bounded below (above, respectively), a bound l(P̄) ∈ Z (u(P̄) ∈ Z, respectively)
such that l(P̄) ≤ z (u(P̄) ≥ z, respectively) for all z ∈

⋂

P∈P̄ I(P).

(C2) For all finite subsets P̄1, P̄2 ⊆ σ and all predicates P ∈ σ, if P̄1 is bounded below and P̄2 is bounded
above, then we can effectively compute the finite set I(P) ∩ [l(P̄1), u(P̄2)].

The main result of this section is the following proposition.

Proposition 41. If σ and I are chosen in such a way that Zσ satisfies conditions (C1) and (C2), then Zσ
has property EHD(WMSO+B). The analogous result holds for Nσ = Zσ↾N.

We fix a finite subsignature τ ⊆ σ. Due to (C1), we can compute m < M ∈ Z such that m is a lower bound
for all P̄ ⊆ τ that are bounded below and M is an upper bound for all P̄ ⊆ τ that are bounded above. We
fix the numbers m and M for the rest of this section.

Let A = (A, J) be a (τ ∪ {<,≡})-structure. The proof of Proposition 41 uses a decomposition of A into
four parts, called “the bounded part”, “the greater part”, “the smaller part” and “the rest”.

Intuitively, an element a ∈ A belongs to the bounded part if we know a priori that any homomorphism
h from A to Zτ (we write Zτ for the reduct of Zσ with signature τ ∪ {≡, <}) maps a to an element in the
interval [m,M]. Similarly, the greater part consists of all elements a ∈ A that do not belong the bounded
part but any homomorphism to Zτ must map a above m, and the smaller part consists of all elements a ∈ A
that do not belong the bounded part but any homomorphism to Zτ must map a below M .

We then reduce the question whether A can be embedded into Zτ to the questions whether the bounded
part satisfies a certain WMSO-formula and whether the {<,≡}-reducts of everything except for the bounded
part, its greater part and its smaller part allow homomorphisms to (Z, <,≡), (N, <,≡), and (Z \ N, <,≡),
respectively.

23

Definition 42. Let A = (A, J) be a (τ ∪ {<,≡})-structure. We denote by Ã = (Ã, J̃) the ∼-quotient of A
(cf. Definition 36).

We call a ∈ A bounded below if there is some b ∈ A, a <-path in Ã from [b] to [a], and a subset P̄ ⊆ τ
which is bounded below such that [b] ∈ J̃(P) for all P ∈ P̄ .

We call a ∈ A bounded above if there is some b ∈ A, a <-path in Ã from [a] to [b], and a subset P̄ ⊆ τ
which is bounded above such that [b] ∈ J̃(P) for all P ∈ P̄ .

With these preparations, we can easily define the four substructures mentioned above.

Definition 43. For a (τ ∪ {<,≡})-structure A = (A, J) we define

• the bounded part B = {a ∈ A | a is bounded below and bounded above},

• the greater part G = {a ∈ A | a is bounded below but not bounded above},

• the smaller part S = {a ∈ A | a is bounded above but not bounded below}, and

• the rest R = {a ∈ A | a is neither bounded above nor bounded below}.

Let us start with two simple lemmas.

Lemma 44. Let h : A → Zτ be a homomorphism. Then the following holds:

• If a ∈ B then m ≤ h(a) ≤M .

• If a ∈ S then h(a) ≤M .

• If a ∈ G then m ≤ h(a)

Proof. It suffices to show that if a is bounded below (bounded above, respectively), then m ≤ h(a)
(h(a) ≤M , respectively). If a is bounded below, then if there is some b ∈ A, a <-path in Ã from [b] to [a],
and a subset P̄ ⊆ τ which is bounded below such that [b] ∈ J̃(P) for all P ∈ P̄ . We get m ≤ h(b) ≤ h(a).
If a is bounded above, we can argue in the same way. �

Lemma 45. The following relations are disjoint from J(<): B × S, B ×R, G×B, R×B, G× S, G×R,
R× S.

Proof. Assume for instance (b, s) ∈ J(<) for some b ∈ B and s ∈ S. Since b ∈ B, b is bounded from below.
Hence, there is some c ∈ A, a <-path in Ã from [c] to [b], and a subset P̄ ⊆ τ which is bounded below such
that [b] ∈ J̃(P) for all P ∈ P̄ . Hence, there is also a <-path in Ã from [c] to [s], i.e., s is bounded below,
which contradicts s ∈ S. �

Remark 46. The parts B,G, S, and R are all MSO- and WMSO-definable in the sense that there are MSO-
formulas χi(x) for i ∈ {B,G, S,R} with one free first-order variable x such that A |= χi(a) for each a ∈ A
if and only if a belongs to the part i (and the same holds if we interpret χi(x) as a WMSO-formula).

We next state three lemmas that allow to prove Proposition 41.

Lemma 47. We have A � Zτ if and only if A↾B � Zτ ↾[m,M] and A↾G∪S∪R � Zτ .

Lemma 48. Given a finite τ ⊆ σ we can compute an MSO-sentence ψB such that A↾B � Zτ↾[m,M] if and
only if A↾B |= ψB.

Lemma 49. The following four conditions are equivalent:

1. There is a homomorphism h : A↾G∪S∪R → Zτ ↾Z\[m,M] with h(G) ⊆ [M + 1,∞), h(S) ⊆ (−∞,m− 1].

2. A↾G∪S∪R � Zτ

24

3. (G∪S ∪R, J(<), J(≡)) � (Z, <,≡), (G, J(<), J(≡)) � (N, <,≡), and (S, J(<), J(≡)) � (Z \N, <,≡)
4. There is a homomorphism h : (G ∪ S ∪R, J(<), J(≡)) → (Z, <,≡) with h(G) ⊆ N, h(S) ⊆ Z \ N.

Before we prove these lemmas, we show how they imply Proposition 41.

