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1 Introduction

General context Theories of equations over groups are a classical research topic at the
borderline between algebra, mathematical logic, and theoretical computer science. This line
of research was initiated by the work of Lyndon, Tarski, and others in the first half of the
20th century. A major driving force for the development of this field was a question that was
posed by Tarski around 1945: Is the first-order theory of a free group F of rank two, i.e, the
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set of all statements of first-order logic with equations as atomic propositions that are true in
F , decidable. Decidability results for fragments of this theory were obtained by Makanin (for
the existential theory of a free group) [Mak83] and Merzlyakov and Makanin (for the positive
theory of a free group) [Mak84,Mer66]. A complete (positive) solution of Tarski’s problem
was finally announced in [KM98]; the complete solution is spread over a series of papers. The
complexity of Makanin’s algorithm for deciding the existential theory of a free group was
shown to be not primitive recursive in [KP98]. Based on [Pla99], a new PSPACE algorithm
for the existential theory of a free group, which also allows to include rational constraints for
variables, was presented in [DHG05]. Beside these results for free groups, also extensions to
larger classes of groups were obtained in the past: [DL04,DM06,KMS05,RS95]. In [DL03], a
general transfer theorem for existential theories was shown: the decidability of the existential
theory is preserved by graph products over groups — a construction that generalizes both
free and direct products, see e.g. [Gre90]. Moreover, it is shown in [DL03] that for a large
class of graph products, the positive theory can be reduced to the existential theory.

The aim of this paper is to prove similar transfer theorems for HNN-extensions (this kind
of extension was introduced in [HNN49], its definition is recalled by eq. (1) of Section 2)
and amalgamated free products (which is a classical tool in algebraic topology, its definition
is recalled by eq. (10) of Section 2). These two operations are of fundamental importance in
combinatorial group theory [LS77]. One of the first important applications of HNN-extensions
was a more transparent proof of the celebrated result of Novikov and Boone on the existence
of a finitely presented group with an undecidable word problem, see e.g. [LS77]. Such a group
can be constructed by a series of HNN-extensions starting from a free group. This shows that
there is no hope to prove a transfer theorem for HNN-extensions, similar to the one for graph
products from [DL03]. Therefore we mainly consider HNN-extensions and amalgamated free
products, where the subgroup A in (1) and (10), respectively, is finite. These restrictions
appear also in other contexts in combinatorial group theory: A seminal result of Stallings
[Sta71] states that every group G with more than one end can be either written in the form
(10) with A finite or in the form (1) with A finite. Those groups which can be built up
from finite groups using the operations of amalgamated free products and HNN-extensions,
both subject to the finiteness restrictions above, are precisely the virtually-free groups [DD90]
(i.e., those groups with a free subgroup of finite index). Virtually-free groups also have strong
connections to formal language theory and infinite graph theory [MS83].

Main results of the paper This paper is part of a sequence of three articles dealing with
transfer theorems for HNN-extensions and free products with amalgamation where the asso-
ciated subgroups are finite (see in [LS06] a survey of the full sequence). In [LS08] we studied
the membership problem and other related algorithmic problems about rational subsets of
monoids and subgroups of groups. Here we study the satisfiability problem for systems of
equations (possibly together with disequations and rational constraints) in monoids. In a
forthcoming paper ([LS05]) we study the validity of positive first-order formulas in groups.

The main result of this paper is Theorem 5: it states that the satisfiability problem for
equations with rational constraints in a monoid G, which is an HNN-extension of a cancellative
monoid H , with finite associated subgroups, is Turing-reducible to the same problem over
the base monoid H. Several variations and corollaries of this result are also derived:

– The same transfer property is shown for systems of equations with constants (Theorem 8)
and for systems of equations and disequations with rational constraints (Theorem 9);
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– A similar theorem is proved for systems of equations and disequations with rational con-
straints in an amalgamated product (Theorem 12).

As a corollary, the satisfiability problem for equations and disequations with rational con-
straints in the fundamental group of a finite graph of groups with finite edge groups is
Turing-reducible to the join of the same problems in the vertex groups (Theorem 13).

Contents Section 2 consists of recalls and notation on the subject of monoids and groups,
rational subsets of monoids, equations in monoids and algorithmic problems in general. In
Section 3 we introduce the main technical tool allowing us to deal with equations in HNN-
extensions: the notion of AB-algebra. This notion is defined in general. We then study two
particular AB-algebras, denoted by Ht and W, which are crucial in our reductions. The do-
main of the AB-algebra Ht is essentially the set of reduced sequences of the HNN-extension;
the domain of W is a free product of the finite associated subgroups A,B with a free monoid
generated by all the possible “types” of sequences that might occur in Ht, quotiented by rela-
tions expressing the pseudo-commutations between each type of sequence and the elements of
A∪B. In Section 4 we make precise our notion of system of equations with rational constraints
in a monoid and give normal forms for such systems. In Section 5 we provide a reduction of
equations over an HNN-extension G of a monoid H to equations over the AB-algebra Ht and
equations over the base monoid H. In Section 6 we reduce equations over the AB-algebra Ht

to equations over the AB-algebra W. The essential statement of this section, which is also
the key-step of the present paper, is Lemma 46 asserting that any solution σt of an equation
in Ht factorizes through a solution of the same equation, but in the structure W. Most of
the technical lemmas of section 3 establish some algebraic properties of W and of Ht in order
to enable the proof of this factorization lemma. In Section 7.1 we reduce equations over the
the AB-algebra W to equations over some finitely generated group E which turns out to be
virtually-free. In Section 9 we show, by induction over the size of the associated subgroups
A,B, that equations in E are algorithmically solvable. We then prove a transfer theorem con-
cerning groups only and prove finally our main Theorem 5 concerning cancellative monoids.
In Section 10 we adapt the proof-techniques developed in the previous sections in order to
prove some variants of Theorem 5 where the constraints can be positive only, in particular to
the case of equations with constants. In Section 11 we extend to equations and disequations
the reduction exposed in Section 5. We thus prove some transfer theorems for systems of
equations and disequations in HNN-extensions of cancellative monoids. In Section 12 we de-
duce from our previous results on HNN-extensions a transfer theorem for systems of equations
and disequations with rational constraints in free products with amalgamation of cancella-
tive monoids (with finite amalgamated subgroups). In Section 13 we synthesize two transfer
theorems obtained previously, one for HNN-extensions and the other for free products with
amalgamation, into a single theorem about finite graphs of groups.

2 Preliminaries

The power set of a set A is denoted by 2A. For an equivalence relation R on A we denote
with [A]R the set of all equivalence classes of R. For C ⊆ 2A we denote with bool(C) the set
of all boolean combinations of sets from C, which is the smallest boolean subalgebra of 2A

containing C. For a partial mapping f we denote with dom(f) and im(f) the domain and
image (or range), respectively, of the mapping f . Let us denote by B(Q) the monoid 2Q×Q of
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binary relations over the set Q and let B2(Q) = B(Q)× B(Q). For R ∈ B(Q) and R′ ∈ B(Q′)
we define

R⊗R′ = {((p, p′), (q, q′)) | (p, q) ∈ R, (p′, q′) ∈ R′}.

We will use the following simple lemma:

Lemma 1. Let R,S ∈ B(Q) and R′, S′ ∈ B(Q′). Then (R◦S)⊗(R′ ◦S′) = (R⊗R′)◦(S⊗S′).

Proof. We have ((p, p′), (r, r′)) ∈ (R ◦ S)⊗ (R′ ◦ S′) if and only if (p, r) ∈ R ◦ S and (p′, r′) ∈
R′ ◦ S′ if and only if there exist q ∈ Q and q′ ∈ Q′ with (p, q) ∈ R, (q, r) ∈ S, (p′, q′) ∈ R′,
and (q′, r′) ∈ S′ if and only if there exist (q, q′) ∈ Q × Q′ with ((p, p′), (q, q′)) ∈ R ⊗ R′ and
((q, q′), (r, r′)) ∈ S ⊗ S′ if and only if ((p, p′), (r, r′)) ∈ (R⊗R′) ◦ (S ⊗ S′). ⊓⊔

For a string s ∈ Σ∗ and Γ ⊆ Σ we denote with |s|Γ the number of occurrences of symbols
from Γ in s. For a tuple a = (a1, . . . , an) and 1 ≤ i ≤ n we denote with pi(a) = ai the
projection onto the i-th component.

In the following subsections, we recall all the needed definitions and classical results con-
cerning partial semigroups, semigroups, monoids, and groups.

2.1 Partial semigroups

Let 〈P, ∗〉 be a set endowed with a partial operation ∗ : P × P → P . By dom(∗) ⊆ P × P we
denote the domain of ∗. The structure 〈P, ∗〉 is a partial semigroup if for all p, q, r ∈ P :

(p, q) ∈ dom(∗) ∧ ((p ∗ q), r) ∈ dom(∗) ⇐⇒ (q, r) ∈ dom(∗) ∧ (p, (q ∗ r)) ∈ dom(∗) and

(p, q) ∈ dom(∗) ∧ ((p ∗ q), r) ∈ dom(∗) =⇒ (p ∗ q) ∗ r = p ∗ (q ∗ r).

Let us notice that, when P is a partial semigroup, the structure 〈2P , ∗〉 with

∀R,S ∈ 2P : R ∗ S = {r ∗ s | (r, s) ∈ (R× S) ∩ dom(∗)}

is a semigroup.
Given two partial semigroups 〈P, ∗〉 and 〈Q, ◦〉, a partial semigroup homomorphism from

P to Q is a total mapping h : P → Q such that for all p, q ∈ P with (p, q) ∈ dom(∗) the
following holds: (h(p), h(q)) ∈ dom(◦) and h(p ∗ q) = h(p) ◦ h(q).

Let A,B be two groups. We denote by PGI(A,B) the set of all partial group isomorphisms
ϕ with dom(ϕ) ⊆ A and im(ϕ) ⊆ B. Let

PGI{A,B} = PGI(A,A) ∪ PGI(A,B) ∪ PGI(B,A) ∪ PGI(B,B).

The pair 〈PGI{A,B}, ◦〉, where ◦ is the composition operator, is a partial semigroup.

The following property will be useful for dealing with product-automata.

Lemma 2. Let 〈S, ∗〉 be a partial semigroup and let Q and R be sets. Let µ : S → B(Q) and
η : S → B(R) be two homomorphisms. Let us define µ⊗ η : S → B(Q× R) by

∀s ∈ S : (µ⊗ η)(s) = µ(s)⊗ η(s).

Then µ⊗ η is a homomorphism too.
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Proof. Let (s, s′) ∈ dom(∗). We have

(µ ⊗ η)(s ∗ s′) = µ(s ∗ s′)⊗ η(s ∗ s′) (by definition)

= (µ(s) ◦ µ(s′))⊗ (η(s) ◦ η(s′)) (since µ, η are homomorphisms)

= (µ(s)⊗ η(s)) ◦ (µ(s′)⊗ η(s′)) (by Lemma 1)

= (µ⊗ η)(s) ◦ (µ⊗ η)(s′) (by definition),

which proves the lemma ⊓⊔

2.2 Monoids and groups

Let M be a monoid with identity element 1 ∈ M. The product of two elements x, y ∈ M is
just written as xy. The monoid M is called cancellative if (xy = xz or yx = zx) implies y = z
for all x, y, z ∈ M. A submonoid of M is given by a subset A ⊆ M such that (i) 1 ∈ A and
(ii) xy ∈ A for all x, y ∈ A. If for every x ∈ A there exists y ∈ A with xy = yx = 1 (i.e.,
A is a group), then we call A a subgroup of M.1 With Hom(M1,M2) we denote the set of
all monoid homomorphims from the monoid M1 to the monoid M2. An anti-homomorphism
between monoids M1 and M2 is a mapping h : M1 →M2 that maps the identity of M1 to the
identity of M2 and moreover satisfies h(xy) = h(y)h(x). If h is a bijection, then it is called
an anti-isomorphism. If moreover h2(x) = x for all x ∈ M1 then it is called an involutive
anti-isomorphism.

Given a subset P ⊆ M ×M, we denote by ≡P the smallest monoid congruence over M

that contains P . The following lemma is trivial.

Lemma 3. Let h : M1 → M2 be some monoid homomorphism and P ⊆ M1 ×M1. Then,
h(≡P ) ⊆ ≡h(P ).

Also the following fact is well-known, it will be useful for our investigations on equations over
cancellative monoids.

Lemma 4. Let H be a cancellative monoid and let I(H) be its subset of invertible elements.
For every x, y ∈ H, if xy ∈ I(H) then x, y ∈ I(H).

Proof. Suppose that H is cancellative and that xy ∈ I(H). This implies that xy has some
inverse z ∈ H, i.e., xyz = 1. Hence, xyzx = x, so that by left-cancellation yzx = 1, which
shows that x and yz are inverses in H. Hence x ∈ I(H). By a similar argument, y and zx are
inverses in H, hence y ∈ I(H). ⊓⊔

HNN-extensions. Let us fix throughout this section a monoid H (the base monoid) and
two finite, isomorphic subgroups A ≤ H, B ≤ H and an isomorphism ϕ : A → B. The
HNN-extension

G = 〈H, t; t−1at = ϕ(a) (a ∈ A)〉. (1)

1 Note that usually, a subgroup A of M is defined to be a subsemigroup of M, which forms a group. In
particular, the identity element of A may be an idempotent of M different from the identity of 1 of M.
Nevertheless, we prefer to use the term subgroup for our definition in order to avoid too many different
notions.
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can be defined as the quotient monoid H ∗ {t, t−1}∗/≈, of the free product of H and the free
monoid {t, t−1}∗ by the smallest congruence ≈ over H ∗ {t, t−1}∗ such that:

tt−1 ≈ t−1t ≈ 1 (2)

at ≈ tϕ(a) for all a ∈ A (3)

bt−1 ≈ t−1ϕ−1(b) for all b ∈ B (4)

Note that (2) and (3) together imply (4) but below we will need (3) and (4) without assuming
(2). There exists a canonical morphism

πG : H ∗ {t, t−1}∗ → G,

where the kernel of πG coincides with ≈.

An element of s ∈ H ∗ {t, t−1}∗ can be viewed as a word over the alphabet H ∪ {t, t−1}
which has the form

s = h0t
α1h1 · · · t

αnhn, (5)

where n ≥ 0, αi ∈ {1,−1}, and hi ∈ H. Such an element s ∈ H ∗ {t, t−1}∗ is also called a
t-sequence. The t-sequence s is said to be a reduced sequence if it neither contains a factor of
the form t−1at (with a ∈ A) nor tbt−1 (with b ∈ B). Let

Red(H, t) = {s ∈ H ∗ {t, t−1}∗ | s is reduced}.

For the further considerations, it is useful to define

A(+1) = B(−1) = A, A(−1) = B(+1) = B.

Note that ϕα : A(α)→ B(α) for α ∈ {1,−1}.

Definition 1. Let ∼ be the congruence on the monoid H ∗{t, t−1}∗ generated by all the rules
of type (3) and (4) above.

The congruence ∼ coincides with reflexive and transitive closure of the binary relation
1
∼ over

H ∗ {t, t−1}∗, which is defined as follows, where s, s′ ∈ H ∗ {t, t−1}∗:

s
1
∼ s′ ⇐⇒ ∃u, v ∈ H ∗ {t, t−1}∗, α ∈ {1,−1}, c ∈ A(α) : s = utαv ∧ s′ = uc−1tαϕα(c)v.

Equivalently, if s = h0t
α1h1 · · · t

αnhn and s′ = h′0t
α′
1h′1 · · · t

α′
mh′m (with n,m ≥ 0, αi, α

′
j ∈

{1,−1} and hi, h
′
j ∈ H), then s ∼ s′ if and only if n = m, αi = α′

i for 1 ≤ i ≤ n, and there
exist c1, . . . , c2n ∈ A ∪B such that:

– hkc2k+1 = c2kh
′
k in H for 0 ≤ k ≤ n (here we set c0 = c2n+1 = 1)

– c2k−1 ∈ A(αk) and c2k = ϕαk(c2k−1) ∈ A(−αk) for 1 ≤ k ≤ n.

This situation can be visualized by a diagram of the following form (also called a van Kampen
diagram, see [LS77] for more details), where n = m = 4. Light-shaded (resp. dark-shaded)
areas represent relations in H (resp. relations of the form at = tϕ(a) (a ∈ A) or bt−1 =
t−1ϕ−1(b) (b ∈ B)).
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(†)

h0
tα1

h1 tα2 h2 tα3 h3 tα4

h4

h′0
tα1

h′1 tα2 h′2 tα3 h′3
tα4

h′4

c1 c2 c3 c4 c5 c6 c7 c8

The elements c1, . . . , c2n in such a diagram are also called connecting elements.
The set Red(H, t) is saturated by the congruence ∼, i.e.,

s ∼ s′ =⇒ (s ∈ Red(H, t)⇐⇒ s′ ∈ Red(H, t)).

Just notice that, since A and B are groups, aha′ ∈ A ⇐⇒ h ∈ A for all h ∈ H, a, a′ ∈ A
and bhb′ ∈ B ⇐⇒ h ∈ B for all h ∈ H, b, b′ ∈ B. This property would fail if A and B were
assumed to be merely submonoids of H.

One has ∼ ⊆ ≈. Moreover, for reduced sequences the following fundamental lemma holds.

Lemma 5. Let s, s′ ∈ Red(H, t). Then s ≈ s′ if and only if s ∼ s′.

See [LS08, Appendix A] for a proof. Let us define the quotient monoid

Ht = H ∗ {t, t−1}∗/∼. (6)

Lemma 6. If the monoid H is cancellative then the monoid Ht is cancellative too.

Proof. We will only prove right-cancellativity, left-cancellativity can be shown analogously.
We first prove that sh ∼ s′h implies s ∼ s′ for all s, s′ ∈ H∗{t, t−1}∗ and h ∈ H. Assume that

s = h0t
α1h1 · · · t

αnhn and s′ = h′0t
α′
1h′1 · · · t

α′
mh′m.

Hence, sh ∼ s′h implies

h0t
α1h1 · · · t

αnhnh ∼ h
′
0t
α′
1h′1 · · · t

α′
mh′mh.

This implies n = m and αi = α′
i for 1 ≤ i ≤ n. Moreover, there exists a van Kampen diagram

of the following form:

h0
tα1

h1 tα2 h2
tαn

hnh

h′0
tα1

h′1 tα2 h′2
tαn

h′nh

c1 c2 c3 c4 c5 · · · c2n−1 c2n

In particular, we obtain the H-identity hnh = c2nh
′
nh. Since H is cancellative, we get hn =

c2nh
′
n. Thus, the above van Kampen diagram can be turned into a diagram for s ∼ s′.
Next, assume that stα ∼ s′tα. Again, we get n = m and αi = α′

i for 1 ≤ i ≤ n and a van
Kampen diagram of the form

h0
tα1

h1 tα2 h2 hn
tα

h′0
tα1

h′1 tα2 h′2
h′n

tα
c1 c2 c3 c4 c5 · · · c2n c2n+1
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Since we must have ϕα(c2n+1) = 1 we get c2n+1 = 1. Hence, again the above van Kampen
diagram can be turned into a diagram for s ∼ s′.

Finally, since Ht is generated by H∪{t, t−1}, it follows that Ht is indeed right-cancellative.
⊓⊔

A simple consequence of Lemma 6 and Lemma 5 is:

Lemma 7. If the monoid H is cancellative then the HNN-extension G is cancellative too.

Proof. We only prove right-cancellativity. Let g, g′ ∈ G. First assume that gtα = g′tα in
G. Since tαt−α = 1 in G, we obtain g = g′. Now assume that gh = g′h in G for h ∈ H.
Choose s, s′ ∈ Red(H, t) with πG(s) = g and πG(s

′) = g′. Then, also sh, s′h ∈ Red(H, t). Since
gh = g′h in G, we have sh ≈ s′h. Lemma 5 implies sh ∼ s′h, i.e., sh = s′h in Ht. Lemma 6
implies s = s′ in Ht, i.e., g = g′ in G. ⊓⊔

We define the norm of a given t-sequence s ∈ H ∗ {t, t−1}∗ by

‖s‖ = |s|{t,t−1}. (7)

Clearly, for all s, s′ ∈ H ∗ {t, t−1}∗, we have

‖ss′‖ = ‖s‖+ ‖s′‖ and ‖s‖ = 0⇐⇒ s ∈ H. (8)

The boolean norm of a t-sequence s is the boolean value defined by

‖s‖b = min{1, ‖s‖}. (9)

Amalgamated free products Let us consider two monoids H1 and H2, two finite subgroups
A1 ≤ H1 and A2 ≤ H2, and an isomorphism ϕ : A1 → A2. The corresponding amalgamated
free product

G = 〈H1,H2; a = ϕ(a) (a ∈ A1)〉 (10)

is defined by G = (H1∗H2)/≈, where ≈ is the congruence on the free productH1∗H2 generated
by the equations a = ϕ(a) for a ∈ A1. An (H1,H2)-sequence is an element s ∈ H1 ∗H2; it has
a unique decomposition of the form

s = h0k1h1 · · · knhn, (11)

where n ≥ 0, h1, . . . , hn−1 ∈ H2 \{1}, k1, . . . , kn ∈ H1 \{1} and h0, hn ∈ H2. If, in addition, we
have h1, . . . , hn−1 ∈ H2 \ A2 and k1, . . . , kn ∈ H1 \ A1, then s is a reduced (H1,H2)-sequence.
We denote by Red(H1;H2) the set of all reduced (H1,H2)-sequences.

The following statement can be found in [LS77, Theorem 2.6. p. 187] in the case where
H1 and H2 are groups and in [LS08] for an amalgamated free product of monoids with amal-
gamation over subgroups.

Lemma 8. The amalgamated free product G = 〈H1,H2; a = ϕ(a)(a ∈ A1)〉 embeds into the
HNN-extension

〈H1 ∗H2, t; t
−1at = ϕ(a)(a ∈ A1)〉

by the map with

h1 7→ t−1h1t for all h1 ∈ H1 and h2 7→ h2 for all h2 ∈ H2 (12)

Further basic terminology and results on amalgamated free products are given in [LS08,
Section 5].
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2.3 Rational subsets of a monoid

Let M be some monoid. The set
Rat(M) ⊆ 2M

is the smallest subset of 2M which contains all finite subsets of M and which is closed under
the operations ∪ (the union operation), · (the product operation), and ∗ (the star operation,
associating with a subset P the smallest submonoid of M containing P ). Note that in case M

is finitely generated, M itself is rational. We will need the following lemma.

Lemma 9. Let c be an invertible element of M and let F ⊆ M belong to the boolean closure
of Rat(M). Then the subsets cF and Fc belong to the boolean closure of Rat(M) as well.

Proof. Let F = bool(Rat(M)) denote the boolean closure of the set of rational subsets of M.
Let c be an invertible element of M . Let us consider

Fc = {F ⊆M | cF ∈ F}.

Then the following hold:

(i) Since {c} is rational and Rat(M) is closed by product, Rat(M) ⊆ Fc.
(ii) Let F ∈ Fc. Since c is invertible, we have c(M \F ) = cM \ cF = M \ cF , where cF ∈ F .

But F is closed by complement. Hence, c(M \ F ) ∈ F , which shows that M \ F ∈ Fc.
(iii) Let F,G ∈ Fc. Then c(F ∪G) = cF ∪cG. Since cF, cG ∈ F and F is closed under union,

we have c(F ∪G) ∈ F , which shows that F ∪G ∈ Fc.

We have proved that Fc contains Rat(M) (i) and is a boolean algebra ((ii) and (iii)). Hence,
it is included in the smallest boolean algebra containg Rat(M), i.e., Fc ⊆ F . Thus, F is closed
under left multiplication by c. By the same kind of arguments one can show that F is closed
under right multiplication by c. ⊓⊔

We introduced in [LS08], in the particular case where M is an HNN-extension, a kind of finite
automata called t-automata, which recognize exactly the rational subsets of M. In Section 2.5,
we will introduce the basic facts concerning these automata.

2.4 Types

For this section, we assume all definitions from Section 2.2 on HNN-extensions. Following
[LS08], let

T6 = {(A,T ), (B,T ), (1,H), (1, 1), (A,H), (B,H)} (13)

Elements of T6 are called vertex types. Note that the first component p1(θ) of a vertex type
θ ∈ T6 is one of the three groups 1, A,B.

We define a finite partial semigroup

T = T6 × B× T6,

where B = 〈{0, 1},∨〉 is the monoid of booleans with OR. The partial product on T is defined
as follows, where (θ, b, ρ), (θ′, b′, ρ′) ∈ T6 × B× T6:

(θ, b, ρ)(θ′, b′, ρ′) =

{
(θ, b ∨ b′, ρ′) if ρ = θ′

undefined otherwise.
(14)
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Fig. 1. The graph B6

As we noticed in Section 2.1, 2T is thus a semigroup. In fact, 2T is a monoid, the neutral
element is {(θ, 0, θ) | θ ∈ T6}.

We define an involution IR : T6 → T6 by:

(A,T ) 7→ (A,H) 7→ (A,T ) (15)

(B,T ) 7→ (B,H) 7→ (B,T ) (16)

(1,H) 7→ (1, 1) 7→ (1,H). (17)

We then define an involution IT : T → T by:

IT (θ, b, ρ) = (IR(ρ), b, IR(θ)). (18)

One can check that IT is an involutory anti-automorphism of the partial semigroup T . This
involution induces an involutory monoid anti-automorphism of 2T that will be denoted by IT
too. We associate to every element θ of T an initial type τ i(θ) ∈ T6, an end type τe(θ) ∈ T6,
an initial group Gi(θ) ∈ {1, A,B} and an end group Ge(θ) ∈ {1, A,B}:

τ i(θ1, b, θ2) = θ1, Gi(θ1, b, θ2) = p1(θ1), τe(θ1, b, θ2) = θ2, Ge(θ1, b, θ2) = p1(θ2).

Note that
Gi(IT (θ)) = Ge(θ) and Ge(IT (θ)) = Gi(θ). (19)

Elements of T are called path types. This terminology refers to the graph B6 exhibited in
Figure 1. The following 17 types are called atomic types; they correspond to the 17 edges of
the graph B6:

(A(α), T, 1, A(−α),H) for α ∈ {+1,−1} (20)

(C,H, 0,D, T ) for C ∈ {1, A,B}, D ∈ {A,B} (21)

(C,H, 0, 1, 1) for C ∈ {1, A,B}, (22)

(θ, 0, θ) for θ ∈ T6 (23)

This set is closed under IT . The partial subsemigroup of T generated by the set of atomic
path types will be denoted by TR. It is closed under the involution IT . The only path types
used in this work are those from TR. The following four types are called T-types:

(A,T, 1, B,H), (B,T, 1, A,H), (A,T, 1, A,H), (B,T, 1, B,H). (24)

H-types are all atomic types listed in (21) and (22). Note that some types from TR are not
atomic: for example the T -type (A,T, 1, A,H) = (A,T, 1, B,H)(B,H, 0, B, T )(B,T, 1, A,H)
is not atomic.
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2.5 Finite t-automata

Given an HNN-extension of the form (1), we have defined in Section 4.1 of [LS08] finite
automata that recognize subsets of H∗{t, t−1}∗. We recall here the main definitions and refer
to [LS08] for further details and proofs.

Let F ⊆ 2H be a set of subsets of H such that

∀c ∈ A ∪B : {c} ∈ F .

A finite t-automaton, briefly fta, over H ∗ {t, t−1}∗ with labelling set F is a 5-tuple

A = 〈L,Q, δ, I,T〉, (25)

where L ⊆ F ∪{{t}, {t−1}} is finite, Q is a finite set of states, I ⊆ Q is the set of initial states,
T ⊆ Q is the set of terminal states, and δ (the set of transitions) is a subset of Q × L × Q

such that
∀q ∈ Q ∃L ∈ L : 1 ∈ L ∧ (q, L, q) ∈ δ. (26)

We define

δ̂ = {(p, x, q) ∈ Q× (H ∪ {t, t−1}) ×Q | ∃L ∈ L : x ∈ L ∧ (p, L, q) ∈ δ}. (27)

The automaton A induces a representation map

µA : H ∗ {t, t−1}∗ → B(Q)

defined as follows: First, define µA,0 : H ∪ {t, t
−1} → B(Q) as follows, where x ∈ H ∪ {t, t−1}:

µA,0(x) = {(q, r) ∈ Q×Q | (q, x, r) ∈ δ̂ } (28)

Note that IdQ ⊆ µA,0(1) due to (26). For x ∈ H ∪ {t, t−1} and q, r ∈ Q we will also write

q
x
−→A r instead of (q, r) ∈ µA,0(x).
Now, let s = h0t

α1h1 · · · t
αnhn be a t-sequence of the form (5). Then

µA(s) = µA,0(h0) ◦ µA,0(t
α1) ◦ µA,0(h1) · · · µA,0(t

αi) ◦ µA,0(hi) · · ·µA,0(t
αn) ◦ µA,0(hn).

The subset of H ∗ {t, t−1}∗ recognized by A is

L(A) = {s ∈ H ∗ {t, t−1}∗ | µA(s) ∩ (I× T) 6= ∅}.

On the set T6 of vertex types, we define a directed, edge-labeled graph G6 = (T6, E6) by (we
write for instance (A,T, t,B,H) instead of ((A,T ), t, (B,H)))

E6 = {(A(α), T, tα, A(−α),H) | α ∈ {+1,−1}}

∪ {(C,H,H,D, T ) | C ∈ {1, A,B},D ∈ {A,B}}

∪ {(C,H,H, 1, 1) | C ∈ {1, A,B}}

∪ {(θ, p1(θ), θ) | θ ∈ T6}.

The graph G6 is represented in Figure 2. We sometimes use also the graph R6 = (T6, E
′
6)

where

E ′6 = (E6 \ {(A,H,H, A, T ), (B,H,H, B, T ))}) ∪

{(A,H,H \A,A, T ), (B,H,H \B,B, T )};

it is shown in Figure 3. One can check that the graph G6 (resp. R6) endowed with the set
of initial states I6 = {(1,H)} and the set of final states T6 = {(1, 1)} is an fta recognizing
H ∗ {t, t−1}∗ (resp. Red(H, t)).
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Fig. 3. The graph R6 = (T6, E
′
6)

Definition 2 (partitionned fta). A partitioned fta with labelling set F is a 6-tuple

A = 〈L,Q, τ, δ, I,T〉, (29)

where 〈L,Q, δ, I,T〉 is an fta with labelling set F , τ : Q → T6 assigns a vertex type to every
state, and the transitions in δ and the sets I and T respect the types in the following sense:

∀(q, h, r) ∈ δ̂ : (τ(q), h, τ(r)) ∈ Ê6 (30)

τ(I) = {(1,H)} ∧ τ(T) = {(1, 1)}. (31)

For a partitioned fta A as in (29) and a state q ∈ Q, we denote by γ(q) the subgroup

γ(q) = p1(τ(q)) ∈ {1, A,B}.

The following lemma follows directly from the structure of the graph G6:

Lemma 10. Let θ1, θ2, θ3 ∈ T6 and let h, h′ ∈ H such that θ1
h
−→G6

θ2
h′
−→G6

θ3. Then (θ1 = θ2
and h ∈ p1(θ2)) or (θ2 = θ3 and h′ ∈ p1(θ2)).

We define an additional function µA,1 : T × H ∗ {t, t−1}∗ → B(Q) as follows: For all s ∈
H ∗ {t, t−1}∗ and (θ, b, θ′) ∈ T let

µA,1((θ, b, θ
′), s) = µA(s) ∩ (τ−1(θ)× τ−1(θ′)). (32)

Note that the boolean component b from (θ, b, θ′) has no influence on the value of µA,1((θ, b, θ
′), s).

Let us define maps γ+ and γt that associate to every sequence s ∈ H ∗ {t, t−1}∗ the set of all
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path types that can be realized by s in the automaton G6 (resp. R6):

γ+(s) = {(θ, ‖s‖b, θ
′) ∈ T | (θ, θ′) ∈ µG6

(s)} ∈ 2T (33)

γt(s) = {(θ, ‖s‖b, θ
′) ∈ T | (θ, θ′) ∈ µR6

(s)} ∈ 2T (34)

Clearly, we have γt(s) ⊆ γ+(s). Moreover, note that

γ+(h0t
α1h1 · · · t

αnhn) = γ+(h0)γ+(t
α1)γ+(h1) · · · γ+(t

αn)γ+(hn) and (35)

γt(h0t
α1h1 · · · t

αnhn) = γt(h0)γt(t
α1)γt(h1) · · · γt(t

αn)γt(hn). (36)

Here, we use the multiplication in the monoid 2T that is obtained from the multiplication in
the partial semigroup T ; see (14).

Recall the equivalences ∼ and ≈ over H ∗ {t, t−1}∗ defined in Section 2.2.

Definition 3 (≈-compatible, ∼-saturated, strict). An fta A is said to be ≈-compatible
if and only if

[L(A)]≈ = [L(A) ∩ Red(H, t)]≈. (37)

It is said to be ∼-saturated if and only if

∀s, s′ ∈ H ∗ {t, t−1}∗ : s ∼ s′ ⇒ µA(s) = µA(s
′). (38)

Finally, A is strict, if
L(A) ⊆ Red(H, t). (39)

Note that every strict fta is ≈-compatible.
In [LS08] the direct product of two fta (which is again an fta) as well as the product of

two partitioned fta (which is again a partitioned fta) is defined. Let A1 = 〈L1,Q1, δ1, I1,T1〉
and A′ = 〈L2,Q2, δ2, I2,T2〉 be fta. Then,

A1 ×A2 = 〈{L1 ∩ L2 | L1 ∈ L1, L2 ∈ L2} \ {∅},Q1 × Q2, δ, I1 × I2,T1 × T2〉,

where

δ = {((p1, p2), L1 ∩ L2, (q1, q2)) | (p1, L1, q1) ∈ δ1, (p2, L2, q2) ∈ δ2, L1 ∩ L2 6= ∅}.

If A1 and A2 are partitioned fta, then the definition is the same, except that the state set of
A1×A2 is

⋃
θ∈T6

τ−1
1 (θ)× τ−1

2 (θ), where τi is the type mapping of Ai. The following lemmas
are shown in [LS08]:

Lemma 11. Let A and A′ be (partitioned) fta. Then, L(A×A′) = L(A)×L(A′). Moreover,
if A and A′ are both ∼-saturated, then also A × A′ is ∼-saturated. If A and A′ are both
∼-saturated and ≈-compatible, then also A×A′ is ∼-saturated and ≈-compatible.

Lemma 12. Let A be an fta. Then A×G6 (resp. A×R6) is a partitioned fta with L(A×G6) =
L(A) (resp. L(A×R6) = L(A) ∩ Red(H, t)).

Definition 4 (unitary, subgroup-compatible, multiplicative). The partitioned fta A =
〈L,Q, τ, δ, I,T〉 is unitary, if for every vertex type Θ ∈ T6 we have

µA,0(1) ∩ (τ−1(θ)× τ−1(θ)) = IdQ ∩ (τ−1(θ)× τ−1(θ)).
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A is subgroup-compatible if for every vertex type θ ∈ T6, there exists a right-action ⊙ of the
subgroup p1(θ) on the set of states τ−1(θ) ⊆ Q such that for all q, r ∈ Q, c ∈ p1(θ), and h ∈ H,

τ(q) = θ =⇒ q
c
−→A q ⊙ c (40)

(τ(q) = θ ∧ q
h
−→A r) =⇒ q ⊙ c−1 ch

−→A r (41)

(τ(r) = θ ∧ q
h
−→A r) =⇒ q

hc
−→A r ⊙ c (42)

Note that in case p1(θ) = 1, these conditions are trivially satisfied by setting q⊙ 1 = q for all
q with τ(q) = θ ( (40) follows from the existence of 1-loops; see (26)).

The partitioned fta A is multiplicative, if for all θ ∈ γ+(s),θ
′ ∈ γ+(s

′) such that θθ′ is
defined in the partial semigroup T :

µA,1(θθ
′, ss′) = µA,1(θ, s) ◦ µA,1(θ

′, s′) (43)

Definition 5 (normal fta). A partitioned fta A is said to be normal, if it is ≈-compatible,
∼-saturated, unitary and multiplicative.

Lemma 13. Let A be a partitioned fta. If A is unitary and subgroup-compatible, then A is
multiplicative.

Proof. Let Q be the state set of the fta A. Assume that A is unitary and subgroup-compatible,
and let θ ∈ γ+(s), θ

′ ∈ γ+(s
′) such that θθ′ is defined in T . We have to show that

µA,1(θθ
′, ss′) = µA,1(θ, s) ◦ µA,1(θ

′, s′).

We prove this identity by induction over ‖ss′‖ = ‖s‖+ ‖s′‖.
First assume that ‖s‖ = ‖s′‖ = 0, i.e., s = h ∈ H and s′ = h′ ∈ H. We must have

θ = (θ, 0, θ′) and θ′ = (θ′, 0, θ′′) for some vertex types θ, θ′, θ′′ ∈ T6. Hence, θ
h
−→G6

θ′
h′
−→G6

θ′′.
Lemma 10 implies (θ = θ′ and h ∈ p1(θ)) or (θ′ = θ′′ and h′ ∈ p1(θ

′)). Let us first assume
that θ = θ′ and h ∈ p1(θ). We obtain for all (p, q) ∈ Q× Q:

(p, q) ∈ µA,1((θ, 0, θ
′′), hh′) =⇒ p

hh′
−−→A q, τ(p) = θ, τ(θ′′) = q

=⇒ p
h
−→A p⊙ h = p⊙ (h−1)−1 h−1hh′

−−−−→A q,

τ(p⊙ h) = τ(p) = θ, τ(θ′′) = q

=⇒ (p, q) ∈ µA,1((θ, 0, θ), h) ◦ µA,1((θ, 0, θ
′′), h′)

=⇒ ∃r ∈ τ−1(θ) : (p, r) ∈ µA,1((θ, 0, θ), h), (r, q) ∈ µA,1((θ, 0, θ
′′), h′)

=⇒ τ(p) = θ, τ(q) = θ′′,∃r ∈ τ−1(θ) : p
h
−→A r

h′
−→A q

=⇒ τ(p) = θ, τ(q) = θ′′,∃r ∈ τ−1(θ) : p
hh−1

−−−→A r ⊙ h−1 hh′
−−→A q

Since A is unitary, p
1
−→A r⊙h−1, and τ(p) = τ(r) = τ(r⊙h−1) = θ, we must have p = r⊙h−1.

Thus, we get:

τ(p) = θ, τ(q) = θ′′, p
hh′
−−→A q,

i.e. (p, q) ∈ µA,1((θ, 0, θ
′′), hh′). The case that θ′ = θ′′ can be dealt analogously. This settles

the induction base.
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Now assume that ‖s‖ > 0 or ‖s′‖ > 0. Let ‖s′‖ > 0; the case that ‖s‖ > 0 can be dealt
analogously). We can factorize the sequence s′ as s′ = s1t

αh with α ∈ {−1, 1} and h ∈ H.
The path type θ′ ∈ γ+(s

′) must be of the form θ′ = (θ′, 1, θ′′). Let θ = (θ, ‖s‖b, θ
′). Let us

assume that α = 1, again the case α = −1 can be dealt analogously. Since (A,T, t,B,H) is
the only t-labeled edge of G6 and A is partitioned, we have

µA,1(θ
′, s′) = µA,1((θ

′, 1, θ′′), s1th)

= µA,1((θ
′, ‖s1‖b, A, T ), s1) ◦ µA,1((A,T, 1, B,H), t) ◦ µA,1((B,H, 0, θ

′′), h).

By induction, we get:

µA,1(θ, s) ◦ µA,1(θ
′, s′) = µA,1((θ, ‖s‖b, θ

′), s) ◦ µA,1((θ
′, ‖s1‖b, A, T ), s1) ◦

µA,1((A,T, 1, B,H), t) ◦ µA,1((B,H, 0, θ
′′), h)

= µA,1((θ, ‖ss1‖b, A, T ), ss1) ◦

µA,1((A,T, 1, B,H), t) ◦ µA,1((B,H, 0, θ
′′), h)

= µA,1((θ, 1, θ
′′), ss1th)

= µA,1(θθ
′, ss′)

⊓⊔

Note that the partitioned fta G6 and R6 are unitary and subgroup-compatible. For the latter,
define θ ⊙ c = θ for very θ ∈ T6 and c ∈ p1(θ). Hence, by Lemma 13, G6 and R6 are
multiplicative. This implies the following lemma:

Lemma 14. For all θ ∈ γ+(s),θ
′ ∈ γ+(s

′) such that θθ′ is defined in the partial semigroup
T , we have θθ′ ∈ γ+(ss

′).

The following two lemmas complement Lemma 11 by additional preservation properties.

Lemma 15. Let A and A′ be partitioned fta. If A and A′ are both unitary, then A×A′ is a
unitary partitioned fta as well.