Proof (Proposition 41). Fix a finite subsignature τ ⊆ σ. By Lemma 47 we have A � Zτ if and only
if A↾B � Zτ ↾[m,M] and A↾G∪S∪R � Zτ . By Lemma 48 we can compute from τ an MSO-sentence ψB such
that A↾B |= ψB if and only if A↾B � Zτ ↾[m,M]. Moreover, from Lemma 49 we know that A↾G∪S∪R � Zτ if
and only if

• (G ∪ S ∪R, J(<), J(≡)) � (Z, <,≡),

• (G, J(<), J(≡)) � (N, <,≡), and

• (S, J(<), J(≡)) � (Z \ N, <,≡).

Each of the structures (Z, <,≡), (N, <,≡), (Z \ N, <,≡) has the property EHD(Bool(MSO,WMSO+B)).
Hence, there are Bool(MSO,WMSO+B)-sentences ψG, ψS , and ψR such that A↾G∪S∪R � Zτ if and only if

• (G ∪ S ∪R, J(<), J(≡)) |= ψR,

• (G, J(<), J(≡)) |= ψG, and

• (S, J(<), J(≡)) |= ψS .

Since the subsets B, G, S and R of A are MSO-definable as well as WMSO-definable (cf. Remark 46), we
can compute relativizations of ψi to part i for i ∈ {B,G, S,R} and obtain Bool(MSO,WMSO+B)-sentences
ϕB, ϕR, ϕG and ϕS such that

• A |= ϕB if and only if A↾B |= ψB,

• A |= ϕR if and only if (G ∪ S ∪R, J(<), J(≡)) |= ψR,

• A |= ϕG if and only if (G, J(<), J(≡)) |= ψG, and

• A |= ϕS if and only if (S, J(<), J(≡)) |= ψS .

Putting everything together, we have A � Zτ if and only if A |= ϕB ∧ ϕG ∧ ϕS ∧ ϕR. �

We now prove the auxiliary lemmas (in a different order).

Proof (Lemma 49). The direction (1 ⇒ 2) is trivial. Let us prove (2 ⇒ 3), (3 ⇒ 4), and (4 ⇒ 1).

(2 ⇒ 3) Let h : A↾G∪S∪R → Zτ be a homomorphism. It follows immediately that h is also a homomorphism
from the reduct (G ∪ S ∪R, J(<), J(≡)) to (Z, <,≡).

Let a ∈ G. Then h(a) ≥ m by Lemma 44. Setting h′ : G → N with h′(a) = h(a) − m yields a
homomorphism from (G, J(<), J(≡)) to (N, <,≡).

The proof for (S, J(<), J(≡)) � (Z \ N, <,≡) is analogous.

(3 ⇒ 4) Assume that there are homomorphisms

h : (G ∪ S ∪R, J(<), J(≡)) → (Z, <,≡),

hG : (G, J(<), J(≡)) → (N, <,≡), and

hS : (S, J(<), J(≡)) → (Z \ N, <,≡).

Define the mapping h′ : G ∪ S ∪R → Z by

h′(a) =







h(a) if a ∈ R,

max(h(a), hG(a)) if a ∈ G,

min(h(a), hS(a)) if a ∈ S.

With Lemma 45 one easily concludes that this is the desired homomorphism.

25

(4 ⇒ 1) Let h : (G ∪ S ∪ R, J(<), J(≡)) → (Z, <,≡) be the homomorphism from 4. Let P+ be the set of
subsets of τ that are not bounded above and let P− be the set of subsets of τ that are not bounded
below. We define a sequence (ηi)i∈Z of integers as follows:

– η0 = M + 1,

– η−1 is the maximal number such that for each P̄ ∈ P− there is a η−1 ≤ z < m with z ∈ I(P) for
all P ∈ P̄ (we set η−1 = m− 1 if P− = ∅),

– for i > 0 let ηi be minimal such that for each P̄ ∈ P+ there is a ηi−1 ≤ z < ηi with z ∈ I(P) for
all P ∈ P̄ (we set ηi = ηi−1 + 1 if P+ = ∅),

– for i < −1 let ηi be maximal such that for each P̄ ∈ P− there is a ηi ≤ z < ηi+1 with z ∈ I(P)
for all P ∈ P̄ (we set ηi = ηi+1 − 1 if P− = ∅).

For all a ∈ G ∪ S ∪ R let P̄a = {P ∈ τ | [a] ∈ J̃(P)}. Note that for all r ∈ R, P̄r is neither bounded
above or below (otherwise r would be bounded above or below, respectively), for all g ∈ G, P̄g is
not bounded above and for all s ∈ S, P̄s is not bounded below. We conclude that the following map
h′ : G ∪ S ∪R → Z is well defined:

h′(a) = min{z ∈ Z | ηh(a) ≤ z < ηh(a)+1 and z ∈ I(P) for all P ∈ P̄a}.

Since h preserves < and ≡, h′ does the same. Moreover, h′ is defined in such a way that it preserves
all unary predicates from τ .

Next we show that the image of h′ has empty intersection with the interval [m,M]. By definition of
η−1, η0 and h′, h′(a) ∈ [m,M] would imply h(a) = −1 Note that by by our assumptions on h, this
implies a ∈ R∪S. In particular, P̄a cannot be bounded below, i.e., P̄a ∈ P−. Thus, there is a minimal
η−1 ≤ z < m such that z ∈ I(P) for all P ∈ P̄a. This implies h′(a) = z < m which completes our
claim. Thus, h′ is a homomorphism from A↾G∪S∪R to Zτ ↾Z\[m,M].

To show that h′(G) ⊆ [M + 1,∞) and h(S) ⊆ (−∞,m − 1] note that h(G) ⊆ N and h(S) ⊆ Z \ N.
This implies h′(G) ⊆ [M + 1,∞) and h′(S) ⊆ (−∞,M]. Hence, h′(S) ⊆ (−∞,m− 1] by the previous
paragraph. �

Proof (Lemma 47). If h : A → Zτ is a homomorphism, then the restrictions of h to B and G ∪ S ∪ R
witness A↾B � Zτ↾[m,M] (here we use Lemma 44) and A↾G∪S∪R � Zτ .

Now assume that h1 : A↾B → Zτ ↾B and h2 : A↾G∪S∪R → Zτ are homomorphisms. By Lemma 49 there
exists a homomorphism h′2 : A↾G∪S∪R → Zτ such that h(G) ⊆ [M + 1,∞) and h(S) ⊆ (−∞,m − 1]. We
define the mapping h : A→ Z by h(b) = h1(b) ∈ [m,M] for b ∈ B and h(a) = h′2(a) for a ∈ G∪S ∪R. This
mapping preserves ≡ and all unary predicated. Moreover, using Lemma 45 it follows easily that it preserves
also the relation <. �

Proof (Lemma 48). A homomorphism h : A↾B → Zτ↾[m,M] can be identified with a partition of B into
M − m + 1 sets Bm, . . . , BM , where Bi = {a ∈ B | h(a) = i}. Hence, the MSO-sentence ψB from
Lemma 48 states that there is a partition of B into M −m+1 sets Bm, . . . , BM such that the corresponding
mapping h : B → [m,M] preserves all relations from τ . Fixing a tuple of M −m + 1 many set variables
X = (Xm, . . . , XM), we want to define formulas with the following properties:

• ψpart(X) expresses that X forms a finite partition.

• ψ<(X) expresses that the partition preserves the relation I(<).

• ψ=(X) expresses that the partition preserves the relation I(≡).

• ψτ (X) expresses that the partition preserves every unary relation P ∈ τ .

26

These formulas can be defined as follows:

ψpart = ∀x
∨

i∈[m,M]

(

x ∈ Xi ∧
∧

j∈[m,M]
i6=j

x 6∈ Xj

)

,

ψ< = ∀x∀y

(

x < y →
∨

i,j∈[m,M]
i<j

(x ∈ Xi ∧ y ∈ Xj)

)

,

ψ= = ∀x∀y

(

x ≡ y →
∨

i∈[m,M]

(x ∈ Xi ∧ y ∈ Xi)

)

,

ψτ =
∧

P∈τ

∀x

(

x ∈ P →
∨

i∈I(P)∩[m,M]

x ∈ Xi

)

.

Note that the formulas of the last form are all computable due to condition (C2). Now we can define
ψB = ψpart ∧ ψ< ∧ ψ= ∧ ψτ . �

5.4. Expansions of Z that satisfy Conditions (C1) and (C2)

In this section, we will present concrete examples of unary relations that satisfy the conditions (C1) and
(C2) from the previous section.

Definition 50. Define the signature

σ = {FS , CS | S ⊆ Z finite} ∪ {≡a,b| a, b ∈ N, a < b},

where all symbols are unary. We define the structure Zσ = (Z, I) where I(FS) = S, I(CS) = Z \ S, and
≡a,b holds at all z ∈ Z such that z = a mod b.

Note that the Zσ (which is defined over the signature σ ∪ {<,≡}, see the first paragraph of Section 5.3) is
an expansion of Z = (Z, <,≡, (≡a)a∈Z, (≡a,b)0≤a<b) from (1) because ≡a is the same relation as F{a}.

Lemma 51. Zσ satisfies the conditions (C1) and (C2).

Proof. The condition (C2) holds trivially because all set I(P) for P ∈ σ are computable sets and the map
P 7→ I(P) is computable.

It remain to show (C1). Let P̄ = F̄ ∪ C̄ ∪ M̄ be a finite set where F̄ ⊆ {FS | S ⊆ Z finite}, C̄ ⊆ {CS |
S ⊆ Z finite}, and M̄ ⊆ {≡a,b| a, b ∈ N, a < b}.

Note that F̄ 6= ∅ implies that P̄ is bounded above and below. Otherwise P̄ is bounded above (below) if
and only if M̄ is bounded above (below). Let M̄ = {≡a1,b1 , . . . ,≡ak,bk} and

S =

k⋂

i=1

{ai + zb1 | z ∈ Z}.

The set S is either empty or of the form {y + z · lcm(b1, b2, . . . , bk) | z ∈ Z} for some y ∈ Z (and hence
neither bounded below nor bounded above), where lcm(b1, b2, . . . , bk) is the least common multiple of the
numbers b1, b2, . . . , bk. The latter holds if and only if ai = aj mod gcd((bi, bj) for all i 6= j, see e.g. [].

For those P̄ that are bounded above (bounded below), it is easy to compute an upper bound (a lower
bound). If F̄ is nonempty, take an FS ∈ F̄ and use min(S) and max(S) as bounds. If P̄ is bounded and F̄
is empty, then 0 is a lower and upper bound. �

We can add further unary predicates and still have conditions (C1) and (C2). Let Prim be the set of prime
numbers. Consider the expansion Zσ∪{π,π} of the structure Zσ from Definition 50, where I(π) = Prim and
I(π) = Z \Prim. The following result of Dirichlet relates prime numbers to modulo constraints. Recall that
two natural numbers n1, n2 are coprime if there is no prime p such that p |n1 and p |n2.

27

Theorem 52 (Dirichlet’s Theorem). Let a < b ∈ N. The equation x = a mod b has infinitely many
solutions that are prime if and only if a and b are coprime.

If a and b are not coprime, let p 6= 1 be a common divisor of both. Every solution of x = a mod b is a
multiple of p whence there is at most 1 solution that is a prime which can be computed from a and b.

There is an easy observation relating the complement of the primes with the modulo predicates.

Lemma 53. For all numbers a < b ∈ N there are infinitely many solutions of x = a mod b that are not
prime numbers.

Proof. There are three cases:

• If a = 0, all solutions above b are not prime.

• If a = 1, assume that n ∈ N is a solution of x = 1 mod b. Then nk = 1 mod b for all k ≥ 2 and we
obtain infinitely many non-prime solutions.

• If a > 1, then for all n ∈ N we have a + bna = a mod b and a + bna is not a prime because it is a
multiple of a. �

Corollary 54. The structures Zσ∪{π,π} has property EHD(Bool(MSO,WMSO+B)).