Proof. To show that A×A′ is unitary, it is enough to show that

µA×A′,0(1) ∩ (τ−1(θ)× τ−1(θ)) ⊆ IdQ ∩ (τ−1(θ)× τ−1(θ));

the converse inclusion follows from (26). If ((p, p′), (q, q′)) ∈ µA×A′,0(1) ∩ (τ−1(θ) × τ−1(θ))
then there exist a transition (p, L, q) in A with 1 ∈ L and a transition (p′, L′, q′) in A′ with
1 ∈ L′. Since A and A′ are both unitary, we get p = q and p′ = q′. Hence A×A′ is unitary. ⊓⊔

Lemma 16. Let A and A′ be partitioned fta. If A and A′ are both mutiplicative, then A×A′

is multiplicative as well.

Proof. Let A = 〈L,Q, τ, δ, I,T〉 and A′ = 〈L′,Q′, τ ′, δ′, I′,T′〉 be partitioned mutiplicative fta.
Let us consider the partial semigroup on the set

S = {(θ, s) | s ∈ H ∗ {t, t−1}∗,θ ∈ γ+(s)}.

The product (θ, s)(θ′, s′) is defined if θθ′ is defined in the partial semigroup T , and in this
case we set (θ, s)(θ′, s′) = (θθ′, ss′). Note that by Lemma 14 we have (θθ′, ss′) ∈ S. Also note
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that µA,1 : S → B(Q) is a homomorphism if and only if A is multiplicative. Thus, µA,1 and
µA′,1 are homomorphisms from S to B(Q) and B(Q′), respectively. By Lemma 2, µA,1⊗µA′,1 is
a homomorphism from S to B(Q×Q′). Hence it suffices to show that µA×A′,1 = µA,1⊗µA′,1. To
see this, let (θ, s) ∈ S. If ((p, p′), (q, q′)) ∈ µA×A′,1(θ, s), then we clearly have (p, q) ∈ µA,1(θ, s)
and (p′, q′) ∈ µA′,1(θ, s). Now assume that (p, q) ∈ µA,1(θ, s) and (p′, q′) ∈ µA′,1(θ, s). Let
p = p0, p1, . . . , pn−1, pn = q be the state sequence in a run of A on s leading from p to q.
Similarly, let p′ = p′0, p

′
1, . . . , p

′
n−1, p

′
n = q′ be the state sequence in a run of A′ on s leading

from p′ to q′. The crucial observation is that τ(pi) = τ(p′i) for all 0 ≤ i ≤ n. This follows from
the fact that A and A′ are partitioned, and that in G6 there is a unique way of going from
one vertex to another vertex with a certain s ∈ H ∗ {t, t−1}∗. The above observation implies
that ((p, p′), (q, q′)) ∈ µA×A′,1(θ, s). ⊓⊔

Lemma 17. Let A, A′ be normal fta. The direct product A×A′ of two normal fta A, A′, is
normal too.

Proof. This follows from Lemma 11 (∼-saturation and ≈-compatibility), Lemma 15 (unitar-
ity) and Lemma 16 (multiplicativity). ⊓⊔

Proposition 1. Let R ⊆ G.

(1) R ∈ Rat(G) if and only if R = πG(L(A)) for some normal partitioned fta A with labeling
set Rat(H).

(2) If R ∈ bool(Rat(G)) then R = πG(L(B)) for some strict normal partitioned fta B with
labeling set bool(Rat(H)).

Proof. It is proved in [LS08, Prop. 33, points (1), (3), and (a)] that R is a rational subset of
G if and only if π−1

G (R) ∩ Red(H, t) = L(A) ∩ Red(H, t) for some partitioned, ≈-compatible,
∼-saturated, and unitary fta A with labelling set Rat(H). Moreover, the automaton A can be
chosen in such a way that it is subgroup-compatible: this follows from equations (39)-(40) in
the proof of [LS08, Prop. 22]. By Lemma 13, A is multiplicative and hence normal. Finally,
(37) implies

πG(L(A)) = πG(L(A) ∩ Red(H, t)) = πG(π
−1
G (R) ∩ Red(H, t)) = R.

This shows point (1).
For (2), let R be a boolean combination of rational subsets K1, . . . ,Kp of G. By [LS08,

Prop. 28 and 33], for every 1 ≤ i ≤ p there exists a partitionned, ∼-saturated, deterministic
and complete fta2 Ci, whose labelling set is bool(Rat(H)), and such that

L(Ci) = π−1
G (Ki) ∩ Red(H, t)

for 1 ≤ i ≤ p. Since every boolean operation can be translated over partitioned, ∼-saturated,
deterministic and complete fta (see [LS08, Lemma 15, 17, 18, and 20]), there exists a parti-
tioned, ∼-saturated, deterministic and complete, fta A, whose labelling set is bool(Rat(H)),
and such that

L(A) = π−1
G (R) ∩ Red(H, t). (44)

Moreover, since L(A) ⊆ Red(H, t), A is also ≈-compatible.

2 The definition of a deterministic and complete fta can be found in [LS08], but the precise definition is not
really needed for the following arguments.
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By applying [LS08, Prop. 22] to this fta A and the set F = bool(Rat(H)), we obtain a
partitioned, ≈-compatible, ∼-saturated, unitary fta B with labelling set G := {cFc′ | F ∈
bool(Rat(H)), c, c′ ∈ A ∪B} such that

L(B) ∩ Red(H, t) = [L(A)]≈ ∩Red(H, t)

= [π−1
G (R) ∩ Red(H, t)]≈ ∩ Red(H, t)

= π−1
G (R) ∩ Red(H, t). (45)

By Lemma 9, G = bool(Rat(H)), so that B is labelled over bool(Rat(H)). Equality (45) implies
R = πG(L(B)) by the same argument as for (1). Moreover, by equations (39)–(40) of [LS08],
B is subgroup-compatible. Thus, by Lemma 13, B is multiplicative. By [LS08, Claim 26],
L(B) ⊆ [L(A)]∼ = L(A) (since A is ∼-saturated), while by (44) L(A) ⊆ Red(H, t). Hence B
is also strict. Thus, B is strict and normal. ⊓⊔

The fta G6 and R6 are clearly partionned with τ the identity mapping. Moreover, these fta are
≈-compatible, ∼-saturated, unitary, and subgroup compatible. For the latter, we choose for
⊙ the trivial action. Hence, by Lemma 13, G6 and R6 are also multiplicative. As a corollary,
we obtain:

Lemma 18. For all s1, s2 ∈ H∗{t, t−1}∗ we have γ+(s1)γ+(s2) ⊆ γ+(s1s2) and γt(s1)γt(s2) ⊆
γt(s1s2).

Proof. Let us prove the statement for γ+, the same proof also works for γt. Let s1, s2 ∈
H ∗ {t, t−1}∗, θ1 ∈ γ+(s1) and θ2 ∈ γ+(s2) such that θ1θ2 is defined. We have to show that
θ1θ2 ∈ γ+(s1s2). Since G6 is multiplicative, we have

µG6,1(θ1θ2, s1s2) = µG6,1(θ1, s1) ◦ µG6,1(θ2, s2). (46)

Let θ1 = (θ1, ‖s1‖b, θ2), θ2 = (θ2, ‖s2‖b, θ3), and θ1θ2 = (θ1, ‖s1s2‖b, θ3). Since θ1 ∈ γ+(s1),
we have (θ1, θ2) ∈ µG6

(s1) and similarly (θ2, θ3) ∈ µG6
(s2). Hence, (θ1, θ2) ∈ µG6,1(θ1, s1) and

(θ2, θ3) ∈ µG6,1(θ2, s2). Thus, (46) implies (θ1, θ3) ∈ µG6,1(θ1θ2, s1s2). This implies θ1θ2 =
(θ1, ‖s1s2‖b, θ3) ∈ γ+(s1s2). ⊓⊔

Given a normal fta A and an element g ∈ G we set

µA,G(g) = µA,1((1,H, ‖s‖b, 1, 1), s), (47)

where s is any reduced t-sequence representing g. Since A is ∼-saturated, the value of
µA,1((1,H, ‖s‖b, 1, 1), s) does not depend of the chosen reduced representative s of g.

2.6 Equations and disequations over a monoid

Let M be some monoid and let

C ⊆ 2M

be a class of constraints sets. A system of equations and disequations over the monoid M is a
subset S ⊆ U∗ × {=, 6=} × U∗, where U is the set of variables of S. Instead of (u,=, u′) ∈ S
(resp. (u, 6=, u′) 6∈ S) we just write (u = u′) ∈ S (resp. (u 6= u′) 6∈ S). The system S is said to
be quadratic if
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– for every (u = u′) ∈ S we have |u| = 1 and |u′| = 2, and
– for every (u 6= u′) ∈ S we have |u| = |u′| = 1.

A system of equations and disequations over the monoid M with C-constraints is a pair
(S,C), where S is a system of equations and disequations over the monoid M and C is a map
C : U → C. An M-solution of the system (S,C) is any monoid homomorphism

σM : U∗ →M

fulfilling the following conditions:

∀(u = u′) ∈ S : σM(u) = σM(u′) (48)

∀(u 6= u′) ∈ S : σM(u) 6= σM(u′) (49)

∀U ∈ U : σM(U) ∈ C(U). (50)

The system S is a system of equations over M (with C-constraints), if

S ⊆ U∗ × {=} × U∗.

In this paper, we will consider three particular sets of constraints.

– C = {{m} | m ∈ M} ∪ {M}: In this case, a system of equations (and disequations) with
C-constraints is called a system of equations (and disequations) with constants, since the
variables U ∈ U with |C(U)| = 1 can be seen as constants from M, while the variables
U ∈ U with C(U) = M can be seen as variables without any constraint.

– C = bool(Rat(M)), i.e. the boolean closure of the set of rational subsets of M: In this case,
a system of equations (and disequations) with C-constraints is called a system of equations
with rational constraints.

– C = Rat(M), i.e. the set of rational subsets of M: In this case, in order to emphasize the
fact that we do not use constraints that are complements of rational subsets, a system
of equations (and disequations) with C-constraints is called a system of equations (and
disequations) with positive rational constraints.

The following proposition can be shown by standard techniques:

Proposition 2. Assume that M is finitely generated. Let (S,C) be a system of equations
and disequations over M with variables from U and rational constraints. From (S,C) we can
compute a system (S ′,C′) of equations and disequations over M with variables from U ′ and
rational constraints such that:

– S ′ is quadratic.
– U ⊆ U ′

– The solutions of (S,C) are exactly the restrictions of the solutions of (S ′,C′) to U∗

– If S is a system of equations (without disequations), then also S ′ is a system of equations
(without disequations).

– If (S,C) is a system with positive rational constraints, then also (S ′,C′) is a system with
positive rational constraints.

One sometimes also considers systems of equations and disequations with a partial involution.
This means that some variables u ∈ U have a formal inverse u−1 ∈ U and that a solution
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σM of the system has to respect the partial involution i.e. to map the variable u−1 onto the
inverse of σM(u) (in particular, σM(u) has to be contained in the group of units of M). Such a
system “with partial involution” can be reduced to a system of the form above by adding the
equations uu−1 = 1 and u−1u = 1 to the system and removing the explicit constraint that
σM respects some partial involution.

Let M be a monoid and let C ⊆ 2M. We denote by EQ(M, C) (resp., DEQ(M, C)) the
set of all subsets of M which can be defined by a system of equations (resp., equations and
disequations) with only one free variable (common to all equations), and with constants and
constraints from C.

We denote by Def∃+(M, C) the set of all subsets of M which can be defined by a logical
formula with only one free variable x0, and having the form ∃x1∃x2 · · · ∃xnΨ , where Ψ is a
positive boolean combination of statements which are either equations with constants or of
the form xi ∈ P (for some variable xi, 0 ≤ i ≤ n, and some P ∈ C). The sets in EQ(M, C) are
called the equational subsets (with constraints in C). The sets in Def∃+(M, C) are called the
positively definable subsets (with constraints in C).

Lemma 19. For every group H, bool(EQ(H, bool(Rat(H)))) ⊆ Def∃+(H, bool(Rat(H))).

In words: a boolean combination of equational subsets of H (with rational constraints) is
positively definable (with rational contraints).

Proof. Every disequation u 6= v in H can be translated into the formula

∃v′ ∃w : vv′ = 1 ∧ uv′ = w ∧ w ∈ H \ {1}. (51)

Hence, if P is defined by a positive boolean combination of equations and rational contraints,
its complement is definable by a positive boolean combination of statements of the form (51)
above, of equations and of rational constraints. This positive boolean combination can be put
in existential prenex form, showing that H \ P belongs to Def∃+(H, bool(Rat(H))). ⊓⊔

2.7 Reductions among decision problems

A Turing machine M with oracle L2 is a Turing machine with a distinguished oracle tape and
three distinguished states q?, qy, qn such that, when the current state of M is q?, M makes a
transition that does not move the tape heads, does not print anything, and enters the state qy
or the state qn according to whether the word on the oracle tape belongs to L2 or not (see, for
example [HU79, Section 8.9, p. 209-210] or [Rog87, p. 128] for a more precise definition). Such
an oracle machine M is called a (Turing-)reduction from L1 to L2 if the language recognized
by M , using the oracle L2, is the language L1. When such a reduction exists, we say that L1

is Turing-reducible to L2. The underlying idea is that, if one knows both M and a machine
M2 that recognizes L2, then one can combine them into a Turing machine M1 that recognizes
L1. Let us consider three languages L1, L2, L3. A Turing-reduction from L1 to (L2, L3) is a
Turing-reduction from L1 to (L2 × {0}) ∪ (L3 × {1}). Given decision problems P1, P2, P3, we
say that P1 is Turing-reducible to P2 (or to (P2, P3)) when the formal languages L1, L2, L3

that encode the set of instances where the correct answer is “yes” are fulfiling the above
definition of Turing-reducibility.
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2.8 Submonoids and free products

The following lemma is straightforward.

Lemma 20. If M is a finitely generated submonoid of the monoid M′ and solvability of
equations (and disequations) with rational constraints in M′ is algorithmically solvable, then
solvability of equations (and disequations) with rational constraints in M is algorithmically
solvable.

In [LS08, Section 6.1] we defined a notion of (H1,H2)-automata which is the direct adaptation
of the notion of t-automaton to the operation of free product (possibly with amalgamation).
Let us formulate with the help of these automata a result about free-products which is a
particular case of [DL03, Theorem 2] (where the more general operation of graph product is
treated).3 Given two sets C1 ⊆ 2H1 , C2 ⊆ 2H2 , we denote by L(C1, C2) the set of subsets of
Red(H1,H2) which are recognized by partitioned, ≈-compatible and finite (H1,H2)-automata
with labelling set (C1, C2). Informally, such an automaton A is a finite automaton over the
alphabet C1∪C2 which has transitions labeled alternatively by elements of C1 and by elements
of C2; ≈-compatibility means that, if it recognizes some (H1,H2)-sequence s it also recognizes
the reduced sequence s′ such that s ≈ s′. The language recognized by A is obtained by
substituting, in the ordinary language recognized by A, each letter by its value in 2H1 ∪ 2H2 .

Theorem 1. Let us consider two monoids H1,H2. The satisfiability problem for systems of
equations and disequations with constraints in bool(L(C1, C2)) over the free product H1 ∗ H2

is Turing-reducible to the pair of problems (S1, S2) where

– S1 is the satisfiability problem for systems of equations and disequations with constraints
in bool(C1) and

– S2 is the satisfiability problem for systems of equations and disequations with constraints
in bool(C2).

Note that when CHi
= Rat(Hi) (for i ∈ {1, 2}), then L(CH1

, CH2
) = Rat(H1 ∗H2).

3 AB-algebras

We define here the notion of an AB-algebra, which we devised for handling equations with
rational constraints in an HNN-extension.

3.1 AB-algebra axioms

Let A,B be two groups (what we have in mind are the two subgroups A,B of H leading to
the HNN-extension G defined by (1)) and let Q be some finite set (we have in mind the set
of states of some normal fta A over H ∗ {t, t−1}∗). Given a binary relation r ∈ B(Q), r−1 is
the binary relation r−1 = {(p, q) ∈ Q × Q | (q, p) ∈ r}. We consider the involutory monoid
anti-isomorphism IQ : B2(Q)→ B2(Q) defined by

∀r1, r2 ∈ B(Q) : IQ(r1, r2) = (r−1
2 , r−1

1 ).

3 The original formulation of [DL03, Theorem 2] deals with the existential first order theory with rational
constraints of a group G = H1 ∗ H2. But the decidability of this fragment is equivalent to the decidability
of the satisfiability problem for systems of equations with rational constraints in G.
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An AB-algebra is a structure of the form

〈M, ιA, ιB , I, γ, µ, δ〉, (52)

where

– M is a monoid,
– ιA : A→M, ιB : B →M are injective monoid homomorphisms,
– I : M→ M is a partial map,
– γ : M→ 2T is a total map,
– µ : T ×M→ B2(Q) is a partial map with dom(µ) = {(θ,m) | m ∈M,θ ∈ γ(m)},
– δ : T ×M→ PGI{A,B} is a partial map with dom(δ) = {(θ,m) | m ∈M,θ ∈ γ(m)}.

such that the following twelve axioms (AB1)–(AB12) are satisfied.

(AB1) dom(I) = im(I) is a submonoid of M.

(AB2) I is an involutive anti-automorphism on dom(I).

(AB3) ιA(A) ∪ ιB(B) ⊆ dom(I)

(AB4) ∀a ∈ A : I(ιA(a)) = ιA(a
−1), ∀b ∈ B : I(ιB(b)) = ιB(b

−1)

For all m,m1,m2 ∈M:

(AB5) m1m2 ∈ dom(I) ⇒ m1 ∈ dom(I) and m2 ∈ dom(I)

(AB6) γ(m1)γ(m2) ⊆ γ(m1m2)

(AB7) ∀θ ∈ γ(m) : δ(θ,m) ⊆ Gi(θ)×Ge(θ)

(AB8) ∀θ1 ∈ γ(m1),θ2 ∈ γ(m2) : θ1θ2 defined ⇒ µ(θ1θ2,m1m2) = µ(θ1,m1) ◦ µ(θ2,m2)

(AB9) ∀θ1 ∈ γ(m1),θ2 ∈ γ(m2) : θ1θ2 defined ⇒ δ(θ1θ2,m1m2) = δ(θ1,m1) ◦ δ(θ2,m2)

(AB10) m ∈ dom(I) ⇒ γ(I(m)) = IT (γ(m))

(AB11) m ∈ dom(I) ⇒ ∀θ ∈ γ(m) : µ(IT (θ), I(m)) = IQ(µ(θ,m))

(AB12) m ∈ dom(I) ⇒ ∀θ ∈ γ(m) : δ(IT (θ), I(m)) = δ(θ,m)−1

Quite often, we will identify an AB-algebra with its underlying monoid. In Section 3.4 we will
show that the monoid Ht from (6) gives rise to an AB-algebra, which will be one of the main
objects studied in this work.

3.2 AB-homomorphisms

For i ∈ {1, 2} let Mi = 〈Mi, ιA,i, ιB,i, Ii, γi, µi, δi〉 be an AB-algebra with the underlying
groups A,B and set Q. An AB-homomorphism from M1 to M2 is a map ψ : M1 → M2

fulfilling the following seven properties (Hom1)–(Hom7):

(Hom1) ψ : M1 →M2 is a monoid homomorphism.

(Hom2) ∀a ∈ A : ψ(ιA,1(a)) = ιA,2(a), ∀b ∈ B : ψ(ιB,1(b)) = ιB,2(b)

(Hom3) ∀m ∈M1 : m ∈ dom(I1)⇔ ψ(m) ∈ dom(I2)

(Hom4) ∀m ∈ dom(I1) : I2(ψ(m)) = ψ(I1(m))
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(Hom5) ∀m ∈M1 : γ1(m) ⊆ γ2(ψ(m))

(Hom6) ∀m ∈M1 : ∀θ ∈ γ1(m) : µ2(θ, ψ(m)) = µ1(θ,m)

(Hom7) ∀m ∈M1 : ∀θ ∈ γ1(m) : δ2(θ, ψ(m)) = δ1(θ,m)

With HomAB(M1,M2) we denote the set of all AB-homomorphisms from M1 to M2. The
following lemma is easy and widely (though implicitely) used.

Lemma 21. Let M1,M2, and M3 be AB-algebras and let ψ1 ∈ HomAB(M1,M2), ψ2 ∈
HomAB(M2,M3). Then ψ1 ◦ ψ2 :M1 →M3 is an AB-homomorphism.

Lemma 22. Let M1, M2, and M3 be AB-algebras and let π ∈ HomAB(M1,M2), ψ
′ ∈

HomAB(M1,M3) such that

(a) π is surjective, and

(b) γ1(k) = γ2(π(k)) for all k ∈M1 (this strengthens (Hom5) for π).

If ψ : M2 →M3 is a monoid homomorphism with ψ′ = π ◦ ψ, then ψ ∈ HomAB(M2,M3).

Proof. We have to check properties (Hom2)–(Hom7) for ψ.

(Hom2): For all a ∈ A we have

ψ(ιA,2(a)) = ψ(π(ιA,1(a))) = ψ′(ιA,1(a)) = ιA,3(a).

For B the same argument holds.

For the following properties let m ∈ M2 be arbitrary. Since π is surjective, there exists
k ∈M1 with π(k) = m.

(Hom3): We get:

ψ(m) ∈ dom(I3)⇐⇒ ψ(π(k)) ∈ dom(I3)

⇐⇒ ψ′(k) ∈ dom(I3)

⇐⇒ k ∈ dom(I1) ((Hom3) for ψ′)

⇐⇒ π(k) ∈ dom(I2) ((Hom3) for π)

⇐⇒ m ∈ dom(I2)

(Hom4): Assume that m = π(k) ∈ dom(I2). By (Hom3) for π we have k ∈ dom(I1). Thus,
with (Hom4) for π and ψ′ we get:

ψ(I2(m)) = ψ(I2(π(k))) = ψ(π(I1(k))) = ψ′(I1(k)) = I3(ψ
′(k)) = I3(ψ(π(k))) = I3(ψ(m)).

(Hom5): With assumption (b) from the lemma and (Hom5) for ψ′, we get:

γ2(m) = γ2(π(k)) = γ1(k) ⊆ γ3(ψ
′(k)) = γ3(ψ(π(k))) = γ3(ψ(m)).

(Hom6): Let θ ∈ γ2(m) = γ1(k). With (Hom6) for π and ψ′ we get:

µ2(θ,m) = µ2(θ, π(k)) = µ1(θ, k) = µ2(θ, ψ
′(k)) = µ2(θ, ψ(π(k))) = µ2(θ, ψ(m)).

(Hom7) for ψ can be verified with a similar calculation as for (Hom6). ⊓⊔
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Later, it will be convenient to check the conditions for an AB-homomorphism only on gener-
ators. The following lemma gives conditions under which this is possible.

Lemma 23. Let M1 and M2 be AB-algebras as above and assume that M1 satisfies the
following:

(A) The monoid M1 is generated by the set Γ and A ∪B ⊆ Γ
(B) γ1(g) 6= ∅ for all g ∈ Γ
(C) For every m ∈ M1 there exists a decomposition m = g1 · · · gn with g1, . . . , gn ∈ Γ such

that: γ1(m) = γ1(g1) · · · γ1(gn).
4

Let ψ : M1 → M2 be a monoid homomorphism. Then ψ ∈ HomAB(M1,M2) if and only if
for every g ∈ Γ and θ ∈ γ1(g) we have:

(a) ∀a ∈ A : ψ(ιA,1(a) = ιA2
(a) and ∀b ∈ B : ψ(ιB,1(b) = ιB,2(b)

(b) g ∈ dom(I1)⇔ ψ(g) ∈ dom(I2)
(c) If g ∈ dom(I1) then I2(ψ(g)) = ψ(I1(g))
(d) γ1(g) ⊆ γ2(ψ(g))
(e) µ2(θ, ψ(g)) = µ1(θ, g)
(f) δ2(θ, ψ(g)) = δ1(θ, g)

Proof. First, suppose that ψ is an AB-homomorphism. By definition it must fulfilll conditions
(Hom2)–(Hom7). These six axioms imply the six conditions (a)-(f).

Conversely, let us suppose that ψ fulfills conditions (a)–(f) of the lemma. By (a), condition
(Hom2) is fulfilled. For the following points consider an element m ∈ M1 and choose a
decomposition

m = g1g2 · · · gn (53)

that satisfies (C) from the lemma (g1, . . . , gn ∈ Γ ).

Extending (b) to M1. Suppose that

m ∈ dom(I1). (54)

Axiom (AB5) of AB-algebras (which can be easily extended to products of arbitrary length),
together with (54), imply

gi ∈ dom(I1) for all 1 ≤ i ≤ n. (55)

By condition (b) of the lemma, (55) implies

ψ(gi) ∈ dom(I2) for all 1 ≤ i ≤ n. (56)

Since dom(I2) is by axiom (AB1) a submonoid of M2, we get

ψ(g1) · · ·ψ(gn) ∈ dom(I2). (57)

But ψ is a monoid homomorphism, hence

ψ(m) = ψ(g1) · · ·ψ(gn) ∈ dom(I2). (58)

We have proved that (54) implies (58).

4 If n = 0, i.e., m = 1, then γ1(g1) · · · γ1(gn) is the neutral element {(θ, 0, θ) | θ ∈ T6} of the monoid 2T .
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Let us now establish the converse. Assume that ψ(m) ∈ dom(I2). We thus have:

ψ(m) = ψ(g1) · · ·ψ(gn) ∈ dom(I2).

Using axiom (AB5) we get ψ(gi) ∈ dom(I2) for all 1 ≤ i ≤ n. Hence, (b) from the lemma
implies gi ∈ dom(I1) for all 1 ≤ i ≤ n. Since dom(I1) is a submonoid of M1, we finally get
m = g1 · · · gn ∈ dom(I1).

Extending (c) to M1. Assume that m ∈ dom(I1). By Axion (AB5) we have g1, . . . , gn ∈
dom(I1). We obtain

I2(ψ(m)) = I2(ψ(g1) · · ·ψ(gm)) (ψ is a monoid homomorphism)

= I2(ψ(gm)) · · · I2(ψ(g1)) (I2 is a monoid anti-automorphism)

= ψ(I1(gm)) · · ·ψ(I1(g1)) (condition (c) from the lemma)

= ψ(I1(gm) · · · I1(g1)) (ψ is a monoid homomorphism)

= ψ(I1(m)) (I1 is a monoid anti-automorphism)

Extending (d) to M1. For m = g1 · · · gn we obtain

γ1(g1 · · · gn) = γ1(g1) · · · γ1(gn) ((C) from the lemma)

⊆ γ2(ψ(g1)) · · · γ2(ψ(gn)) (condition (d) from the lemma)

⊆ γ2(ψ(g1) · · ·ψ(gn)) (axiom (AB6) forM2)

= γ2(ψ(g1 · · · gn)) (ψ is a monoid homomorphism)

Extending (e) to M1. Assume that θ ∈ γ1(m) = γ1(g1) · · · γ1(gn). Hence, the path type θ

must have the form

θ = θ1 · · · θn with θi ∈ γ1(gi) ⊆ γ2(ψ(gi)) for 1 ≤ i ≤ n. (59)

We obtain

µ2(θ, ψ(m)) = µ2(
∏

i=1

θi,

n∏

i=1

ψ(gi)) (ψ is a monoid homomorphism)

=

n∏

i=1

µ2(θi, ψ(gi)) (axiom (AB8) forM2)

=
n∏

i=1

µ1(θi, gi) (condition (e) from the lemma)

= µ1(θ,m) (axiom (AB8) forM1)

as required.

Extending (f) to M1. A similar calculation as for (e) (using axiom (AB9) instead of axiom
(AB8)) holds. ⊓⊔
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3.3 AB-subalgebras and quotients

For i ∈ {1, 2} let Mi = 〈Mi, ιA,i, ιB,i, Ii, γi, µi, δi〉 be an AB-algebra with the underlying
groups A,B and set Q. Then, M1 is said to be an AB-subalgebra of M2 if M1 ⊆ M2 and
ιA,1 = ιA,2, ιB,1 = ιB,2, I1 = I2↾M1, γ1 = γ2↾M1, µ1 = µ2↾T ×M1, and δ1 = δ2↾T ×M1. (In
particular, the inclusion map ι : M1 → M2 is an AB-homomorphism). Vice versa, if M1 is a
submonoid of M2 which contains ιA,2(A)∪ ιB,2(B) and which is closed under I2, then there is
a natural way to endow M1 with the structure of an AB-subalgebra ofM2: it suffices to set
ιA,1 = ιA,2, ιB,1 = ιB,2, I1 = I2↾M1, γ1 = γ2↾M1, µ1 = µ2↾(T ×M1), and δ1 = δ2↾(T ×M1).
This structure is called the AB-structure induced byM2 on M1.

Definition 6. Let ≡ be a monoid congruence on the monoid M andM = 〈M, ιA, ιB , I, γ, µ, δ〉
be an AB-algebra. We say that ≡ is compatible w.r.t. the AB-algebraM, if the following holds
for all m,m′ ∈M with m ≡ m′ and all a, a′ ∈ A and b, b′ ∈ B:

(a) m ∈ dom(I)⇐⇒ m′ ∈ dom(I) and if m,m′ ∈ dom(I) then I(m) ≡ I(m′),
(b) ιA(a) ≡ ιA(a

′) =⇒ a = a′ and ιB(b) ≡ ιB(b
′) =⇒ b = b′

(c) γ(m) = γ(m′)
(d) For all θ ∈ γ(m): µ(θ,m) = µ(θ,m′) and δ(θ,m) = δ(θ,m′).

By (a), ≡ is also a congruence on dom(I), i.e. we can consider the quotient monoid dom(I)/≡ ⊆
M/≡. By (a), (c), and (d), the mappings I, γ, µ, and δ induce quotient mappings (we use the
same symbols for these quotient mappings)

I : dom(I)/≡ → dom(I)/≡

γ : M/≡ → 2T

µ : T ×M/≡ → B2(Q)

δ : T ×M/≡ → PGI{A,B}.

Moreover, by (b), ιA and ιB can be viewed as embeddings of A and B, respectively, into M/≡.
It is now easy to check that

M/≡ = 〈M/≡, ιA, ιB , I, γ, µ, δ〉

is again an AB-algebra; it is called the quotient of M w.r.t. ≡. Moreover, the projection
morphism π≡ with π≡(m) = [m]≡ becomes a surjective AB-homomorphism π≡ :M→M/≡
such that moreover for all m ∈M:

γ(m) = γ(π≡(m)) (60)

Hence, with Lemma 22 we get:

Lemma 24. Let M1 and M2 be AB-algebras with underlying monoids M1 and M2, respec-
tively. Let the monoid congruence ≡ on M1 be compatible w.r.t.M1. Let ψ

′ ∈ HomAB(M1,M2).
If ψ : M1/≡ → M2 is a monoid homomorphism with ψ′ = π≡◦ψ, then ψ ∈ HomAB(M1/≡,M2).

Also the next lemma can be easily verified.

Lemma 25. LetM be an AB-algebra with underlying monoid M, and let the monoid congru-
ence ≡ on M be compatible w.r.t.M. IfM fulfills hypotheses (A), (B), and (C) of Lemma 23
for the set of generators Γ , then M/≡ fulfills (A), (B), and (C) for the set of generators
π≡(Γ ) of M/≡.
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3.4 The AB-algebra Ht

From now on, we assume that H is a cancellative monoid with subgroups A and B. In this
section, we will define an AB-algebra with the underlying monoid Ht from (6). This AB-
algebra will be denoted by Ht as well. In a first step, we extend the monoid H ∗ {t, t−1}∗ to
an AB-algebra that we denote with H ∗ {t, t−1}∗ again. The AB-algebra Ht will be a quotient
of H ∗ {t, t−1}∗.

Recall the definition of a normal partitioned fta from Definition 5. Given an HNN-
extension (1) and a normal fta A with state set Q, we define an AB-algebra

〈H ∗ {t, t−1}∗, ιA, ιB , It, γt, µt, δt〉 (61)

with underlying monoid H ∗ {t, t−1}∗ and set of states Q as follows:

– ιA and ιB are the natural injections from A (resp. B) into H ∗ {t, t−1}∗.
– dom(It) = I(H) ∗ {t, t−1}∗, where I(H) is the subgroup of invertible elements of H.
– It is the unique involutive anti-isomorphism It : dom(It)→ dom(It) such that

∀h ∈ I(H) : It(h) = h−1, It(t) = t−1, It(t
−1) = t.

– The map γt is the one previously defined in (34).
– The map µt : T ×H ∗ {t, t−1}∗ → B2(Q) is defined by:

µt(θ, s) =

{
〈µ1(θ, s), µ1(IT (θ), It(s))

−1〉 if s ∈ dom(It)

〈µ1(θ, s), ∅〉 if s /∈ dom(It).
(62)

Here, µ1 is the representation map µA,1 associated with the partitioned fta A fixed above,
see (32).

– The map δt : T ×H ∗ {t, t−1}∗ → PGI{A,B} is defined by:

δt(θ, s) = {(c, c
′) ∈ Gi(θ)×Ge(θ) | cs ∼ sc′}, (63)

where ∼ is the congruence on H ∗ {t, t−1}∗ from Definition 1. Note that δt(θ, s) is indeed
a partial isomorphism from PGI{A,B}: It is a partial injection, since the quotient Ht =
H∗{t, t−1}∗/∼ is cancellative (Lemma 6). Moreover, if c1s ∼ sc

′
1 and c2s ∼ sc

′
2, then (c1c2)s ∼

c1sc
′
2 ∼ s(c

′
1c

′
2).

It is noteworthy that for every s ∈ H ∗ {t, t−1}∗:

γt(s) 6= ∅ ⇐⇒ s ∈ Red(H, t). (64)

Before we show that 〈H ∗ {t, t−1}∗, ιA, ιB , It, µt, γt, δt〉 is indeed an AB-algebra, let us prove
the following lemma:

Lemma 26. Let s1, s2 ∈ H ∗ {t, t−1}∗, θ1 ∈ γ+(s1), θ2 ∈ γ+(s2), θ1θ2 defined. Assume
that (c, c′) ∈ Gi(θ1θ2) × Ge(θ1θ2) = Gi(θ1) × Ge(θ2) and cs1s2 ∼ s1s2c

′. Then there exists
c′′ ∈ Ge(θ1) = Gi(θ2) such that cs1 ∼ s1c

′′ and c′′s2 ∼ s2c
′.

Proof. Assume that s1 = h0t
α1h1 · · · t

αnhn and s2 = k0t
β1k1 · · · t

βmkm.

Case 1. n = m = 0: Thus, ch0k0 = h0k0c
′. Since θ1θ2 is defined, Lemma 10 implies that

(i) τ i(θ1) = τe(θ1) and s1 = h0 ∈ Gi(θ1) = Ge(θ1) = Gi(θ2) or (ii) τ i(θ2) = τe(θ2) and
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s2 = k0 ∈ Ge(θ1) = Gi(θ2) = Ge(θ2). In case (i) we can set c′′ = h−1
0 ch0 ∈ Ge(θ1). In case

(ii) we set c′′ = k0c
′k−1

0 ∈ Ge(θ1).

Case 2. n = 0 and m > 0. Thus,

(ch0k0)t
β1k1 · · · t

βmkm ∼ (h0k0)t
β1k1 · · · t

βm(kmc
′).

We obtain a van Kampen diagram of the form

c c0 c′

h0 k0 tβ1k1 · · · t
βmkm

h0 k0 tβ1k1 · · · t
βmkm

where c0 ∈ A(β1). Note that ch0 = h0k0c0k
−1
0 . As in case 1, since θ1θ2 is defined, Lemma 10

implies that (i) τ i(θ1) = τe(θ1) and s1 = h0 ∈ Gi(θ1) = Ge(θ1) = Gi(θ2) or (ii) k0 ∈
Ge(θ1) = Gi(θ2) = A(β1). In case (i) we can set c′′ = h−1

0 ch0 ∈ Ge(θ1); in case (ii) we set
c′′ = k0c0k

−1
0 ∈ Ge(θ1).

Case 3. n > 0 and m = 0. This case can be dealt analogously to case 2.

Case 4. n,m > 0. Hence, we have

h0t
α1h1 · · · t

αn(hnk0)t
β1k1 · · · t

βm(kmc
′) = (ch0)t

α1h1 · · · t
αn(hnk0)t

β1k1 · · · t
βmkm.

We obtain a van Kampen diagram of the form

h0t
α1h1 · · · t

αn hn k0 tβ1k1 · · · t
βm(kmc

′)

(ch0)t
α1h1 · · · t

αn

hn k0
tβ1k1 · · · t

βmkmc
′

c2n c2n+1

where c2n ∈ B(αn) and c2n+1 ∈ A(β1). Again, with Lemma 10 we get (i) hn, c2n ∈ B(αn) =
Ge(θ1) = Gi(θ2) or (ii) k0, c2n+1 ∈ A(β1) = Ge(θ1) = Gi(θ2). In case (i) we set c′′ =
h−1
n c2nhn; in case (ii) we set c′′ = k0c2n+1k

−1
0 . ⊓⊔

Proposition 3. The structure 〈H ∗ {t, t−1}∗, ιA, ιB , It, µt, γt, δt〉 is an AB-algebra.

Proof. We check the properties (AB1)–(AB12). Properties (AB1)–(AB4) are obvious.

(AB5): Assume that s1s2 ∈ dom(I). Let s1 = h0t
α1h1 · · · t

αnhn and s′ = h′0t
α′
1h′1 · · · t

α′
mh′m.

Thus
s1s2 = h0t

α1h1 · · · t
αn(hnh

′
0)t

α′
1h′1 · · · t

α′
mh′m ∈ dom(I)

Hence, h0, . . . , hn−1, hnh
′
0, h

′
1, . . . , h

′
m are invertible elements of H. Since H is cancellative, by

Lemma 4, hnh
′
0 ∈ I(H) implies that hn, h

′
0 ∈ I(H). It follows that s1 ∈ dom(I) and s2 ∈ dom(I).

(AB6): This is stated in Lemma 18.

(AB7): Follows directly from the definition of δt.

(AB10): Note that by (36), it suffices to show γt(It(s)) = IT (γt(s)) only for 1 and all generators
s ∈ I(H) ∪ {t, t−1} of dom(It). This follows easily from the definition of IT in (18).
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(AB8): Let θ1 ∈ γt(s1) and θ2 ∈ γt(s2) such that θ1θ2 is defined. First assume that s1s2 ∈
dom(It). Then, by (AB5), also s1, s2 ∈ dom(It). Moreover, by (AB10), IT (θ1) ∈ IT (γt(s1)) =
γt(It(s1)) and IT (θ2) ∈ γt(It(s2)). Since the fta A is normal and therefore multiplicative (see
Definition 4), we obtain:

µt(θ1θ2, s1s2) = 〈µ1(θ1θ2, s1s2), µ1(IT (θ1θ2), It(s1s2))
−1〉

= 〈µ1(θ1θ2, s1s2), µ1(IT (θ2)IT (θ1), It(s2)It(s1))
−1〉

= 〈µ1(θ1, s1) ◦ µ1(θ2, s2), (µ1(IT (θ2), It(s2)) ◦ µ1(IT (θ1), It(s1)))
−1〉

= 〈µ1(θ1, s1) ◦ µ1(θ2, s2), µ1(IT (θ1), It(s1))
−1 ◦ µ1(IT (θ2), It(s2))

−1〉

= 〈µ1(θ1, s1), µ1(IT (θ1), It(s1))
−1〉 ◦ 〈µ1(θ2, s2), µ1(IT (θ2), It(s2))

−1〉

= µt(θ1, s1) ◦ µt(θ2, s2)

On the other hand, if s1s2 6∈ dom(It), then either s1 6∈ dom(It) or s2 6∈ dom(It). Assume
that s1 6∈ dom(It), i.e., µt(θ1, s1) = 〈µ1(θ1, s1), ∅〉 (the other cases can be treated similarly).
Again, by the fact that A is multiplicative, we obtain:

µt(θ1θ2, s1s2) = 〈µ1(θ1θ2, s1s2), ∅〉

= 〈µ1(θ1, s1) ◦ µ1(θ2, s2), ∅〉

= 〈µ1(θ1, s1), ∅〉 ◦ µt(θ2, s2)

= µt(θ1, s1) ◦ µt(θ2, s2)

(AB9): The inclusion
δt(θ1θ2, s1s2) ⊆ δt(θ1, s1) ◦ δt(θ2, s2)

follows directly from Lemma 26. For the reverse inclusion assume that (c1, c2) ∈ δt(θ1, s1)
and (c2, c3) ∈ δt(θ2, s2). Hence, c1s1 ∼ s1c2 and c2s2 ∼ s2c3. This implies c1(s1s2) ∼ s1c2s2 ∼
(s1s2)c3. Hence, (c1, c3) ∈ δt(θ1θ2, s1s2).

(AB11): Assume that s ∈ dom(It) = I(H) ∗ {t, t−1}∗ and let θ ∈ γt(s). We obtain

IQ(µt(θ, s)) = IQ(〈µ1(θ, s), µ1(IT (θ), It(s))
−1〉)

= 〈µ1(IT (θ), It(s)), µ1(θ, s)
−1〉

= 〈µ1(IT (θ), It(s)), µ1(IT (IT (θ)), It(It(s)))
−1〉

= µt(IT (θ), It(s)).

(AB12): Assume that s ∈ dom(It) = I(H) ∗ {t, t−1}∗ and let θ ∈ γt(s). We obtain

δt(IT (θ), It(s)) = {(c, d) ∈ Gi(IT (θ))×Ge(IT (θ)) | cIt(s) ∼ It(s)d}

(19)
= {(c, d) ∈ Ge(θ)×Gi(θ) | It(sc

−1) ∼ It(d
−1s)}

= {(c, d) ∈ Ge(θ)×Gi(θ) | sc−1 ∼ d−1s}

= {(c, d) ∈ Ge(θ)×Gi(θ) | ds ∼ sc}

= {(d, c) ∈ Gi(θ)×Ge(θ) | ds ∼ sc}−1

= δt(θ, s)
−1.

This concludes the proof of Proposition 3. ⊓⊔
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Another AB-structure over H ∗ {t, t−1}∗ can be defined by choosing, in place of the map γt
defined in (34), the map γ+ defined in (33). Assertion (64) is now replaced by

∀s ∈ H ∗ {t, t−1}∗ : γ+(s) 6= ∅. (65)

We call the resulting structure

〈H ∗ {t, t−1}∗, ιA, ιB , It, µt, γ+, δt〉 (66)

the positive AB-algebra over H ∗ {t, t−1}∗. This variant will be used in Section 10 where we
deal with positive rational constraints.

One can check that the monoid-congruence ∼ on H ∗ {t, t−1}∗ is compatible (see Defini-
tion 6) w.r.t. to the AB-algebra 〈H ∗ {t, t−1}∗, ιA, ιB , It, µt, γt, δt〉. Here, for γt(s) = γt(s

′) and
µt(θ, s) = µt(θ, s

′) (if s ∼ s′) it is important that the ftas R6 and A are ∼-saturated, see
Definition 3. Hence, on the quotient monoid Ht = H ∗ {t, t−1}∗/∼, we obtain an AB-algebra
〈Ht, ιA, ιB , It, µt, γt, δt〉 that we will denote just with Ht in the following. Since s ∼ s′ implies
‖s‖ = ‖s′‖, the notion of norm remains well-defined in the quotient Ht.

Similarly, we can define an AB-algebra

Ht,+ = 〈Ht, ιA, ιB , It, µt, γ+, δt〉, (67)

where γ+ is defined via the fta G6 instead of R6, see (33).

3.5 Algebraic properties of Ht

The monoid Ht has some properties which resemble equidivisibility. We detail here these
properties.

Lemma 27. Let P,P ′, S, S′ ∈ Ht, θ ∈ γ+(P ) ∩ γ+(P
′), ρ ∈ γ+(S) ∩ γ+(S

′) such that θρ is
defined, θ is an H-type and PS = P ′S′ in Ht. Then, there exists c ∈ Ge(θ) such that P = P ′c
and cS = S′ in Ht.

Proof. Let p, p′, s, s′ ∈ H ∗ {t, t−1}∗ such that P = [p]∼, P
′ = [p′]∼, S = [s]∼, and S

′ = [s′]∼.
Since θ is an H-type, we must have p, p′ ∈ H and since the product θρ is defined, Ge(θ) =
Gi(ρ). An inspection of the H-types in (21) and (22) shows that the vertex type τe(θ) = τ i(ρ)
must be either (A,T ), (B,T ), or (1, 1).

Case 1. τe(θ) = τ i(ρ) = (1, 1). The structure of G6 implies ρ = (1, 1, 0, 1, 1). Since ρ =
(1, 1, 0, 1, 1) ∈ γ+(s) ∩ γ+(s

′), we have s = s′ = 1, i.e., S = S′ = 1. Hence, P = P ′. Choosing
c = 1, we obtain c ∈ {1} = Ge(θ), P = P ′c and cS = S′.

Case 2. τe(θ) = τ i(ρ) = (C, T ) for C ∈ {A,B}. Thus, Gi(ρ) = Ge(θ) = C. Suppose that

s = h0t
α1h1 · · · t

αnhn and s′ = h′0t
α′
1h′1 · · · t

α′
mh′m.

where hi, h
′
j ∈ H, αi, α

′
j ∈ {−1,+1}. Since ps ∼ p′s′ and p, p′ ∈ H, we have m = n and αi = α′

i

for 1 ≤ i ≤ m, i.e.,

s = h0t
α1h1 · · · t

αmhm and s′ = h′0t
α1h′1 · · · t

αmh′m.

Since these sequences can be read by the fta G6 starting from (C, T ), we must have h0, h
′
0 ∈ C.

Moreover, if m ≥ 1, then C = A(α1). Since ps ∼ p′s′ there exists a van Kampen diagram of
the form
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p
h0 tα1h1 · · · t

αnhm

p′ h′0
tα1h′1 · · · t

αmh′m

c0

with c0 ∈ C (if m = 0, then c0 = 1). Let us choose c = h′0c
−1
0 h−1

0 ∈ C = Ge(θ). We obtain
P = P ′c and cS = S′. ⊓⊔

Lemma 28. Let P,P ′, S, S′ ∈ Ht, θ ∈ γ+(P ), θ
′ ∈ γ+(P

′),ρ ∈ γ+(S),ρ
′ ∈ γ+(S

′) such that
θρ = θ′ρ′ is defined, θ,θ′ are T -types (see (24)) and PS = P ′S′ in Ht. Then, one of the
following cases must occur:

(1) ‖P‖ = ‖P ′‖, θ = θ′, and there exists c ∈ Ge(θ) such that Pc = P ′ and S = cS′.
(2) ‖P‖ < ‖P ′‖ and there exist c ∈ Ge(θ), P ′

1, P
′
2, P

′
3 ∈ Ht such that P ′

1 has the T -type θ, P ′
3

has a T -type θ′
3, P

′
2 has an H-type θ′

2, and

Pc = P ′
1, P ′ = P ′

1P
′
2P

′
3, S = cP ′

2P
′
3S

′, θ′ = θθ′
2θ

′
3, ρ = θ′

2θ
′
3ρ

′.

(3) ‖P‖ > ‖P ′‖ and there exist c ∈ Ge(θ′), P1, P2, P3 ∈ Ht such that P1 has the T -type θ′,
P3 has a T -type θ3, P2 has an H-type θ2 and

P = P1P2P3, P1 = P ′c, cP2P3S = S′, θ = θ′θ2θ3, ρ′ = θ2θ3ρ.

Proof. Let p, p′, s, s′ ∈ H ∗ {t, t−1}∗ such that P = [p]∼, P
′ = [p′]∼, S = [s]∼, and S

′ = [s′]∼.
Since the products θρ,θ′ρ′ are defined, Ge(θ) = Gi(ρ) and Ge(θ′) = Gi(ρ′). Suppose that

p = h0t
α1h1 · · · t

αnhn s = k0t
β1k1 · · · t

βℓkℓ

p′ = h′0t
α′
1h′1 · · · t

α′
νh′ν s′ = k′0t

β′
1k′1 · · · t

β′
λk′λ

where hi, kj , h
′
ι, k

′
κ ∈ H, αi, βj , α

′
ι, β

′
κ ∈ {−1,+1}. Since θ and θ′ are T -types, the structure

of G6 implies that n, ν ≥ 1, hn ∈ Ge(θ), and h′ν ∈ Ge(θ′) (note that the only arrow entering
(A,H) (resp. (B,H)) in G6 that is labeled with a subset of H is the A-loop (resp. B-loop)).
Since ps ∼ p′s′, we get n + ℓ = ν + λ and (α1, . . . , αn, β1, . . . , βℓ) = (α′

1, . . . , α
′
ν , β

′
1, . . . , β

′
λ).

Moreover, τ i(θ) = τ i(θ′) and the boolean component of both θ and θ′ is 1, since they are
both T -types.

Case 1. ‖p‖ = ‖p′‖: Thus, n = ν, ℓ = λ, τe(θ) = τe(θ′) (and hence θ = θ′), and there exists
a van Kampen diagram of the form

h0t
α1h1 · · · t

αn hn k0 tβ1k1 · · · t
βℓkℓ

h′0t
α1h′1 · · · t

αn h′n k′0 tβ1k′1 · · · t
βℓk′ℓ

c2n c2n+1

with c2n ∈ B(αn) = Ge(θ) = Ge(θ′). Hence, we can set c = h−1
n c2nh

′
n ∈ Ge(θ).

Case 2. ‖p‖ < ‖p′‖: Hence n < ν. Let us set

p′1 = h′0t
α1h′1 · · · h

′
n−1t

αn , p′2 = h′n, p′3 = tα
′
n+1h′n+1 · · · t

α′
νh′ν .

Thus, p′ = p′1p
′
2p

′
3 and there exists a van Kampen diagram of the following form:
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h0t
α1h1 · · · t

αn hn k0 tβ1k1 · · · t
βℓkℓ

p′1 = h′0t
α1h′1 · · · t

αn p′2 = h′n p′3 = tα
′
n+1h′n+1 · · · t

α′
νh′ν

s′

c2n c2n+1

Since hn ∈ Ge(θ) and c2n ∈ B(αn) = Ge(θ), we have c = h−1
n c2n ∈ Ge(θ). We obtain p′1 ∼ pc

and s ∼ cp′2p
′
3s

′.
For the T -types θ and θ′ we get

θ = (A(α1), T, 1, B(αn),H) and θ′ = (A(α1), T, 1, B(α′
ν),H).

A possible type for p′1 is θ = (A(α1), T, 1, B(αn),H), a possible type for p′2 is

θ′
2 = (B(αn),H, 0, A(α

′
n+1), T ),

and a possible type for p′3 is

θ′
3 = (A(α′

n+1), T, 1, B(α′
ν),H).

Thus θ′
3 is a T -type and θ′

2 is an H-type such that θ′ = θθ′
2θ

′
3. It remains to show ρ = θ′

2θ
′
3ρ

′,
i.e., ρ = (B(αn),H, 1, B(α′

ν),H)ρ′. Since ‖s‖ = ℓ > λ ≥ 0, the Boolean component of
ρ ∈ γ+(s) must be 1, which is the Boolean component of (B(αn),H, 1, B(α′

ν),H)ρ′. Moreover,
τe(ρ) = τe(ρ′) = τe((B(αn),H, 1, B(α′

ν),H)ρ′). Finally, τ i(ρ) = τe(θ) = (B(αn),H) =
τ i((B(αn),H, 1, B(α′

ν),H)ρ′).

Case 3. ‖p‖ > ‖p′‖: This case is similar to Case 2. ⊓⊔

3.6 The AB-algebra W∗ ∗A ∗B

Let S be a system of equations over Ht with involution and rational constraints. The rational
constraints are expressed via the map µt defined by (62) in Section 3.4. This map comes from
a normal partitioned fta A = 〈L,Q, τ, δ, I,T〉. We define an alphabet of “generic” symbols
W with the underlying idea of representing inside each symbol the values of the functions
γt, µt, δt for the “concrete” value (i.e. in Ht) of that variable that leads to a solution of the
system of equations.

Let V0 be some starting set that will be made precise later. Let us denote by THT ⊆ T
the set of all types which are either H-types or T-types 5. The set W of generic symbols is
the set of all 5-tuples

(V, ǫ,θ, r, ϕ) ∈ V0 × {−1, 0, 1} × THT × B2(Q)× PGI{A,B} (68)

such that:

r ⊆

(
τ−1(τ i(θ))× τ−1(τe(θ))

)
×

(
τ−1(IR(τ i(θ)))× τ

−1(IR(τe(θ)))

)
, (69)

ϕ ⊆ Gi(θ)×Ge(θ), (70)

∀(c, d) ∈ ϕ : µt((τ i(θ), 0, τ i(θ)), c) ◦ r = r ◦ µt((τe(θ), 0, τe(θ)), d) (71)

We will need the following lemma:

5 It turns out useful to include in the generic symbols also the non-atomic types of THT for sake of finding
short decompositions in Lemma 45, see figure 7.
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Lemma 29. Let W = (V, ǫ,θ, r, ϕ) ∈ V0×{−1, 0, 1}×THT ×B2(Q)×PGI{A,B} and s ∈ Ht

such that θ ∈ γt(s), r = µt(θ, s), and ϕ = δt(θ, s). Then, W ∈ W.

Proof. We have to verify the three conditions (69), (70), and (71). Condition (69) follows
directly from (62), whereas condition (70) follows directly from (63). For (71) let (c, d) ∈ ϕ =
δt(θ, s). Hence, we have cs ∼ sd. Since the fta A is ∼-saturated and (AB8) holds for µt, we
get

µt((τ i(θ), 0, τ i(θ)), c) ◦ r = µt((τ i(θ), 0, τ i(θ)), c) ◦ µt(θ, s)

= µt(θ, cs)

= µt(θ, sd)

= µt(θ, s) ◦ µt((τe(θ), 0, τe(θ)), d)

= r ◦ µt((τe(θ), 0, τe(θ)), d).

Hence, also (71) holds. ⊓⊔

Let

Ŵ = {(V, ǫ,θ, r, ϕ) ∈ W | ǫ 6= 0}. (72)

Let us consider the free product W∗ ∗ A ∗ B. We denote by ιA : A → W∗ ∗ A ∗ B (resp.
ιB : B →W∗ ∗ A ∗B the natural embedding of A (resp. B) into W∗ ∗ A ∗B. Note that

ιA(A) ∩ ιB(B) = {1}.

Most of the time, we will identify ιA(a) with a and ιB(b) with b. For every s ∈ W
∗ ∗A ∗B let

‖s‖ be the number of occurrences of symbols from W in s. Clearly

‖uv‖ = ‖u‖+ ‖v‖ and ‖s‖ = 0⇐⇒ s ∈ A ∗B.

In this section, we will define an AB-algebra

〈W∗ ∗ A ∗B, ιA, ιB , Iw, γw, µw, δw〉 (73)

with underlying monoid W∗ ∗ A ∗ B and set of states Q. Let Iw be the unique monoid anti-
homomorphism on dom(Iw) = Ŵ

∗ ∗A ∗B (the submonoid generated by Ŵ ∪ ιA(A) ∪ ιB(B))
such that

Iw(a) = a−1 for a ∈ A (74)

Iw(b) = b−1 for b ∈ B (75)

Iw(V, ǫ,θ, r, ϕ) = (V,−ǫ, IT (θ), IQ(r), ϕ
−1). (76)

One can easily check that the alphabet W is closed under the involution Iw. The mapping
γw :W∗ ∗ A ∗B → 2T is defined on the generators of W∗ ∗ A ∗B as follows:

γw(a) = {(A,T, 0, A, T ), (A,H, 0, A,H)} for every a ∈ A \ {1} (77)

γw(b) = {(B,T, 0, B, T ), (B,H, 0, B,H)} for every b ∈ B \ {1} (78)

γw(V, ǫ,θ, r, ϕ) = {θ} (79)
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Now let s ∈ W∗ ∗ A ∗B. Then s can be uniquely written as

s = g1 · · · gn

with n ≥ 0 and g1, . . . , gn ∈ W ∪ (A \ 1) ∪ (B \ 1) such that for all 1 ≤ i < n we have neither
gi, gi+1 ∈ A \ 1 nor gi, gi+1 ∈ B \ 1. Such a string g1 · · · gn is called (A,B)-reduced in the
following. Then, let

γw(g1g2 · · · gn) =

{
{(θ, 0, θ) | θ ∈ T6} if n = 0

γw(g1)γw(g2) · · · γw(gn) if n > 0.
(80)

Note that γw(1) is the identity of the monoid 2T . Before we continue with the definition of
the mappings µw and δw from (73), let us first state some properties of γw:

Lemma 30. The following holds:

(a) For all s ∈ W∗ ∗ A ∗B we have |γw(s)| ∈ {0, 1, 2, 6}.
(b) If ‖s‖ ≥ 1, then |γw(s)| ∈ {0, 1}.
(c) If g1g2 · · · gn is (A,B)-reduced and θ ∈ γw(g1g2 · · · gn) then there exist unique path types

θ1 ∈ γw(g1), . . . ,θn ∈ γw(gn) with θ = θ1θ2 · · · θn.
(d) If the (A,B)-reduced string s contains a factor from (A \ 1)(B \ 1) ∪ (B \ 1)(A \ 1), then

γw(s) = ∅.
(e) For all u, v ∈ W∗ ∗ A ∗B: γw(u)γw(v) ⊆ γw(uv).
(f) For all u, v ∈ W∗ ∗A ∗B, W ∈ W, and c ∈ A∪B: if γw(Wc) 6= ∅, then γw(uWc)γw(v) =

γw(uWcv).
(g) For all u, v,∈ W∗ ∗A∗B, W ∈ W, and c ∈ A∪B: if γw(cW ) 6= ∅, then γw(u)γw(cWv) =

γw(uWcv).
(h) For all u, v, v′ ∈ W∗ ∗A∗B, if ‖u‖ ≥ 1 and γw(u) 6= ∅ then γw(v)γw(u)γw(v

′) = γw(vuv
′).

Proof. We show only statements (e)–(h), the other statements are easy to prove.

Statement (e): If γw(u) = ∅ or γw(v) = ∅ then we have γw(u)γw(v) = ∅ ⊆ γw(uv). So
assume that γw(u) 6= ∅ 6= γw(v). Let u = g1 · · · gn and v = h1 · · · hm be (A,B)-reduced
strings. If g1 · · · gnh1 · · · hm is again (A,B)-reduced then we have γw(u)γw(v) = γw(uv) by
(80). Hence, assume that g1 · · · gnh1 · · · hm is not (A,B)-reduced, e.g. gn, h1 ∈ A \ {1}. Since
γw(u) 6= ∅ 6= γw(v), the letters gn−1 and h2 (if they exist) cannot be from B \ {1}, and
they cannot be from A \ {1} since g1 · · · gn and h1 · · · hm are (A,B)-reduced. Hence, either
uv = g1 · · · gn−1h2 · · · hm is reduced (if gnh1 = 1 in A), or uv = g1 · · · gn−1(gnh1)h2 · · · hm
is reduced. In the first case, we get γw(u)γw(v) ⊆ γw(uv), in the second case we even have
γw(u)γw(v) = γw(uv).

Statement (f): Assume w.l.o.g. that u and v are (A,B)-reduced. If c = 1, then uWv
is the (A,B)-reduced sequence equivalent to uWcv. Then, (80) implies γw(uWc)γw(v) =
γw(uW )γw(v) = γw(uWv) = γw(uWcv). Now, assume that w.l.o.g. c ∈ A \ 1. If the sequence
v does not start with an element from A \ 1, then uWcv is again (A,B)-reduced and we get
γw(uWc)γw(v) = γw(uWcv) from (80). So, assume that v = av′ with a ∈ A \ 1.

Since γw(Wc) 6= ∅, we must have γw(W ) = θ for a path type θ with τe(θ) ∈ {(A,T ), (A,H)}.
But this implies γw(W ) = γw(W )γw(c) = γw(Wc). There are two cases:

Case 1. ca 6= 1 in A. Then uWcv = uW (ca)v′, and the latter sequence is (A,B)-reduced. By
(80) we have γw(uWcv) = γw(uW (ca)v′) = γw(u)γw(W )γw((ca)v

′) = γw(u)γw(Wc)γw(av
′) =

γw(uWc)γw(v).
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Case 2. ca = 1. In this case uWcv = uWv′, and the latter sequence is (A,B)-reduced.
Since γw(c) = γw(a) is idempotent, we have γw(uWcv) = γw(uWv′) = γw(u)γw(W )γw(v

′) =
γw(u)γw(W )γw(c)γw(a)γw(v

′) = γw(uWc)γw(v). This concludes the proof of (f).

Statement (g): symetrical with (f).

Statement (h): Since ‖u‖ ≥ 1 and γw(u) 6= ∅, we can write u as u = c1u
′c2, where c1, c2 ∈

A ∪ B and u′ starts and ends with a symbol from W. Then γw(v)γw(u)γw(v
′) = γw(vuv

′)
follows by an application of statement (f) followed by an application of statement (g). ⊓⊔

Definition 7. Let ≡γ be the equivalence relation over W∗ ∗A∗B defined by: for every u, u′ ∈
W∗ ∗ A ∗B,

u ≡γ u
′ ⇐⇒ (∀v, v′ ∈ W∗ ∗ A ∗B : γw(vuv

′) = γw(vu
′v′)). (81)

It is clear from the definition that ≡γ is a monoid congruence.

Lemma 31. Let u, u′ ∈ W∗ ∗ A ∗ B. If ‖u‖ ≥ 1, ‖u′‖ ≥ 1 and γw(u) = γw(u
′) 6= ∅ then

u ≡γ u
′.

Proof. Let u, u′ ∈ W∗ ∗ A ∗ B fulfilling ‖u‖ ≥ 1, ‖u′‖ ≥ 1, γw(u) = γw(u
′) 6= ∅. Let v, v′ ∈

W∗ ∗ A ∗B. Using (h) from Lemma 30 together with the hypothesis that γw(u) = γw(u
′) we

obtain:

γw(vuv
′) = γw(v)γw(u)γw(v

′)

= γw(v)γw(u
′)γw(v

′)

= γw(vu
′v′)

⊓⊔

Let us now continue with the definition of the partial mappings µw : T ×W∗ ∗A∗B → B2(Q)
and δw : T × W∗ ∗ A ∗ B → PGI{A,B}. Also these mappings are first defined only for
generators, where c ∈ (A \ 1) ∪ (B \ 1):

µw(θ, c) = µt(θ, c) for θ ∈ γw(c) (82)

δw(θ, c) = δt(θ, c) for θ ∈ γw(c)

µw(θ, (V, ǫ,θ, r, ϕ)) = r

δw(θ, (V, ǫ,θ, r, ϕ)) = ϕ

Finally, let s = g1 · · · gn (g1, . . . , gn ∈ W ∪ (A \ 1) ∪ (B \ 1)) be an (A,B)-reduced string and
θ ∈ γw(s). If n = 0, i.e. s = 1, then θ = (θ, 0, θ) for some vertex type θ, and we set

µw(θ, 1) = µt(θ, 1) = 〈{(q, q) | τ(q) = θ}, {(p, p) | τ(p) = IR(θ)}〉 (83)

δw(θ, 1) = δt(θ, 1) = Idp1(θ).

If n ≥ 1 then by Lemma 30(c), there exist unique path types θ1 ∈ γw(g1), . . . ,θn ∈ γw(gn)
with θ = θ1 · · · θn. Then,

µw(θ, g1g2 · · · gn) = µw(θ1, g1) ◦ µw(θ2, g2) ◦ · · · ◦ µw(θn, gn) (84)

δw(θ, g1g2 · · · gn) = δw(θ1, g1) ◦ δw(θ2, g2) ◦ · · · ◦ δw(θn, gn). (85)
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Proposition 4. 〈W∗ ∗ A ∗B, ιA, ιB , Iw, µw, γw, δw〉 is an AB-algebra.

Proof. Properties (AB1)–(AB4) are obvious.

(AB5): For s ∈ W∗∗A∗B, we have s ∈ dom(Iw) = Ŵ
∗∗A∗B if and only if allW-symbols in s

belong to Ŵ. SinceW-symbols cannot cancel in a product s1s2 it follows that s1s2 ∈ dom(Iw)
if and only if s1, s2 ∈ dom(Iw).

(AB6): This is stated in Lemma 30, point (e).

(AB7): Follows immediately from the definition of δw.

(AB8): Assume that θ1 ∈ γw(s1) and θ2 ∈ γw(s2) such that θ1θ2 is defined. We prove by
induction over |s1|+ |s2| that µw(θ1θ2, s1s2) = µw(θ1, s1) ◦ µw(θ2, s2).

Case 1. s1 = 1. Then θ1 = (θ, 0, θ) for some vertex type θ and

µw(θ1, s1) = µw(θ1, 1) = 〈{(q, q) | τ(q) = θ}, {(p, p) | τ(p) = IR(θ)}〉.

Since θ1θ2 is defined, we must have Gi(θ2) = θ. Hence,

µw(θ1, s1) ◦ µw(θ2, s2) = µw(θ2, s2) = µw(θ1θ2, s1s2).

Case 2. s2 = 1. Can be dealt analogously.

Case 3. s1 6= 1 6= s2 and s1s2 is (A,B)-reduced. This case can be dealt directly, using the
definition of µw in (84).

Case 4. s1 6= 1 6= s2 and s1s2 is not (A,B)-reduced. W.l.o.g. assume that s1 = u1a1 and
s2 = a2u2 for a1, a2 ∈ A \ 1. By (77) there must exist θ ∈ {(A,T ), (A,H)} such that

τe(θ1) = θ, τ i(θ2) = θ. (86)

Moreover, we must have θ1 ∈ γw(u1) and θ2 ∈ γw(u2) (this is clear if u1 = 1, resp., u2 = 1,
and follows from Lemma 30(c) in case u1 6= 1, resp., u2 6= 1). By induction, we obtain:

µw(θ1, s1) = µw(θ1(θ, 0, θ), u1a1) = µw(θ1, u1) ◦ µw((θ, 0, θ), a1), (87)

µw(θ2, s2) = µw((θ, 0, θ)θ2, a2u2) = µw((θ, 0, θ), a2) ◦ µw(θ2, u2) (88)

If a2 6= a−1
1 , then u1(a1a2)u2 is (A,B)-reduced. Since µt satisfies property (AB8), we obtain:

µw(θ1, s1) ◦ µw(θ2, s2)
(87),(88)

= µw(θ1, u1) ◦ µw((θ, 0, θ), a1) ◦ µw((θ, 0, θ), a2) ◦ µw(θ2, u2)

(82)
= µw(θ1, u1) ◦ µt((θ, 0, θ), a1) ◦ µt((θ, 0, θ), a2) ◦ µw(θ2, u2)

(AB8)
= µw(θ1, u1) ◦ µt((θ, 0, θ), a1a2) ◦ µw(θ2, u2)

(82)
= µw(θ1, u1) ◦ µw((θ, 0, θ), a1a2) ◦ µw(θ2, u2)

(Ind.)
= µw(θ1(θ, 0, θ)θ2, u1(a1a2)u2)

(86)
= µw(θ1θ2, s1s2)
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Finally, if a2 = a−1
1 , then we get:

µw(θ1, s1) ◦ µw(θ2, s2)
(87),(88)

= µw(θ1, u1) ◦ µw((θ, 0, θ), a1) ◦ µw((θ, 0, θ), a
−1
1 ) ◦ µw(θ2, u2)

(82)
= µw(θ1, u1) ◦ µt((θ, 0, θ), a1) ◦ µt((θ, 0, θ), a

−1
1 ) ◦ µw(θ2, u2)

(AB8)
= µw(θ1, u1) ◦ µt((θ, 0, θ), 1) ◦ µw(θ2, u2)

(83)
= µw(θ1, u1) ◦ µw((θ, 0, θ), 1) ◦ µw(θ2, u2)

(Ind.)
= µw(θ1(θ, 0, θ)θ2, u1u2)

(86)
= µw(θ1θ2, s1s2)

(AB9): Can be shown with a similar calculation as (AB8).

(AB10): Assume that s = g1g2 · · · gn is (A,B)-reduced with g1, . . . , gn ∈ Ŵ ∪ (A \1)∪ (B \1).
Then, also Iw(gn) · · · Iw(g1) is (A,B)-reduced. We have to show that γw(Iw(s)) = IT (γw(s)).
If n = 0, then

γw(Iw(1)) = γw(1)
(80)
= {(θ, 0, θ) | θ ∈ T6} = IT ({(θ, 0, θ) | θ ∈ T6}) = IT (γw(1)).

The case n = 1, i.e., s is a single generator, is clear by (74)–(79). Finally, for n > 1, we have

γw(Iw(g1 · · · gn)) = γw(Iw(gn) · · · Iw(g1))
(80)
= γw(Iw(gn)) · · · γw(Iw(g1))

= IT (γw(gn)) · · · IT (γw(g1))

= IT (γw(g1) · · · γw(gn))
(80)
= IT (γw(g1 · · · gn))

(AB11): Let us first consider the case of a generator of Ŵ∗ ∗A ∗B. For W = (V, ǫ,θ, r, ϕ) we
have indeed

IQ(µw(θ,W )) = IQ(r) = µw(IT (θ), Iw(W )).

For elements from A ∪ B, we obtain (AB11) directly from (AB11) for the AB-algebra Ht.
This settles the case of generators. Now assume that s = g1g2 · · · gn is (A,B)-reduced with

g1, . . . , gn ∈ Ŵ ∪ (A \ 1) ∪ (B \ 1), n ≥ 2, and γw(s) 6= ∅. If θ ∈ γw(s) then there exist unique
path types θ1 ∈ γw(g1), . . . ,θn ∈ γw(gn) with θ = θ1 · · · θn. We obtain

µw(IT (θ), Iw(s)) = µw(IT (θ1 · · · θn), Iw(g1 · · · gn))

= µw(IT (θn) · · · IT (θ1), Iw(gn) · · · Iw(g1))
(AB8)
= µw(IT (θn), Iw(gn)) ◦ · · · ◦ µw(IT (θ1), Iw(g1))

= IQ(µw(θn, gn)) ◦ · · · ◦ IQ(µw(θ1, g1))

= IQ(µw(θ1, g1) ◦ · · · ◦ µw(θn, gn))
(AB8)
= IQ(µw(θ1 · · · θn, g1 · · · gn))

= IQ(µw(θ, g)).

(AB12): can be shown with a similar calculation. ⊓⊔
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Recall that ‖s‖ ≥ 1 implies that γw(s) is either empty or a singleton set {θ}, see (b) in
Lemma 30. In the latter case, we also use the (abusive) notations τ i(s), τe(s), Gi(s), Ge(s),
µw(s), and δw(s) for what should be denoted, in full rigor, by τ i(θ), τe(θ), Gi(θ), Ge(θ),
µw(θ, s), and δw(θ, s). Similarly, we write δw(a) for δw(θ, a), where θ ∈ γw(a). Recall that
the mapping δw(θ, a) is c 7→ a−1ca (c ∈ A) independently of which of the two path types
θ ∈ γw(a) we choose.

3.7 The AB-algebra W

Let us consider the monoid congruence ≡ over W∗ ∗ A ∗B generated by the set of pairs

{(cW,Wd) |W ∈ W, (c, d) ∈ δw(W )} (89)

We define the quotient monoid W = (W∗ ∗ A ∗B)/≡.

Lemma 32. For all s ∈ W∗ ∗A ∗B, all θ ∈ γw(s), and all (c, d) ∈ δw(θ, s) we have cs ≡ sd.

Proof. Assume that s = g1g2 · · · gn is (A,B)-reduced. We prove the lemma by induction on
n. The cases n = 0 and n = 1 follow easily from the definition of δw and ≡. Now assume
that n ≥ 2 and let θ ∈ γw(s). Since γw(s) 6= ∅, s has to contain a symbol from W. Hence,
Lemma 30 implies that γw(s) = {θ}. Let θ = (θ, b, θ′).

Case 1. g1 = a ∈ A \ 1, i.e. s = as′. We have δw(s) = δw((θ, 0, θ), a) ◦ δw(s
′) and Gi(θ) =

p1(θ) = A. With (c, d) ∈ δw(s) we obtain c ∈ Gi(θ) = A and (c, a′) ∈ δw((θ, 0, θ), a),
(a′, d) ∈ δw(s

′) for some a′ ∈ A. Thus, aa′ = ca in A and s′d ≡ a′s′ by induction. We get
sd = as′d ≡ aa′s′ = cas′ = cs. The case g1 ∈ B \ 1 can be dealt analogously.

Case 2. g1 = W ∈ W, i.e. s = Ws′. We have δw(s) = δw(W ) ◦ δw(θ2, s
′) and θ = θ1θ2 for

some path types θ1 and θ2 with γw(W ) = θ1 and θ2 ∈ γw(s
′). Moreover, there exists some

c′ ∈ Ge(θ1) such that (c, c′) ∈ δw(W ) and (c′, d) ∈ δw(θ2, s
′). Hence cW ≡Wc′ and c′s′ ≡ s′d

by induction. We obtain cs = cWs′ =Wc′s′ ≡Ws′d = sd. ⊓⊔

Lemma 32 will provide the key-argument for proving Lemma 41 on the factorization of AB-
homomorphisms.

Lemma 33. The congurence ≡ on W∗ ∗ A ∗ B is compatible (see Definition 6) with the
AB-algebra 〈W∗ ∗ A ∗B, ιA, ιB , Iw, γw, µw, δw〉.

Proof. Let u, u′ ∈ W∗ ∗ A ∗ B with u ≡ u′, a ∈ A, and b ∈ B. According to Definition 6 we
have to check the following statements:

(a) u ∈ dom(Iw)⇔ u′ ∈ dom(Iw) and if u, u′ ∈ dom(Iw) then Iw(u) ≡ Iw(u
′),

(b) For all a, a′ ∈ A and b, b′ ∈ B: a ≡ a′ ⇒ a = a′ and b ≡ b′ ⇒ b = b′

(c) γw(u) = γw(u
′)

(d) For all θ ∈ γw(u): µw(θ, u) = µw(θ, u
′) and δw(θ, u) = δw(θ, u

′).

Point (b) is obvious. For (a), (c), and (d), it suffices to consider only the case that u = cW
and u′ =Wd, where W ∈ W and (c, d) ∈ δw(W ). Let W = (V, ǫ,θ, r, ϕ). Thus, (c, d) ∈ ϕ.

(a) We have cW ∈ dom(Iw) ⇐⇒ W ∈ dom(Iw) ⇐⇒ Wd ∈ dom(Iw). Moreover, if W ∈
dom(Iw) then, since (c, d) ∈ δw(W ) = ϕ we have (d, c) ∈ δw(Iw(W )) = ϕ−1. Thus,
d Iw(W ) ≡ Iw(W )c, i.e., Iw(cW ) = Iw(W )c−1 ≡ d−1Iw(W ) = Iw(Wd).
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(c) Since c ∈ Gi(θ) and d ∈ Ge(θ) we have

γw(cW ) = γw(c)γw(W ) = {θ} = γw(W )γw(d) = γw(Wd).

(d) The type θ splits as θ = (θ, 0, θ)θ = θ(θ′, 0, θ′), where θ = τ i(θ) and θ′ = τe(θ). We get:

µw(θ, cW )
(AB8)
= µw((θ, 0, θ), c) ◦ µw(θ,W )

= µt((θ, 0, θ), c) ◦ r

(71)
= r ◦ µt((θ

′, 0, θ′), d)

= µw(θ,W ) ◦ µw((θ
′, 0, θ′), d)

(AB8)
= µw(θ,Wd)

For the mapping δw, we have

δw(θ, cW ) = δw((θ, 0, θ), c) ◦ δw(W ) = δw((θ, 0, θ), c) ◦ ϕ

and similarly δw(θ,Wd) = ϕ ◦ δw((θ
′, 0, θ′), d). Hence, we have to show that

δw((θ, 0, θ), c) ◦ ϕ = ϕ ◦ δw((θ
′, 0, θ′), d),

where (c, d) ∈ ϕ. Let us first check that the domains of the left and right hand side are
equal. Since c ∈ dom(ϕ) and dom(ϕ) is a subgroup of Gi(θ), we have

x ∈ dom(δw((θ, 0, θ), c) ◦ ϕ)⇐⇒ c−1xc ∈ dom(ϕ)

⇐⇒ x ∈ dom(ϕ)

⇐⇒ x ∈ dom(ϕ ◦ δw((θ
′, 0, θ′), d)).

Now let x ∈ dom(δw((θ, 0, θ), c) ◦ ϕ) = dom(ϕ). Then, we have:

(δw((θ, 0, θ), c) ◦ ϕ)(x) = ϕ(c−1xc)

= d−1ϕ(x)d

= (ϕ ◦ δw((θ
′, 0, θ′), d))(x)

This proves the lemma. ⊓⊔

By the previous lemma, we can endow the monoid W = (W∗ ∗ A ∗ B)/≡ with the structure
of an AB-algebra:

〈W, ιA, ιB , Iw, µw, γw, δw〉 (90)

In addition u ≡ v implies ‖u‖ = ‖v‖ for all u, v ∈ W∗ ∗ A ∗ B, so that the notion of norm
remains well-defined in the quotient W.

3.8 The AB-algebras Wt, WH, and Ŵ

Recall the definition of the subset Ŵ ⊆ W from (72). Let us consider the set Wt consisting
of all the letters W ∈ W fulfilling

∃s ∈ Ht

{
W ∈ dom(Iw)⇐⇒ s ∈ dom(It), γw(W ) ⊆ γt(s)
∀θ ∈ γw(W ) : µw(W ) = µt(θ, s), δw(W ) = δt(θ, s).

(91)
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Intuitively, it is the set of all symbols fromW that can be realized by some concrete t-sequence.
We also define the subset

WH = {W ∈ Wt | γw(W ) is an H-type }.

Note that the sets Wt, WH, and Ŵ are closed under the involution Iw. Hence, W
∗
t ∗ A ∗ B,

W∗
H∗A∗B, and Ŵ∗∗A∗B are AB-subalgebras ofW∗∗A∗B in the sense of Section 3.3. Clearly,
≡ is also compatible with these AB-subalgebras and we can define the quotient AB-algebras

Wt = (W∗
t ∗ A ∗B)/≡, WH = (W∗

H ∗A ∗B)/≡, Ŵ = (Ŵ∗ ∗ A ∗B)/≡.

Moreover, for all s ∈ W∗
t ∗A ∗B and s′ ∈ W∗ ∗A ∗B, if s ≡ s′ then also s′ ∈ W∗

t ∗A ∗B, and

similarly for W∗
H ∗ A ∗B and Ŵ∗ ∗A ∗B. Hence, Wt, WH, and Ŵ are AB-subalgebras of W.

The AB-subalgebra Wt is important, when we consider AB-homomorphisms to Ht: In
general, there does not exist an AB-homomorphism from W to Ht, but there exist AB-
homomorphisms from Wt to Ht.

3.9 Involutive automorphisms

We consider here special AB-automorphisms of W that occur naturally in the process of
reducing equations in the HNN-extension G to equations in W. Consider a partition

Ŵ = Ŵ0 ⊎ {W1, . . . ,Wp} ⊎ {W 1, . . . ,W p}, (92)

where W k = Iw(Wk) for 1 ≤ k ≤ p and Ŵ0 is closed under the involution Iw. Assume that

Gi(Wk) = Ge(Wk) = Ak (93)

for 1 ≤ k ≤ p. Moreover, let ak, bk ∈ Ak for 1 ≤ k ≤ p.

Lemma 34. Let us consider a partition of Ŵ and a tuple of group elements (a1, b1, . . . , ap, bp)
as above. Then, the following holds:

(1) There exists some AB-homomorphism Φ : W→W satisfying

Φ(c) = c for c ∈ A ∪B Φ(W ) =W for all W ∈ (W \ Ŵ) ∪ Ŵ0 (94)

Φ(W k) = akWkbk Φ(Wk) = a−1
k W kb

−1
k for 1 ≤ k ≤ p (95)

if and only if, for every 1 ≤ k ≤ p we have

δw(W k) = δw(Wk)
−1 = δw(ak) ◦ δw(Wk) ◦ δw(bk) = δw(akWkbk). (96)

(b−1
k ak, akb

−1
k ) ∈ δw(Wk) (97)

γw(Wk) = IT (γw(Wk)) = γw(W k) (98)

µw(akWkbk) = IQ(µw(Wk)) = µw(W k). (99)

(2) Every AB-homomorphism Φ : W → W satisfying (94) and (95) is an involutive AB-
automorphism.
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Proof. Let us first prove statement (2). Let Φ : W→W be an AB-homomorphism satisfying
(94) and (95). For every 1 ≤ k ≤ p we have

Φ(Φ(Wk)) = Φ(a−1
k W kb

−1
k ) = a−1

k akWkbkb
−1
k =Wk

and, similarly Φ(Φ(W k)) =W k. For all other generators g ∈ W∪A∪B, we have Φ(g) = g and
thus Φ(Φ(g)) = g. Hence, the map Φ is involutive i.e. Φ ◦ Φ = IW. This shows that Φ has an
inverse (namely Φ), which is itself an AB-homomorphism. Thus Φ is an AB-automorphism.