Proof. Take a subset P̄ of the unary relations from σ ∪ {π, π}, where σ is from Definition 50. Then, we
first determine whether the intersection of all unary relations from σ ∩ P̄ is finite or not, as in the proof of
Lemma 51. If the intersection is infinite then it is of the form S = {c + z · b | z ∈ Z} \ F for c < b ∈ Z

and a finite set F \ Z, which can be computed. Clearly, Prim ∩ S is bounded below by 0 and by Dirichlet’s
Theorem it is bounded above if and only if c and b are not coprime, in which case an upper bound can be
computed from b and c. The set (Z\Prim)∩S is neither bounded below nor bounded above (by Lemma 53).
Since Prim and Z \ Prim are computable, properties (C1) and (C2) hold. �

Since Zσ∪{π,π} is also negation-closed, we get:

Corollary 55. The problem SATECTL∗(Zσ∪{π,π}) is decidable.

At the end of this section, we briefly mention that the expansion of Z under consideration may contain
undecidable unary predicates. Take some undecidable set H ⊆ N, e.g., the halting problem. Consider the
structure Z ′ = (Z, <,≡, H, H̄), where H̄ = Z \H . Then {H, H̄} satisfies conditions (C1) and (C2). Just
note that H is bounded below but not above, H̄ is neither bounded below nor above and H ∩ H̄ = ∅. Thus,
the bounds m and M for the bounded part can be chosen to be m = 0,M = −1. The conditions on the
bounded part reduce to the fact that it has to be empty. Since Z ′ is also negation-closed, we conclude that
SATECTL∗(Z ′) is decidable.

6. Extensions, and Applications

A simple adaptation of our proof for the concrete domain Z shows that the negation closed structure
Q = (Q, <,≡, (≡q)q∈Q) has the property EHD(Bool(MSO,WMSO+B)) as well: We have A = (A, I) � Q if
and only if

• (A,E) is acyclic, where E = Id ◦ I(<) ◦ Id and Id is the relation (I(≡) ∪ I(≡)−1)∗,

• there is no (a, b) ∈ E+ with a ∈ I(≡p), b ∈ I(≡q) and q ≤ p, and

• there is no (a, b) ∈ Id∗ with a ∈ I(≡p), b ∈ I(≡q), and q 6= p.

28

It follows that SATECTL∗(Q) is decidable.
Let us finally state a simple preservation theorem for SATECTL∗(A). Assume that A = (A, I) and

B = (B, J) are structures over countable signatures σA and σB, respectively. We say that A is existentially
interpretable in B if there exist n ≥ 1 and quantifier-free first-order formulas ϕ(y1, . . . , yl, x1, . . . , xn) and

ϕr(z1, . . . , zlr , x1,1, . . . , x1,n, . . . , xar(r),1, . . . , xar(r),n) for r ∈ σA

over the signature σB, where the mapping r 7→ ϕr has to be computable, such that A is isomorphic to the
structure ({b ∈ Bn | ∃ c ∈ Bl : B |= ϕ(c, b)}, I) with

I(r) = {(b1, . . . , bk) ∈ Bkn | ∃ c ∈ Blr : B |= ϕr(c, b1, . . . , bk)} for r ∈ σA with k = ar(r).

Proposition 56. If SATECTL∗(B) is decidable and A is existentially interpretable in B, then SATECTL∗(A)
is decidable too.

Proof. Let ψ be an ECTL∗(σA)-formula. Let Fψ be the set of function symbols that occur in ψ. We use the
notations introduced before Proposition 56. Let us choose new functions fi, gf,j, and hr,k for all 1 ≤ i ≤ n,
f ∈ Fψ, 1 ≤ j ≤ l, r ∈ σA, and 1 ≤ k ≤ lr. Define the ECTL∗(σB)-formula

θ = ψ′ ∧ A∀x
∧

f∈Fψ

ϕ(gf,1(x), . . . , gf,l(x), f1(x), . . . , fn(x)),

where ψ′ is obtained from ψ by replacing in ψ every constraint R(f1S
i1(x), . . . , fkS

ik(x)) (where k = ar(R))
by the boolean formula

ϕr(hr,1S
d(x), . . . , hr,lrS

d(x), f1,1S
i2(x), . . . , f1,nS

i1(x), . . . , fk,1S
ik(x), . . . , fk,nS

ik(x)),

where d = max{i1, . . . , iar(r)}. Using arguments similar to those from the proof of Lemma 22, one can show
that ψ is A-satisfiable if and only if θ is B-satisfiable. �

Examples of structures A that are existentially interpretable in (Z, <,≡), and hence have a decidable
SATECTL∗(A)-problem are:

• (Zn, <lex,≡) (for n ≥ 1), where <lex denotes the strict lexicographic order on n-tuples of integers, and

• the structure AllenZ, which consists of all Z-intervals together with Allen’s relations b (before), a
(after), m (meets), mi (met-by), o (overlaps), oi (overlapped by), d (during), di (contains), s (starts),
si (started by), f (ends), fi (ended by). In artificial intelligence, Allen’s relations are a popular tool
for representing temporal knowledge.

7. Finite Satisfiability

Fix a signature σ and a negation-closed σ-structure A = (A, I). An ECTL∗(σ)-formula ϕ is finitely
A-satisfiable if there is an A-constraint graph C, whose underlying Kripke structure K is finite, and a node
v of K such that (C, v) |= ϕ. We denote as FINSATECTL∗(A) the following computational problem: Is a
given formula ϕ ∈ ECTL∗(σ) finitely A-satisfiable? The main result of this section is the following.

Proposition 57. Let ψ be an ECTL∗(σ)-formula, and let F ⊆ F be the set of function symbols occurring in
ψ. Then ψ is finitely A-satisfiable if and only if there is an A-constraint structure C and a node d such that

1. (C, d) |= ψ and

2.
⋃

f∈F im(fC) is finite, i.e., the functions from F map the elements of the Kripke structure to finitely
many elements of A.

29

Proof. The “only-if” part is trivial because every finite model of ϕ satisfies conditions 1. and 2. For the
“if” part let us start with an A-constraint graph C with underlying Kripke structure K = (D,→, ρ) such
that

1. (C, d) |= ψ and

2.
⋃

f∈Fψ
im(fC) is finite.