Let us now prove statement (1). First, suppose that Φ : W→W is an AB-homomorphism
satisfying (94) and (95). By (2), we know that Φ is an involutive AB-automorphism. We prove
(96)–(99) for all 1 ≤ k ≤ p. Fix 1 ≤ k ≤ p.
(96): Let (c, d) ∈ Ak × Ak. Recall that δw(ak) is the mapping x 7→ a−1

k xak (for x ∈ Ak) and
δw(bk) is the mapping x 7→ b−1

k xbk (for x ∈ Ak). The following calculation shows (96):

(c, d) ∈ δw(ak) ◦ δw(Wk) ◦ δw(bk)⇐⇒ (a−1
k cak, d) ∈ δw(Wk) ◦ δw(bk)

⇐⇒ (a−1
k cak, bkdb

−1
k ) ∈ δw(Wk)

⇐⇒ a−1
k cakWk ≡Wkbkdb

−1
k

⇐⇒ cakWkbk ≡ akWkbkd

⇐⇒ Φ(cW k) = Φ(W kd) in W

⇐⇒ cW k =W kd in W

⇐⇒ cW k ≡W kd

⇐⇒ (c, d) ∈ δw(W k).

(97): Since Φ preserves the involution Iw (axiom (Hom4)) we get

akWkbk = Φ(W k) = Φ(Iw(Wk)) = Iw(Φ(Wk)) = Iw(a
−1
k W kb

−1
k ) = bkWkak

in W, i.e., akWkbk ≡ bkWkak. This implies b−1
k akWk ≡ Wkakb

−1
k , i.e., (b−1

k ak, akb
−1
k ) ∈

δw(Wk), which establishes (97).

(98): Since Φ(Wk) = a−1
k W kb

−1
k and Φ preserves γw (axiom (Hom5)), we get

γw(Wk)
(Hom5)

⊆ γw(a
−1
k W kb

−1
k )

(80)
= γw(a

−1
k )γw(W k)γw(b

−1
k )

= γw(W k)

(AB10)
= IT (γw(Wk)).

Since the two extreme terms of this sequence of inclusions are singletons, they must be equal,
which establishes (98).

(99): Since akWkbk = Φ(W k) and Φ preserves µw (axiom (Hom6)) we get

µw(akWkbk)
(Hom6)
= µw(W k)

(AB11)
= IQ(µw(Wk)),

which establishes (99).

41



For the other direction, suppose that the letters Wk and the tuple (a1, b1, . . . , ak, bk) are
fulfilling conditions (96)–(99). By the universal property of the free-product, there exists a
unique monoid homorphism Φ̃ :W∗ ∗ A ∗B →W∗ ∗ A ∗B such that

Φ̃(c) = c for c ∈ A ∪B Φ̃(W ) =W for all W ∈ (W \ Ŵ) ∪ Ŵ0 (100)

Φ̃(W k) = akWkbk Φ̃(Wk) = a−1
k W kb

−1
k for 1 ≤ k ≤ p. (101)

Let 1 ≤ k ≤ p and (c, d) ∈ δw(Wk). We first show that

Φ̃(cWk) ≡ Φ̃(Wkd) and Φ̃(dW k) ≡ Φ̃(W kc). (102)

This implies that Φ̃ induces a monoid homomorphism on the quotient W. We will only prove
the equivalence Φ̃(cWk) ≡ Φ̃(Wkd), the other equivalence can be shown similarly. We have

Φ̃(cWk) = ca−1
k W kb

−1
k , Φ̃(Wkd) = a−1

k W kb
−1
k d.

Hence, we have to show that
akca

−1
k W k ≡W kb

−1
k dbk. (103)

Condition (96) implies
δw(Wk) = δw(b

−1
k W ka

−1
k ).

Hence, with (c, d) ∈ δw(Wk) we get

cb−1
k W ka

−1
k ≡ b

−1
k W ka

−1
k d. (104)

Condition (97) implies b−1
k akWk ≡Wkakb

−1
k . Thus, we have W ka

−1
k bk ≡ bka

−1
k W k, i.e.,

b−1
k W ka

−1
k ≡ a

−1
k W kb

−1
k . (105)

From (104) and (105) we get ca−1
k W kb

−1
k ≡ a

−1
k W kb

−1
k d, i.e., (103).

As remarked above, by (102) the monoid homomorphism Φ̃ : W∗ ∗ A ∗ B → W∗ ∗ A ∗ B
induces a monoid homomorphism Φ : W→W. This monoid homomorphism satisfies (94) and
(95).

The AB-algebra W∗ ∗A ∗B fulfills hypotheses (A), (B), and (C) from Lemma 23 for the
set of generators Γ =W∪A∪B: (B) clearly holds and the decomposition for s ∈W that has
to exist according to (C) is obtained by writting s as an (A,B)-reduced product, see (80).
By Lemma 25, also the quotient W satisfies (A), (B), and (C) from Lemma 23 for the set of
generators Γ . Thus, in order to show that Φ is an AB-homomorphism, we just have to check
that it meets conditions (a)–(f) from Lemma 23. Conditions (a) and (b) are clear.

Condition (c) amounts to

∀1 ≤ k ≤ p : bkWkak ≡ akWkbk and b−1
k W ka

−1
k ≡ a

−1
k W kb

−1
k .

These properties follow from (97).

Condition (d) asserts that ∀g ∈ Γ : γw(g) ⊆ γw(Φ(g)). This is clear if g is none of the gener-
ators Wk or W k for 1 ≤ k ≤ p. For g =Wk we have to check that γw(Wk) ⊆ γw(a

−1
k W kb

−1
k ).

By (98) we have γw(Wk) = γw(W k). Moreover, a−1
k , b−1

k ∈ Ak = Gi(W k) = Ge(W k) im-
plies γw(a

−1
k W kb

−1
k ) = γw(W k) = γw(Wk). For g = W k we have to check that γw(W k) ⊆

γw(akWkbk) which also follows also from (98).

Condition (e) is ensured by (99) and condition (f) is ensured by (96). ⊓⊔
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Assume that we have a partition of Ŵ satisfying (92) and (93). Hence, by Lemma 34 every
tuple (a1, b1, . . . , ak, bk, . . . , ap, bp) with ak, bk ∈ Ak fulfilling the four conditions (96)–(99)
defines an AB-automorphism Φ through the 2k equations (95). In the next lemma we give
some simple transformations of such tuples that preserve the defined automorphism Φ. These
are the transformation

(ak, bk) 7→ (bk, ak)

for some k ∈ [1, p] as well as the transformation

(ak, bk) 7→ (1, ϕk(ak)bk)

for some k ∈ [1, p], where ϕk is a functional notation for the partial automorphism δw(Wk) :
Ak → Ak. For the second transformation, we assume that ak ∈ dom(ϕk).

Lemma 35. Let us fix a partition partition of Ŵ satisfying (92) and (93) and a tuple
(a1, b1, . . . , ak, bk, . . . , ap, bp) with ak, bk ∈ Ak fulfilling the four conditions (96)–(99); thus
defining an AB-automorphism Φ through equations (95). Then,

(1) the tuple (a1, b1, . . . , bk, ak, . . . , ap, bp) also defines the AB-automorphism Φ and
(2) the tuple (a1, b1, . . . , 1, ϕk(ak)bk, . . . , ap, bp) also defines the AB-automorphism Φ, provided

that ak ∈ dom(ϕk).

Proof. For point (1), we get (b−1
k ak, akb

−1
k ) ∈ δw(Wk) by (97). Hence, akWkbk = bkWkak and

we have

Φ(Wk)
(95)
= akWkbk = bkWkak.

Since Φ is compatible with Iw and Φ(Wk) = akWkbk we also have

Φ(Wk) = b−1
k Wka

−1
k .

For point (2), assume that ak ∈ dom(ϕk). Hence,

akWk =Wkϕk(ak) (106)

in W. Moreover, ak ∈ dom(ϕk) implies that

ak ∈ dom(δw(ak) ◦ ϕk ◦ δw(bk))
(96)
= dom(δw(W k)) = dom(ϕ−1

k ).

Hence, also a−1
k ∈ dom(ϕ−1

k ) and we have

a−1
k W k =W kϕ

−1
k (a−1

k ). (107)

We have to show that Φ(Wk) =Wkϕk(ak)bk and Φ(Wk) =Wk(ϕk(ak)bk)
−1. The first identity

can be deduced as follows:

Φ(Wk)
(95)
= akWkbk

(106)
= Wkϕk(ak)bk.

For the second identity, i.e., Φ(Wk) =Wk(ϕk(ak)bk)
−1, note that

Φ(Wk)
(95)
= a−1

k Wkb
−1
k

(107)
= Wkϕ

−1
k (a−1

k )b−1
k =Wk(ϕ

−1
k (ak))

−1b−1
k =Wk(bkϕ

−1
k (ak))

−1
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Hence, it suffices to show that ϕk(ak)bk = bkϕ
−1
k (ak). By (96), we know that ϕ−1

k = δw(Wk)
−1 =

δw(akWkbk) = δw(ak) ◦ δw(Wk) ◦ δw(bk). Recall that (δw(ak))(a) = a−1
k aak for all a ∈ Ak and

similarly for bk. Hence, we get

bkϕ
−1
k (ak) = bk (δw(akWkbk))(ak)

= bk (δw(Wkbk))(ak)

= bk (δw(bk))(ϕk(ak))

= bkb
−1
k ϕk(ak)bk

= ϕk(ak)bk,

as required. ⊓⊔

Note that condition (98) implies for all 1 ≤ k ≤ p

γw(Wk) ∈ {(A,T, 1, A,H), (B,T, 1, B,H), (A,H, 0, A, T ), (B,H, 0, B, T ), (1,H, 0, 1, 1)},
(108)

since these are the only T-types and H-types with IT (θ) = θ.

Definition 8. We denote by HInv (for H-involutive automorphisms) the set of all AB-auto-
morphisms Φ of the form (94) and (95) such that,

∀1 ≤ k ≤ p : γw(Wk) is an H-type . (109)

Note that Lemma 34 ensures that the automorphisms from HInv are involutive.
For Φ ∈ HInv we denote with W/Φ the AB-algebra obtained as the quotient W/ ≃Φ where

≃Φ is the monoid congruence over W generated by the set {(W,Φ(W ) | W ∈ W} (one can
easily check that this monoid congruence is compatible with the AB-algebraW). Alternatively,
we can defineW/Φ as the quotient (W∗ ∗A∗B)/ ≡Φ, where ≡Φ is the monoid congruence over
W∗ ∗A∗B generated by the set {(cW,Wd) | W ∈ W, (c, d) ∈ δw(W )}∪{(W,Φ(W ) | W ∈ W}
(this monoid-congruence is compatible with the AB-algebra W∗ ∗ A ∗ B). In the same way,
one can also define the quotient AB-algebra WH/Φ.

As noticed in the course of the above proof, the AB-algebra W∗ ∗A ∗B fulfills hypotheses
(A),(B) and (C) from Lemma 23 for the set of generators Γ =W ∪A∪B. By Lemma 25 the
AB-algebras W and W/Φ also satisfy these conditions (A),(B), and (C).

3.10 AB-homomorphisms on W∗ ∗A ∗ B and W

Let us show here some properties of AB-homomorphisms onW∗∗A∗B or W. LetW0 ⊆ W be
some subset which is closed under Iw, let W0 be the submonoid of W generated byW0∪A∪B.
This submonoid induces an AB-subalgebra of W (as defined in Section 3.2), which we denote
again by W0.

Lemma 36. Let ψ : W → W be an AB-homomorphism and let s ∈ W with ‖s‖ ≥ 1. Then
also ‖ψ(s)‖ ≥ 1.

Proof. It suffices to show that ‖ψ(W )‖ ≥ 1 for all W ∈ W. Assume that ψ(W ) ∈ A ∗B. By
(Hom5) we have ∅ 6= γw(W ) ⊆ γw(ψ(W )). Hence, γw(ψ(W )) contains an H-type (see (21)
and (22)) or a T-type (see (24)). By point (d) from Lemma 30, ψ(W ) cannot contain a factor
from (A \ 1)(B \ 1) or (B \ 1)(A \ 1). Hence, we have ψ(W ) ∈ A ∪ B. But then ψ(W ) does
not posess an H-type or a T-type, see (77), (78), and (80). ⊓⊔
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Lemma 37. Let ψ : WH → Wt or ψ : WH → Wt/Φ be an AB-homomorphism and let W ∈
WH. Then ‖ψ(W )‖ = 1. Moreover, we must have ψ : WH →WH (resp., ψ : WH →WH/Φ).

Proof. We only prove the statement for ψ : WH →Wt; for ψ : WH →Wt/Φ we can argue in
the same way. Let W ∈ WH. We must have ‖ψ(W )‖ ≥ 1 by the argument from the previous
proof. Moreover, γw(W ) is an H-type and γw(ψ(W )) must contain an H-type. If ψ(W ) contains
a W-symbol with a T-type, then γw(ψ(W )) cannot contain an H-type. If ψ(W ) contains two
W-symbols with an H-type, then γw(ψ(W )) = ∅. ⊓⊔

Lemma 38. Let ψ : W→W be an AB-homomorphism. Then γw(W ) = γw(ψ(W )).

Proof. By Lemma 36, we have ‖ψ(W )‖ ≥ 1, and hence |γw(ψ(W ))| ≤ 1 by Lemma 30(b).
Since γw(W ) ⊆ γw(ψ(W )) by (Hom5), we must have γw(W ) = γw(ψ(W )). ⊓⊔

Lemma 39. Let ψ : Wt → Ht be some AB-homomorphism. Let P, S, P ′, S′ ∈ Wt such that
the following holds:

– γw(P ) = γw(P
′) 6= ∅,

– γw(S) 6= ∅ 6= γw(S
′),

– γw(PS) = γw(P
′S′) 6= ∅

– ψ(P ) = ψ(P ′) and ψ(PS) = ψ(P ′S′).

Then ψ(S) = ψ(S′) and γw(S) = γw(S
′).

Proof. Let P, S, P ′, S′ fulfill the hypothesis of the lemma. Since Ht is cancellative by Lemma 6,
ψ(PS) = ψ(P ′S′) and ψ(P ) = ψ(P ′) imply ψ(S) = ψ(S′).

We distinguish several cases according to whether the norm of P , P ′, S, S′ is zero. Let
us notice that, since γw(P ) = γw(P

′) 6= ∅, either ‖P‖ = ‖P ′‖ = 0 or ‖P‖, ‖P ′‖ ≥ 1. We also
notice that (P, S) and (P ′, S′) play the same role in the above lemma. Therefore we only have
to treat the following six cases.

Case 1: ‖P‖ ≥ 1, ‖P ′‖ ≥ 1, ‖S‖ ≥ 1, ‖S′‖ ≥ 1.
Hence, by Lemma 30, γw(P ), γw(P

′), γw(S), and γw(S
′) are all singleton sets. Since γw(PS) =

γw(P
′S′) 6= ∅ and γw(P ) = γw(P

′), we must have

τ i(S) = τe(P ) = τe(P ′) = τ i(S′) and τe(S) = τe(S′).

Moreover, since ψ(S) = ψ(S′), we have γw(S) ∈ γt(ψ(S)) = γt(ψ(S
′)) ∋ γw(S

′). But all
path types in γt(ψ(S)) have the same boolean component. Hence, the boolean components of
γw(S) and γw(S

′) are equal as well, and γw(S) = γw(S
′).

Case 2: ‖P‖ ≥ 1, ‖P ′‖ ≥ 1, ‖S‖ = ‖S′‖ = 0.

Since γw(S) 6= ∅ 6= γw(S
′), we must have S, S′ ∈ A ∪ B. Moreover, the type γw(P ) = γw(P

′)
is a singleton. Since γw(PS) 6= ∅ 6= γw(P

′S′), we must have S ∈ Ge(P ) = Ge(P ′) ∋ S′. Thus,
S, S′ ∈ A or S, S′ ∈ B. Since ψ must be injective on A and B (by (Hom2)) we have either
S, S′ ∈ A \ 1 or S, S′ ∈ B \ 1, or S = S′ = 1. Thus, we get γw(S) = γw(S

′).

Case 3: ‖P‖ ≥ 1, ‖P ′‖ ≥ 1, ‖S‖ ≥ 1, ‖S′‖ = 0.

Thus, γw(P ), γw(P
′), and γw(S) are singeltons and S′ ∈ A∪B. Since ψ(S) = ψ(S′) ∈ A∪B,

the boolean component of γw(S) ∈ γt(ψ(S)) = γt(ψ(S
′)) is 0. Now, an inspection of the graph

B6 from Figure 1 shows that there does not exist a non-empty product of H-types that starts
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and ends in the same vertex type. Thus, ‖S‖ ≥ 1 and the fact that the boolean component
of γw(S) is 0 imply τe(S) 6= τ i(S) = τe(P ). Thus,

τe(S) 6= τe(P ). (110)

Since S′ ∈ A ∪B, we have τ i(θ) = τe(θ) for every θ ∈ γw(S
′). Hence,

τe(P ′S′) = τe(P ′). (111)

We also have γw(PS) = γw(P
′S′) 6= ∅ which implies that τe(S) = τe(PS) = τe(P ′S′). Hence,

taking into account (111), we get

τe(S) = τe(P ′). (112)

But equations (110) and (112) entail that τe(P ) 6= τe(P ′) contradicting the hypothesis that
γw(P ) = γw(P

′) 6= ∅. This case is thus impossible.

Case 4: ‖P‖ = ‖P ′‖ = 0, ‖S‖ ≥ 1, ‖S′‖ ≥ 1.

In this case P,P ′ ∈ A ∪B. The fact that γw(P ) = γw(P
′) implies that

P,P ′ ∈ A \ {1} or P,P ′ ∈ B \ {1} or P = P ′ = 1.

Hence, γw(S) = γw(PS) = γw(P
′S′) = γw(S

′), i.e. the conclusion of the lemma holds.

Case 5: ‖P‖ = ‖P ′‖ = 0, ‖S‖ ≥ 1, ‖S′‖ = 0.
Then |γw(PS)| = 1 while |γw(P

′S′)| ∈ {2, 6}. This contradicts the hypothesis γw(PS) =
γw(P

′S′). This case is thus impossible.

Case 6: ‖P‖ = ‖P ′‖ = 0, ‖S‖ = ‖S′‖ = 0.
Then P,P ′, S, S′ ∈ A ∪B. Since γw(P ) = γw(P

′), we have

P,P ′ ∈ A \ {1} or P,P ′ ∈ B \ {1} or P = P ′ = 1. (113)

Case 6.1: S ∈ A\1 and S′ ∈ B \1. With (113) this implies either γw(P
′S′) = ∅ or γw(PS) = ∅

or γw(PS) 6= γw(P
′S′), which is a contradiction.

Case 6.2: S, S′ ∈ A. Since ψ(S) = ψ(S′), we have S = 1 ⇔ S′ = 1. We get γw(S) = γw(S
′).

All other subcases can be dealt analogously to Case 6.1 or 6.2. ⊓⊔

Lemma 40. Let ψ : Wt → Ht be some AB-homomorphism. Let Q ∈ Wt, P
′, S′ ∈ Ht,θ ∈

γt(P
′),ρ ∈ γt(S

′) such that θ is an H-type, θρ is defined, γw(Q) = {θρ} and ψ(Q) = P ′S′.
Then, there exist P, S ∈Wt such that:

Q = PS, ψ(P ) = P ′, γw(P ) = {θ}, ψ(S) = S′, ρ ∈ γw(S).

Proof. Let us consider ψ,Q,P ′, S′,θ,ρ fulfilling the hypothesis of the lemma. Since γw(Q) =
{θρ} is a singleton set, Q ∈Wt must contain a letter from Wt, i.e. we can factorize Q as

Q = e0W0Q1 (114)

where W0 ∈ Wt and e0 ∈ Gi(W0). We also have Q1 ∈ Wt. Since γw(Q) 6= ∅, (Hom5)
implies that γt(ψ(Q)) 6= ∅. Recall that a t-sequence s is reduced if and only if γt(s) 6= ∅,
see (64). It follows that ψ(Q) = P ′S′ viewed as a ∼-equivalence class of t-sequences contains
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Fig. 4. Proof of Lemma 40

only reduced t-sequences. Since P ′S′ = ψ(e0W0)ψ(Q1), we can choose reduced t-sequences
s0, s1, p

′, s′ ∈ H ∗ {t, t−1}∗ such that

ψ(e0W0) = [s0]∼, ψ(Q1) = [s1]∼, P ′ = [p′]∼, S′ = [s′]∼, (115)

and s0s1 as well as p′s′ are reduced, see Figure 4. Let γw(W0) = {θ1}. Thus, θ1 is either an
H-type or a T-type. We have

{θρ} = γw(Q) = γw(e0W0Q1) = γw(W0Q1) = {θ1}γw(Q1). (116)

Hence, we have τ i(θ1) = τ i(θ). But since θ is an H-type, also θ1 must be an H-type. Moreover,
θ ∈ γt(P

′) and θ1 ∈ γw(W0) = γw(e0W0) ⊆ γt(ψ(e0W0)) = γt([s0]∼) imply

p′, s0 ∈ H. (117)

Since θ is an H-type and θρ is defined, we can distinguish the following four cases for ρ:

Case 1: ρ has the form (∗, T, 1, ∗, ∗).
Hence, (116) implies that the boolean component of the unique type in {θ1}γw(Q1) must be
1. Since θ1 is an H-type, i.e. its boolean component is 0, it follows that γw(Q1) contains a
type with boolean component 1. But this is only possible if Q1 contains a symbol from Wt.
Hence, by Lemma 30(b), γw(Q1) is a singleton set, i.e., γw(Q1) = {ρ1}. It follows

θ1ρ1 = θρ. (118)

Since θ1 is an H-type, ρ1 must be of the form (∗, T, 1, ∗, ∗).
Since ρ ∈ γt(s

′) and ρ1 ∈ γw(Q1) ⊆ γt(s1) (by (Hom5)) and both types are of the form
(∗, T, 1, ∗, ∗), we can choose the representatives s1 and s′ in such a way that they begin with
the letter t or t−1. This choice ensures that no H-product takes place in the products s0s1
and p′s′ in H ∗ {t, t−1}∗. We know that P ′S′ = ψ(Q) = ψ(e0W0Q1), i.e. p

′s′ ∼ s0s1. Since
all t-sequences are reduced and s0, p

′ ∈ H by (117), there exists a connecting element c1 such
that a van Kampen diagram as in Figure 4 holds. In particular,

c1 ∈ Ge(θ), s0c1 ∼ p
′, c1s

′ ∼ s1. (119)
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Let us define

P = e0W0c1 and S = c−1
1 Q1. (120)

We obtain from (114) and (120) that Q = PS. From (115), (119), and (120) we get ψ(P ) =
ψ(e0W0c1) = [s0]∼c1 = [p′]∼ = P ′ and ψ(S) = ψ(c−1

1 Q1) = c−1
1 [s1]∼ = [s′]∼ = S′.

It remains to determine the types of P and S. Since ρ ∈ γt(s
′) and ρ1 ∈ γt(s1) and

s′ and s1 both start with either t or t−1, we must have τ i(ρ) = τ(ρ1) (which is either
(A,T ) or (B,T )). Moreover, the boolean component of ρ and ρ1 is 1. Finally, by (118),
τe(ρ) = τe(θρ) = τe(ρ1). This establishes that ρ1 = ρ. Using (118) we know that θ1

and θ have same initial vertex type. Moreover, ρ1 = ρ implies that also the ending vertex
types of θ1 and θ coincide. Finally, since they are H-types, they also have the same boolean
component, namely 0. Hence θ1 = θ. We get γw(P ) = γw(e0W0c1) = γw(W0) = {θ1} = {θ}
and γw(S) = γw(c

−1
1 Q1) = γw(Q1) = {ρ1} = {ρ}.

Case 2: ρ = (A,T, 0, A, T ).

Since ρ = (A,T, 0, A, T ) ∈ γt(S
′), we have S′ = a ∈ A. Hence, we can set S = a and

P = Qa−1. Thus, ψ(S) = a = S′ and ψ(P )a = ψ(P )ψ(S) = ψ(PS) = ψ(Q) = P ′S′ = P ′a
implies ψ(P ) = P ′. Since θρ is defined, the H-type θ must have the form (∗, ∗, 0, A, T ). Hence
γw(P ) = γw(Qa

−1) = γ(Q) = {θρ} = {θ} and ρ = (A,T, 0, A, T ) ∈ γw(a) = γw(S).

Case 3: ρ = (B,T, 0, B, T ).

This case can be treated in the same way as Case 2.

Case 4: ρ = (1, 1, 0, 1, 1).

Hence S′ = 1. The choice S = 1 and P = Q fulfills the conclusion of the lemma. ⊓⊔

In the following, π≡ : W∗ ∗ A ∗ B → W denotes the canonical homomorphism that maps
s ∈ W∗ ∗A ∗B to its equivalence class w.r.t. ≡. The statements of the following four lemmas
are visualized in Figure 5.

Lemma 41 (factorization). Let ψ′ :W∗ ∗ A ∗B →W be some AB-homomorphism. Then,
there exists a unique AB-homomorphism ψ : W→W such that π≡ ◦ ψ = ψ′.

Proof. Since ψ′ is an AB-homomorphism, for every W ∈ W we have δw(W ) = δw(ψ
′(W )).

We claim that the congruence ≡ is contained in the kernel of the homomorphism ψ′: Consider
a pair (c, d) ∈ δw(W ) (i.e, cW ≡ Wd). Thus (c, d) ∈ δw(ψ

′(W )), i.e., ψ′(cW ) = cψ′(W ) =
ψ′(W )d = ψ′(Wd) by Lemma 32. Therefore (cW,Wd) belongs to the kernel of ψ′. It follows
that there exists a monoid homomorphism ψ : W → W with π≡ ◦ ψ = ψ′. By Lemma 24,
ψ is in fact an AB-homomorphism. Unicity of ψ follows directly from the requirement that
ψ([s]≡) = ψ′(s) for all s ∈ W∗ ∗ A ∗B. ⊓⊔

Lemma 42 (quotient). Let σ′ : W∗ ∗ A ∗ B → W∗ ∗ A ∗ B be some AB-homomorphism.
Then, there exists a unique AB-homomorphism σ : W→W such that π≡ ◦ σ = σ′ ◦ π≡.

Proof. Applying Lemma 41 to the AB-homomorphism ψ′ = σ′ ◦π≡ we obtain this lemma. ⊓⊔

Lemma 43 (lifting). Let ψ′ : W∗ ∗ A ∗ B → W be some AB-homomorphism. Then, there
exists an AB-homomorphism ψ :W∗ ∗ A ∗B →W∗ ∗A ∗B such that ψ′ = ψ ◦ π≡.
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Proof. Choose a partition Ŵ = Ŵ1 ∪ Ŵ2 such that Ŵ1 ∩ Ŵ2 = ∅ and {Iw(W ) | W ∈ Ŵ1} =

Ŵ2. Since Iw(W ) 6= W for all W ∈ Ŵ, such a partition exists. Let us consider some map

ψ : (W ∪A ∪B)→W∗ ∗ A ∗B such that for all a ∈ A, b ∈ B, and W ∈ W \ Ŵ2:

ψ(a) = a, ψ(b) = b, ψ(W ) ∈ π−1
≡ (ψ′(W )). (121)

Moreover, for W ∈ Ŵ2 we set

ψ(W ) = Iw(ψ(Iw(W ))). (122)

Since π≡ and ψ′ are AB-homomorphisms, this implies

π≡(ψ(W )) = π≡(Iw(ψ(Iw(W )))) = Iw(π≡(ψ(Iw(W )))) = Iw(ψ
′(Iw(W ))) = ψ′(W )

for all W ∈ Ŵ2. Hence, together with (121), we get

π≡(ψ(W )) = ψ′(W ) for all W ∈ W. (123)

Also notice that (122) implies

Iw(ψ(W )) = ψ(Iw(W )) for all W ∈ Ŵ. (124)

By the universal property of the free product, ψ can be extended to a monoid homomorphism
ψ : W∗ ∗ A ∗ B → W∗ ∗ A ∗ B. Since π≡(ψ(g)) = ψ′(g) for all g ∈ W ∪ A ∪ B, we have
ψ′ = ψ ◦ π≡.

It remains to show that ψ is in fact an AB-homomorphism. For this, we check conditions
(a)–(f) from Lemma 23. Property (a) is obvious. For (b)–(f), assume that g ∈ W∪A∪B. For
g ∈ A ∪ B, we have ψ(g) = g and (b)–(f) are obvious. Thus, assume that g = W ∈ W. For
(b), we get:

W ∈ dom(Iw)
(Hom3)
⇐⇒ ψ′(W ) ∈ dom(Iw)

⇐⇒ π≡(ψ(W )) ∈ dom(Iw)

(Hom3)
⇐⇒ ψ(W ) ∈ dom(Iw).

Property (c) is stated in (124). Property (d) follows from

γw(W )
(Hom5)

⊆ γw(ψ
′(W ))

= γw(π≡(ψ(W )))

(60)
= γw(ψ(W )).

Finally, (e) and (f) follow directly from the preservation of the µ- and δ-mappings by ψ′ and
π≡. Hence, ψ is indeed an AB-homomorphism. ⊓⊔

Lemma 44 (inverse image). Let σ : W → W be some AB-homomorphism. Then, there
exists an AB-homomorphism σ′ :W∗ ∗ A ∗B →W∗ ∗A ∗B such that π≡ ◦ σ = σ′ ◦ π≡.

Proof. Applying Lemma 43 to the AB-homomorphism ψ′ = π≡ ◦σ, we obtain this lemma. ⊓⊔

49



W∗ ∗A ∗B

W W

π≡
ψ′

ψ

W∗ ∗A ∗B W∗ ∗ A ∗B

W

ψ

ψ′

π≡

W∗ ∗ A ∗ B

W

W∗ ∗ A ∗ B

W

σ′

π≡ π≡

σ

W∗ ∗ A ∗ B

W

W∗ ∗ A ∗ B

W

σ′

π≡ π≡

σ

(factorization) (quotient)

(lifting) (inverse image)

Fig. 5. AB-homomorphisms

4 Systems over G: normalisation

Let us consider a system (S,C) of equations and disequations over the HNN-extension G with
variables from U and rational constraints, see Section 2.6. By Proposition 2 we can assume
that S is quadratic. Recall that C : U → bool(Rat(G)). By Proposition 1, for every variable
U ∈ U one can construct a strict normal partitioned fta AU over the labelling set bool(Rat(H))
such that

C(U) = πG(L(AU )).

Let A be the direct product of all the fta AU for U ∈ U and let Q be the set of states of A.
This fta A is partitioned, strict (this is straightforward from the definitions) and normal (by
Lemma 17). Moreover, for every U ∈ U , there exist IU ⊆ Q and TU ⊆ Q such that

C(U) = {g ∈ G | (IU × TU ) ∩ µA,G(g) 6= ∅}

(recall the definition of the mapping µA,G from (47)). Let us define, for every U ∈ U , the set
of binary relations B(U) ⊆ B(Q) by:

B(U) = {ρ ∈ B(Q) | (IU × TU ) ∩ ρ 6= ∅}.

Note that B(U) is upwards-closed i.e., if ρ ⊆ ρ′ and ρ ∈ B(U), then ρ′ ∈ B(U). It is then clear
that A recognizes the constraint C in the sense that, for every U ∈ U ,

C(U) = µ−1
A,G(B(U)).

Let us define
M(C) = {µ : U → B(Q) | ∀U ∈ U : µ(U) ∈ B(U)}.
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Since B(U) is upwards-closed, we have:

(µ ∈M(C) and ∀U ∈ U : µ(U) ⊆ µ′(U)) =⇒ µ′ ∈M(C). (125)

We can now express the initial system (S,C) of equations and disequations with rational
constraints as a finite disjunction

∨

µ∈M(C)

(S, µA,G, µ). (126)

A solution of the system (S, µA,G, µ) is now any monoid homomorphism σ : U∗ → G such
that the following holds:

∀(u = u′) ∈ S : σ(u) = σ(u′) (127)

∀(u 6= u′) ∈ S : σ(u) 6= σ(u′) (128)

∀U ∈ U : µA,G(σ(U)) = µ(U). (129)

Any solution of a system (S, µA,G, µ) for some µ ∈ M(C) is a solution of the disjunction
(126). An over-solution of the system (S, µA,G, µ) is any monoid homomorphism σ : U∗ → G

fulfilling the above conditions (127) and (128) together with the condition

∀U ∈ U : µA,G(σ(U)) ⊇ µ(U). (130)

By condition (125), any over-solution of a system (S, µA,G, µ) for some µ ∈M(C) is a solution
of the disjunction (126). We have thus proved the following proposition.

Proposition 5. Given a system (S,C) of equations and disequations over G with variables
U and rational constraints, one can compute a finite family of systems (S ′, µA,G, µj) (j ∈ J)
such that the following holds:

(a) S ′ is a quadratic system of equations and disequations with variables V ⊇ U .

(b) µA,G is the map associated with a strict normal partitioned fta A over the labelling set
bool(Rat(H)) (see (47)).

(c) µj is a map µj : V → B(QA)

(d) Every solution σ : U∗ → G of (S,C) extends to a solution σ′ : V∗ → G of
∨
j∈J(S

′, µA,G, µj).

(e) For every solution σ′ : V∗ → G of
∨
j∈J(S

′, µA,G, µj), the restriction of σ′ to U∗ is a
solution of S.

(f) Every over-solution of
∨
j∈J(S

′, µA,G, µj) is again a solution of
∨
j∈J(S

′, µA,G, µj).

Moreover, if S is a system of equations (without disequations), then S ′ is a system of equations
(without disequations).

A disjunction of systems
∨
j∈J(S

′, µA,G, µj) that satisfies (a), (b), and (c) from Proposition 5
is said to be in quadratic normal form. If the disjunction moreover satisfies (f), then it is said
to be in closed quadratic normal form.
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5 Equations over Ht

5.1 t-equations

A system of t-equations is a set

S ⊆W×W (131)

such that for all (w,w′) ∈ S we have γw(w) = γw(w
′) 6= ∅. A solution of S is any AB-

homomorphism ψ : Wt → Ht such that:

∀(w,w′) ∈ S : ψ(w) = ψ(w′). (132)

Note, that S can be only solvable if S ⊆ Wt ×Wt. Moreover, notice that here the rational
constraints are replaced by the even more restrictive conditions that define the notion of AB-
homomorphism: besides preservation of the µ-map, the homomorphism ψ must also preserve
I, γ and δ.

5.2 From G-equations to t-equations

Let us start with a system

S = ({(ui = u′i) | 1 ≤ i ≤ n}, µA,G, µU) (133)

of equations over G with variables U and rational constraints, which is in quadratic normal
form (see Proposition 5). Assume that ui = Ui,1 and u′i = Ui,2Ui,3 with Ui,1, Ui,2, Ui,3 ∈ U for
1 ≤ i ≤ n. In the following we denote the interval {1, . . . ,m} with [1,m].

We define a reduction of the satisfiability problem for such systems to the satisfiability
problem for systems of t-equations. The leading idea is simply that, since πG : Red(H, t)/∼ →
G is a bijection, every solution in G corresponds to a map into Ht. Nevertheless the product
in G corresponds to a somewhat complicated operation over Red(H, t)/∼ that we must deal
with.

Let us consider the alphabets

V0 = [1, n]× [1, 3] × [1, 5] × [0, N0] (134)

and the alphabet W constructed from this set V0 in Section 3.6. We choose the integer N0 in
(134) in such a way that

Card({W ∈ W | ∃i, j, k : p1(W ) = (i, j, k, 0)}) <
1

2
Card(V0). (135)

One can take, for example, N0 = 2 ·Card({−1, 0, 1} × THT ×B2(Q)×PGI{A,B}) in order to
achieve this inequality. We consider all 15n-tuples W = (Wi,j,k)(i,j,k,0)∈V0

with Wi,j,k ∈ W ∪
{1} and all 3n-tuples e = (ei,1,2, ei,2,3, ei,3,1)1≤i≤n with ei,j,k ∈ A∪B such that the conditions
in Figure 6 hold. A vector (W ,e) fulfilling all the properties (136)-(147) is called an admissible
vector. For every admissible vector (W ,e) we define for all 1 ≤ i, i′ ≤ n, 1 ≤ j, j′ ≤ 3 the
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Wi,j,3 ∈ W ∧ γw(Wi,j,3) is an H-type (136)

p1(Wi,j,k) = (i, j, k, 0) ∈ V0 if Wi,j,k ∈ W (137)

γw(

5∏

k=1

Wi,j,k) ∈ {(1,H, b, 1, 1) | b ∈ {0, 1}} (138)

γw(

5∏

k=1

Wi,j,k) = γw(

5∏

k=1

Wi′,j′,k) if Ui,j = Ui′,j′ (139)

γw(Wi,1,1Wi,1,2) = γw(Wi,2,1Wi,2,2) (140)

γw(Wi,1,4Wi,1,5) = γw(Wi,3,4Wi,3,5) (141)

γw(Wi,2,4Wi,2,5) = γw(Iw(Wi,3,2)Iw(Wi,3,1)) (142)

ei,1,2 ∈ Gi(Wi,1,3) = Gi(Wi,2,3) (143)

ei,2,3 ∈ Ge(Wi,2,3) = Gi(Wi,3,3) (144)

ei,3,1 ∈ Ge(Wi,3,3) = Ge(Wi,1,3) (145)

p1(µw(

5∏

k=1

Wi,j,k)) = µU (Ui,j) (146)

Wi,2,k ∈ Ŵ ∪ {1} ∋ Wi,3,6−k for 4 ≤ k ≤ 5 (147)

Fig. 6. Conditions for an admissible vector

following equations:

5∏

k=1

Wi,j,k =

5∏

k=1

Wi′,j′,k if Ui,j = Ui′,j′ (148)

Wi,1,1Wi,1,2ei,1,2 =Wi,2,1Wi,2,2 (149)

Wi,2,4Wi,2,5 = ei,2,3Iw(Wi,3,2)Iw(Wi,3,1) (150)

ei,3,1Wi,1,4Wi,1,5 =Wi,3,4Wi,3,5 (151)

Wi,1,3 = ei,1,2Wi,2,3ei,2,3Wi,3,3ei,3,1 (152)

Equations (149)–(152) correspond to a decomposition of the planar diagram associated with
the G-relation Ui,1 = Ui,2Ui,3 into four pieces, as indicated in Figure 7. Equation (148) ex-
presses the fact that some variables from U are common to several equations of S.

We denote by St(S,W ,e) the set of equations (148)-(151) and by SH(S,W ,e) the set of
equations (152). For every (i, j) ∈ [1, n]× [1, 3] we denote by i, j the lexicographically smallest
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Wi,1,1 Wi,1,2 Wi,1,4 Wi,1,5

Wi,2,1

Wi,2,2

Wi,2,4
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Wi,2,3

ei,2,3

Wi,3,3

ei,3,1

Wi,1,3
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Wi,3,2

Wi,3,4

Wi,3,5

Fig. 7. Equation cut into 4 pieces

pair such that Ui,j = Ui,j. By σW ,e : U∗ →W we denote the unique monoid homomorphism
such that

σW ,e(Ui,j) =

5∏

k=1

Wi,j,k. (153)

Notice that, by the conditions imposed through the notion of an admissible vector, the system
of equations St(S,W ,e) is really a system of t-equations, while some of the right-hand sides
of the equations from SH(S,W ,e) might have an empty image by γw.

Lemma 45. A monoid homomorphism

σ : U∗ → G

is a solution of the system (133) if and only if there exists an admissible vector (W ,e) and
an AB-homomorphism σt : Wt → Ht such that:

– All components of (W ,e) belong to Wt ∪A ∪B.
– σt solves both systems St(S,W ,e) and SH(S,W ,e).
– σ = σW ,e ◦ σt ◦ πG

Here, we denote by πG : Ht → G the canonical projection, see Figure 8. We prove this lemma
in the following two subsections.