We have to find a finite model of ψ. W.l.o.g. we can assume that every node of D is reachable from d.
Let B =

⋃

f∈Fψ
im(fC). We now define an abstracted ECTL∗-formula ψa (without constraints) as follows:

First take for all f ∈ Fψ and all a ∈ B a fresh proposition [f, a]. Then we construct from ψ the formula ψ0

by replacing every occurrence of an atomic constraint R(f1S
i1(x), . . . , fkS

ik(x)) by the ECTL∗-path formula

∨

(a1,...,ak)∈I(R)∩Bk

k∧

j=1

[fj , aj](S
ij (x)).

Finally, we define ψa = ψ0 ∧ ψ1, where ψ1 is defined as

ψ1 = A∀x
(∧

f∈Fψ

∨

a∈B

([f, a](x) ∧
∧

b∈B\{a}

¬[f, b](x))
)

.

It states that for every node x that is reachable from the current node and every f ∈ Fψ there is exactly
one a ∈ B such that x is labeled with [f, a].

In a first step, we construct from the model C for ψ a Kripke structure Ca, which is a model of ψa. For
this, we extend the Kripke structure K = (D,→, ρ) to the Kripke structure Ca = (D,→, ρa), where

ρa(e) = ρ(e) ∪ {[f, a] | fC(e) = a}.

We clearly have (Ca, d) |= ψ1. Moreover, a simple induction over the structure of formulas shows that
(Ca, d) |= ψ0.

Now, ECTL∗ has the finite model property. This follows from the facts that (i) ECTL∗-formulas can be
translated into equivalent modal µ-calculus formulas [11], and (ii) that the modal µ-calculus has the finite
model property [19]. Therefore, there exists a finite Kripke structure K′ = (D′,→′, ρ′) and d′ ∈ D′ such
that (K′, d′) |= ψa. W.l.o.g. we can assume that every node of D′ is reachable from the node d′.

We finally construct from K′ a finite model C′ for our original formula ψ. The underlying Kripke structure
is K′, where we can remove the new propositions [f, a]. For every f ∈ Fψ we define the mapping fC′

: D′ → A
as follows: Let e ∈ D′ and f ∈ Fψ. Since e is reachable from d′ and (K′, d′) |= ψ1 there must exist a unique

a ∈ B such that [f, a] ∈ ρ′(e). We set fC′

(e) = a.
We also have (K′, d′) |= ψ0. A simple induction finally shows that this implies (C′, d′) |= ψ. �

Given this characterization we can prove the following result:

Corollary 58. Let Z be the σ-structure defined in (1) (or one of its expansions from the previous section).
Then FINSATECTL∗(Z) is decidable.

Proof. Let F ⊆ F be the set of function symbols appearing in ϕ, and choose two fresh function symbols
g, h ∈ F \ F . Let ψ be defined as the conjunction of the following two formulas:

ψ1 = A∀x (g(x) = g(S(x)) ∧ h(x) = h(S(x)))

ψ2 = A∀x
∧

f∈F

g(x) ≤ f(x) ≤ h(x)

It is not hard to see that ϕ is finitely Z-satisfiable if and only if (ϕ ∧ ψ) is Z-satisfiable: Suppose that
(C, d) |= ϕ ∧ ψ for a Z-constraint structure C, where w.l.o.g. every node is reachable from d. Then ψ1

enforces that gC and hC are constant and ψ2 enforces that every integer z ∈ Z that belongs to the image of

30

one of the functions fC (f ∈ F) belongs to the interval [g(v), h(v)]. By Proposition 57, ϕ ∧ ψ has a finite
model, which is also a model of ϕ.

Vice versa, if ϕ has a finite model C, then there are integers c, d ∈ Z such that im(fC) ⊆ [c, d] for every
f ∈ F . We can extend C to a model for ϕ ∧ ψ by defining gC(v) = c and hC(v) = d for every node v of G.

Since SATECTL∗(Z) is decidable (Theorem 32) so is FINSATECTL∗(Z). �

We can use Corollary 58 to show that for every linear order L (extended with the equality relation),
FINSATECTL∗(L) is decidable:

Corollary 59. Let (L,<) be a linear order and define L = (L,<,≡) where ≡ is the equality relation on L.
Then FINSATECTL∗(L) can be reduced to FINSATECTL∗(Z), and is therefore decidable.

Proof. First assume that L is infinite. Let ϕ ∈ ECTL∗({<,≡}) and let C be a finite Z-constraint graph
in which ϕ holds. Choose a, b ∈ Z such that im(fC) ⊆ [a, b] for every function symbol f that appears in
ϕ. Let n = b − a. Since L is infinite, there exists elements l0, . . . , ln ∈ L such that l0 < l1 < · · · < ln in
(L,<). Let C′ be the L-constraint graph with the same underlying Kripke structure as C and fC′

(d) = li if
fC(d) = a+ i. This is clearly a finite model of ϕ over the domain L. By reversing the role of L and Z, we
can show that ϕ is finitely Z-satisfiable if ϕ is finitely L-satisfiable.

If L is a finite set with c = |L|, then we can reduce FINSATECTL∗(L) again to FINSATECTL∗(Z) by mapping
a formula ϕ ∈ ECTL∗({<,≡}) to ϕ ∧ ψ, where ψ is a variant of the formula from the proof of Corollary 58.
Using the relations ≡1 and ≡c we have to bound the image of every function f ∈ F that appears in ϕ to the
interval [1, c]. �

It is open whether there is a linear order for which SATECTL∗(L) is undecidable.

Remark 60. Instead of using reductions to the satisfiability problem, one can proof all decidability results
of this section with the following approach.

Analogously to the definition of EHD(L) (for a logic L), say that a σ-structure A has the property
EHDfin(L) if there is a computable function that maps every finite subsignature τ ⊆ σ to an L-sentence ϕτ
such that for every countable τ -structure B we have the following: There exists a homomorphism h : B → A
with finite image if and only if B |= ϕτ .

Then we can follow exactly all the steps relating property EHD(Bool(MSO,WMSO+B)) of a structure A
with decidability of SATECTL∗(A) and obtain a proof that FINSATECTL∗(A) is decidable for every negation-
closed structure A with property EHDfin(Bool(MSO,WMSO+B)). The results stated above then follow from
the fact that every infinite linear order has property EHDfin(Bool(MSO,WMSO+B)): A constraint graph
allows a homomorphism with finite image to an infinite linear order if and only if there is a bound on the
length of the longest <-chain (after contraction of ≡-edges as usual).

8. An Undecidable Extension

ECTL∗(σ) extends ECTL∗ with constraints which allow to reason about concrete numerical values. One
characteristic of these constraints is that they have a fixed depth: we can compare the values assigned to
the register variables at fixed positions, e.g., we can express equality between the value of f1 at the current
position and the value of f2 at the ith next position along a path using the formula f1x = f2S

i(x).
Different logics like metric temporal logic (MTL) and timed propositional temporal logic (TPTL), both

extensions of linear temporal logic (LTL), can specify properties of data words, which are basically A-
constraint paths with only one register variable, where A is typically the set of natural numbers or real
numbers, see [2]. In these logics, one can compare the current data value with future values at arbitrary
distance from the current position. For instance, we can express the property that there is a future data value
which is equal to the current one with the TPTL-formula x.F (x = 0). It is interesting whether we can add
this feature to ECTL∗(σ) and preserve decidability. To this end, we want to extend the atomic constraints
from (5) to new ones of the form: (f1O1(x), . . . , fkOk(x)) ∈ R where Oi = Sj for some j ∈ N or Oi = F .
Intuitively, Oi = F would refer to the fi-value at some (existentially quantified) future position of the path.

31

On the concrete domain (Z, <,=), this would allow to express, for instance, the property that there is a
future position in which the f1-value is greater than the f2-value in the next position: f1F (x) > f2S(x).

Unfortunately we can show that this leads to undecidability of the satisfiability problem, even in very
restricted settings: Even if we consider as the starting point logic LTL instead of ECTL∗, adding these new
constraints causes undecidability of the satisfiability problem on very simple concrete domains.

Definition 61. LTL[F,X](σ) is the extension of LTL defined by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ | R(f1O1, . . . , fkOk)

where p ∈ P, R ∈ σ, k = ar(R), and for all 1 ≤ j ≤ k, fj ∈ F and Oj = Xij for some ij ∈ N or Oj = F .

LTL[F,X](σ) is standard LTL extended by atomic constraints as those from ECTL∗(σ) where also future
operator may occur inside the constraints. Since we now add our constraints to a temporal logic (instead
of MSO on paths) we slightly change the syntax: As usual in temporal logics, we use no variables to point
to nodes of the Kripke structure and we use X as the symbol for the successor function, i.e., in our new
constraints the term fiX

j replaces the ECTL∗(σ)-term fiS
i(x). We use the usual abbreviations, in particular

Gϕ (ϕ holds globally in the future) and Fϕ (ϕ holds finally in the future).
The semantics of LTL[F,X](σ) is mostly inherited from that of LTL, but we evaluate a formula on an

A-constraint path P with underlying Kripke path P (while LTL is evaluated over Kripke paths). Note that
the mappings fP and A only play a role for evaluating constraints: P |= R(f1O1, . . . , fkOk) if and only if

there are i1, . . . , ik such that (fP
1 (P(i1)), . . . , f

P
k (P(ik))) ∈ I(R) and il = j if Ol = Xj for all 1 ≤ l ≤ k and

j ∈ N.

Theorem 62. Satisfiability for LTL[F,X]({<,≡}) over the concrete domains (Z, <,≡) and (N, <,≡) is un-
decidable.

To obtain this result we use incrementing counter automata, in short ICAs, first introduced in [14]. In
contrast to their definition in [14], we use input-free ICAs, but this does not change things, since we are
only interested in the emptiness problem.

Definition 63. An incrementing counter automaton (ICA) C with ε-transitions and zero testing is a tuple
C = (Q, qI , n, δ, F), where:

• Q is a finite set of states,

• qI ∈ Q is the initial state,

• n ∈ N is the number of counters,

• δ ⊆ Q× L×Q is the transition relation over the instruction set L = {inci, deci, ifzi | 1 ≤ i ≤ n}, and

• F ⊆ Q is the set of accepting states.

A configuration of C is a pair (q, v) where q ∈ Q and v : {1, . . . , n} → N is a counter valuation. For

configurations (q, v), (q′, v′), and an instruction l ∈ L there is an exact transition (q, v)
l

−→† (q′, v′) of C if
and only if (q, l, q′) ∈ δ and one of the following cases holds:

• l = inci for some i, v(j) = v′(j) for j 6= i, and v′(i) = v(i) + 1

• l = deci for some i, v(j) = v′(j) for j 6= i, v(i) > 0, and v′(i) = v(i) − 1

• l = ifzi for some i, v(i) = 0, and v′(j) = v(j) for all j.

32

We define a partial order ≤ on counter valuations as follows: v ≤ w if and only if v(i) ≤ w(i) for all

1 ≤ i ≤ n. The transitions of C are of the form (q, w)
l

−→ (q′, w′) such that there are v, v′ with an exact

transition (q, v)
l

−→† (q′, v′), w ≤ v, and v′ ≤ w′.

An infinite run of C is an infinite sequence of transitions (q0, v0)
l0−→ (q1, v1)

l1−→ · · · such that q0 = qI .
An infinite run is accepting if and only if some accepting state occurs infinitely often.

Essentially, ICAs relax the conditions on transitions, by letting faulty increments occur at any time. The
problem whether an ICA admits an accepting run is deeply connected to that of the halting problem (for
finite runs) and of the recurring state problem (for infinite runs) of insertion channel machines with emptiness
testing, see [24]. Their computational power is strictly weaker than that of perfect channel machines, but
emptiness is still undecidable on infinite words, which makes them a useful tool for undecidability proofs.

Theorem 64 (see Theorem 2.9b of [14]). The existence of an infinite accepting run for ICAs is unde-
cidable and Π0

1-complete.

To prove undecidability of the satisfiability problem for LTL[F,X]({<,≡}) over (Z, <,≡), we use a reduction
(for the method we drew inspiration from [14]) from the infinite accepting run problem for ICAs.