From G-solutions to t-solutions. Let σ : U∗ → G be a monoid homomorphism solving
the system ({(Ui,1 = Ui,2Ui,3) | 1 ≤ i ≤ n}, µA,G, µU) of equations over G with variables U
and rational constraints (Ui,1, Ui,2, Ui,3 ∈ U for 1 ≤ i ≤ n). Let us fix some integer 1 ≤ i ≤ n
and the corresponding equation Ui,1 = Ui,2Ui,3. We construct the vectors (Wi,∗,∗), (ei,∗,∗)
corresponding to this equation. Let us choose for every j ∈ [1, 3] some si,j ∈ Red(H, t) such
that σ(Ui,j) = πG(si,j). This ensures that (where ≈ is the congruence defined in (2)–(4))

si,1 ≈ si,2si,3 for all 1 ≤ i ≤ n, and

p1(µt((1,H, ‖si,j‖b, 1, 1), si,j))
(62)
= µA,1((1,H, ‖si,j‖b, 1, 1), si,j)

(47)
= µA,G(σ(Ui,j))

(129)
= µU (Ui,j).
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Fig. 8. Lemma 45

Let us consider decompositions of the form (5) for si,2 and si,3:

si,2 = h0t
α1h1 · · · t

αλhλ · · · t
αℓhℓ, (154)

si,3 = k0t
β1k1 · · · t

βρkρ · · · t
βmkm. (155)

There exist integers λ ∈ [1, ℓ+ 1] and ρ ∈ [0,m] such that ρ = ℓ− λ+ 1,

αλ + βρ = 0, (156)

tαλhλ · · · t
αℓhℓk0t

β1 · · · kρ−1t
βρ ≈ ei,2,3 ∈ A(αλ) = B(βρ), (157)

h0t
α1 · · · hλ−2t

αλ−1(hλ−1ei,2,3kρ)t
βρ+1kρ+1 · · · t

βmkm ∈ Red(H, t). (158)

Note that by (157) and Lemma 4, hλ, . . . , hℓ, k0, . . . , kρ−1 are invertible in the monoid H (for
every 0 ≤ i ≤ ρ− 1 there exist a, a′ ∈ A∪B such that hℓ−ia

′ki = a). We include in the above
notation the following “degenerated” cases:

Left-degenerated case λ = 1: Then h0t
α1 · · · hλ−2t

αλ−1 must be understood as 1.
Right-degenerated case ρ = m: Then tβρ+1kρ+1 · · · t

βmkm must be understood as 1.
Middle-degenerated case αℓ + β1 6= 0 or (αℓ + β1 = 0 and hℓk0 /∈ A(β1)): In this case we

set λ = ℓ + 1, ρ = 0, and ei,2,3 = 1. Equality (156) disappears, (157) becomes the trivial
equation 1 = 1, while (158) remains valid.

LM-degenerated case ℓ = 0, i.e., si,2 = h0: We set λ = 1, ρ = 0 and ei,2,3 = 1. Equality
(156) disappears, (157) becomes the trivial equation 1 = 1. The left-hand side of assertion
(158) consists just of h0si,3.

MR-degenerated case m = 0: Analogous to the previous case. The left-hand side of (158)
consists just of si,2k0.

Notice that these cases are not disjoint; in particular, when ℓ = m = 0 the three kinds of
degeneracy occur simultaneously. Each kind of degeneracy can be visuallized in Figure 9 as
one or two of the three triangular pieces consisting of a trivial relation. For instance, in the
LM-degenerated case the left and middle triangular regions are trivial relations.

Let us consider the following factors of the reduced sequences si,2 and si,3:

Li,2 = h0t
α1 · · · hλ−2t

αλ−1 Mi,2 = hλ−1 Ri,2 = tαλhλ · · · t
αℓhℓ

Li,3 = k0t
β1 · · · kρ−1t

βρ Mi,3 = kρ Ri,3 = tβρ+1kρ+1 · · · t
βmkm

Note that Ri,2, Li,3 ∈ dom(It) since hλ, . . . , hℓ, k0, . . . , kρ−1 are invertible in the monoid H.
Moreover, since si,1 ≈ si,2si,3 ≈ Li,2(Mi,2ei,2,3Mi,3)Ri,3 and Li,2(Mi,2ei,2,3Mi,3)Ri,3 as well as
si,1 are reduced sequences, by Lemma 5 we get

si,1 ∼ Li,2(Mi,2ei,2,3Mi,3)Ri,3. (159)
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Fig. 9. Cutting the solution into three factors

Case 1 (standard case) λ ∈ [2, ℓ] and ρ ∈ [1,m− 1].

Then Li,2 (resp. Ri,3) ends (resp. starts) with tαλ−1 (resp. tβρ+1). By (159), there must
exist a factorization

si,1 = Li,1Mi,1Ri,1

with Li,1,Ri,1 ∈ Red(H, t), Mi,1 ∈ H, and connecting elements ei,1,2 ∈ B(αλ−1), ei,3,1 ∈
A(βρ+1) such that:

Li,1ei,1,2 ∼ Li,2, (160)

ei,1,2Mi,2ei,2,3Mi,3ei,3,1 =Mi,1 in H (161)

ei,3,1Ri,1 ∼ Ri,3, (162)

see also the following diagram:

Li,2
Mi,2ei,2,3Mi,3

Ri,3

Li,1
Mi,1

Ri,1

ei,1,2 ei,3,1

The relation (157) can be rewritten as Ri,2Li,3 ≈ ei,2,3, or, since Ri,2 and Li,3 are reduced and
Li,3 is invertible, as

Ri,2 ∼ ei,2,3It(Li,3), (163)

see Figure 9. Let πt : H ∗ {t, t
−1}∗ → {t, t−1}∗ be the natural projection. By (160), (162), and

(163) we know that

πt(Li,1) = πt(Li,2) 6= ε, πt(Ri,1) = πt(Ri,3) 6= ε, πt(Ri,2) = πt(It(Li,3)) 6= ε.
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Hence the fta R6 (see Figure 3) has computations of the following forms:

(1,H)
Li,1
−−→ qi,1

Mi,1
−−−→ ri,1

Ri,1
−−→ (1, 1)

(1,H)
Li,2
−−→ qi,1

Mi,2
−−−→ ri,2

Ri,2
−−→ (1, 1)

(1,H)
Li,3
−−→ IR(ri,2)

Mi,3
−−−→ ri,1

Ri,3
−−→ (1, 1).

Note that (qi,1, 0, ri,1), (qi,1, 0, ri,2), and (IR(ri,2), 0, ri,1) are H-types.
Since Li,2 ends with t or t−1, the same holds for Li,1. An inspection of the fta R6 shows

that the computation (1,H)
Li,1
−−→ qi,1 can be factored into two subcomputations

(1,H) = qi,1,0
vi,1,1
−−−→ qi,1,1

vi,1,2
−−−→ qi,1,2 = qi,1 with Li,1 = vi,1,1vi,1,2 (164)

such that the triple (qi,1,0, ‖vi,1,1‖b, qi,1,1) is an H-type and (qi,1,1, ‖vi,1,2‖b, qi,1,2) is a T -

type. More generally, every decomposition of a computation into subcomputations pk−1
wk−−→

pk such that every triple (pk−1, ‖wk‖b, pk) is either an H-type or a T -type will be called

R6-compatible 6. Similarly the computations ri,1
Ri,1
−−→ (1, 1) and ri,2

Ri,2
−−→ (1, 1) have R6-

compatible decompositions:

ri,1 = qi,1,3
vi,1,4
−−−→ qi,1,4

vi,1,5
−−−→ qi,1,5 = (1, 1) with Ri,1 = vi,1,4vi,1,5 (165)

ri,2 = qi,2,3
vi,2,4
−−−→ qi,2,4

vi,2,5
−−−→ qi,2,5 = (1, 1) with Ri,2 = vi,2,4vi,2,5. (166)

Combining decomposition (164) with equation (160), (165) with (162), and (166) with (163),
we define

qi,2,k := qi,1,k for 0 ≤ k ≤ 2,

qi,3,k := qi,1,k for 3 ≤ k ≤ 5,

qi,3,k := IR(qi,2,5−k) for 0 ≤ k ≤ 2,

and get the following three R6-compatible decompositions:

(1,H) = qi,2,0
vi,2,1
−−−→ qi,2,1

vi,2,2
−−−→ qi,2,2 = qi,1 with Li,2 = vi,2,1vi,2,2 (167)

ri,1 = qi,3,3
vi,3,4
−−−→ qi,3,4

vi,3,5
−−−→ qi,3,5 = (1, 1) with Ri,3 = vi,3,4vi,3,5 (168)

(1,H) = IR(qi,2,5) = qi,3,0
vi,3,1
−−−→ qi,3,1

vi,3,2
−−−→ qi,3,2 = IR(ri,2) with Li,3 = vi,3,1vi,3,2 (169)

Finally, we define vi,j,3 := Mi,j ∈ H (1 ≤ j ≤ 3). Note that vi,2,4, vi,2,5, vi,3,1, vi,3,2 ∈ dom(It),
since Ri,2, Li,3 ∈ dom(It). We summarize in Figure 10 the above decompositions and relations.

Let us extract from these the vector (W ,e) and the AB-homomorphism σt. Let

θi,j,k := (qi,j,k−1, ‖vi,j,k‖b, qi,j,k).

Note that θi,j,k ∈ γt(vi,j,k) and that θi,j,3 is an H-type. We choose for Wi,j,k a letter from W
with the following properties:

6 H-types are really edges of the fta R6 while T -types are either edges or paths of length 3 of the fta R6.
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Fig. 10. Cutting the solution into five factors

– p1(Wi,j,k) = (i, j, k, 0), this ensures property (137).
– γw(Wi,j,k) = θi,j,k, this ensures properties (138)–(145).
– µw(Wi,j,k) = µt(θi,j,k, vi,j,k), this ensures property (146).
– δw(Wi,j,k) = δt(θi,j,k, vi,j,k)

– Wi,j,k ∈ Ŵ ⇐⇒ vi,j,k ∈ dom(It), this ensures property (147).

By Lemma 29, Wi,j,k indeed belongs to W. Moreover, (W ,e) is an admissible vector. Note

that Wi,j,k ∈ Wt: one can choose s := vi,j,k in (91). Moreover, if Wi,j,k ∈ Ŵ, then Iw(Wi,j,k)
does not occur among the letters Wi′,j′,k′ (because (i, j, k, 0) = p1(Wi,j,k) = p1(Iw(Wi,j,k))
and Iw(Wi,j,k) 6= Wi,j,k). This allows us to define a mapping σt by σt(Wi,j,k) = [vi,j,k]∼ and

σt(Iw(Wi,j,k)) = [It(vi,j,k)]∼ in case Wi,j,k ∈ Ŵ (i.e. vi,j,k ∈ dom(It)). By Lemma 23, this
mapping σt induces an AB-homomorphism σt : Wt → Ht. One can check that σt solves the
systems of equations St(S,W ,e) and SH(S,W ,e) and that

σ = σW ,e ◦ σt ◦ πG.

We indicate now how these arguments must be adapted to the degenerated cases.

Case 2 (left-degenerated case): We have λ = 1. Let us set Li,2 = Li,1 = ei,1,2 = 1 and,
accordingly, for all 1 ≤ k ≤ 2:

vi,2,k = vi,1,k = 1, Wi,2,k =Wi,1,k = 1.

Case 3 (right-degenerated case): We have ρ = m. Let us set Ri,3 = Ri,1 = ei,3,1 = 1 and,
accordingly, for all 4 ≤ k ≤ 5:

vi,3,k = vi,1,k = 1, Wi,3,k =Wi,1,k = 1.

Case 4 (middle-degenerated case): We have αℓ + β1 6= 0 or (αℓ + β1 = 0 and hℓk0 /∈ A(β1)).
Let us set Ri,2 = Li,3 = ei,2,3 = 1 and, accordingly, for all 4 ≤ k ≤ 5:

vi,2,k = vi,3,6−k = 1, Wi,2,k =Wi,3,6−k = 1.
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Case 5 (LM-degenerated case): We have ℓ = 0. We choose all the special values chosen in
Case 2 and Case 4, i.e. Li,2 = Li,1 = Ri,2 = Li,3 = ei,1,2 = ei,2,3 = 1 and the resulting choices
for Wi,∗,∗.

Case 6 (MR-degenerated case): We have m = 0. We choose all the special values chosen in
Case 3 and Case 4.

From t-solutions to G-solutions. Let σt : Wt → Ht be an AB-homomorphism solving
both systems St(S,W ,e) and SH(S,W ,e), where (W ,e) is some admissible vector with all
components in Wt ∪A ∪B. We have to show that σW ,e ◦ σt ◦ πG solves the system (133).

First, we show that for every i ∈ [1, n],

σt(σW ,e(Ui,1)) ≈ σt(σW ,e(Ui,2Ui,3)). (170)

Let us fix such an integer i ∈ [1, n]. Since σt solves (149)–(152), we have

σt(

5∏

k=1

Wi,1,k) ≈ σt(
5∏

k=1

Wi,2,k

5∏

k=1

Wi,3,k). (171)

Figure 7 gives a decomposition of the Van-Kampen diagram corresponding to the above
equivalence into four diagrams corresponding to (149)–(152). We also have

σt(σW ,e(Ui,j))
(153)
= σt(

5∏

k=1

Wi,j,k)
(148)
= σt(

5∏

k=1

Wi,j,k). (172)

Hence, we get

σt(σW ,e(Ui,1))
(172)
= σt(

5∏

k=1

Wi,1,k)

(171)
≈ σt(

5∏

k=1

Wi,2,k

5∏

k=1

Wi,3,k)

(172)
= σt(σW ,e(Ui,2Ui,3)),

which is (170). It remains to show that for every i ∈ [1, n],

µA,G(πG(σt(σW ,e(Ui,j)))) = µU (Ui,j).

By definition (47), this is equivalent to

µA,1((1,H, b, 1, 1), σt(σW ,e(Ui,j))) = µU(Ui,j), where (173)

b = ‖σt(σW ,e(Ui,j))‖b (174)

(note that σt(σW ,e(Ui,j)) is reduced since γw(σW ,e(Ui,j)) 6= ∅). By (138), γw(
∏5
k=1Wi,j,k) =

{(1,H, b′, 1, 1)} for some b′ ∈ {0, 1}. Since σt is an AB-homomorphism, we get

(1,H, b′, 1, 1) ∈ γt(σt(
5∏

k=1

Wi,j,k))
(172)
= γt(σt(σW ,e(Ui,j))).
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By (174) this implies that b′ = b. Thus

γw(

5∏

k=1

Wi,j,k) = {(1,H, b, 1, 1)}. (175)

As σt is an AB-homomorphism, (Hom6) implies

µt((1,H, b, 1, 1), σt(

5∏

k=1

Wi,j,k)) = µw((1,H, b, 1, 1),

5∏

k=1

Wi,j,k). (176)

Now, the following calculation yields (173):

µA,1((1,H, b, 1, 1), σt(σW ,e(Ui,j)))
(172)
= µA,1((1,H, b, 1, 1), σt(

5∏

k=1

Wi,j,k))

(62)
= p1(µt((1,H, b, 1, 1), σt(

5∏

k=1

Wi,j,k)))

(176)
= p1(µw((1,H, b, 1, 1),

5∏

k=1

Wi,j,k))

(175)
= p1(µw(γw(

5∏

k=1

Wi,j,k),

5∏

k=1

Wi,j,k))

= p1(µw(

5∏

k=1

Wi,j,k))

(146)
= µU (Ui,j)

Lemma 45 is thus proved. ⊓⊔

6 Equations over W

We suppose here that a system of equations with rational constraints over G is fixed. Thus the
AB-algebras W and Ht are completely defined (from the variable alphabet of the system and
the fta expressing the constraints). Given an H-involutive automorphism Φ (see Definition 8)
we abbreviate with W/Φ the quotient of the AB-algebra W by the congruence ≃Φ generated
by the relation {(W,Φ(W )) |W ∈ W}; see the paragraph after Definition 8. Recall that HInv
denotes the set of all H-involutive automorphisms of W.

6.1 W-equations

A system of W-equations is a pair
(S, Φ) (177)

such that S ⊆W×W is finite, γw(s) = γw(s
′) 6= ∅ for all (s, s′) ∈W and Φ ∈ HInv. If S is not

a subset of Wt×Wt, then (S, Φ) has no solution. On the other hand, if S ⊆Wt×Wt, then a
solution of (S, Φ) is any AB-homomorphism σW : Wt →Wt/Φ such that for every (s, s′) ∈ S:

σW(s) = σW(s′). (178)
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Fig. 11. Lemma 46

6.2 From t-equations to W-equations

From t-solutions to W-solutions. For every w ∈W we use the following notation, where
W denotes Iw(W ):

Alph(w) = {W ∈ W \ Ŵ | W occurs in w} ∪ {W ∈ Ŵ | W or W occurs in w}

A(w) = Card{W ∈ W \ Ŵ |W occurs in w}+
1

2
Card{W ∈ Ŵ | W or W occurs in w}.

Note that A(w) is an upper bound on the number of different first components (which are in
V0) of symbols in Alph(w), i.e., Card(p1(Alph(w))) ≤ A(w). For this, note that W and W
have the same first component.

Given a system of t-equations S = {(wi, w
′
i) | 1 ≤ i ≤ n} ⊆W×W (see (131)), let:

Alph(S) = Alph(
n∏

i=1

wiw
′
i).

Lemma 46 (factorization of t-solutions). Let S ⊆W×W be a system of t-equations. Let
us suppose that σt : Wt → Ht is an AB-homomorphism such that:

– σt solves the system S, and
– Card(Alph(S)) ≤ 1

2Card(V0).

Then there exist Φ ∈ HInv and AB-homomorphisms

σW : Wt →Wt/Φ and ψt : Wt/Φ→ Ht

such that σt(W ) = ψt(σW(W )) for every W ∈ Alph(S), and σW(s) = σW(s′) for every
(s, s′) ∈ S.

In other words: Every solution in Ht of a system of t-equations, over a sufficiently large
alphabet, factorizes, over the variables of the equation, through a solution in Wt/Φ of the
same system of equations, where Φ is an involution which belongs to HInv.

Remark 1. In the case where the system S is one of the systems St(S,W ,e) introduced by
Lemma 45:
- every variable W occurring in the system SH(S,W ,e) occurs in the system St(S,W ,e) too
(it must occur at least in one trivial equation (148)).
- the inequality (2) is ensured by the construction of the alphabet W that involves an integer
N0, choosen in such a way that inequality (135) is fulfilled.
Thus the factorization property asserted by Lemma 46 will hold for every common solution
of St(S,W ,e) and SH(S,W ,e). This will be important later.
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This factorization lemma is obtained via the more technical Lemma 47 below. For this lemma,
we need the following definitions.

For s ∈ W∗ ∗ A ∗B let (∗ denotes a placeholder)

χAB(s) =

{
1 if s ∈ A ∪B

0 otherwise.

χH(s) =





0 if |γw(s)| 6= 1 or γw(s) has the form {(∗, T, 1, ∗,H)}

1 if γw(s) has the form {(∗, ∗, 0, ∗, ∗)} or {(∗, T, 1, ∗, T )}

or {(∗,H, 1, ∗,H)} or {(∗, T, 1, 1, 1)}

2 if γw(s) has the form {(∗,H, 1, ∗, T )} or {(∗,H, 1, 1, 1)}

Note that the three cases in this definition cover all possible values for γw(s). The intuition
behind this definition is the following: Let s ∈ (W ∪A ∪B)∗ such that |γw(s)| = 1. Then:

– χH(s) = 0 if s has the type of a t-sequence which begins with either t or t−1 and ends
with either t or t−1.

– χH(s) = 1 if s has the type of a t-sequence which either belongs to H or begins with some
H-element or ends with some H-element, but the other extremity is not from H.

– χH(s) = 2 if w has the type of a t-sequence which begins with some H-element and ends
with some H-element and is not reduced to an H-element.

Given p, s, p′, s′ ∈ W∗ ∗A ∗B and ψt ∈ HomAB(W
∗ ∗ A ∗B,Ht) we define

∆(p, s, p′, s′, ψt) = 1−
1

2

(
χAB(p)+χAB(p

′)

)
+χH(s)+χH(s

′)+2‖ψt(s)‖+2‖ψt(s
′)‖. (179)

Note that ∆(p, s, p′, s′, ψt) ≥ 0. Moreover, χAB, χH , and ∆ are invariant with respect to the
congruence ≡. Hence, by factorization through π≡, the definitions apply on W.

Lemma 47. Let S = {(wi, w
′
i) | 1 ≤ i ≤ n + m} ⊆ Wt ×Wt be a system of t-equations

(hence, γw(wi) = γw(w
′
i) 6= ∅ for all 1 ≤ i ≤ m + n). Let us suppose that λi : Wt → Wt

(1 ≤ i ≤ n+m) and θt : Wt → Ht are AB-homomorphisms such that

θt(λi(wi)) = θt(λi(w
′
i)) for all 1 ≤ i ≤ n+m, (180)

λi = λj for all 1 ≤ i, j ≤ n, (181)

A(
n+m∏

i=1

λi(wiw
′
i)) <

1

2
Card(V0). (182)

Then there exist Φ ∈ HInv and AB-homomorphisms

λ′i : Wt →Wt (1 ≤ i ≤ n+m) and θ′t : Wt → Ht

such that

θt(λi(W )) = θ′t(λ
′
i(W )) for all 1 ≤ i ≤ n+m,W ∈ Alph(S) (183)

θ′t(W ) = θ′t(Φ(W )) for all W ∈ W (184)

λ′i(wi) ≃Φ λ
′
i(w

′
i) for all 1 ≤ i ≤ n+m, (185)

λ′i = λ′j for all 1 ≤ i, j ≤ n. (186)
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Proof. Let S = {(wi, w
′
i) | 1 ≤ i ≤ n+m} ⊆Wt ×Wt such that γw(wi) = γw(w

′
i) 6= ∅ and let

λ = (λi)1≤i≤n+m be a sequence of AB-homomorphisms λi : Wt →Wt.

Claim 1. For every 1 ≤ i ≤ n+m we either have wi = w′
i ∈ A∪B (and hence λi(wi) = λi(w

′
i) ∈

A∪B) or ‖wi‖, ‖w
′
i‖ ≥ 1 and γw(λi(wi)) = γw(λi(w

′
i)). In particular, γw(λi(wi)) = γw(λi(w

′
i))

for all 1 ≤ i ≤ n+m.

Since γw(wi) = γw(w
′
i) 6= ∅, we can distinguish the following cases:

Case 1. wi = 1: By (80), we get γw(w
′
i) = γw(wi) = {(θ, 0, θ) | θ ∈ T6}. But this implies

w′
i = 1.

Case 2. wi ∈ A \ 1: We get γw(w
′
i) = γw(wi)

(77)
= {(A,T, 0, A, T ), (A,H, 0, A,H)}, which

implies w′
i ∈ A \ 1. Since λi and θt are AB-homomorphisms and therefore the identity on A,

we get

wi = θt(λi(wi))
(180)
= θt(λi(w

′
i)) = w′

i.

The cases wi ∈ B \ 1 and w′
i ∈ A ∪B are symmetric.

Case 3. ‖wi‖, ‖w
′
i‖ ≥ 1: By Lemma 30(b) we have |γw(wi)| = 1 = |γw(w

′
i)|. Moreover,

‖wi‖, ‖w
′
i‖ ≥ 1 implies ‖λi(wi)‖, ‖λi(w

′
i)‖ ≥ 1 by Lemma 36. Hence, |γw(λi(wi))| = 1 =

|γw(λi(w
′
i))|. With (Hom5) we finally get γw(λi(wi)) = γw(wi) = γw(w

′
i) = γw(λi(w

′
i)). This

concludes the proof of Claim 1.

For every i ∈ [1, n + m] we define ≡i as the least monoid congruence over W containing
{(λj(wj), λj(w

′
j)) | i + 1 ≤ j ≤ n + m}. For every i ∈ [1, n + m] let us consider some

decompositions

λi(wi) = PiSi and λi(w
′
i) = P ′

iS
′
i (187)

such that Pi ≡i P ′
i , γw(Pi) 6= ∅, γw(Si) 6= ∅, γw(P

′
i ) 6= ∅, γw(S

′
i) 6= ∅ (such decompositions

always exists, since we can take Pi = 1 = P ′
i ), and this choice (187) minimizes the integer

∆(Pi, Si, P
′
i , S

′
i, θt)

(this value was defined in (179)). Such a (Pi, P
′
i ) is called a distinguishing pair for (λi(wi), λi(w

′
i))

and we denote by

∆i(S,λ, θt)

the corresponding value of ∆(Pi, Si, P
′
i , S

′
i, θt).

The size of the triple (S,λ, θt) is defined as the finite multiset of natural numbers

‖(S,λ, θt)‖ = {{∆1(S,λ, θt), . . . ,∆n+m(S,λ, θt)}}. (188)

Moreover, let

Alph(S,λ) = Alph(

n+m∏

i=1

λi(wiw
′
i)),

A(S,λ) = A(
n+m∏

i=1

λi(wiw
′
i)).
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Let us prove Lemma 47 by induction over ‖(S,λ, θt)‖ with respect to the partial ordering
over finite multisets of naturals induced by the natural ordering over N (it is known that this
ordering is well-founded). Let (S,λ, θt) fulfill the hypothesis of the lemma.

In the following, we write W for the symbol Iw(W ) (W ∈ Ŵ).

Case 1: For every i ∈ [1, n +m], one of the following two situations occurs:

λi(wi) ≡i λi(w
′
i) (189)

∃W ∈ Ŵ, (ei, fi), (di, ci) ∈ Gi(W )×Ge(W ) : λi(wi) = eiWfi, λi(w
′
i) = c−1

i Wd−1
i (190)

In the following, a pair of variables (W,W ) occuring in some equation (190) is called a twisted
pair. By Claim 1 we get

γw(W ) = γw(eiWfi) = γw(λi(wi)) = γw(λi(w
′
i)) = γw(c

−1
i Wd−1

i ) = γw(W ) (191)

for every twisted pair (W,W ). Hence, Gi(W ) = Ge(W ) = Gi(W ) = Ge(W ).
Let us consider the partition

Ŵ = Ŵ0 ∪W
′
1 ∪W

′
1 ∪W

′′
1 ∪W

′′
1 ,

where W ′
1 ∪W

′
1 (resp. W ′′

1 ∪W
′′
1 ) is exactly the set of symbols with an H-type (resp. with a

T-type) which are members of some twisted pair. Let us write

W ′
1 = {W1, . . . ,Wp}, W ′

1 = {W |W ∈ W
′
1},

W ′′
1 = {Wp+1, . . . ,Wp+q}, W ′′

1 = {W |W ∈ W ′′
1 }.

By multiplying with e−1
i and f−1

i , we can modify the system S in such a way that ei = fi = 1
in every equation of type (190) with preservation of the hypothesis of the lemma (with the
same morphisms) and also of the size of (S,λ, θt). We can also suppose that W ′

1 ∪ W
′′
1 is

exactly the set of variables appearing in the righthand-sides of the first equation of (190). For
every k ∈ [1, p + q], let (Wk, c

−1
ν(k)W kd

−1
ν(k)) be the equation of type (190) with smallest index

ν(k) ∈ [1, n +m] such that λν(k)(wν(k)) =Wk. Since θt is an AB-homomorphism and

θt(Wk) = θt(λν(k)(wν(k)))
(180)
= θt(λν(k)(w

′
ν(k))) = θt(c

−1
ν(k)W kd

−1
ν(k))

we know that
θt(W k) = θt(cν(k)Wkdν(k)). (192)

Let us “cut” the variables Wk, which have a T-type, into three parts in such a way that we
transform the twisted pair (Wk,W k) into another twisted pair but with an H-type. For every
k ∈ [p+ 1, p + q], let sk be a reduced t-sequence such that

θt(Wk) = [sk]∼ ∈ dom(It). (193)

Since Wk has a T-type, sk has to contain at least one occurrence of t or t−1. Since It(sk) ∼
cν(k)skdν(k) by (192), the t-sequence sk can be decomposed as

sk = uk v u where uk = u′kt
α, u = t−αu′ (194)

for some invertible v ∈ H, reduced t-sequences uk, u, and α ∈ {1,−1}, such that πt(u) =
It(πt(uk)). We obtain a van Kampen diagram of the following form:
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cν(k) a b dν(k)

uk v u

It(u) v−1 It(uk)

sk

It(sk)

We have a, b ∈ B(α) = A(−α). Define vk = vb ∈ H, which is invertible in H. We obtain

sk ∼ ukvkIt(uk)d
−1
ν(k) and It(sk) ∼ cν(k)ukvkIt(uk). (195)

Thus cν(k)ukvkIt(uk) ∼ It(sk) ∼ dν(k)ukv
−1
k It(uk). Since Ht is cancellative by Lemma 6, we

get
dν(k)ukv

−1
k ∼ cν(k)ukvk. (196)

Since γw(Wk) = γw(W k) (see (191)) is a T-type, we must have γw(Wk) = (C, T, 1, C,H) for
either C = A or C = B; see the list of T-types in (24). We have (C, T, 1, C,H) ∈ γ(sk) =
γt(ukvkIt(uk)d

−1
ν(k)). We can decompose the type γw(Wk) as

γw(Wk) = (C, T, 1, B(α),H) (B(α),H, 0, B(α), T ) (B(α), T, 1, C,H)

(here α is from (194)) with (C, T, 1, B(α),H) ∈ γt(uk) and (B(α),H, 0, B(α), T ) ∈ γt(vk). For
the latter, vk 6∈ B(α) is important (since sk is a reduced t-sequence, we have v 6∈ B(α) and
hence vk = vb 6∈ B(α)).

Let θ′
k = (C, T, 1, B(α),H) ∈ γt(uk) (which is a T-type) and θk = (B(α),H, 0, B(α), T ) ∈

γt(vk) (which is an H-type). We get

γw(W k)
(191)
= γw(Wk) = {θ

′
kθkIT (θ

′
k)} with θk = IT (θk). (197)

Moreover, by (196), there exists ak ∈ Gi(θk) = Ge(θ′
k) = B(α) with

cν(k)uka
−1
k ∼ dν(k)uk and akvk = v−1

k in H. (198)

Note that the last equation implies

akvk = vkak in H. (199)

Omitting the elements a, b, u, v and inserting the new elements vk, ak in the preceding van
Kampen diagram, we obtain the following van Kampen diagram:

cν(k)
uk

vk
It(uk) d−1

ν(k)
dν(k)

uk v−1
k

ak

sk

It(sk)

65



Each of the 2q many letters Wi,W i (p + 1 ≤ i ≤ p+ q) occurs in
∏n+m
i=1 λi(wiw

′
i). Hence, we

get

q =
1

2
2q ≤

1

2
Card{W ∈ Ŵ |W or W occurs in

n+m∏

i=1

λi(wiw
′
i)}

≤ A(
n+m∏

i=1

λi(wiw
′
i))

(182)
<

1

2
Card(V0).

Thus, q+A(
∏n+m
i=1 λi(wiw

′
i)) < Card(V0). Hence, there are at least q symbols αp+1, . . . , αp+q ∈

V0 that do not occur as a first component of a symbol in Alph(
∏n+m
i=1 λi(wiw

′
i)) = Alph(S,λ).

Let us define for every p + 1 ≤ k ≤ p + q variables Uk, Vk, Uk, V k ∈ Wt ∩ Ŵ with first
component αk and such that

γw(Uk) = {θ
′
k}, γw(Vk) = {θk}, (200)

δw(θ
′
k, Uk) = δt(θ

′
k, uk), δw(θk, Vk) = δt(θk, vk), (201)

µw(θ
′
k, Uk) = µt(θ

′
k, uk), µw(θk, Vk) = µt(θk, vk). (202)

Note that (201) implies with (198) and (199):

cν(k)Uka
−1
k = dν(k)Uk and akVk = Vkak (203)

Let λ′ :W∗ ∗ A ∗B →W∗ ∗ A ∗B be the unique monoid homomorphism fulfilling:

λ′(e) = e for e ∈ A ∪B (204)

λ′(Wk) = UkVkUkd
−1
ν(k) for p+ 1 ≤ k ≤ p+ q (205)

λ′(W k) = dν(k)UkV kUk for p+ 1 ≤ k ≤ p+ q. (206)

λ′(W ) = W for all other W ∈ W (207)

Claim 2. λ′ induces a monoid homomorphism λ′ : W→W.

Let W ∈ W and (c, d) ∈ δw(W ). We have to prove that

λ′(cW ) = cλ′(W ) ≡ λ′(W )d = λ′(Wd). (208)

By Lemma 32 it suffices to show (c, d) ∈ δw(λ
′(W )), i.e.

δw(W ) = δw(λ
′(W )) (209)

Case 1. λ′(W ) =W : Then (209) trivially holds.
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Case 2. W =Wk for some p+ 1 ≤ k ≤ p+ q: We have

δw(Wk)
(Hom7)
= δt(γw(Wk), θt(Wk))

(193)
= δt(γw(Wk), sk)

(195)
= δt(γw(Wk), ukvkIt(uk)d

−1
ν(k))

(197)
= δt(θ

′
kθkIT (θ

′
k), ukvkIt(uk)d

−1
ν(k))

(201)
= δw(θ

′
kθkIT (θ

′
k), UkVkUkd

−1
ν(k))

(205)
= δw(γw(Wk), λ

′(Wk)),

i.e., (209) holds.

Case 3. W =W k for some p+1 ≤ k ≤ p+ q: One can check, using the formulas (205)–(207),
that λ′(Iw(W )) = Iw(λ

′(W )) for all W ∈ W. Thus Case 3 reduces to Case 2. Claim 2 is thus
established.

Claim 3. λ′ : W→W is an AB-homomorphism.

We will apply Lemma 23. Hence, we have to check properties (a)–(f) from Lemma 23. By
(204), λ′ preserves ιA and ιB , i.e., (a) is satisfied. Also (b) follows immediately from the
definition of λ′.

Condition (c) from Lemma 23: We have to show that λ′(Iw(W )) = Iw(λ
′(W )) for all W ∈ Ŵ .

This property can be checked directly on the equations (204)–(207) defining λ′.

Condition (d) from Lemma 23: The definition of λ′ together with (197) and (200) implies in
fact γw(W ) = γw(λ

′(W )) for all W ∈ W.

Condition (f) from Lemma 23: This was shown in (209).

Conditions (e) from Lemma 23: The same arguments as for (f) work. We have thus established
Claim 3.

For 1 ≤ i ≤ n+m let us define

λ′i = λi ◦ λ
′. (210)

As every λ′i is the composition of two AB-homomorphisms, λ′i is an AB-homomorphism from
Wt to Wt. Let θ

′
t :W

∗
t ∗ A ∗B → Ht be the unique monoid homomorphism satisfying:

θ′t(e) = e for all e ∈ A ∪B (211)

θ′t(Uk) = uk for all p+ 1 ≤ k ≤ p+ q (212)

θ′t(Uk) = It(uk) for all p+ 1 ≤ k ≤ p+ q (213)

θ′t(Vk) = vk for all p+ 1 ≤ k ≤ p+ q (214)

θ′t(V k) = v−1
k for all p+ 1 ≤ k ≤ p+ q (215)

θ′t(W ) = θt(W ) for all other W ∈ Wt (216)

Claim 4. θ′t induces a monoid homomorphism θ′t : Wt → Ht.
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Wt Wt
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λi

λ′
i

λ′

Ht
θt

θ′t

Fig. 12. Lemma 47, Case 1, Claim 6

It suffices to prove that cθ′t(W ) = θ′t(W )d in Ht for every W ∈ Wt and (c, d) ∈ δw(W ). For
this, it suffices to show that

δw(W ) = δt(γw(W ), θ′t(W )). (217)

If θ′t(W ) = θt(W ) then (217) follows from the fact that θt is an AB-homomorphism. In all
other cases, i.e., (212)–(215), we get (217) from (200) and (201).

Claim 5. θ′t : Wt → Ht is an AB-homomorphism.

We will apply Lemma 23. Hence, we have to check properties (a)-(f) from Lemma 23. By
(211), θ′t preserves ιA and ιB , i.e., (a) is satisfied. Condition (b) for the variables Uk, Vk, Uk,
and V k (which all belong to dom(Iw)) follows from the fact that uk, vk ∈ dom(It). Condition
(b) for other variables W ∈ Wt follows from (216) and the fact that θt : Wt → Ht is an
AB-homomorphism.

Condition (c) from Lemma 23: We have to show that θ′t(Iw(W )) = It(θ
′
t(W )) for all W ∈ Ŵt.

Let us first consider a variable W ∈ Wt with θ
′
t(W ) = θt(W ). Then, since θt : Wt → Ht is an

AB-homomorphism, we have

It(θ
′
t(W )) = It(θt(W )) = θt(Iw(W )) = θ′t(Iw(W )).

For a variable Uk we have

It(θ
′
t(Uk))

(212)
= It(uk)

(213)
= θ′t(Iw(Uk))

and similarly for a variable Uk. Finally, for a variable Vk we have

It(θ
′
t(Vk))

(214)
= It(vk) = v−1

k

(215)
= θ′t(Iw(Vk))

and similarly for a variable V k.

Conditions (d)–(f) from Lemma 23: For variables W ∈ Wt with θ′t(W ) = θt(W ) we get
these conditions directly from the fact that θt is an AB-homomorphism. For variables from
{Uk, Uk, Vk, V k | p+ 1 ≤ k ≤ p+ q} we get (d)–(f) from (200)–(202).

Claim 6. λ′i and θ
′
t fulfill conclusion (183) of the lemma.

We have to show θt(λi(W )) = θ′t(λ
′
i(W )) for all 1 ≤ i ≤ n+m and all W ∈ Alph(S). Recall

that λ′i = λi ◦ λ
′ by (210). Hence, it suffices to show that θt = λ′ ◦ θ′t over Alph(S,λ), i.e.,

that
θt(W ) = θ′t(λ

′(W )) (218)
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for every W ∈ Alph(S,λ). Note that Alph(S,λ) does not contain the symbols Uk, Uk, Vk, V k

for p+ 1 ≤ k ≤ p+ q.

Case 1. W ∈ Alph(S,λ) is such that λ′(W ) =W :

θ′t(λ
′(W )) = θ′t(W )

(216)
= θt(W ),

which establishes (218).

Case 2. W =Wk for some p+ 1 ≤ k ≤ p+ q: We have in Ht:

θ′t(λ
′(Wk))

(205)
= θ′t(UkVkUkd

−1
ν(k))

(212)–(214)
= ukvkIt(uk)d

−1
ν(k)

(195)
= sk

(193)
= θt(Wk).

Case 3. W =W k for some p+ 1 ≤ k ≤ p+ q: We have in Ht:

θ′t(λ
′(W k))

(206)
= θ′t(dν(k)UkV kUk)

(212)–(215)
= dν(k)ukIt(vk)It(uk)

(195)
= It(sk)

(193)
= θt(W k).

This concludes the proof of Claim 6.

We next define a mapping Φ : Ŵ∗ ∗A ∗B → Ŵ∗ ∗ A ∗B as follows:

Φ(e) = e for e ∈ A ∪B (219)

Φ(W k) = cν(k)Wkdν(k) for 1 ≤ k ≤ p (220)

Φ(Wk) = c−1
ν(k)W kd

−1
ν(k) for 1 ≤ k ≤ p (221)

Φ(V k) = akVk for p+ 1 ≤ k ≤ p+ q (222)

Φ(Vk) = a−1
k V k for p+ 1 ≤ k ≤ p+ q (223)

Φ(W ) =W for all other W ∈ Ŵ (224)

Claim 7. Φ induces an involutive AB-automorphism Φ : Ŵ→ Ŵ that belongs to HInv.

We have to check that Φ fulfills conditions (96)–(99) from Lemma 34 and also the H-type
condition (109).

Condition (96): For 1 ≤ k ≤ p we have to show that δw(W k) = δw(cν(k)Wkdν(k)).

δw(W k)
(Hom7)
= δt(γw(W k), θt(W k))

(192)
= δt(γw(W k), θt(cν(k)Wkdν(k)))

= δt(γw(cν(k)Wkdν(k)), θt(cν(k)Wkdν(k)))

(Hom7)
= δw(cν(k)Wkdν(k))
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For p+ 1 ≤ k ≤ q we have to show that δw(V k) = δw(akVk):

δw(V k)
(200)
= δw(θk, V k)

(AB12)
= δw(θk, Vk)

−1

(201)
= δt(θk, vk)

−1

(AB12)
= δt(θk, v

−1
k )

(198)
= δt(θk, akvk)

(201)
= δw(akVk)

Condition (97): For 1 ≤ k ≤ p we have to show that (d−1
ν(k)cν(k), cν(k)d

−1
ν(k)) ∈ δw(Wk). We have

θt(Wk)
(192)
= θt(d

−1
ν(k)W kc

−1
ν(k))

(192)
= θt(d

−1
ν(k)cν(k)Wkdν(k)c

−1
ν(k)),

i.e., d−1
ν(k)

cν(k)θt(Wk) = θt(Wk)cν(k)d
−1
ν(k)

. This implies that

(d−1
ν(k)cν(k), cν(k)d

−1
ν(k)) ∈ δt(γw(Wk), θt(Wk)) = δw(Wk).

For p + 1 ≤ k ≤ p + q, condition (97) is equivalent to (ak, ak) ∈ δw(Vk), which is true, by
(203).

Condition (98): This follows from (191), (197), and (200).