Proof (Theorem 62). Let C = (Q, qI , n, δ, F) be an ICA. We define an LTL[F,X]({<,≡})-formula ϕC on
the atomic proposition set P = Q ∪ L where L = {inci, deci, ifzi | 1 ≤ i ≤ n}, which is satisfiable over the
concrete domain A = (Z, <,≡) (or A = (N, <,≡)) if and only if C has an infinite accepting run.

To encode a successful run of C, we require that an A-constraint path P satisfies the properties below:

• In each position of the path P, one and only one state from Q occurs, and one and only one operation
from L occurs:

ϕstruct := G
(∨

q∈Q

q ∧
∨

l∈L

l ∧
∧

q,q′∈Q
q 6=q′

(q → ¬q′) ∧
∧

l,l′∈L
l 6=l′

(l → ¬l′)
)

.

• The computation starts with the initial state and reaches a final state infinitely often:

ϕBüchi := qI ∧
∨

q∈F

GF q.

• The transition relations of C are encoded in the following way:

ϕtrans := G
∧

q∈Q

(

q →
∨

(q,l,q′)∈δ

(l ∧ Xq′)
)

.

• We fix 2n pairwise different function symbols fi, gi ∈ F for 1 ≤ i ≤ n. We use their interpretations
to identify each inci-operation and deci-operation, respectively. While the identifiers are assigned
univocally for the increment instructions, more than one decrement can have the same identifier value.
To make sure that each inc-operation on counter i is assigned a unique value, we require that at every
position of the path P, which corresponds to an inci-operation, fP

i is assigned a strictly greater value
than in the previous position, and otherwise remains constant.

For the sequence of values of gP
i we only require that it stays constant whenever the instruction deci

does not occur, and it is otherwise non-decreasing:

ϕinc := G

n∧

i=1

(

(inci → fi < fiX) ∧ (¬inci → fi = fiX)
)

ϕdec := G

n∧

i=1

(

(gi ≤ giX) ∧ (¬deci → gi = giX)
)

.

33

• Whenever a zero test on counter i occurs, the counter should be empty. To make sure that a run
respects this property, we should check that, for each increase on counter i, we can find at least a
corresponding decrease. It is not necessary that this correspondence is exact, since a faulty increase
can occur at any time, making additional decreases possible. We use the identifier functions fi and gi
to match each inci, which is eventually followed by a ifzi, to a deci with the same identifier:

ϕifz1 := G

n∧

i=1

(

(inci ∧ F ifzi) → (fiX = giF)
)

.

We should also enforce the fact that, for each inci, the correspondent deci occurs after inci and before
ifzi. For this we require that gi is never assigned a higher value than fi, and that they coincide in the
occurrence of a zero test instruction on counter i. Since gi cannot decrease, this means that any deci
with the same value of an inci-instruction should happen before the zero test:

ϕifz2 := G

n∧

i=1

(fi ≥ gi ∧ (ifzi → fi = gi)).

Let ϕC be the conjunction of all the above formulas. We prove the following equivalence:

C has an accepting run ⇐⇒ ϕC is satisfiable

Proof of =⇒. Let r = (q0, v0)
l0−→ (q1, v1)

l1−→ · · · be a successful run of C. Starting from this we define an
A-constraint path P = (A,P , γ) which satisfies ϕC , where A can be (N, <,≡) or (Z, <,≡).

First of all we define P = (N,→, ρ), where → is the successor relation on the natural numbers, and
ρ(i) = {qi, li} for all i ∈ N. Since the run is successful, this ensures that ϕstruct ∧ ϕBüchi ∧ ϕtrans is satisfied.

Now we define the interpretations of fi and gi. For all 1 ≤ i ≤ n, we define fi(0) = gi(0) = 0. For all
other nodes j ≥ 1 we define

fi(j) =

{

fi(j − 1) + 1 iff lj−1 = inci

fi(j − 1) otherwise

gi(j) =

{

gi(j − 1) + 1 iff lj−1 = deci and gi(j − 1) < fi(j − 1)

gi(j − 1) otherwise

Clearly these choices of fi and gi make ϕinc and ϕdec true. To prove that also ϕifz1 and ϕifz2 hold, we note
that, since r is a successful run of C, a transition with operation ifzi can only occur if counter i is empty.
Therefore, the number of increase instructions on counter i, between any two ifzi, should be matched by an
equal or greater number of decrease instructions. By definition of the functions, for each increase on the
value of fi which is eventually followed by a zero test on counter i, there is a corresponding increase on the
value of gi. Furthermore, whenever gi reaches the value of fi, the value of gi is no longer increased until fi
grows again, thus ensuring that ϕifz1 ∧ ϕifz2 holds.

Proof of ⇐=. Let P = (A,P , γ) be a constraint path such that P |= ϕC . A can be (N, <,≡) or (Z, <,≡),
this does not change the proof. We define a run

r = (q0, v0)
l0−→ (q1, v1)

l1−→ · · ·

of C and prove that it is accepting. By ϕstruct∧ϕBüchi the label ρ(P(i)) of every node of the path P contains
one and only one symbol q from Q and l from L. We set qi = q and li = l. Since ϕBüchi holds, q0 is the
initial state qI , and ab accepting state is visited infinitely often. Since ϕtrans holds, for every i ∈ N we have
that (qi, li, qi+1) ∈ δ. We set to zero the initial value of every counter 1 ≤ j ≤ n: v0(j) = 0. For all later
positions i ≥ 1 we define:

vi(j) =







vi−1(j) + 1 iff li−1 = incj

vi−1(j) − 1 iff li−1 = decj and vi−1(j) > 0

vi−1(j) otherwise.

34

Note that vi(j) is always positive. It remains to show that

(qi, vi)
li−→ (qi+1, vi+1) (12)

according to Definition 63. We only discuss the non trivial cases.

• If li = decj and vi(j) = 0, then also vi+1(j) = 0. Let v′ be the counter valuation that assigns v′(j) = 1

and coincides with vi on all other counters. Then, (qi, v
′)

decj
−→† (qi+1, vi+1) is an exact transition. Since

vi ≤ v′, we get (12).

• If li = ifzj , then we need to show vi(j) = 0 in order to get (12). For this to hold, it is enough to notice
that ϕifz1 and ϕifz2 ensure that for every incj followed by a ifzj there is a decj , and this occurs before
ifzj . Hence, every time we increase vk(j) by one for some k < i, we also decrease it by one before the
zero test. All other decreases do not alter the value of the counter.

We conclude that, since the infinite accepting run problem for ICAs is undecidable and Π0
1-complete, satis-

fiability for LTL[F,X]({≡, <}) over (N, <,≡) and (Z, <,≡) is also undecidable and Π0
1-hard. �

Obviously the undecidability result also applies to CTL∗ and ECTL∗ extended with this new kind of con-
straints. We currently do not know the decidability status for LTL extended by constraints where we only
allow the F operator and not the X operator.

9. Open problems

As already mentioned in the introduction, it remains open to determine the complexity of CTL∗-
satisfiability with constraints over Z (for ECTL∗ with constraints over Z satisfiability is non-elementary).
Clearly, this problem is 2EXPTIME-hard due to the known lower bound for CTL∗-satisfiability. To get an
upper complexity bound, one should investigate the complexity of the emptiness problem for puzzles from
[3] (see Lemma 5).

An interesting structure for which the decidability status for satisfiability of ECTL∗ and even LTL with
constraints is open, is ({0, 1}∗,≤p, 6≤p), where ≤p is the prefix order on words, and 6≤p is its complement.
We recently proved that this structure does not have the property EHD(Bool(MSO,WMSO+B)). Hence, a
new strategy is needed.

Acknowledgments. We are grateful to Szymon Toruńczyk for fruitful discussions.

[1] R. Alur and T. A. Henzinger. A really temporal logic. In Proc. FOCS 1989, pages 164–169. IEEE Computer Society,
1989.

[2] R. Alur and T. Henzinger. Real-time logics: complexity and expressiveness. In Information and Computation, vol. 104,
390–401, 1993.

[3] M. Bojańczyk and S. Toruńczyk. Weak MSO+U over infinite trees. In Proc. STACS 2012, vol. 14 of LIPIcs, 648–660.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2012.

[4] M. Bojańczyk and S. Toruńczyk. Weak MSO+U over infinite trees (long version). available at http://www.mimuw.edu.

pl/~bojan/papers/wmsou-trees.pdf

[5] L. Bozzelli and R. Gascon. Branching-time temporal logic extended with qualitative Presburger constraints. In Proc. LPAR

2006, LNCS 4246, 197–211. Springer, 2006.
[6] C. Carapelle, A. Kartzow, and M. Lohrey. Satisfiability of CTL* with constraints. In Proc. CONCUR 2013, LNCS 8052,

pages 455–469. Springer, 2013.
[7] K. Čerāns. Deciding properties of integral relational automata. In Proc. ICALP 1994, LNCS 820, 820:35–46. Springer,

1994.
[8] T. Colcombet and C. Löding. Regular cost functions over finite trees. In Proc. LICS 2010, 70–79. IEEE Computer Society,

2010.
[9] B. Courcelle. Monadic second-order definable graph transductions: a survey Theor. Comput. Sci., 126:53–75, 1994.

[10] B. Courcelle. The monadic second-order logic of graphs V: On closing the gap between definability and recognizability.
Theor. Comput. Sci., 80(2):153–202, 1991.

[11] M. Dam. CTL* and ECTL* as fragments of the modal mu-calculus. Theor. Comput. Sci., 126(1):77–96, 1994.
[12] S. Demri and D. D’Souza. An automata-theoretic approach to constraint LTL. Inf. Comput., 205(3):380–415, 2007.
[13] S. Demri and R. Gascon. Verification of qualitative Z constraints. Theor. Comput. Sci., 409(1):24–40, 2008.

35

[14] S. Demri and R. Lazić. LTL with the freeze quantifier and register automata. ACM Trans. Comput. Logic, 10(3),
16:1–16:30, 2009.

[15] E. A. Emerson and C. S. Jutla. The complexity of tree automata and logics of programs. SIAM Journal on Computing,
29(1):132–158, 1999.

[16] R. Gascon. An automata-based approach for CTL∗ with constraints. Electr. Notes Theor. Comput. Sci., 239:193–211,
2009.

[17] D. Janin and I. Walukiewicz On the Expressive Completeness of the Propositional mu-Calculus with Respect to Monadic
Second Order Logic. In Proc. CONCUR 1996, LNCS 1119, 263–277. Springer, 1996.

[18] R. Koymans. Specifying real-time properties with metric temporal logic. Real-Time Systems, 2(4):255–299, 1990.
[19] D. Kozen A finite model theorem for the propositional µ-calculus. Studia Logica 47(3):233–241, 1988.
[20] C. Lutz. Description logics with concrete domains-a survey. In Advances in Modal Logic 4, pages 265–296. King’s College

Publications, 2003.
[21] C. Lutz. Combining interval-based temporal reasoning with general TBoxes. Artificial Intelligence, 152(2):235 – 274,

2004.
[22] C. Lutz. NEXPTIME-complete description logics with concrete domains. ACM Trans. Comput. Log., 5(4):669–705, 2004.
[23] C. Lutz and M. Milicic. A tableau algorithm for description logics with concrete domains and general TBoxes. J. Autom.

Reasoning, 38(1-3):227–259, 2007.
[24] J. Ouaknine and J. Worrell. On metric temporal logic and faulty Turing machines. Proc. FOSSACS 2006, LNCS 3921,

pages, 217–230. Springer, 2006.
[25] M. O. Rabin. Decidability of second-order theories and automata on infinite trees. Trans. Amer. Math. Soc., 141:1–35,

1969.
[26] W. Thomas. Computation tree logic and regular omega-languages. In Proc. REX Workshop 1988, LNCS 354, 690–713.

Springer, 1988.
[27] M. Y. Vardi and P. Wolper. Yet another process logic (preliminary version). In Proc. Logic of Programs 1983, LNCS 164,

501–512. Springer, 1983.
[28] I. Walukiewicz. Monadic second-order logic on tree-like structures Theor. Comput. Sci., 275(1-2):311–346, 2002.
[29] P. Wolper. Temporal logic can be more expressive. In Information and Control, 56, 72–99, 1983.

36