Condition (99): First assume that 1 ≤ k ≤ p. Since θt is an AB-homomorphism, we get:

µw(W k)
(Hom6)
= µt(γw(Wk), θt(W k))

(192)
= µt(γw(Wk), θt(cν(k)Wkdν(k)))

(Hom6)
= µw(cν(k)Wkdν(k))

For p+ 1 ≤ k ≤ p+ q we get:

µw(V k)
(202)
= µt(θk, v

−1
k ))

(198)
= µt(θk, akvk)

(202)
= µw(akVk)

Condition (109): Recall that γw(Wk) is an H-type for 1 ≤ k ≤ p, and that θk (see the assertion
before (197) ) is an H-type for p+ 1 ≤ k ≤ p+ q. Hence Φ meets also the requirement (109).
This concludes the proof of Claim 7.

Claim 8. θ′t and Φ fulfill conclusion (184) of the lemma, i.e. θ′t(W ) = θ′t(Φ(W )) for allW ∈ Wt.
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Let us fix W ∈ Wt.

Case 1. W =Wk where 1 ≤ k ≤ p. We have

θ′t(Φ(Wk))
(221)
= θ′t(c

−1
ν(k)W kd

−1
ν(k))

(216)
= θt(c

−1
ν(k)W kd

−1
ν(k))

(192)
= θt(Wk)

(216)
= θ′t(Wk).

Case 2. W = W k where 1 ≤ k ≤ p. This case reduces to Case 1, since θ′t and Φ are AB-
homomorphisms and therefore commute with the suitable involutions Iw and It.

Case 3. W = Vk where p+ 1 ≤ k ≤ p+ q. We have

θ′t(Φ(Vk))
(223)
= θ′t(a

−1
k V k)

(215)
= a−1

k v−1
k

(198)
= vk

(214)
= θ′t(Vk).

Case 4.W = V k where p+1 ≤ k ≤ p+q. This case reduces to Case 2 with the same argument
as for Case 2.

Case 5.W ∈ W andW does not fulfill any of the above cases. Then, (224) implies θ′t(Φ(W )) =
θ′t(W ). Claim 8 has been established in all cases.

Claim 9. λ′i and Φ fulfill conclusion (185) of the lemma i.e. λ′i(wi) ≃Φ λ
′
i(w

′
i) for all 1 ≤ i ≤

n+m.

Let 1 ≤ i ≤ n +m. Suppose first that (wi, w
′
i) is one of the pairs of the form (190) (recall

that we reduced to the case where ei = fi = 1). There exists some k ∈ [1, p + q] such that

λi(wi) =Wk and λi(w
′
i) = c−1

i W kd
−1
i . (225)

The equality

θt(c
−1
i W kd

−1
i )

(180)
= θt(Wk)

(180)
= θt(c

−1
ν(k)W kd

−1
ν(k))

shows that (cν(k)c
−1
i , d−1

ν(k)di) ∈ δt(γw(W k), θt(W k)). Since θt is an AB-homomorphism, this
implies that

(cν(k)c
−1
i , d−1

ν(k)di) ∈ δw(W k) (226)

and thus
cν(k)c

−1
i W k =W kd

−1
ν(k)di. (227)

Let us first suppose that k ∈ [1, p]. Then

λ′i(wi)
(210)
= λ′(λi(wi))

(207)
= Wk and λ′i(w

′
i)

(210)
= λ′(λi(w

′
i))

(207)
= c−1

i W kd
−1
i . (228)

Applying the automorphism Φ on Wk we obtain

Φ(Wk)
(221)
= c−1

ν(k)W kd
−1
ν(k). (229)

We get

λ′i(wi)
(228)
= Wk

(229)
≃Φ c−1

ν(k)W kd
−1
ν(k)

(227)
= c−1

i W kd
−1
i

(228)
= λ′i(w

′
i).

Let us now suppose that k ∈ [p+ 1, p + q]. Then

λ′i(wi)
(210)
= λ′(λi(wi))

(205)
= UkVkUkd

−1
ν(k) and (230)

λ′i(w
′
i)

(210)
= λ′(λi(w

′
i))

(206)
= c−1

i dν(k)UkV kUkd
−1
i . (231)
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Fig. 13. Lemma 47, Case 1, Claim 8 and 9

Using the definition of Φ, we get

Φ(UkVkUkd
−1
ν(k))

(223)
= Uka

−1
k V kUkd

−1
ν(k). (232)

The commutation (203) can be equivalently formulated as

Uka
−1
k = c−1

ν(k)dν(k)Uk. (233)

We get

λ′i(wi)
(230),(232)
≃Φ Uka

−1
k V kUkd

−1
ν(k)

(233)
= c−1

ν(k)(dν(k)UkV kUk)d
−1
ν(k). (234)

Moreover, (226) and the fact that λ′ is an AB-homomorphism implies

(cν(k)c
−1
i , d−1

ν(k)di) ∈ δw(W k)
(Hom7)
= δw(γ(W k), λ

′(W k))
(206)
= δw(γ(W k), dν(k)UkV kUk)

and hence

c−1
ν(k)

(dν(k)UkV kUk)d
−1
ν(k)

= c−1
i (dν(k)UkV kUk)d

−1
i . (235)

Finally, chaining (234), (235), and (231), we obtain λ′i(wi) ≃Φ λ
′
i(w

′
i).

We treat now the pairs (wi, w
′
i) of the form (189) by descending induction over i. So,

assume that λi(wi) ≡i λi(w
′
i) and λ′j(wj) ≃Φ λ′j(w

′
j) for all j ∈ [i + 1, n + m]. Hence,

λ′(λj(wj)) ≃Φ λ′(λj(w
′
j)) for all j ∈ [i + 1, n + m]. Recall that the congruence ≡i is gen-

erated by the set of pairs P = {(λj(wj), λj(w
′
j)) | j ∈ [i + 1, n +m]}, i.e., ≡i = ≡P . Hence,

λ′(P ) is included in the congruence ≃Φ on W. Therefore, λi(wi) ≡P λi(w
′
i) together with

Lemma 3 implies λ′i(wi) = λ′(λi(wi)) ≃Φ λ
′(λi(w

′
i)) = λ′i(w

′
i). We have thus established (185)

in all cases.

Claim 10. λ′i fulfills conclusion (186) of the lemma.

For all 1 ≤ i, j ≤ n we get

λ′i
(210)
= λi ◦ λ

′ (181)= λj ◦ λ
′ (210)= λ′j .

Case 2: There exists some i ∈ [1, n +m], such that neither condition (189) nor (190) holds.

Let i ∈ [1, n+m] be the minimal integer for which neither (189) nor (190) holds. Let (Pi, P
′
i )

be a distinguishing pair for (λi(wi), λi(w
′
i)). The generators of the congruence ≡i are, by
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definition, all pairs (λj(wj), λj(w
′
j)) for j ∈ [i+1, n+m]. Hence, by Claim 1 and Lemma 36,

≡i is also generated by the subset

Pi = {(λj(wj), λj(w
′
j)) | j ∈ [i+ 1, n +m], ‖λj(wj)‖ ≥ 1, ‖λj(w

′
j)‖ ≥ 1}.

Moreover, γw(λj(wj)) = γw(λj(wj)) for all pairs (λj(wj), λj(w
′
j)) ∈ Pi by Claim 1. By

Lemma 31, every pair from Pi belongs to the congruence ≡γ from (81). Hence ≡i ⊆ ≡γ ,
which implies

γw(Pi) = γw(P
′
i ). (236)

Moreover, by (180) every element of Pi belongs to the kernel of θt, hence

θt(Pi) = θt(P
′
i ). (237)

Lemma 30 and (236) imply

Pi ∈ A⇐⇒ P ′
i ∈ A and Pi ∈ B ⇐⇒ P ′

i ∈ B. (238)

Lemma 39 applied to Pi, Si, P
′
i , S

′
i ∈W asserts that γw(Si) = γw(S

′
i) and

θt(Si) = θt(S
′
i). (239)

As θt restricted to A and B is injective by (Hom2), the value ‖Si‖ = 0 or ‖S′
i‖ = 0 would

lead to Si = S′
i and hence to λi(wi) = PiSi ≡i P

′
iS

′
i = λi(w

′
i), i.e., to (189), which contradicts

the choice of i. Hence, we have

‖Si‖ ≥ 1, ‖S′
i‖ ≥ 1 and γw(Si) = γw(S

′
i). (240)

Recall the definition of ∆(Pi, Si, P
′
i , S

′
i, θt) from (179). Equations (238), (239), and (240) imply

∆(Pi, Si, P
′
i , S

′
i, θt) = 1− χAB(Pi) + 2χH(Si) + 4‖θt(Si)‖ (241)

Since ‖Si‖ ≥ 1 and ‖S′
i‖ ≥ 1, we can write Si and S

′
i as

Si = cWLi and S
′
i = c′W ′L′

i, (242)

where W,W ′ ∈ W and c, c′ ∈ Gi(W ) = Gi(W ′). Note that τ i(W ) = τ i(Si)
(240)
= τ i(S′

i) =
τ i(W ′) Hence, either γw(W ) and γw(W

′) are both T-types or γw(W ) and γw(W
′) are both

H-types.

Case 2.1: γw(W ) and γw(W
′) are both H-types.

Claim 11. γw(W ) = γw(W
′)

We know that τ i(W ) = τ i(W ′). Moreover, the boolean component of γw(W ) and γw(W
′) is

0. Hence, it remains to show that τe(W ) = τe(W ′). Assume that τe(W ) 6= τe(W ′). There are
several cases according to the possible H-types in (21) and (22), which can be all dealt in the
same way. Let us consider the case τe(W ) = (A,T ) and τe(W ′) = (B,T ). Since θt(cWLi) =
θt(c

′W ′L′
i) by (239) and (242) and θt(cW ), θt(c

′W ′) ∈ H we get πt(θt(Li)) = πt(θt(L
′
i)).

Moreover, by (240) there exists a vertex type θ such that γt(θt(Li)) contains a path type
of the form (A,T, ∗, θ) and γt(θt(L

′
i)) contains a path type of the form (B,T, ∗, θ). But this

contradicts πt(θt(Li)) = πt(θt(L
′
i)). This proves Claim 11.

Let γw(W ) = γw(W
′) = {θ} in the following.
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Claim 12. There exists a path type ρ ∈ γw(Li) ∩ γw(L
′
i) 6= ∅ such that θρ is defined.

There exist ρ ∈ γw(Li) and ρ′ ∈ γw(L
′
i) such that {θρ} = γw(Si) = γw(S

′
i) = {θρ

′}. Hence,
τ i(ρ) = τe(θ) = τ i(ρ′) and τe(ρ) = τe(ρ′). Moreover, the boolean component of ρ is 1 if and
only if the boolean component of γw(Si) = γw(S

′
i) is 1 if and only if the boolean component

of ρ′ is 1. Hence ρ = ρ′. This proves Claim 12.

Claim 12 implies

Li ∈ A⇐⇒ L′
i ∈ A and Li ∈ B ⇐⇒ L′

i ∈ B. (243)

If, e.g., Li ∈ A and ‖L′
i‖ ≥ 1 then γw(Li) ∩ γw(L

′
i) = ∅ (note that no product of H-types is

of the form (θ, 0, θ) for a vertex type θ). Morevoer γw(a) ∩ γw(b) = ∅ for all a ∈ A \ {1} and
b ∈ B \ {1}.

Since θt is an AB-homomorphism, we have θ ∈ γt(θt(cW )) ∩ γt(θt(c
′W ′)) and ρ ∈

γt(θt(Li)) ∩ γt(θt(L
′
i)). Lemma 27 applied to the identity θt(cW )θt(Li) = θt(Si) = θt(S

′
i) =

θt(c
′W ′)θt(L

′
i) yields d ∈ Ge(θ) = Gi(ρ) such that

θt(cWd) = θt(c
′W ′) and θt(Li) = θt(dL

′
i). (244)

Since θt(W ), θt(W
′) ∈ H, we have

‖θt(Li)‖ = ‖θt(dL
′
i)‖ = ‖θt(Si)‖. (245)

Claim 13. ∆(PicWd, d−1Li, P
′
i c

′W ′, L′
i, θt) < ∆(Pi, Si, P

′
i , S

′
i, θt)

We have

∆(PicWd, d−1Li, P
′
i c

′W ′, L′
i, θt)

(179)
= 1−

1

2

(
χAB(PicWd) + χAB(P

′
i c

′W ′)

)
+

χH(d
−1Li) + χH(L

′
i) + 2‖θt(d

−1Li)‖+ 2‖θt(L
′
i)‖

(245)
= 1 + χH(Li) + χH(L

′
i) + 4‖θt(Si)‖

∆(Pi, Si, P
′
i , S

′
i, θt)

(241)
= 1− χAB(Pi) + 2χH(Si) + 4‖θt(Si)‖

≥ 2χH(Si) + 4‖θt(Si)‖.

We claim that χH(Li) = χH(L
′
i) = χH(Si)−1, which implies the claim. We distinguish several

cases according to the H-type θ of W and W ′.

Case A. θ has the form (∗,H, 0, 1, 1): Then γw(Si) has the form {(∗,H, ∗, ∗, ∗)}. Moreover, a
path type of the form (1, 1, ∗, ∗, ∗) belongs to both γw(Li) and γw(L

′
i). But this already implies

Li = L′
i = 1. Hence, |γw(Li)| = |γw(L

′
i)| > 1. We get χH(Li) = χH(L

′
i) = 0. Moreover, γw(Si)

has the form {(∗,H, 0, 1, 1)}. This implies χH(Si) = 1.

Case B. θ has the form (∗,H, 0, ∗, T ): Again, γw(Si) has the form {(∗,H, ∗, ∗, ∗)}. Moreover,
γw(Li) and γw(L

′
i) contain a path type of the form (∗, T, ∗, ∗, ∗). We distinguish the following

three subcases:

Case B.1 γw(Si) has the form {(∗,H, 0, ∗, ∗)}: We get χH(Si) = 1. Moreover, γw(Li) and
γw(L

′
i) contain a path type of the form (∗, T, 0, ∗, ∗). Note that there is no proper product of

H-types and T-type of this form. Hence, |γw(Li)|, |γw(Li)| > 1 and χH(Li) = χH(L
′
i) = 0.
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Case B.2 γw(Si) has the form {(∗,H, 1, ∗, T )}: We get χH(Si) = 2. Moreover, γw(Li) and
γw(L

′
i) contain a path type of the form (∗, T, 1, ∗, T ). But this implies γw(Li) = γw(L

′
i) =

{(∗, T, 1, ∗, T )} and χH(Li) = χH(L
′
i) = 1.

Case B.3 γw(Si) has the form {(∗,H, 1, ∗,H)}: We get χH(Si) = 1. Moreover, γw(Li) and
γw(L

′
i) contain a path type of the form (∗, T, 1, ∗,H). But this implies γw(Li) = γw(L

′
i) =

{(∗, T, 1, ∗,H)} and χH(Li) = χH(L
′
i) = 0.

Case B.4 γw(Si) has the form {(∗,H, 1, 1, 1)}: We get χH(Si) = 2. Moreover, γw(Li) and
γw(L

′
i) contain a path type of the form (∗, T, 1, 1, 1). But this implies γw(Li) = γw(L

′
i) =

{(∗, T, 1, 1, 1)} and χH(Li) = χH(L
′
i) = 1. This concludes the proof of Claim 13.

Case 2.1.1. W ′ = W : As the AB-homomorphism θt is δ-preserving by (Hom7), θt(cWd) =
θt(c

′W ) implies cWd = c′W . Hence, we have PicWd ≡i P
′
i c

′W . Together with Claim 13, this
violates the hypothesis of minimality in the choice of decomposition (187). This case is thus
impossible.

Case 2.1.2. W ′ =W : Hence, γw(W ) = {θ} = γw(W ) and we get

θ ∈ {(A,H, 0, A, T ), (B,H, 0, B, T ), (1,H, 0, 1, 1)}. (246)

Hence, γw(Si) has the form {(∗,H, ∗, ∗, ∗)} and we get

χH(Si) ≥ 1 (247)

Moreover, by (238) and (243) we either have Pi, P
′
i 6∈ A ∪ B or Li, L

′
i 6∈ A ∪ B, because

otherwise the index i would satisfy (190), which we exclude in Case 2.
Let us define a new equation (wn+m+1, w

′
n+m+1) with

wn+m+1 = cWd and w′
n+m+1 = c′W (248)

and the AB-morphisms

λ′i = λi for all 1 ≤ i ≤ n+m and λ′n+m+1 = IdWt . (249)

Hence, γw(wn+m+1) = γw(w
′
n+m+1). Let

S ′ = {(wi, w
′
i) | 1 ≤ i ≤ n+m+ 1} and λ′ = (λi)1≤i≤n+m+1. (250)

The triple (S ′,λ′, θt) fulfills the hypothesis of Lemma 47 (condition (180) for the new equation
(wn+m+1, w

′
n+m+1) follows from (244)). Moreover, w.r.t. this triple, we have

PicWd ≡i P
′
i c

′W.

The definition of ∆i and Claim 13 imply

∆i(S
′,λ′, θt) < ∆i(S,λ, θt). (251)

Let us now bound the size of ∆(Pi, Si, P
′
i , S

′
i, θt):

∆(Pi, Si, P
′
i , S

′
i, θt)

(241)
= 1− χAB(Pi) + 2χH(Si) + 4‖θt(Si)‖

(247)

≥ 3− χAB(Pi) + 4‖θt(Si)‖
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In case Pi, P
′
i 6∈ A∪B, we have χAB(Pi) = 0 and hence∆(Pi, Si, P

′
i , S

′
i, θt) ≥ 3. In case Pi, P

′
i ∈

A∪B we have Li, L
′
i 6∈ A∪B (as argued above) and χAB(Pi) = 1. Hence, ∆(Pi, Si, P

′
i , S

′
i, θt) ≥

2 + 4‖θt(Si)‖. Since Li 6∈ A ∪ B and γw(Li) 6= ∅, we can write Li as Li = eUKi for some
U ∈ W and e ∈ Gi(U). Moreover, (246) and τ i(U) = τe(W ) imply that γw(U) has the
form {(∗, T, ∗, ∗, ∗)} or {(1, 1, ∗, ∗, ∗)}. The latter is not possible (it is neither an H-type
nor a T-type), hence γw(U) has the form {(∗, T, ∗, ∗, ∗)}, i.e., it is a T-type. This implies
‖θt(Si)‖ = ‖θt(Li)‖ ≥ ‖θt(U)‖ ≥ 1. This implies ∆(Pi, Si, P

′
i , S

′
i, θt) ≥ 2 + 4‖θt(Si)‖ ≥ 6. In

both cases, we have shown

∆i(S,λ, θt) = ∆(Pi, Si, P
′
i , S

′
i, θt) ≥ 3. (252)

Let us choose

Pn+m+1 = ε, P ′
n+m+1 = ε, Sn+m+1 = cWd, S′

n+m+1 = c′W.

Since ‖θt(W )‖ = ‖θt(W )‖ = 0 (we have θt(W ), θt(W ) ∈ H since γw(W ) is an H-type) we have

∆(Pn+m+1, Sn+m+1, P
′
n+m+1, S

′
n+m+1, θt) = 1− χAB(ε) + χH(W ) + χH(W ) +

2‖θt(W )‖+ 2‖θt(W )‖

= 1− 1 + 2 + 0

= 2. (253)

Finally, using (252) and (253), we obtain:

∆n+m+1(S
′,λ′, θt) ≤ ∆(Pn+m+1, Sn+m+1, P

′
n+m+1, S

′
n+m+1, θt)

= 2

< 3

≤ ∆i(S,λ, θt). (254)

The above inequalities (251) and (254) prove that

{{∆i(S
′,λ′, θt),∆n+m+1(S

′,λ′, θ′t)}} < {{∆i(S,λ, θt)}}

w.r.t. the partial ordering on finite multisets of naturals induced by the ordering on N. More-
over, for 1 ≤ j ≤ n+m with j 6= i we have ∆j(S

′,λ′, θt) ≤ ∆j(S,λ, θt). Hence

‖(S ′,λ′, θt)‖ < ‖(S,λ, θt)‖.

By induction hypothesis, the conclusion of the lemma holds for (S ′,λ′, θt). This proves that
it holds for (S,λ, θt) too.

Case 2.1.3.W ′ /∈ {W,W }: Let us consider the monoid homomorphism λ′ : W→W fulfilling:

λ′(e) = e for all e ∈ A ∪B (255)

λ′(W ) = c−1c′W ′d−1 (256)

λ′(W ) = dW ′c′−1c (257)

λ′(W ′′) =W ′′ for all W ′′ ∈ W \ {W,W } (258)

76



This definition is written for the case where W ∈ Ŵ. In the case where W /∈ Ŵ, line (257) of
this definition must be cancelled. Such a homomorphism exists because (244) ensures that

δw(W ) = δt(θ, θt(W ))
(244)
= δt(θ, θt(c

−1c′W ′d−1)) = δw(c
−1c′W ′d−1) = δw(λ

′(W ))

(and analogously δw(W ) = δw(λ
′(W )) in caseW ∈ Ŵ). The same argument shows that λ′ also

preserves µw. Moreover, λ′ preserves γw, since γw(W ) = γw(W
′) = γw(λ

′(W )) by Claim 11.
The submonoid dom(Iw) is preserved by λ′ because we have

W ∈ Ŵ ⇐⇒ cWd ∈ dom(Iw)

⇐⇒ θt(cWd) ∈ dom(It)

(244)
⇐⇒ θt(c

′W ′) ∈ dom(It)

⇐⇒ c′W ′ ∈ dom(Iw)

⇐⇒ W ′ ∈ Ŵ .

Finally, λ′ preserves the partial involution Iw because (in case W ∈ Ŵ)

λ′(W ) = dW ′c′−1c = Iw(c
−1c′W ′d−1) = Iw(λ

′(W )).

Hence, Lemma 23 implies that λ′ is an AB-homomorphism. Let us define λ′ = (λi◦λ
′)1≤i≤n+m.

Since Alph(S,λ′) = Alph(S,λ) \ {W,W }, the inequality A(S,λ′) < 1
2Card(V0) still holds.

Moreover, we have

θt(λ
′(W ))

(256)
= θt(c

−1c′W ′d−1)
(244)
= θt(W )

and hence (in case W ∈ Ŵ) also θt(λ
′(W )) = θt(W ). Since moreover θt(λ

′(W ′′)) = θt(W
′′)

for all W ′′ ∈ W \ {W,W}, we get θt = λ′ ◦ θt. This implies

θt(λ
′(λi(wi))) = θt(λi(wi))

(180)
= θt(λi(w

′
i)) = θt(λ

′(λi(w
′
i))).

It follows that the triple (S,λ′, θt) fulfills the hypothesis of Lemma 47. W.r.t. to this triple
we have λ′(Pi) ≡i λ

′(P ′
i ) (since Pi ≡i P

′
i w.r.t. (S,λ, θt)). Hence, we have

λ′(PicWd) ≡i λ
′(P ′

i c
′W ′). (259)

Also note that for all w ∈ W we have χAB(w) = χAB(λ
′(w)) and χH(w) = χH(λ

′(w)), since
w and λ′(w) have the same type by Claim 11, which uniquely determines the value under χH .
Furthermore, also ‖θt(w)‖ = ‖θt(λ

′(w))‖. This implies that

∆i(S,λ
′, θt)

(259)

≤ ∆(λ′(PicWd), λ′(d−1Li), λ
′(P ′

i c
′W ′), λ′(L′

i), θt)

= ∆(PicWd, d−1Li, P
′
i c

′W ′, L′
i, θt)

Claim 13
< ∆(Pi, Si, P

′
i , S

′
i, θt)

= ∆i(S,λ, θt).

Hence, we have ‖(S,λ′, θt)‖ < ‖(S,λ, θt)‖, i.e., the triple (S,λ′, θt) fulfills the hypothesis of
Lemma 47 and has smaller size. By induction hypothesis the conclusion of the lemma holds
for (S,λ′, θt). This proves that it holds for (S,λ, θt) too.
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Case 2.2: γw(W ) and γw(W
′) are T-types and W ′ ∈ {W,W}. This implies ‖θt(cW )‖ =

‖θt(c
′W ′)‖ ≥ 1. In view of this equality, and equations (239) and (242), point (1) of Lemma 28

applies. Hence, there exists d ∈ Ge(W ) such that

θt(cWd) = θt(c
′W ′) and θt(d

−1Li) = θt(L
′
i).

Next, let us show:

Claim 14. ∆(PicWd, d−1Li, P
′
i c

′W ′, L′
i, θt) < ∆(Pi, Si, P

′
i , S

′
i, θt).

First note that

‖θt(d
−1Li)‖ = ‖θt(Li)‖ = ‖θt(Si)‖ − ‖θt(W )‖ ≤ ‖θt(Si)‖ − 1 and (260)

‖θt(L
′
i)‖ = ‖θt(S

′
i)‖ − ‖θt(W

′)‖ ≤ ‖θt(S
′
i)‖ − 1

(239)
= ‖θt(Si)‖ − 1, (261)

because W and W ′ have a T-type and therefore ‖θt(W )‖, ‖θt(W
′)‖ ≥ 1. Next, we claim that

χH(d
−1Li) = χH(Li) ≤ χH(Si) + 1 and χH(L

′
i) ≤ χH(Si) + 1. (262)

The case that χH(Si) ≥ 1 is clear. Hence, assume that χH(Si) = 0, i.e., γw(Si) has the
form {(∗, T, 1, ∗,H)}. Since Si = cWLi, γw(Li) cannot have the form {(∗, ∗, ∗, ∗, T )} or
{(∗, ∗, ∗, 1, 1)}. Thus, χH(Li) ≤ 1, and (262) holds for Li. For L

′
i the same argument holds

(note that γw(Si) = γw(S
′
i) by (240)).

Since χAB(PicWd) = χAB(P
′
i c

′W ′) = 0, we get

∆(PicWd, d−1Li, P
′
i c

′W ′, L′
i, θt)

(179)
= 1−

1

2

(
χAB(PicWd) + χAB(P

′
i c

′W ′)

)
+

χH(d
−1Li) + χH(L

′
i) + 2‖θt(d

−1Li)‖+ 2‖θt(L
′
i)‖

(260)–(262)

≤ 1 + 2χH(Si) + 2 + 4‖θt(Si)‖ − 4

= 2χH(Si) + 4‖θt(Si)‖ − 1

(241)
< ∆(Pi, Si, P

′
i , S

′
i, θt).

This proves Claim 14.

Case 2.2.1. W ′ = W : Then, as in Case 2.1.1, θt(cWd) = θt(c
′W ) implies cWd = c′W and

hence PicWd ≡i P
′
i c

′W . With Claim 14, this contradicts the minimality of∆(Pi, Si, P
′
i , S

′
i, θt).

Case 2.2.2. W ′ = W : By (242) and (240) we have γw(cWLi) = γw(Si) = γw(S
′
i) =

γw(c
′WL′

i). Hence, τe(W ) = τ i(W ) = τ i(W ) = τe(W ) and we get γw(W ) = γw(W ). Since
this is a T-type, we have γw(W ) = (C, T, 1, C,H) = γw(W ) for either C = A or C = B. We
claim that

Li ∈ A⇐⇒ L′
i ∈ A and Li ∈ B ⇐⇒ L′

i ∈ B. (263)

Assume that, e.g., Li ∈ A ∪ B. We must have Li ∈ C, otherwise γw(Si) = γw(cWLi) = ∅.
Hence, d−1Li ∈ C and θt(L

′
i) = θt(d

−1Li) ∈ C ⊆ H. This implies that γt(θt(L
′
i)) only

contains path types, whose boolean component is 0. Since γw(L
′
i) ⊆ γt(θt(L

′
i)) the same

holds for γw(L
′
i). Moreover, (C, T, 1, C,H) = γw(Si) = γw(S

′
i) = γw(c

′WL′
i). Since γw(W ) =

(C, T, 1, C,H), (C,H, 0, C,H) must be a path type of L′
i. We obtain L′

i ∈ C, since no product
of H-types is of the form (C,H, 0, C,H).
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A new system S ′ and tuple λ′ of AB-homomorphisms can be defined as in (248)–(250)
in Case 2.1.2. Note that γw(wn+m+1) = γw(cWd) = γw(c

′W ) = γw(w
′
n+m+1) since γw(W ) =

γw(W ). The triple (S ′,λ′, θt) satisfies all hypothesis of Lemma 47. Moreover, w.r.t. the triple
(S ′,λ′, θt) we have

PicWd ≡i P
′
i c

′W.

The definition of ∆i and Claim 14 imply

∆i(S
′,λ′, θt) < ∆i(S,λ, θt). (264)

Let us define

Pn+m+1 = ε, P ′
n+m+1 = ε, Sn+m+1 = cWd, S′

n+m+1 = c′W.

Note that χH(W ) = χH(W ) = 0. Hence, we get

∆(Pn+m+1, Sn+m+1, P
′
n+m+1, S

′
n+m+1, θt) = 1− χAB(ε) + χH(W ) + χH(W ) +

2‖θt(W )‖+ 2‖θt(W )‖

= 4‖θt(W )‖. (265)

Next, let us estimate the size of

∆i(S,λ, θt) = ∆(Pi, Si, P
′
i , S

′
i, θt)

(241)
= 1− χAB(Pi) + 2χH(Si) + 4‖θt(Si)‖.

We claim that

1− χAB(Pi) + 2χH(Si) + 4‖θt(Si)‖ > 4‖θt(W )‖, (266)

which implies

∆i(S,λ, θt) > 4‖θt(W )‖
(265)
= ∆(Pn+m+1, Sn+m+1, P

′
n+m+1, S

′
n+m+1, θt)

≥ ∆n+m+1(S
′,λ′, θt). (267)

So, let us prove (266). We distinguish the cases Pi ∈ A ∪ B and Pi 6∈ A ∪ B. If Pi /∈ A ∪ B,
then χAB(Pi) = 0 and hence

1− χAB(Pi) + 2χH(Si) + 4‖θt(Si)‖ = 1 + 2χH(Si) + 4‖θt(Si)‖ > 4‖θt(Si)‖ ≥ 4‖θt(W )‖.

Now assume that Pi ∈ A ∪ B. From (238) we get P ′
i ∈ A ∪ B. If moreover Li ∈ A ∪ B, then

also L′
i ∈ A ∪ B by (263). But then the index i satisfies (190), which we exclude in Case 2.

Hence, we must have Li 6∈ A ∪B. We have

1− χAB(Pi) + 2χH(Si) + 4‖θt(Si)‖ = 2χH(Si) + 4‖θt(Si)‖.

If moreover ‖θt(Li)‖ ≥ 1 then ‖θt(Si)‖ = ‖θt(W )‖+‖θt(Li)‖ > ‖θt(W )‖ and hence 2χH(Si)+
4‖θt(Si)‖ > 4‖θt(W )‖. If ‖θt(Li)‖ = 0, then ‖θt(Si)‖ = ‖θt(W )‖ and all symbols fromW that
occur in Li have H-types. Since Li 6∈ A∪B, there is at least one such symbol. It follows that
γw(Si) is either of the form {(∗, T, 1, ∗, T )} or of the form {(∗, T, 1, 1, 1)}. In both cases we
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get χH(Si) = 1 and hence again 2χH(Si)+4‖θt(Si)‖ = 2+4‖θt(W )‖ > ‖θt(W )‖. This proves
(266) and hence (267). Together with (264), we get

‖(S ′,λ′, θt)‖ < ‖(S,λ, θt)‖.

By induction hypothesis, the conclusion of the lemma holds for (S ′,λ′, θt). This proves that
it holds for (S,λ, θt) too.

Case 2.3. W ′ /∈ {W,W } and γw(W ), γw(W
′) are T-types: By (239), θt(cWLi) = θt(c

′W ′L′
i).

Using that γw(W ) and γw(W
′) are T-types, we can apply Lemma 28 with P = θt(cW ),

P ′ = θt(cW
′), S = θt(Li), and S′ = θt(L

′
i). We distinguish 3 subcases according to which

point of Lemma 28 occurs.

Case 2.3.1. ‖θt(cW )‖ = ‖θt(c
′W ′)‖ (and hence ‖θt(W )‖ = ‖θt(W

′)‖): This corresponds to
point (1) of Lemma 28: There exists some d ∈ Ge(W ) such that

θt(cWd) = θt(c
′W ′) and θt(Li) = θt(dL

′
i). (268)

Claim 15. ∆(PicWd, d−1Li, P
′
i c

′W ′, L′
i, θt) < ∆(Pi, Si, P

′
i , S

′
i, θt).

The same arguments as for Claim 14 in Case 2.2 apply (the crucial hypothesis that ‖θt(W )‖ =
‖θt(W

′)‖ ≥ 1 is still valid).
Moreover, γw(W ) = γw(W

′). We can end this case as for Case 2.1.3: Using (268) and
γw(W ) = γw(W

′), we can define an AB-homomorphism λ′ as in (255)–(258). Then, we define
λ′ = (λi ◦λ

′)1≤i≤n+m. We get again (259) for the triple (S,λ′, θt). The definition of λ′ implies
that for all w ∈W: χAB(w) = χAB(λ

′(w)), χH(w) = χH(λ
′(w)) (since w and λ′(w) have the

same type), and ‖θt(w)‖ = ‖θt(λ
′(w))‖ (since ‖θt(W )‖ = ‖θt(W

′)‖). This allows to derive
∆i(S,λ

′, θt) < ∆i(S,λ, θt) in the same way as in Case 2.1.3 (using Claim 15 instead of
Claim 13). We can conclude as in Case 2.1.3.

Case 2.3.2. ‖θt(cW )‖ < ‖θt(c
′W ′)‖: This corresponds to point (2) of Lemma 28: Let

γw(W ) = {θ}, γw(W
′) = {θ′}, ρ ∈ γw(Li) and ρ′ ∈ γw(L

′
i) such that θρ = θ′ρ′. By point (2)

of Lemma 28, there exist d ∈ Ge(W ) and P ′
1, P

′
2, P

′
3 ∈ Ht such that P ′

1 has the T-type θ, P ′
3

has a T-type θ′
3, P

′
2 has an H-type θ′

2, and

θt(cW ) = P ′
1d, θt(c

′W ′) = P ′
1P

′
2P

′
3, θt(dLi) = P ′

2P
′
3θt(L

′
i), θ

′ = θθ′
2θ

′
3, ρ = θ′

2θ
′
3ρ

′. (269)

Note that ‖Li‖ ≥ 1, because otherwise we have θt(Li) ∈ H, which contradicts the fact that
P ′
3 has a T-type. Hence, γw(dLi) = {ρ} = {θ′

2θ
′
3ρ

′}. Let us apply Lemma 40 to the AB-
homomorphism θt, the equality θt(dLi) = P ′

2(P
′
3θt(L

′
i)), the H-type θ

′
2 ∈ γt(P

′
2), and the type

θ′
3ρ

′ ∈ γt(P
′
3θt(L

′
i)) (note that γw(dLi) = {θ′

2θ
′
3ρ

′} as required in Lemma 40). We obtain
P̂2, S ∈Wt with

dLi = P̂2S, θt(P̂2) = P ′
2, γw(P̂2) = {θ

′
2}, θt(S) = P ′

3θt(L
′
i), θ′

3ρ
′ ∈ γw(S). (270)

see Figure 14.
Let us first assume that W ′ ∈ Ŵ. Hence, also c′W ′ ∈ Ŵ. Axiom (Hom3) on AB-

homomorphisms implies that P ′
1P

′
2P

′
3 ∈ dom(It). Axiom (AB5) implies that P ′

1, P
′
2, P

′
3 ∈

dom(It) and axiom (Hom3) implies that

W, P̂2 ∈ Ŵ. (271)
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dLi

θt

Fig. 14. Case 2.3.2

We saw above that γt(P
′
3) contains the T-type θ′

3. Moreover, by hypothesis, A(S,λ) <
1
2Card(V0). Hence, we can choose a letter W3 ∈ Ŵt such that

W3 /∈ Alph(S,λ), γw(W3) = θ′
3 ∈ γt(P

′
3),

µw(W3) = µt(θ
′
3, P

′
3), δw(W3) = δt(θ

′
3, P

′
3). (272)

Since W3 /∈ Alph(S,λ) and dLi = P̂2S we have

W3 6∈ Alph(P̂2) (273)

We define a monoid homomorphism λ′ : W→W by:

λ′(e) = e for e ∈ A ∪B

λ′(W ′) = c′−1cWd−1P̂2W3 (274)

λ′(W ′) = Iw(c
′−1cWd−1P̂2W3) (275)

λ′(W ′′) =W ′′ for W ′′ ∈ W \ {W ′,W ′} (276)

Note that

δw(W
′)

(Hom7)
= δt(θ

′, θt(W
′))

(269)
= δt(θ

′, c′−1P ′
1P

′
2P

′
3)

(269),(270)
= δt(θ(θ

′
2θ

′
3), θt(c

′−1cWd−1P̂2)P
′
3)

(272)
= δw(c

′−1cWd−1P̂2W3)

(274)
= δw(λ

′(W ′))

and similarly δw(W ′) = δw(λ
′(W ′)). Hence, by Lemma ??, λ′ is indeed a monoid homo-

morphism on W. Next, since δt(θ
′
3, P

′
3) = δw(W3), we can define a monoid homomorphism

θ′t : Wt → Ht by

θ′t(e) = e for c ∈ A ∪B,

θ′t(W3) = P ′
3, (277)

θ′t(W 3) = It(P
′
3), (278)

θ′t(W
′′) = θt(W

′′) for W ′′ ∈ Wt \ {W3,W 3}. (279)
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As in the above cases we can check that λ′ and θ′t are AB-homomorphisms. Moreover, we
claim that

∀W ′′ ∈ Alph(S,λ) : θ′t(λ
′(W ′′)) = θt(W

′′). (280)

Since W3,W 3 /∈ Alph(S,λ), we have

θ′t(λ
′(W ′′))

(276)
= θ′t(W

′′)
(279)
= θt(W

′′)

for every W ′′ ∈ Alph(S,λ) \ {W ′,W ′}. Moreover

θ′t(λ
′(W ′))

(274)
= θ′t(c

′−1cWd−1P̂2W3)

(277),(279)
= c′−1θt(cW )d−1θ′t(P̂2)P

′
3

(273)
= c′−1θt(cW )d−1θt(P̂2)P

′
3

(270)
= c′−1θt(cW )d−1P ′

2P
′
3

(269)
= c′−1P ′

1dd
−1P ′

2P
′
3

(269)
= θt(W

′).

Finally, since λ′ preserves Iw and θ′t, θt preserve It, we also get θ′t(λ
′(W ′)) = θt(W ′). We get

θ′t(λ
′(λi(wi)))

(280)
= θt(λi(wi))

(180)
= θt(λi(w

′
i))

(280)
= θ′t(λ

′(λi(w
′
i))) (281)

for all 1 ≤ i ≤ n+m. Let us define

λ′i = λi ◦ λ
′ for all 1 ≤ i ≤ n+m.

Recall that P̂2 has the H-type θ′
2. Since γw(W

′) is a T-type, this shows that

W ′,W ′ /∈ Alph(P̂2). (282)

Hence Alph(S,λ′) = (Alph(S,λ) ∪ {W3,W 3}) \ {W
′,W ′}. Thus, we have

A(S,λ′) <
1

2
Card(V0). (283)

Equality (281) and inequality (283) ensure that the new triple (S,λ′, θ′t) fulfills the hypothesis
of Lemma 47. Let us evaluate now the size of this new triple. For the i-th equation (wi, w

′
i)

we have:

(λ′i(wi), λ
′
i(w

′
i)) = (λ′(PicWLi), λ

′(P ′
i c

′W ′L′
i))

(270), (274)
= (λ′(Pi)cWλ′(d−1P̂2S), λ

′(P ′
i )c

′(c′−1cWd−1P̂2W3)λ
′(L′

i))

(282)
= (λ′(Pi)cWd−1P̂2λ

′(S), λ′(P ′
i )cWd−1P̂2W3λ

′(L′
i))

Let us set

Qi = λ′(Pi)cWd−1P̂2, Ti = λ′(S), Q′
i = λ′(P ′

i )cWd−1P̂2, T ′
i =W3λ

′(L′
i).
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We next want to bound the size of

∆(Qi, Ti, Q
′
i, T

′
i , θ

′
t) = 1−

1

2
(χAB(Qi) + χAB(Q

′
i)) +χH(Ti) + χH(T

′
i ) + 2‖θ′t(Ti)‖+2‖θ′t(T

′
i )‖.

First note that χAB(Qi) = χAB(Q
′
i) = 0 since Qi and Q′

i contain the symbol W ∈ W.
Moreover,

θ′t(Ti) = θ′t(λ
′(S))

(280)
= θt(S)

(270)
= P ′

3θt(L
′
i)

(280)
= P ′

3θ
′
t(λ

′(L′
i))

(277)
= θ′t(W3λ

′(L′
i)) = θ′t(T

′
i ).
(284)

Since T ′
i =W3λ

′(L′
i) andW3 has a T-type, it follows that γw(T

′
i ) is of the form {(∗, T, 1, ∗, ∗)}.

Hence, χH(T
′
i ) ≤ 1. For Ti = λ′(S) we either have |γw(Ti)| > 1 and hence χH(Ti) = 0 or

γw(Ti) = γw(S) = {θ′
3ρ

′}. Since θ′
3 is a T-type, it follows again χH(Ti) ≤ 1. We therefore

obtain:

∆(Qi, Ti, Q
′
i, T

′
i , θ

′
t) = 1−

1

2
(χAB(Qi) + χAB(Q

′
i)) + χH(Ti) + χH(T

′
i ) + 2‖θ′t(Ti)‖+ 2‖θ′t(T

′
i )‖

(284)

≤ 3 + 4‖θ′t(T
′
i )‖

(277),(280)
= 3 + 4‖P ′

3‖+ 4‖θt(L
′
i)‖

‖P ′
1
‖>0
< 4(‖P ′

1‖+ ‖P
′
2‖+ ‖P

′
3‖+ ‖θt(L

′
i)‖)

(269)
= 4‖θt(c

′W ′L′
i)‖

(242)
= 4‖θt(S

′
i)‖

(239)
= 2‖θt(Si)‖+ 2‖θt(S

′
i)‖

≤ ∆(Pi, Si, P
′
i , S

′
i, θt).

By Lemma 3, the hypothesis that Pi and P
′
i are related by the monoid congruence generated

by the set of pairs {(λj(wj), λj(w
′
j)) | i + 1 ≤ j ≤ n + m} implies that λ′(Pi) and λ′(P ′

i )
(and hence Qi and Q′

i) are related by the monoid congruence generated by the set of pairs
{(λ′(λj(wj)), λ

′(λj(w
′
j))) | i+ 1 ≤ j ≤ n+m}. It follows that

∆i(S,λ
′, θ′t) ≤ ∆(Qi, Ti, Q

′
i, T

′
i , θ

′
t) < ∆(Pi, Si, P

′
i , S

′
i, θt) = ∆i(S,λ, θt).

Moreover, (280) implies that ∆j(S,λ
′, θ′t) ≤ ∆j(S,λ, θt) for all other j. Thus, we have

‖(S,λ′, θ′t)‖ < ‖(S,λ, θt)‖. By induction hypothesis, conclusions (183)–(186) are true for

(S,λ′), which also implies that they hold for (S,λ). This concludes the case that W ′ ∈ Ŵ .

In case W ′ 6∈ Ŵ we just cancel the last line of (275) and can conclude as before.

Case 2.3.3. ‖θt(cW )‖ > ‖θt(c
′W ′)‖: Symmetric to Case 2.3.2.

This concludes the proof of Lemma 47. ⊓⊔

Let us now prove Lemma 46.

Proof of Lemma 46. Let σt : Wt → Ht fulfill the assumptions of Lemma 46. By assumption
(1), σt is an AB-homomorphism solving the system of t-equations S = {(wi, w

′
i) | 1 ≤ i ≤ n}.

Let us define m = 0, λi = IdWt for 1 ≤ i ≤ n, and θt = σt. By assumption (2) of Lemma 46
it also fullfills

A(
n∏

i=1

wiw
′
i) <

1

2
Card(V0).
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Fig. 15. Proof of Lemma 46

Hence, the system S, the integers m,n, and the maps (λi)1≤i≤n+m, θt are fulfiling the hy-
pothesis of Lemma 47.

Let us consider the maps Φ, λ′i, and θ′t given by the conclusion of Lemma 47 and the
natural projection πΦ : Wt →Wt/Φ, which is an AB-homomorphism. Choose

σW = λ′1 ◦ πΦ : Wt →Wt/Φ (285)

and let

ψt : Wt/Φ→ Ht

be the AB-homomorphism defined by

∀W ∈ Wt : ψt([W ]≃Φ
) = θ′t(W ).

By point (184) of Lemma 47, the congruence ≃Φ is contained in the kernel of θ′t. This implies
the existence and unicity of the monoid homomorphism ψt. We have

θ′t = πΦ ◦ ψt. (286)

With Lemma 24, it follows that ψt is indeed an AB-homomorphism.

Finally, we show that the mappings σW and ψt fulfill the properties asserted in Lemma 46.
For all W ∈ Alph(S) we have

σt(W ) = θt(W ) = θt(λ1(W ))
(183)
= θ′t(λ

′
1(W ))

(286)
= ψt(πΦ(λ

′
1(W )))

(285)
= ψt(σW(W )).

Moreover, for all 1 ≤ i ≤ n we have

σW(wi)
(285)
= πΦ(λ

′
i(wi))

(185)
= πΦ(λ

′
i(w

′
i))

(285)
= σW(w′

i).

Figure 15 shows all morphisms involved in the proof. ⊓⊔

From W-solutions to t-solutions. Conversely to Lemma 46, every W-solution of a given
system S of the form (131) provides a t-solution of the same system. Let us state this formally.
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Lemma 48 (W-solutions provide t-solutions). Let St = {(wi, w
′
i) | 1 ≤ i ≤ n} be a

system of t-equations of the form (131) and let SH = {(vi, v
′
i) | 1 ≤ i ≤ m} ⊆ WH ×WH

be a system of equations over the monoid H. Let us suppose that there exist Φ ∈ HInv, an
AB-homomorphism σW : Wt → Wt/Φ, and an AB-homomorphism ψH,t : WH/Φ → Ht such
that

σW(wi) = σW(w′
i) for all 1 ≤ i ≤ n, (287)

ψH,t(σW(vi)) = ψH,t(σW(v′i)) for all 1 ≤ i ≤ m. (288)

Then, there is an AB-homomorphism ψt : Wt/Φ→ Ht, which extends ψH,t, such that σW ◦ψt
solves the systems St and SH.

Proof. Let Φ, σW, and ψH,t fulfill the hypothesis of the lemma. Since Φ ∈ HInv, there exists

a partition Ŵ = Ŵ0 ⊎ {W1, . . . ,Wp} ⊎ {W 1, . . . ,W p} (see (92)), where Ŵ0 is closed under
the involution Iw. Moreover, there exists a tuple (a1, b1, . . . , ap, bp) with ak, bk ∈ Gi(Wk) =
Ge(Wk) (1 ≤ k ≤ p) such that (94) and (95) hold. We first define a monoid homomorphism
ψt :W

∗
t ∗A ∗B → Ht in the following way:

– ψt(c) = c for c ∈ A ∪B
– ψt(W ) = ψH,t([W ]≃Φ) for W ∈ WH

– Let W ∈ Wt \ WH. By (91), we can choose sW ∈ Ht which realizes W in the sense that

sW ∈ dom(It)⇐⇒W ∈ dom(Iw), γw(W ) ⊆ γt(sW ),

∀θ ∈ γw(W ) : µw(θ,W ) = µt(θ, sW ), δw(θ,W ) = δt(θ, sW ).

We can make this choice such that sW = It(sW ) for all W ∈ Ŵ \WH. We set ψt(W ) = sW .

It follows that for all W ∈ Wt, δw(W ) = δt(γw(W ), ψt(W )) (for W ∈ WH this follows from
the fact that πΦ ◦ ψH,t is an AB-homomorphism). Thus, for every (c, d) ∈ δw(W ) we have
ψt(cW ) = ψt(Wd). Therefore, ψt induces a monoid homomorphism ψt : Wt → Ht. This
monoid homomorphism clearly fulfills conditions (a)–(f) from Lemma 23. Thus ψt : Wt → Ht

is an AB-homomorphism. By the hypothesis on ψH,t, for all w,w′ ∈ WH with w ≃Φ w
′ we

have ψt(w) = ψH,t([w]≃Φ
) = ψH,t([w

′]≃Φ
) = ψt(w

′). Let us note that all the Wk and W k

belong to WH:

– every symbol Wk,W k has an H-type
– the existence of ΨH,t shows that Wk,W k belong to Wt.

Since the congruence ≃Φ is generated by its restriction to the set WH, we have

∀w,w′ ∈Wt : w ≃Φ w
′ ⇒ ψt(w) = ψt(w

′).

It follows that ψt induces a monoid homomorphism Wt/Φ → Ht, which by Lemma 24 is in
fact an AB-homomorphism. Moreover, ψt extends ψH,t. Since σW solves St, σW ◦ ψt solves St
too. Since σW ◦ ψH,t solves SH, σW ◦ ψt solves SH too. ⊓⊔

7 The groups U and E

We define in this section a group U, in which the partial monoid consisting of the elements
of W with a non-empty type, is embedded. Well-typed equations over W thus translate into
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equations with rational constraints over U. But W-equations involve, beside well-typed equa-
tions, an H-involutive automorphism Φ, which induces an involutive automorphism ΦU of U.
We define a quotient E of U by making equal every element u ∈ U with its image ΦU(u). The
notion of a solution Wt →Wt/ ≃Φ of a W-equation can thus be translated into the notion of
a solution W∗ ∗A ∗B → E of an equation with rational constraints in E.

7.1 The group U

Let us adjoin for every non-invertible symbol W ∈ W \ Ŵ a formal inverse W . The extended

alphabetW ′ =W∪{W |W ∈ W\Ŵ} is now endowed with a total involution, which extends

the partial involution Iw by the rules Iw(W ) = W and Iw(W ) = W for W ∈ W \ Ŵ. The
maps γw, µw, and δw are extended to W ′ in such a way that the axioms (AB10), (AB11),
and (AB12) for AB-algebras are fulfilled by W ′∗ ∗A ∗B endowed with this involution Iw. We
denote by ≡′ the monoid-congruence over W ′∗ ∗ A ∗B generated by the set of pairs

{(cW,Wd) |W ∈ W ′, (c, d) ∈ δw(W )} (289)

and by W′ the AB-algebra obtained from W ′∗ ∗ A ∗ B by quotienting it by the equivalence
≡′. We define the group U by the following monoid-presentation:

U = 〈A ∗B,W ′; Iw(W )cW = d (W ∈ W ′, (c, d) ∈ δw(W ))〉. (290)

Note that the above relations include Iw(W )W = ε which guaranty that the monoid U is a
group. When working in the group U, we will also write W−1 instead of Iw(W ).

The group U is an HNN-extension of the free product A∗B: the elements fromW ′ are the
stable letters and the mappings δw(W

′) (W ∈ W ′) are the partial isomorphisms. We identify
ιA (resp. ιB) with the natural embedding of A (resp. B) into A ∗ B. We denote by ≡U the
monoid congruence over W ′∗ ∗ A ∗ B such that u ≡U v if and only if u and v represent the
same element of the group U. We denote by

πU :W ′∗ ∗ A ∗B → U (291)

the canonical monoid homomorphism with πU(z) = [z]≡U
. Clearly, all the pairs in (89) also

belong to ≡U, hence ≡ ⊆ ≡U. Thus, there exists a unique monoid homomorphism πU : W→ U

such that

πU↾W∗∗A∗B = π≡ ◦ πU.

An element z ∈ W ′∗ ∗ A ∗ B is said to be a U-reduced sequence if its corresponding (A,B)-
reduced string does not contain any factor of the form Iw(W )cW with W ∈ W ′ and c ∈
dom(δw(W )). We denote by RedU(A ∗ B,W

′) the subset of W ′∗ ∗ A ∗ B consisting of all
U-reduced sequences.

Lemma 49. Let s, s′ be some U-reduced sequences in W ′∗ ∗A ∗B. Then s ≡U s
′ if and only

if s ≡′ s′.

This lemma is an analogue of Lemma 5 for HNN-extensions with a set W ′ of stable letters
(instead of just a single stable letter t). This analogue can be obtained from Lemma 5 by
induction over the number of stable letters.

Lemma 50. Let s ∈ W ′∗ ∗ A ∗B with γw(s) 6= ∅. Then s is U-reduced.
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Proof. It suffices to prove that γw(Iw(W )cW ) = ∅ for all W ∈ W ′ and c ∈ dom(δw(W )): If
γw(W ) = {(θ, b, ρ)} for θ, ρ ∈ T6, b ∈ {0, 1}, then we obtain

γw(Iw(W )cW ) = {(IR(ρ), b, IR(θ))}{(θ, b, ρ)} = ∅,

since IR(θ) 6= θ (the mapping IR defined in (15)–(17) has no fixpoints). ⊓⊔

7.2 The group E

Let us recall that an H-involutive automorphism Φ ∈ HInv is defined through p letters Wk

(1 ≤ k ≤ p), their inverses W k, and a tuple (a1, b1, . . . , ap, bp), as specified in Definition 8
from Section 3.9. Let us fix such an involution and assume that (96)–(99) hold. We extend Φ
to an involutive AB-automorphism of W′ by setting Φ(W ) =W for W ∈ W ′ \ W. We define
the group E by the group-presentation

E = 〈U;Wk = a−1
k W−1

k b−1
k (1 ≤ k ≤ p)〉. (292)

where we know by (97) that

W−1
k a−1

k bkWk ≡U bka
−1
k for 1 ≤ k ≤ p (293)

and by (96) that

(WkbkWkak)
−1x(WkbkWkak) ≡U x for 1 ≤ k ≤ p and x ∈ dom(δw(Wk)). (294)

We denote by ≡E the monoid-congruence over W ′∗ ∗ A ∗B such that u ≡E v if and only if u
and v represent the same element of the group E. We denote by

πE :W ′∗ ∗ A ∗B → E

the canonical monoid homomorphism with πE(z) = [z]≡E
.

Definition 9. For a given finite group A, we denote by PHNN(A) the set of all presentations
consisting of a set of relations of the form (290) and (292), where the letters Wk,W k (1 ≤
k ≤ p) and the tuple (a1, b1, . . . , ap, bp) are fulfilling conditions (93) and (96)–(99).

Note that, in the definition of the algebra W∗ ∗ A ∗ B, as well as for the group U, A,B
are trivially intersecting copies of the initial (isomorphic) subgroups A,B ≤ H (i.e. these
copies have an intersection reduced to {1}). Thus, the resulting presentations depend, up to
isomorphism, on A only; this explains the notation PHNN(A) in Definition 9.
Note also that, within the AB-algebra Ht, the subgroups ιA(A), ιB(B) ⊆ Ht can have a
non-trivial intersection (isomorphic with the intersection of the initial concrete subgroups
A,B ⊆ H).
Note that the results demonstrated in the rest of this section hold for any group E, provided
it has a presentation in the set PHNN(A) for some finite group A.

Lemma 51. The monoid homorphism Φ : W′ →W′ (from Lemma 34) induces an involutive
group automorphism ΦU of U.
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Proof. By point 2 from Lemma 34, adapted to the larger alphabet W ′, we know that the
monoid homomorphism Φ : W′ → W′ is an involutive AB-automorphism. Let W ∈ W ′. By
(Hom7), we have

δw(Φ(W )) = δw(W ). (295)

Let e ∈ dom(δw(W )) = dom(δw(Φ(W ))). Since Φ commutes with Iw and Φ(c) = c for all
c ∈ A ∪B, we get

Φ(Iw(W )eW ) ≡′ Iw(Φ(W ))eΦ(W ) ≡U δw(Φ(W ))(e)
(295)
= δw(W )(e) = Φ(δw(W )(e)).

Hence, Φ is compatible with the defining relations of U. It follows that, for all m,m′ ∈ W′,
m ≡U m′ implies Φ(m) ≡U Φ(m′). Thus Φ : W′ → W′ induces a group homomorphism
ΦU : U→ U and since ΦU ◦ ΦU = IdU, ΦU is an involutive group automorphism of U. ⊓⊔

Note that the presentation (292) can be rewritten as

E = 〈U;w = ΦU(w)(w ∈ U)〉. (296)

Let us define a finite semi-Thue system7 SE over the alphabet

GE =W ′ ∪ (A \ {1}) ∪ (B \ {1}),

which will provide a confluent and Noetherian monoid presentation for the group E. Let us
choose for every W ∈ W ′ a transversal RW of the left-congruence modulo the subgroup
dom(δw(W )) over the group Gi(W ), i.e.,

∀x ∈ Gi(W )∃!r ∈ RW : x ∈ r · dom(δw(W ))

(here ∃!r means that there exists a unique r). For every W ∈ W ′, we choose 1 ∈ RW and
for every 1 ≤ k ≤ p, we choose bk ∈ RWk

. These two assumptions can be made compatible,
possibly after a preliminary change of the defining tuple (a1, b1, . . . , ak, bk, . . . , ap, bp) into
another tuple (a′1, b

′
1, . . . , a

′
k, b

′
k, . . . , a

′
p, b

′
p) as follows:

– If bk /∈ dom(δw(Wk)), then we can choose 1 ∈ RW .
– If bk ∈ dom(δw(Wk)), then we can change the tuple (a1, b1, . . . , ak, bk, . . . , ap, bp) by

Lemma 35 as follows (without changing Φ):

(a1, b1, . . . , ak, bk, . . . , ap, bp)→

(a1, b1, . . . , bk, ak, . . . , ap, bp)→

(a1, b1, . . . , 1, ϕk(bk)ak, . . . , ap, bp)→

(a1, b1, . . . , ϕk(bk)ak, 1, . . . , ap, bp)

Let (a′1, b
′
1, . . . , a

′
k, b

′
k, . . . , a

′
p, b

′
p) be the last tuple, and take it as the defining tuple for Φ.

We have 1 = b′k, hence we can satisfy both requirements 1 ∈ RWk
and b′k ∈ RWk

.

For every x, y ∈ A we denote by xy the element of (A \ {1}) ∪ {ε} that represents the result
of the product xy performed in the group A. Note that in the rules below, xy denotes a word
of length 2 over the alphabet A \ {1} while xy denotes either an element of A \ {1} or the
empty word. The same notation is used for B as well.

7 Background on semi-Thue systems can be found in [BO93].
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For every W ∈ W ′, we also denote by ϕW the partial isomorphism δw(W ). In the case
W =Wk (1 ≤ k ≤ p) we write ϕk for ϕWk

. The semi-Thue system SE consists of the following
set of rules:

c1c2 → c1c2 for c1, c2 ∈ A \ {1} or c1, c2 ∈ B \ {1} (297)

rxW → rWϕW (x) for W ∈ W ′, r ∈ RW , x ∈ dom(ϕW ) \ {1} (298)

WxW → ϕW (x) for W ∈ W ′ \ {Wk,W k | 1 ≤ k ≤ p}, x ∈ dom(ϕW ) (299)

W k → akWkbk for 1 ≤ k ≤ p (300)

WkbkWk → a−1
k for 1 ≤ k ≤ p. (301)

Note that (299) includes the rule WW → ε.

Lemma 52. The following holds:

(1) The monoid G∗E/
∗
←→SE

is isomorphic to E.
(2) The semi-Thue system SE is confluent and Noetherian.

Proof. For point (1) we show that
∗
←→SE

= ≡E. Since for every rule u → v of SE we have

u ≡E v, we certainly have
∗
←→SE

⊆ ≡E. For the other inclusion, i.e., ≡E ⊆
∗
←→SE

, let us first

show ≡U ⊆
∗
←→SE

.
The rules defining the multiplication tables for A and B are also rules of SE, see (297).

These rules yield a presentation of the free product A ∗B. Let us now consider an identity of
the presentation of U of the form

WcW ≡U ϕW (c) for c ∈ dom(ϕW ).

If W 6∈ {Wk,W k | 1 ≤ k ≤ p}, we get WcW→SE
ϕW (c) directly with rule (299). If W = Wk

for some 1 ≤ k ≤ p, we get

W kcWk
(300)
−−−→SE

akWkbkcWk (302)

(298)
−−−→SE

akWkbkWkϕk(c) (303)

(301)
−−−→SE

aka
−1
k ϕk(c) (304)

(297)
−−−→SE

ϕk(c). (305)

If W = W k for some 1 ≤ k ≤ p and c = 1, then, using the fact that ϕk(b
−1
k ak) = akb

−1
k by

(97), we get:

WkW k
(300)
−−−→SE

WkakWkbk

= Wkbk(b
−1
k ak)Wkbk

(298)
−−−→SE

WkbkWkakb
−1
k bk

(297)
−−−→ WkbkWkak
(301)
−−−→SE

a−1
k ak

(297)
−−−→ ε.
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Note that by the previous two derivations, Wk and W k are inverses in the monoid presented
by SE.

Finally, assume that W = W k for some 1 ≤ k ≤ p and c 6= 1. Thus, ϕW = ϕ−1
k . Let

d = ϕ−1
k (c) 6= 1. Hence, ϕk(d) = c. By the above calculation, we know that

W kdWk →
∗
SE
c.

Hence, since Wk and W k are inverses in the monoid G∗E/
∗
←→SE

, we get

d
∗
←→SE

WkcW k.

We have checked that ≡U ⊆
∗
←→SE

.

By (296) the group E is obtained by adding to U the additional identity g = Φ(g) for

g ∈ GE. Hence, to show that ≡E =
∗
←→SE

, it remains to show that g
∗
←→SE

Φ(g) for g ∈ GE.

If g ∈ GE \ {Wk,W k | 1 ≤ k ≤ p}, then Φ(g) = g, so that g
∗
←→SE

Φ(g). If g = W k for
some 1 ≤ k ≤ p, then

W k
(300)
−−−→SE

akWkbk = Φ(W k).

Finally, if g =Wk for some 1 ≤ k ≤ p, then

WkbkWk
(301)
−−−→SE

a−1
k .

Hence, using the fact that W k and Wk as well as bk and b−1
k are inverses in the monoid

G∗E/
∗
←→SE

, we get

Wk
∗
←→SE

a−1
k W kb

−1
k = Φ(Wk).

This concludes the proof for ≡E =
∗
←→SE

, i.e., of point (1) from the lemma.

For point (2), we first show that SE is Noetherian. Assume that there exists an infinite
derivation

u0 →SE
u1 →SE

u2 →SE
· · · .

There exist only finitely many i such that ui →SE
ui+1 via one of the rules (299), (300), or

(301): Simply assign weight 2 to every letter W k (1 ≤ k ≤ p), weight 1 to all letter from
W \ {W k | 1 ≤ k ≤ p}, and weight 0 to every letter from (A \ {1}) ∪ (B \ {1}). Then no rule
increases the weight, and rules (299), (300), and (301) strictly decrease the weight.

Hence, we can assume that in the above infinite derivation only the rules (297) and (298)
are applied. Thus, the projection to the subalphabetW ′ is the same for all ui. Let ui = siWvi
with si ∈ ((A \ {1}) ∪ (B \ {1}))∗, W ∈ W ′, and vi ∈ G

∗
E. We can assume that for infinitely

many i, the prefix siW of ui is rewritten (necessarily using rule (298)); otherwise, wo obtain
an infinite derivation, where in each word the number of occurrences of symbols from W ′ is
smaller. But this is easily seen to be impossible. We have established that SE is Noetherian.

It remains to show that SE is confluent. Since SE is Noetherian, it suffices to show that
every critical pair of the system SE can be resolved. Here is a list of all critical pairs of SE,
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where we assume that x ∈ dom(ϕW ) whenever we write ϕW (x) for the partial mapping ϕW :

rWϕ−1
W (x)yW ← rxWyW → rxϕW (y) for r ∈ RW (306)

ϕW (y)← WyW →WWϕW (y) (307)

xryW ← xryW → xrWϕW (y) for r ∈ RW , x ∈ Gi(W ) (308)

rWkϕk(x)bkWk ← rxWkbkWk → rxa−1
k for r ∈ RWk

(309)

a−1
k bkWk ←WkbkWkbkWk →Wkbka

−1
k (310)

rW kϕ
−1
k (x)← rxW k → rxakWkbk for r ∈ RWk

(311)

Let us give for each of these critical pairs a common descendant modulo SE.

Pairs of type (306):

rWϕ−1
W (x)yW → rWϕ−1

W (x)yW → rxϕW (y)→ rxϕW (y)← rxϕW (y)

Pairs of type (307):
WWϕ(y)→ ϕ(y)

Pairs of type (308): Let us choose a representative s ∈ RW and an element y′ ∈ dom(ϕW )
such that xry = sy′. We have

xryW = sy′W → sWϕW (y′).

Moreover, since y, y′ ∈ dom(ϕW ), we have y′y−1 ∈ dom(ϕW ). Hence, we also get

xrWϕW (y)→ xrWϕW (y) = sy′y−1WϕW (y)→ sWϕW (y′y−1)ϕW (y)→ sWϕW (y′).

Pairs of type (309): First, note that

ϕ−1
k

(96)
= δw(ak) ◦ ϕk ◦ δw(bk)

(97)
= δw(bk) ◦ ϕk ◦ δw(ak).

Since ϕk(x) ∈ dom(ϕ−1
k ) we get

x = ϕ−1
k (ϕk(x)) = a−1

k ϕk(b
−1
k ϕk(x)bk)ak. (312)

Inparticular, b−1
k ϕk(x)bk ∈ dom(ϕk). Since bk ∈ RWk

, we get:

rWkϕk(x)bkWk → rWkbk(b
−1
k ϕk(x)bk)Wk

→ rWkbkWkϕk(b
−1
k ϕk(x)bk)

→ ra−1
k ϕk(b

−1
k ϕk(x)bk)

→∗ ra−1
k ϕk(b

−1
k ϕk(x)bk)

(312)
= rxa−1

k ← rxa−1
k .

Pairs of type (310): Since by (97), ϕk(a
−1
k bk) = bka

−1
k we have

a−1
k bkWk→SE

Wkbka
−1
k .

Pair of type (311): Since x ∈ dom(ϕ−1
k ) and ϕ−1

k = δw(ak) ◦ ϕk ◦ δw(bk) by (96), we have

ϕ−1
k (x) = b−1

k ϕk(a
−1
k xak)bk. (313)
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In particular, a−1
k xak ∈ dom(ϕk). Let us choose a representative s ∈ RWk

and an element
x′ ∈ dom(ϕk) such that rak = sx′. With (313), we get

ϕk(x
′)bkϕ

−1
k (x) = ϕk(x

′a−1
k xak)bk. (314)

We get:

rW kϕ
−1
k (x)→SE

rakWkbkϕ
−1
k (x)

→SE
rakWkbkϕ

−1
k (x)

= sx′Wkbkϕ
−1
k (x)

→∗
SE

sWkϕk(x
′)bkϕ

−1
k (x)

(314)
= sWkϕk(x

′a−1
k xak)bk

On the other hand, we have

rxakWkbk→SE
rxakWkbk = rak(a

−1
k xak)Wkbk = sx′(a−1

k xak)Wkbk→
∗
SE
sWkϕk(x

′a−1
k xak)bk.

We have shown that all critical pairs can be resolved. Hence SE is indeed confluent. ⊓⊔

An element s ∈ W ′∗ ∗ A ∗ B is said to be a E-reduced sequence if its corresponding (A,B)-
reduced string neither contains a factor of the form Iw(W )cW withW ∈ W ′, c ∈ dom(δw(W ))
nor of the formWkbkWk for 1 ≤ k ≤ p. We denote by RedE(A∗B,W

′) the subset ofW ′∗∗A∗B
consisting of all E-reduced sequences.

Lemma 53. Let s ∈ W ′∗ ∗ A ∗B with γw(s) 6= ∅. Then s is E-reduced.

Proof. Let s ∈ W ′∗∗A∗B with γw(s) 6= ∅. We already know by Lemma 50 that s is U-reduced.
By (109), every Wk has an H-type, which implies that γ(WkbkWk) = ∅, hence s cannot have
any factor of the form WkbkWk. ⊓⊔

Let us consider the monoid congruence ≡′
Φ over W ′∗ ∗A ∗B generated by the set of pairs

{(cW,Wd) |W ∈ W ′, (c, d) ∈ δw(W )} ∪ {(W,Φ(W ) | W ∈ W ′}. (315)

Note that the congruence ≡Φ over W∗ ∗ A ∗ B, which was defined at the end of Section 3.9,
is generated by the set of pairs

{(cW,Wd) | W ∈ W, (c, d) ∈ δw(W )} ∪ {(W,Φ(W ) | W ∈ W}. (316)

The congruence ≡ over W∗ ∗A ∗B was defined by (89), the congruence ≡′ over W ′∗ ∗A ∗B
was defined by (289), and the congruences ≡U and ≡E over W ′∗ ∗A∗B are defined just above.

Leaning on the semi-Thue system SE we are now able to prove the following lemma which
is a key-argument for reducing equations over W/Φ to equations over the group E.

Lemma 54. The following holds:

(1) Let s, s′ ∈ W ′∗ ∗ A ∗B such that γ(s) 6= ∅ 6= γ(s′). Then s ≡E s
′ if and only if s ≡′

Φ s
′.

(2) Let s, s′ ∈ W∗ ∗ A ∗B such that γ(s) 6= ∅ 6= γ(s′). Then s ≡E s
′ if and only if s ≡Φ s

′.
(3) Let s, s′ ∈ W ′∗ ∗ A ∗B such that γ(s) 6= ∅ 6= γ(s′). Then s ≡U s

′ if and only if s ≡′ s′.
(4) Let s, s′ ∈ W∗ ∗ A ∗B such that γ(s) 6= ∅ 6= γ(s′). Then s ≡U s

′ if and only if s ≡ s′.
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Proof. For point (1) let us take s, s′ ∈ W ′∗ ∗ A ∗B such that γ(s) 6= ∅ 6= γ(s′). First, assume
that s ≡E s

′. Let us denote by z (resp. z′) the unique (A,B)-reduced string representing s
(resp. s′). In this proof, for every string w ∈ G∗E, we denote by [w]AB its image in the free
product W ′∗ ∗ A ∗ B. Let us consider the reduction of z (resp. z′) towards its normal form
w.r.t. the system SE:

z→∗
SE
ρSE

(z), z′→∗
SE
ρSE

(z′). (317)

By Lemma 52(1), z
∗
←→SE

z′ and by Lemma 52(2), ρSE
(z) = ρSE

(z′). Let us denote by
γ : G∗E → 2T the unique homomorphism such that for every g ∈ GE, γ(g) = γw([g]AB). Note
that every rule of type (297), (298), or (300) increases (for the inclusion ordering) the value
of γ. Note also that, if γ(w) 6= ∅, then by Lemma 53, the sequence [w]AB is E-reduced which
implies that the only rules of SE that might have a redex in w are those of type (297), (298),
or (300). Thus, for every w,w′ ∈ G∗E,

(γ(w) 6= ∅ and w→SE
w′)⇒ γ(w′) 6= ∅.

By induction, this implies that every reduction step in (317) uses a rule of type (297), (298),
or (300). Since, every rule (u→ v) of these types fulfills [u]AB ≡

′
Φ [v]AB , we conclude that:

[z]AB ≡
′
Φ [ρSE

(z)]AB = [ρSE
(z′)]AB ≡

′
Φ [z′]AB .

Conversely, the congruence ≡′
Φ is generated by all the defining relations of W′ union the set of

rules {(W,Φ(W )) |W ∈ W ′} which all belong to the presentation (296) of E. Hence ≡′
Φ ⊆ ≡E.

For point (2) from the lemma, let TE be the set of all rules of type (297), (300), (301)
together with those rules of type (298) where W ∈ W and those rules of type (299) where

W ∈ Ŵ. One can check that TE is complete too (because in the above proof of Lemma 52,
the resolutions for the critical pairs of TE only use rules of TE itself). Moreover, every rule
(u → v) of TE of type (297), (298), or (300) fulfills that [u]AB ≡Φ [v]AB . Hence, by similar
arguments, if s, s′ ∈ W∗ ∗ A ∗B fulfill the hypothesis of point (2) then s ≡Φ s

′.
Point (3) of the lemma follows immediately from Lemma 49 and 50. It can also be proved

by an adaptation of point (1), where instead of the semi-Thue system SE, we use the semi-
Thue system SU consisting of all rules of type (297), (298), and (299).

Finally, point (4) can be also proved by an adaptation of point (1), where instead of
the semi-Thue system SE, we use the semi-Thue system TU consisting of all rules of type
(297) together with those rules of type (298) where W ∈ W and those rules of type (299)

where W ∈ Ŵ. Every rule (u → v) of TU of type (297) or (298) with W ∈ W, fulfills that
[u]AB ≡ [v]AB . Hence, by similar arguments, if s, s′ ∈ W∗ ∗A∗B fulfill the hypothesis of point
(4) then s ≡ s′. ⊓⊔

7.3 Extensions of degree 2

The structure of E turns out to be based on quadratic extensions of A that are combined
together by free product with amalgamation over A. We thus state some basic facts about
quadratic extensions of groups. Let K be a group and E be the group presented by

E = 〈K,u; u2 = c, u−1xu = ψ(x) (x ∈ K)〉, (318)

where u is a new letter, c is some element from K and ψ : K → K is a group automorphism
fulfilling

ψ(c) = c and ∀x ∈ K : ψ(ψ(x)) = c−1xc. (319)
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One can easily check that under hypothesis (319) on c and ψ, the group E is an extension
of K with [E : K] = 2. Conversely, every extension E of K with [E : K] = 2 must have the
form (318) for some c ∈ K and some group automorphism ψ : K → K fulfilling (319).

7.4 The structure of E

We show here by applying successive Tietze transformations that E can be obtained from
a certain group K by a finite number of HNN-extensions over some strict subgroups of A.
In Section 7.5, we will show that solvability of equations with rational constraints in K is
decidable by a reduction to the main result of [DHG05], stating that solvability of equations
with rational constraints over a free monoid with involution is decidable.

Remark 2. Note that U is by definition the fundamental group of a finite graph of groups
where the vertex groups are A and B. Thus U is virtually free. The decomposition of E that
we exhibit in this subsection can be seen as a finite graph of groups whose fundamental group
is E showing that E is virtually-free, too.

First transformation: Let us choose some symbol from W such that the corresponding
δw-value is a total isomorphism from A to B. We call this symbol t in the following, since any
generic symbol from W that represents the stable letter t may serve. Hence δw(t) = ϕ.

By applying the Tietze transformation

b −→ t−1ϕ−1(b)t for all b ∈ B \ {1}

to the presentation (292), we obtain a group presentation with the set of generators W ′∪ (A\
{1}) and the following set of relations:

W−1aW = δw(W )(a) if Gi(W ) = Ge(W ) = A, a ∈ dom(δw(W ))

W−1aW = t−1ϕ−1(δw(W )(a))t if Gi(W ) = A,Ge(W ) = B,W 6= t, a ∈ dom(δw(W ))

W−1t−1ϕ−1(b)tW = t−1ϕ−1(δw(W )(b))t if Gi(W ) = Ge(W ) = B, b ∈ dom(δw(W ))

a1a2 = a3 for a1, a2, a3 ∈ A with a1a2 = a3 in A

Wk = a−1
k W−1

k b−1
k for 1 ≤ k ≤ p and Gi(Wk) = Ge(Wk) = A

Wk = t−1ϕ−1(a−1
k )tW−1

k t−1ϕ−1(b−1
k )t for 1 ≤ k ≤ p and Gi(Wk) = Ge(Wk) = B

where we know that (293) and (294) hold.

Second transformation: Let us define

V = {t} ∪ {W ∈ W ′ | Gi(W ) = Ge(W ) = A} ∪ {Wt−1 | Gi(W ) = A,Ge(W ) = B,W 6= t}

∪ {tWt−1 | Gi(W ) = Ge(W ) = B}.

We take the new set of group generators V ∪ (A \ {1}). For every 1 ≤ k ≤ p we define:

a′k = ak, b′k = bk if Gi(Wk) = Ge(Wk) = A

a′k = ϕ−1(ak), b′k = ϕ−1(bk) if Gi(Wk) = Ge(Wk) = B

Hence, we have a′k, b
′
k ∈ A for 1 ≤ k ≤ p. Moreover, for every V ∈ V \{t} we define the partial

automorphism δw(V ) : A → A in the natural way. E.g. if V = tWt−1, where W ∈ W ′ with
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Gi(W ) = Ge(W ) = B, then we set δw(V )(a) = ϕ ◦ δw(W ) ◦ ϕ−1. For V = t, since all the
relations involving t and A ∪ B have now disappeared, δw(t) is defined as the trivial partial
isomorphism, i.e., dom(δw(t)) = {1}.

We obtain the following finite set of relations:

V −1aV = δw(V )(a) for V ∈ V, a ∈ dom(δw(V )) (320)

a1a2 = a3 for a1, a2, a3 ∈ A with a1a2 = a3 in A (321)

Vk = (a′k)
−1V −1

k (b′k)
−1 for 1 ≤ k ≤ p (322)

In order to get (322), it is important to note that Gi(Wk) = Ge(Wk) for 1 ≤ k ≤ p. If, for
instance, Gi(Wk) = Ge(Wk) = B, then we have Vk = tWkt

−1, i.e., Wk = t−1Vkt. Hence, the
relation

Wk = t−1ϕ−1(a−1
k )tW−1

k t−1ϕ−1(b−1
k )t

becomes
Vk = tWkt

−1 = ϕ−1(a−1
k )(tW−1

k t−1)ϕ−1(b−1
k ) = (a′k)

−1V −1
k (b′k)

−1,

i.e., (322). Moreover, by translating the U-relations (293) and (294) over Wk into relations
over Vk (simply conjugate these relations with t in case Gi(Wk) = Ge(Wk) = B), we obtain:

V −1
k (a′k)

−1b′kVk ≡U b
′
k(a

′
k)

−1 for 1 ≤ k ≤ p (323)

(Vkb
′
kVka

′
k)

−1x(Vkb
′
kVka

′
k) ≡U x for 1 ≤ k ≤ p, x ∈ dom(δw(Vk)) (324)

Third transformation: Let us define

U = (V \ {V1, V
−1
1 , . . . , Vp, V

−1
p }) ∪ {U1, U

−1
1 , . . . , Up, U

−1
p },

where Uk = Vkb
′
k and U−1

k = (b′k)
−1V −1

k and take as set of generators U ∪ (A \ {1}). Let us
define ck = (a′k)

−1b′k ∈ A. Moreover, let δw(Uk) = δw(Vk) ◦ δw(b
′
k). We obtain the following

relations:

U−1aU = δw(U)(a) for U ∈ U , a ∈ dom(δw(U))

a1a2 = a3 for a1, a2, a3 ∈ A with a1a2 = a3 in A

U2
k = ck for 1 ≤ k ≤ p

Here, the last equation is obtained as follows: By (322) we have a′kVkb
′
kVk = 1, i.e., a′kVkb

′
kVkb

′
k =

b′k. Hence, a
′
kU

2
k = b′k, i.e., U

2
k = (a′k)

−1b′k = ck. Moreover, translating the U-relations (323)
and (324) over Vk into relations over Uk yields:

U−1
k ckUk ≡U ck for 1 ≤ k ≤ p (325)

U−2
k xU2

k ≡U c
−1
k xck for 1 ≤ k ≤ p, x ∈ dom(δw(Uk)) (326)

Fourth transformation: Let us set ϕU = δw(U) for U ∈ U . For ϕUk
(1 ≤ k ≤ p) we also

write ϕk. Thus, the last set of relations can be written as:

U−1aU = ϕU (a) for U ∈ U , a ∈ dom(ϕU ) (327)

a1a2 = a3 for a1, a2, a3 ∈ A with a1a2 = a3 in A (328)

U2
k = ck for 1 ≤ k ≤ p (329)
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Moreover, by (325) and (326) we know that:

ϕk(ck) ≡U ck for 1 ≤ k ≤ p (330)

ϕ2
k(x) ≡U c

−1
k xck for x ∈ dom(ϕk) (331)

Remark 3. The group U is an HNN-extension of A. Hence A is embedded into U. Thus (330)
and (331) hold in A too.

Remark 4. Equation (331) shows that for every a ∈ dom(ϕk), ϕk(a) ∈ dom(ϕk). Hence, we
have im(ϕk) ⊆ dom(ϕk). Since ϕk is injective and dom(ϕk) is finite, we get

dom(ϕk) = im(ϕk)

for all 1 ≤ k ≤ p. Hence, ϕk is an automorphism of the finite group dom(ϕk).

Decomposition of E: Since ϕk is an automorphism of the finite group dom(ϕk), we can
define the group

Bk = 〈dom(ϕk), Uk;U
−1
k aUk = ϕk(a)(a ∈ dom(ϕk)), U

2
k = ck〉 for 1 ≤ k ≤ p. (332)

By Remark 3 and Section 7.3 on quadratic extensions, each Bk is a quadratic extension of
dom(ϕk). Hence, each Bk is a finite group.

Consider the iterated amalgamated free product

E0 = (· · · ((A ∗dom(ϕ1) B1) ∗dom(ϕ2) B2) ∗dom(ϕ3) · · · ∗dom(ϕp) Bp).

Since each amalgamation is over a finite group, E0 is virtually-free. Let

U∞ = U \ {U1, U
−1
1 , . . . , Up, U

−1
p }.

From the presentation (327)–(329) of E it follows that E can be obtained as a multiple HNN-
extension of E0 over finite groups:

E = 〈E0,U∞;U−1aU = ϕU (a)(U ∈ U∞, a ∈ dom(ϕU ))〉

Hence, E is virtually-free.
Let us now change the order of the operations (amalgamated free products and HNN-

extensions) in which E is constructed. Let

UA = {U ∈ U | dom(ϕU ) = A},

UA,∞ = UA ∩ U∞,

UA,2 = UA \ UA,∞.

Up to a permutation of the indices 1, 2, . . . , p, we can assume that there is 0 ≤ pA ≤ p such
that

UA,2 = {U1, U
−1
1 , . . . , UpA , U

−1
pA
},

i.e., dom(ϕk) = A for 1 ≤ k ≤ pA, while dom(ϕk) ( A for pA + 1 ≤ k ≤ p. Let

K0 = (· · · ((A ∗A B1) ∗A B2) ∗A · · · ∗A BpA) (333)

(the factor A in the innermost amalgamated free product is only necessary if pA = 0) and

K = 〈K0,UA,∞;U−1aU = ϕU (a)(U ∈ UA,∞, a ∈ dom(ϕU ))〉. (334)

Then, the group E can be obtained from K by a finite number of operations, each of which is
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– either an HNN-extension with associated subgroups of cardinality < |A| (relation (327)
when dom(ϕU ) ( A and U ∈ U∞),

– or an amalgamated free product with a finite group Bk, where the amalgamation is over
the subgroup dom(ϕk) ( A (relations (327) and (329) when pA + 1 ≤ k ≤ p).

The following group presentation of K can be extracted from (333) and (334):

a1a2 = a3 for a1, a2, a3 ∈ A with a1a2 = a3 in A (335)

U−1aU = ϕU (a) for a ∈ A,U ∈ UA,∞ (336)

U−1
k aUk = ϕk(a) for a ∈ A, 1 ≤ k ≤ pA (337)

U2
k = ck for 1 ≤ k ≤ pA (338)

From the above presentations, we see the following:

Lemma 55. K and E are finitely generated virtually-free groups.

Proof. Both groups can be constructed from finite groups using the operations of amalga-
mated free products over finite groups and HNN-extensions with finite associated subgroups.

⊓⊔

7.5 Equations over K

In this section we show that solvability of equations with rational constraints is decidable for
K. Let us consider the alphabets

GU = UA,∞ ∪ {Uk | 1 ≤ k ≤ pA},

GK = GU ∪ (A \ {1}).

Since U−1
k = Ukc

−1
k in K, GK is a set of monoid generators of K. Let us define the group:

K0 = 〈GU ;U
2
k = ε (1 ≤ k ≤ pA)〉 ∼= (Z2)

pA ∗ F (UA,∞),

where F (UA,∞) is the free group generated by UA,∞.
Let us define the following sets of words over GU :

FORB = {U−1U | U ∈ UA,∞} ∪ {UkUk | 1 ≤ k ≤ pA}

R = G∗U \ (G
∗
U FORBG∗U ).

Let the finite semi-Thue system S over the alphabet GU contain all rules u→ ε for u ∈ FORB.
Note that R is the set of irreducible words with respect to S. The proof for following lemma
is straightforward.

Lemma 56. The following holds:

(1) The monoid G∗U/
∗
←→S is isomorphic to K0.

(2) The semi-Thue system S is confluent and Noetherian.

(3) The set of words R ⊆ G∗U is a transversal for
∗
←→S.

Lemma 57. There exists a unique group homomorphism ψ : K→ K0 such that
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– for all g ∈ GU , ψ(g) = g and

– for all a ∈ A, ψ(a) = 1.

Proof. Let us first prove the existence of ψ. Let us consider the monoid homomorphism
θ : G∗K → K0 defined as follows:

– For all g ∈ GU , θ(g) = g, and

– for all a ∈ A, θ(a) = 1.

Then, for every relation u = v from (335)–(338), we have θ(u) = θ(v). Hence, there exists a
homomorphism ψ : K→ K0 such that θ(w) = ψ([w]K) for all w ∈ G

∗
K. This homomorphism ψ

satisfies the requirements from the lemma. To show unicity, note that GK is a set of monoid
generators of K. Hence, the values of ψ on these generators completely determine ψ. ⊓⊔

For z ∈ G∗U , let us use the abreviated notation [z]0 for [z]K0
. Let nf : K0 → R be the mapping

such that nf(g) is the unique word w ∈ R such that g = [w]0.

Lemma 58. The homomorphism ψ introduced in Lemma 57 is such that:

(1) Ker(ψ) = A and

(2) [R]K is a transversal of K for the cosets of A ≤ K.

Proof. Let us first prove that every element of K has the form [wa]K for some w ∈ R, a ∈ A.
Let us consider the following set of rules, SK, obtained essentially by orientating the relations
(335)–(338):

a1a2 → a3 for a1, a2 ∈ A \ {1}, a3 ∈ A with a1a2 = a3 in A

aU → UϕU (a) for a ∈ A \ {1}, U ∈ UA,∞

aUk → Ukϕk(a) for a ∈ A \ {1}, 1 ≤ k ≤ pA

U2
k → ck for 1 ≤ k ≤ pA

U−1U → ε for U ∈ UA,∞

Applying iteratively these rules to a word v ∈ G∗K until no rule is applicable anymore, one can
find a word v′ ∈ R and some a ∈ A such that v ≡K v

′a.

Now, we can show point (1) from the lemma. Clearly, A ⊆ Ker(ψ). For the other inclusion,
let w ∈ R and a ∈ A such that ψ([wa]K) = 1. Hence, w ≡K0

ε. Since R is the set of irreducible
words with respect to S, which presents K0, we get w = ε, i.e., [wa]K ∈ A. This establishes
that Ker(ψ) ⊆ A.

For point (2) from the lemma, let w,w′ ∈ R and a, a′ ∈ A such that [wa]K = [w′a′]K. Then,
ψ([wa]K) = ψ([w′a′]K). Since A ⊆ Ker(ψ), we have ψ([w]K) = ψ([w′]K) i.e. [w]0 = [w′]0. By
Lemma 56, w = w′ which proves that [w]K = [w′]K. This establishes point (2) of the lemma.

⊓⊔

In other words,

1→ A→ K
ψ
→ K0 → 1

is an exact sequence and the restriction ψ↾[R]K : [R]K → K0 is bijective.

Let ψ′ : K→ R be the mapping ψ ◦ nf.
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Lemma 59. Let L be a rational subset of K. Then, for every a ∈ A, ψ′(L∩[Ra]K) is a rational
subset of R, and an automaton for this set can be effectively constructed from an automaton
for L. Moreover, if w ∈ R and a ∈ A, then [wa]K ∈ L if and only if w ∈ ψ′(L ∩ [Ra]K).

Proof. First, suppose that L is a rational subset of K. The subsets R and {a} are rational
subsets of G∗K. Thus, Ra is a rational subset of G∗K, which implies that its homomorphic image
in K, [Ra]K, is a rational subset of K. It is well-known that rational subsets of a virtually-free
group are effectively closed under intersection (see, e.g., [Sén96,LS08]), hence L ∩ [Ra]K is
rational. Since ψ is a monoid homomorphism, we get that ψ(L ∩ [Ra]K) is a rational subset
of K0. Let M ⊆ G

∗
U be a rational subset such that [M ]0 = ψ(L∩ [Ra]K). Since S is a monadic

semi-Thue system, the set of descendants

M ′ = {v ∈ G∗U | ∃u ∈M : u→∗
S v}

of M is rational too, see [BO93]. Finally, we have ψ′(L ∩ [Ra]K) = nf([M ]0) =M ′ ∩R, which
is therefore rational, too.

Now, assume that w ∈ R and a ∈ A. If [wa]K ∈ L, then clearly w ∈ ψ′(L ∩ [Ra]K).
On the other hand, if w ∈ ψ′(L ∩ [Ra]K), then there exists [w′a′]K ∈ L ∩ [Ra]K such that
w = ψ′([w′a′]K) = nf([w′]0) = w′. From [w′a′]K ∈ [Ra]K, we get a = a′ with Lemma 58(2).
Hence [wa]K = [w′a′]K ∈ L. ⊓⊔

Let us introduce now a right-action a 7→ aw and a right-action a 7→ a⊙w of the free monoid
G∗U over the set A in order to express some equalities in K by some rational constraints in the
free monoid G∗U . For every a ∈ A, U ∈ UA,∞, and 1 ≤ k ≤ pA, we set:

aU = ϕU (a)

aUk = ϕk(a)

a⊙ U = ϕU (a)

a⊙ Uk = ck · ϕk(a)

The action a 7→ aw does not induce an action of the group K0 over the set A: For example,
aUkUk = ϕ2

k(a) = c−1
k ack, which might be different from aε = a, while UkUk ≡K0

ε. The same
remark applies to the action ⊙ with the counter-example a⊙UkUk = ckϕk(ck)c

−1
k ack = ckack.

For every w ∈ G∗U , a 7→ aw is a group isomorphism of A. But, for some w ∈ G∗U , a 7→ a⊙w
might not be a group homomorphism: For example, (a1a2) ⊙ Uk = ckϕk(a1)ϕk(a2) while
(a1 ⊙ Uk)(a2 ⊙ Uk) = ckϕk(a1)ckϕk(a2), which is a different element of A as soon as ck 6= 1.

Note that w−1aw ≡K a
w for all w ∈ G∗U and a ∈ A. Hence, we get:

Lemma 60. For all w ∈ G∗U and a ∈ A, we have aw ≡K wa
w.

Let us denote by J : G∗U → G
∗
U the monoid involution such that J(U) = U−1 and J(U−1) = U

for U ∈ UA,∞ and J(Uk) = Uk for 1 ≤ k ≤ pA. Note that in the group K, we have a ⊙ Uk =
ckϕk(a) = U2

kϕk(a) = U2
kU

−1
k aUk = UkaUk. Hence, we get:

Lemma 61. For every w ∈ G∗U , J(w)aw ≡K a⊙w.

The following lemma expresses the product in K in the free monoid G∗U with involution J.
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α1 J(β) a1 β α2 a2

w
α2

aα2

0

a0

w1 w2

Fig. 16. Proof of Lemma 62

Lemma 62. For every w1, w2, w ∈ R, a1, a2, a ∈ A,

w1a1 w2a2 ≡K wa

if and only if there exist a0 ∈ A and α1, α2, β ∈ R such that

a1 ⊙ β = a0 (339)

aα2

0 a2 = a (340)

w1 = α1J(β) (341)

w2 = βα2 (342)

w = α1α2 (343)

Proof. First, suppose that w1, w2, w ∈ R, a1, a2, a ∈ A and

w1a1w2a2 ≡K wa. (344)

Let β be the longest common prefix of w2 and J(w1) (the mirror image of w1). There exist
words α1, α2 ∈ G

∗
U such that

w1 = α1J(β) and w2 = βα2.

Since α1, α2, β are factors of words from R, they belong to R as well. Moreover, by maximality
of β, we have α1α2 ∈ R.

By Lemma 61,

J(β)a1β ≡K a1 ⊙ β

Let us define

a0 = a1 ⊙ β.

The initial equality (344) can be now rephrased as

α1a0α2a2 ≡K wa.

By Lemma 60,

a0α2 ≡K α2a
α2

0 .
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Hence, we get
(α1α2)(a

α2

0 a2) ≡K wa.

Since w,α1α2 ∈ R, we get
w = α1α2 and aα2

0 a2 = a.

For the other direction, suppose now that there exist a0 ∈ A and α1, α2, β ∈ R fulfilling
conditions (339)–(343). Translating the right-actions by appropriate products (by means of
Lemma 60 and Lemma 61) one can recover the equality (344). ⊓⊔

Proposition 6. The satisfiability problem for systems of equations with rational constraints
in K is decidable.

Proof. We reduce the satisfiability problem for systems of equations with rational constraints
in K to the satisfiability problem for systems of equations with rational constraints in the free
monoid G∗U with involution J. The latter problem is decidable by [DHG05].

By Lemma 62, the product in K can be expressed by a finite boolean combination of
equalities in the free monoid G∗U with involution J, together with some rational constraints
and the additional conditions (339) and (340) using the operations⊙ and a 7→ au. All variables
will be restricted to the rational subset R ⊆ G∗U . Condition (339) can be expressed by the
rational constraint

β ∈ {w ∈ R | a1 ⊙ w = a0}.

Similarly, condition (340) can be expressed by the rational constraint aα2

0 = aa−1
2 .

Every equation over K can thus be translated into a finite disjunction of systems of
equations with rational constraints over the free monoid G∗U with involution J. The disjunction
enumerates the finite list of all the possible values of a0, a1, a2, a ∈ A. Moreover, by Lemma 59,
every rational constraint over K can be translated into a rational constraint over G∗U . ⊓⊔

8 Equations over E

8.1 From W-equations to E-equations

We use here the notion of system of equations with rational constraints over E, as defined
in Section 2.6 for any monoid. Recall from Section 3.8 that WH is the AB-subalgebra of Wt

generated by those W ∈ Wt which have an H-type. Let us consider a system of W-equations
(SW, Φ), where

SW = {(wi, w
′
i) | 1 ≤ i ≤ n}

(hence, Φ ∈ HInv) together with an AB-homomorphism

σH ∈ HomAB(WH,WH/Φ).

The AB-homomorphism Φ : W → W is given by formulas of the form (92)–(95) with the
additional conditions (96)–(99). For every 1 ≤ k ≤ p, γw(Wk) must be an H-type and
Gi(Wk) = Ge(Wk) (see (93)).

Let zi, z
′
i ∈ W

∗
t ∗ A ∗ B be some representatives, modulo ≡, of wi and w′

i, respectively.
Recall that

– γw(zi) = γw(z
′
i) 6= ∅ for all 1 ≤ i ≤ n (see Section 6), and

– π≡ :W∗ ∗A ∗B →W and π≡Φ
:W∗ ∗ A ∗B →W/φ are the canonical morphisms.
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We can also choose a monoid-homomorphism σ̃H : W∗
H ∗ A ∗ B → W

∗
H ∗ A ∗ B such that

π≡◦σH = σ̃H◦π≡Φ
. For everyW ∈ Wt we consider the following rational subsets ofW∗

t ∗A∗B:

RI,W = {z ∈ W∗
t ∗ A ∗B | γw(z) = γw(W ) ∧ z ∈ Ŵ∗

t ∗A ∗B ⇔W ∈ Ŵt}

Rµ,W = {z ∈ W∗
t ∗ A ∗B | γw(z) = γw(W ) ∧ µw(z) = µw(W )}

Rδ,W = {z ∈ W∗
t ∗ A ∗B | γw(z) = γw(W ) ∧ δw(z) = δw(W )}

RH,W =

{
{σ̃H(W )} if W ∈ WH

W∗
t ∗ A ∗B if W ∈ Wt \ WH

We next want to define a system of equations over E (in the sense of Section 2.6), whose
equations comprise the pairs (zi, z

′
i) together with equations expressing the compatibility with

Iw, i.e., the fact that images of inverses for Iw must be inverses in the group E. In order to be in
accordance with Section 2.6, we have to identify zi, z

′
i with their (A,B)-reduced representatives

in (W ∪ A ∪ B)∗ and to consider elements from (A ∪ B) \ {1} (which may occur in these
representatives) as variables, since the zi and z

′
i are only allowed to contain variables. With

these conventions, we introduce the following constraint C :Wt∪(A∪B)\{1} → bool(Rat(E)):

∀W ∈ Wt : C(W ) = πE(RI,W ) ∩ πE(Rµ,W ) ∩ πE(Rδ,W ) ∩ πE(RH,W )

∀c ∈ (A ∪B) \ {1} : C(c) = {πE(c)}

Here, πE : W∗
t ∗ A ∗ B → E is the natural projection onto E. Let us now define the system

(SE,C) of equations over E with rational constraints, where

SE = {(zi, z
′
i) | 1 ≤ i ≤ n} ∪ {(W Iw(W ), ε) |W ∈ Ŵt \ WH}.

Note that the constraint mapping C depends on σH, but not on the choice of σ̃H. Let us denote
by πE : Wt/Φ→ E the map induced by πE, i.e., πE([w]≡Φ

) = πE(w)).

Lemma 63. The map Ψ : HomAB(Wt,Wt/Φ)→ Hom(W∗
t ∗ A ∗B,E) defined by:

Ψ(σW) = π≡ ◦ σW ◦ πE

induces a bijection from the set of solutions of (SW, Φ), which extend σH, into the set of
solutions of (SE,C).

We prove this lemma in the subsequent three subsections, see Figure 17 for the general context
and Figure 18 for the details of the proof. Note that the diagram in Figure 17 contains the
diagram from Figure 11.

8.2 From W-solutions to E-solutions

Let σW : Wt →Wt/Φ be a solution of (SW, Φ), extending σH. Let σE = Ψ(σW) = π≡ ◦σW ◦πE.
From the definitions of zi and z

′
i we get

σE(zi) = πE(σW(wi)) = πE(σW(w′
i)) = σE(z

′
i). (345)

By hypothesis, σW is an AB-homomorphism. Hence, it commutes with the involutions given
by the AB-structures, i.e.,

∀W ∈ Ŵt : σW(Iw(W )) = Iw(σW(W )). (346)
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Fig. 17. Lemma 63: the context

The defining relations of E ensure that for every w ∈Wt,

πE
(
σW(w)Iw(σW(w))

)
= 1.

Hence, the relations (346) imply

∀W ∈ Ŵt : σE(W Iw(W )) = πE(σW(W )σW(Iw(W ))) = 1. (347)

The map π≡ ◦ σW : W∗
t ∗ A ∗ B → Wt/Φ is an AB-homomorphism. Hence, it preserves γw,

µw, and δw (by Lemma 38 the type is exactly preserved). It follows that for every W ∈ Wt.

σW(π≡(W )) ∈ π≡Φ
(RI,W ) ∩ π≡Φ

(Rµ,W ) ∩ π≡Φ
(Rδ,W ).

As σW extends σH, we get
σW(π≡(W )) ∈ π≡Φ

(RH,W )

for every W ∈ Wt. Applying πE on both sides of these membership relations, we obtain

∀W ∈ Wt : σE(W ) ∈ C(W ). (348)

Moreover the three maps π≡, σW, and πE fix every element of A ∪B. Thus, we have

∀c ∈ (A ∪B) \ {1} : σE(c) ∈ C(c). (349)

By (345), (347), (348) and (349), σE is a solution of (SE,C).

8.3 From E-solutions to W-solutions

Let σE be a solution of (SE,C). Since, for every W ∈ Wt, σE(W ) ∈ C(W ) ⊆ πE(Rµ,W ), there
is a choice map σ̃E :Wt →W

∗
t ∗ A ∗B fulfilling

∀W ∈ Wt : σ̃E(W ) ∈ Rµ,W and πE(σ̃E(W )) = σE(W ). (350)

From σ̃E(W ) ∈ Rµ,W we get

γw(σ̃E(W )) = γw(W ) and µw(σ̃E(W )) = µw(W ). (351)
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Fig. 18. Lemma 63: the proof

Let us denote by σ̃E : W∗
t ∗ A ∗ B → W

∗
t ∗ A ∗ B the unique monoid homomorphism fixing

every element of A ∪ B and extending the above choice map. Since σE(W ) ∈ C(W ), there
exist zI,W ∈ RI,W , zδ,W ∈ Rδ,W , and zH,W ∈ RH,W fulfilling

σE(W ) = πE(σ̃E(W )) = πE(zI,W ) = πE(zδ,W ) = πE(zH,W ).

All these zI,W , zδ,W , zH,W have a non-empty image under γw (namely γw(W )) and are equiv-
alent with σ̃E(W ) modulo ≡E. By Lemma 54(2) we have

σ̃E(W ) ≡Φ zI,W ≡Φ zδ,W ≡Φ zH,W .

The equivalence ≡Φ is compatible with the AB-algebra W∗ ∗ A ∗ B (see the end of section
3.9). Hence, for every W ∈ Wt, we have

σ̃E(W ) ∈ Ŵt ∗A ∗B ⇐⇒ zI,W ∈ Ŵt ∗A ∗B ⇐⇒ W ∈ Ŵt

δw(σ̃E(W )) = δw(zδ,W ) = δw(W ) (352)

σ̃E(W ) ≡Φ zH,W = σ̃H(W ) if W ∈ WH. (353)

By (352), the map σ̃E induces a monoid-homomorphism σW : Wt →Wt/Φ fulfilling

π≡ ◦ σW = σ̃E ◦ π≡Φ
. (354)

Since σE solves every equation (W Iw(W ), ε) ∈ SE for W ∈ Ŵt \ WH, we are sure that

∀W ∈ Ŵt \ WH : πE(σ̃E(Iw(W ))) = σE(Iw(W )) = σE(W )−1 = πE(Iw(σ̃E(W ))).
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Hence, by Lemma 54(2), we have

∀W ∈ Ŵt \WH : σ̃E(Iw(W )) ≡Φ Iw(σ̃E(W )). (355)

Since π≡Φ
is an AB-homomorphism, we get

∀W ∈ Ŵt \WH : σW(Iw(W ))
(354)
= π≡Φ

(σ̃E(Iw(W )))
(355)
= π≡Φ

(Iw(σ̃E(W ))) =

Iw(π≡Φ
(σ̃E(W )))

(354)
= Iw(σW(W )). (356)

By (353) and (354),
σW extends σH. (357)

This in particular ensures that

∀W ∈ Ŵt ∩WH : σW(Iw(W )) = Iw(σW(W )). (358)

By the properties (351), (352), (356), and (358), σW preserves γ, µ, δ and the involutions Iw,
i.e., σW ∈ HomAB(Wt,Wt/Φ).

By hypothesis, σ̃E◦πE is a solution of the equations of SE that are written over W∗
t ∗A∗B.

Hence, for all 1 ≤ i ≤ n we have

πE(σ̃E(zi)) = πE(σ̃E(z
′
i)),

i.e. σ̃E(zi) ≡E σ̃E(z
′
i). We know that γw(zi) = γw(z

′
i) 6= ∅ (this is required for a system of

W-equations) and that σ̃E preserves γw (see (351)). Using Lemma 54(2), we conclude that
σ̃E(zi) ≡Φ σ̃E(z

′
i), i.e.,

σW(wi) = σW(w′
i).

Thus, σW is a solution of (SW, Φ), which by (357) extends σH. Using (354), we finally get

Ψ(σW) = π≡ ◦ σW ◦ πE = σ̃E ◦ π≡Φ
◦ πE = σ̃E ◦ πE = σE.

8.4 Ψ is bijective

The previous considerations established that Ψ is surjective. Let us check that it is injective.
Suppose that σW, σ

′
W ∈ HomAB(Wt,Wt/Φ) fulfill Ψ(σW) = Ψ(σ′W). This means that:

π≡ ◦ σW ◦ πE = π≡ ◦ σ
′
W ◦ πE

As π≡ is surjective we get
σW ◦ πE = σ′W ◦ πE.

By Lemma 54, point 2, πE is injective over {z ∈Wt | γw(z) 6= ∅}. Hence, σW(g) = σ′W(g) for
every g ∈ Wt ∪ A ∪ B. This implies σW = σ′W. By the above three paragraphs, Lemma 63 is
proved. ⊓⊔

9 Transfer of solvability

We prove a general transfer theorem for systems of equations with rational constraints. We
first treat the case of groups since it is technically simpler.
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1 compute the subalphabet Wt ⊆ W that generates Wt

2 for all admissible vectors (W ,e) over Wt ∪A ∪B, all Φ ∈ HInv, and
all σH ∈ HomAB(WH,WH/Φ) do

3 construct the systems St(S,W ,e) and SH(S,W ,e) defined on page 53
4 from St(S,W ,e), Φ, and σH construct the system (SE,C) according to Section 8.1
5 check, whether (SE,C) is solvable over E
6 check, whether there is ψH,t ∈ HomAB(WH/Φ,Ht) such that σH ◦ψH,t solves SH(S,W ,e)
7 endfor
8 if solutions in 6 and 7 are found then (S, µA,G, µU ) is satisfiable

else (S, µA,G, µU ) is unsatisfiable

Fig. 19. The algorithm for checking satisfiability of a system of equations with rational con-
straints in a group G.

9.1 Transfer for groups

Proposition 7. Let H be a group and G an HNN-extension of H with finite associated sub-
groups A and B. The satisfiability problem for systems of equations with rational constraints
in G is Turing-reducible to the pair of problems (Q1, Q2), where

– Q1 is the satisfiability problem for systems of equations with rational constraints in a group
E defined by a presentation in PHNN(A) (see Definition 9), and

– Q2 is the satisfiability problem for systems of equations with rational constraints in H.

Proof. Let us consider a system S0 of equations with rational constraints in G. By Proposi-
tion 5, solvability of S0 reduces to solvability of a disjunctionDS =

∨
j∈J Sj in closed quadratic

normal form, where Sj = (S, µA,G, µU ,j) (i.e. the different systems are differing by their maps
µU ,j only). Here A is a strict normal partitioned fta over the labelling set bool(Rat(H)). We
have to check, whether one of the systems Sj = (S, µA,G, µU ,j) is satisfiable. Let us fix one
such system, and write µU for µU ,j. Satisfiability of the system (S, µA,G, µU ) can be checked
by the high-level algorithm from Figure 19.

Let us first show that this algorithm is correct. Then, we argue that every line of the
algorithm can be made effective. Recall the notion of an admissible vector from page 52. By
Lemma 45, (S, µA,G, µU ) is satisfiable, if and only if there exists an admissible vector (W ,e)
and an AB-homomorphism σt : Wt → Ht such that:

– All components of (W ,e) belong to Wt ∪A ∪B.
– σt solves both systems St(S,W ,e) and SH(S,W ,e) defined on page 53.

Let us fix an admissible vector (W ,e). By Lemma 46, σt : Wt → Ht solves the system
St(S,W ,e) if and only if there exist Φ ∈ HInv and AB-homomorphisms σW : Wt → Wt/Φ
and ψt : Wt/Φ → Ht such that, for every W ∈ Alph(St(S,W ,e)), σt(W ) = ψt(σW(W )) and
σW solves St(S,W ,e). Let us fix Φ ∈ HInv. Hence, we have to check whether there exist
AB-homomorphisms σW : Wt →Wt/Φ and ψt : Wt/Φ→ Ht such that σW solves St(S,W ,e)
and σW◦ψH,t solves SH(S,W ,e). Let us fix σH ∈ HomAB(WH,Wt/Φ). By Lemma 37 we must
have σH ∈ HomAB(WH,WH/Φ) and there are only finitely many such AB-homomorphisms.
We have to check, whether

(a) there exists an AB-homomorphisms σW : Wt → Wt/Φ that extends σH and solves
St(S,W ,e) and
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(b) there exists an AB-homomorphism ψt : Wt/Φ→ Ht such that σH◦ψH,t solves SH(S,W ,e).

Since all W-symbols occuring in SH(S,W ,e) have an H-type and σH ∈ HomAB(WH,WH/Φ),
we can restrict ψt to an AB-homomorphism ψH,t : WH/Φ → Ht. Moreover, ψH,t(W ) for
W ∈ WH must belong to H. By Lemma 63, point (a) is equivalent to the solvability of the
system (SE,C) constructed in line 4, which is checked in line 5. Point (b) is checked in line 6.

Let now argue that every line of the algorithm can be made effective. First, recall that
the set Wt is defined in (91). Since H is a group, we have dom(It) = Ht. Thus, Wt ⊆ Ŵ.

Line 1 of the algorithm: We have to check for every letter W ∈ Ŵ whether (91) holds. Let
γw(W ) = {θ}. First, assume that θ is an H-type. We define the following constraint sets:

Cγ(W ) = {h ∈ H | θ ∈ γt(h)}

Cµ(W ) = {h ∈ H | µw(W ) = µt(θ, h)}

Cδ(W ) = {h ∈ H | δw(W ) = δt(θ, h)}

C(W ) = Cγ(W ) ∩ Cµ(W ) ∩ Cδ(W ) (359)

Thus, W ∈ Wt if and only if C(W ) 6= ∅. Recall from Section 2.6 the notions of equa-
tional and positively definable subsets of a monoid. We observe that Cγ takes values in
bool({{1}, A,B,H}) and Cµ takes values in bool(Rat(H)). The map Cδ takes values which
are intersections of sets of the form

Cδ(c, d) = {h ∈ H | ch = hd in H} (360)

and H\Cδ(c, d) for c, d ∈ A∪B. It is clear that Cδ(c, d) ∈ EQ(H, bool(Rat(H))). By Lemma 19,
H\Cδ(c, d) belongs to Def∃+(H, bool(Rat(H))). Therefore, the sets Cγ(W ), Cµ(W ), and Cδ(W )
all belong to Def∃+(H, bool(Rat(H))). Hence, C(W ) belongs to Def∃+(H, bool(Rat(H))) as well.
Deciding whether C(W ) 6= ∅ is thus an instance of the problem Q2.

Now, assume that θ is a T-type. Let θ = (θ, 1, θ′). Hence, IT (θ) = (IR(θ′), 1, IR(θ)). We
set

Cγ(W ) = {s ∈ Red(H, t) | θ ∈ γt(s)},

Cµ(W ) = {s ∈ Red(H, t) | µw(W ) = µt(θ, s)},

Cδ(W ) = {s ∈ Red(H, t) | δw(W ) = δt(θ, s)},

C(W ) = Cγ(W ) ∩ Cµ(W ) ∩ Cδ(W ).

Claim 16. Cγ(W ) is recognized by a fta with labels in bool(Rat(H)).

The set {s ∈ Red(H, t) | θ ∈ γt(s)} is recognized by the variant of the fta R6, where we
choose θ as the initial state and θ′ as the terminal state.

Claim 17. Cµ(W ) is recognized by an fta with labels in the set bool(Rat(H)).

Recall the definition of µt from (62) and recall that H is a group. For states q, r ∈ Q with
τ(q) = θ and τ(r) = θ′, let Aq,r be the fta obtained from A by taking q as the initial state
and r as the terminal state. Then, the set

Cµ(q, r) = {s ∈ Red(H, t) | (q, r) ∈ µA,1(θ, s)}
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is recognized by the direct product R6 × Aq,r This fta is partitioned (by Lemma 12), ∼-
saturated, and strict (by Lemma 11).

Similarly, for states q, r ∈ Q with τ(q) = IR(θ) and τ(r) = IR(θ
′), let A′

q,r be the fta
obtained from A by replacing every label L by L−1 (note that bool(Rat(H)) is closed under
taking the inverse of a set), taking q as the initial state and r as the terminal state. Then,
the set

Cµ(q, r) = {s ∈ Red(H, t) | (q, r) ∈ µA,1(IT (θ), It(s))
−1}

= {s ∈ Red(H, t) | (r, q) ∈ µA,1(IT (θ), It(s))}

is recognized by R6 ×A
′
q,r. Moreover, this fta is partitioned, ∼-saturated, and strict.

Now assume that µw(W ) = 〈µ1, µ2〉. Hence, by (69) we have µ1 ⊆ τ−1(θ) × τ−1(θ′) and
µ2 ⊆ τ

−1(IR(θ))× τ
−1(IR(θ

′)). The subset Cµ(W ) can be described as the intersection of the
following sets:

– Cµ(q, r) for (q, r) ∈ µ1
– Red(H, t) \ Cµ(q, r) for (q, r) 6∈ µ1
– Cµ(q, r) for (q, r) ∈ µ2
– Red(H, t) \ Cµ(q, r) for (q, r) 6∈ µ2

By [LS08, Prop. 28], all sets Cµ(q, r) and Cµ(q, r) are recognized by partitioned, ∼-saturated,
deterministic and complete fta with labelling sets from bool(Rat(H)). By [LS08, Lemma 20],
all sets Red(H, t) \ Cµ(q, r) and Red(H, t) \ Cµ(q, r) are also recognized by partitioned, ∼-
saturated, deterministic and complete fta with labelling sets from bool(Rat(H)). By Lemma 11,
we conclude that Cµ(W ) is recognized by an fta with labels from bool(Rat(H)).

Claim 18. Cδ(W ) is recognized by an fta with labels from the set Def∃+(H, bool(Rat(H))).

The subset Cδ(W ) is a boolean combination of subsets of the form

Cδ(c, d) = {s ∈ Red(H, t) | cs ∼ sd}, (361)

where c, d ∈ A ∪B. For c, d ∈ A ∪B let Ac,d be the fta with state set A ∪B, c as the initial
state, d as the terminal state, and the following transitions:

– There is a t-labelled transition from a ∈ A to ϕ(a) ∈ B.
– There is a t−1-labelled transition from b ∈ B to ϕ−1(b).
– There is a transition from c ∈ A ∪ B to d ∈ A ∪ B that is labelled with the set {h ∈ H |
ch = hd} ∈ EQ(H, bool(Rat(H))).

This fta has labels in EQ(H, bool(Rat(H))) and is ∼-saturated. Then, the set Cδ(c, d) is rec-
ognized by the partitioned fta R6 × Ac,d. Moreover, this fta is strict and ∼-saturated. The
claim follows by the same arguments as for Claim 17.

Due to the Claims 16, 17, 18 and Lemma 11, the set C(W ) is recognized by some fta D with
labels in Def∃+(H, bool(Rat(H))). The emptiness problem for C(W ) = L(D) reduces to the
emptiness problem for elements of Def∃+(H, bool(Rat(H))) (given by a system of equations
with rational constraints). This leads to an instance of Q2.

Line 2 of the algorithm: Enumerating all admissible tuples is easy (see Figure 6). In order to
enumerate all Φ ∈ HInv, we enumerate all possible partitions ofWH and check for each of them
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conditions (96)–(99). In order to enumerate HomAB(WH,WH/Φ), it suffices by Lemma 37 to
enumerate all maps σH :WH → (A ∪B)WH (A ∪B) that preserve γw, µw, and δw.

Line 3 and 4 of the algorithm: These steps are clearly effective.

Line 5 of the algorithm: This is an instance of the problem Q1.

Line 6 of the algorithm: The involution Φ (choosen in line 2) is given by the formulas (94) and
(95) of Section 3.9. By Lemma 23, line 6 amounts to find some tuple (ψH,t(W ))W∈WH

over H
such that conditions (b)–(f) of Lemma 23 are fulfilled and (ψH,t(W ))W∈WH

is a solution of

σH(SH(S,W ,e)) ∪ {(Wk, a
−1
k W kb

−1
k ) | 1 ≤ k ≤ p} ∪ {(W k, akWkbk) | 1 ≤ k ≤ p}

in the group H. Condition (b) is automatically satisfied since all involutions are total (we
assume that H is a group). Also (c) is automatically satisfied by the definition of a solution
of a system over the group H. Conditions (d)–(f) can be expressed by the constraints C(W )
defined in (359). Hence, line 6 reduces to an instance of the problem Q2. ⊓⊔

Theorem 2. Let H be a group with decidable satisfiability problem for systems of equations
with rational constraints and let G be an HNN-extension of H with finite associated subgroups.
Then the satisfiability problem for systems of equations with rational constraints in G is
decidable.

Proof. We prove this proposition by induction over the size of the finite associated subgroups
A, B used in the HNN-extension leading from H to G.

Induction base: |A| = 1.
In this case G is the free product of H by Z. It is known that the additive group Z has a decid-
able satisfiability problem for systems of equations with rational constraints (see, for example,
[ES69]). By Theorem 1, a free product of two groups with decidable satisfiability problems
for systems of equations with rational constraints has a decidable satisfiability problem for
systems of equations with rational constraints as well. Hence G has decidable satisfiability
problem for systems of equations with rational constraints.

Induction step: |A| > 1.
By Proposition 7, the satisfiability problem for systems of equations with rational constraints
reduces to the decision problems Q1 and Q2. By hypothesis, problem Q2 is decidable. Q1 is the
satisfiability problem for systems of equations with rational constraints in the group E , which
has a presentation in PHNN(A). By Section 7.4, E is obtained from the group K by a finite
number of HNN-extension and amalgamated product operations with associated subgroups
(resp., amalgamated subgroups) of cardinality < |A|. By Proposition 6, K has a decidable
satisfiability problem for equations with rational constraints. By induction hypothesis, each
of the HNN-extensions preserves this decidability property. Moreover, by a combination of
this induction hypothesis with Lemmas 8 and 20 and Theorem 1, each of the free products
with amalgamation preserves this decidability property as well. Hence E has a decidable
satisfiability problem for equations with rational constraints. Thus problem Q1 is decidable
too. Hence, by Proposition 7, G has a decidable satisfiability problem for equations with
rational constraints. ⊓⊔

Theorem 3. If G is a finitely generated virtually-free group, then the satisfiability problem
for systems of equations with rational constraints in G is decidable.
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Proof. Recall that the finitely generated virtually-free groups are exactly the groups obtained
from finite groups by a finite number of operations which are either HNN-extensions with finite
associated subgroups or free products with amalgamation with finite amalgamated subgroups
[DD90]. In a finite group, systems of equations with rational constraints are algorithmically
solvable. By Proposition 2, every HNN-extension with finite associated subgroups preserves
this decidability property. The combination of Lemmas 8 and 20 with Proposition 2 and
Theorem 1 shows that a free product with amalgamation over finite subgroups also preserves
this decidability property. Hence every finitely generated virtually-free group has the asserted
decidability property. ⊓⊔

Another proof of Theorem 3 was given in [DG07,DG10].

Theorem 4. Let H be a group and G an HNN-extension of H with finite associated subgroups.
The satisfiability problem for systems of equations with rational constraints in G is Turing-
reducible to the satisfiability problem for systems of equations with rational constraints in H.

Proof. By Proposition 7 the satisfiability problem for systems of equations with rational
constraints in G is Turing-reducible to the problems Q1 and Q2 defined in the proposition. But
Q1 is the satisfiability problem for systems of equations with rational constraints in E, where,
by Lemma 55, E is a finitely generated virtually-free group. Since, by Theorem 3, problem Q1

is decidable, the satisfiability problem for systems of equations with rational constraints in G

is Turing-reducible to the single problem Q2, i.e., to the satisfiability problem for systems of
equations with rational constraints in H. ⊓⊔

9.2 Transfer for cancellative monoids

In this section, we will prove the extension of Proposition 7 to cancellative monoids:

Proposition 8. Let H be a cancellative monoid and G an HNN-extension of H with finite
associated subgroups A and B. The satisfiability problem for systems of equations with rational
constraints in G is Turing-reducible to the pair of problems (Q1, Q2), where

– Q1 is the satisfiability problem for systems of equations with rational constraints in a group
E defined by a presentation in PHNN(A), and

– Q2 is the satisfiability problem for systems of equations with rational constraints in H.

A new difficulty arises here for the computation of Wt: It requires to determine for a given
symbol W ∈ W, whether there exists a t-sequence s such that: s ∈ H (if γw(W ) is a H-

type), s is not invertible (if W 6∈ Ŵ), and cs 6= sd for some c, d ∈ A ∪ B (if the value of
δ(W ) imposes this). The non-invertibility condition is expressed via a universally quantified
formula (∀x : hx 6= 1 ∨ xh 6= 1), and the non-commutation condition is a disequation. Since
no hypothesis ensures that the satisfiability of such formulas over H is decidable, we give
up the hope to compute Wt. The same kind of difficulty arises in the computation of an
AB-homomorphism ψt : W

′ → Ht (whatever variant W′ of the AB-algebra Wt we use). We
have to compute, for every W ∈ W ′, an image ψt(W ) having the same behaviour as W w.r.t.
I, γ, µ, δ, while Lemma 19 is no more ensured when H is not assumed to be a group.

We overcome the above difficulties by introducing the notion of a weak AB-homomorphism.
For two AB-algebras Mi = 〈Mi, ιA,i, ιB,i, Ii, γi, µi, δi〉 (i ∈ {1, 2}) a weak-AB-homomorphism
fromM1 toM2 is a map ψ : M1 →M2 fulfilling the following properties:
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(Hom1) ψ : M1 →M2 is a monoid homomorphism.

(Hom2) ∀a ∈ A : ψ(ιA,1(a)) = ιA,2(a) and ∀b ∈ B : ψ(ιB,1(b)) = ιB,2(b)

(wHom3) ∀m ∈M1 : m ∈ dom(I1)⇒ ψ(m) ∈ dom(I2)

(Hom4) ∀m ∈ dom(I1) : I2(ψ(m)) = ψ(I1(m))

(Hom5) ∀m ∈M1 : γ1(m) ⊆ γ2(ψ(m))

(wHom6) ∀m ∈M1 : ∀θ ∈ γ1(m) : µ1(θ,m) ⊆ µ2(θ, ψ(m))

(wHom7) ∀m ∈M1 : ∀θ ∈ γ1(m) : δ1(θ,m) ⊆ δ2(θ, ψ(m))

In axiom (wHom6), the ordering ⊆ refers to the product ordering over B2(Q), which is defined
by (r1, r2) ⊆ (r′1, r

′
2) if and only if r1 ⊆ r

′
1 and r2 ⊆ r

′
2.

We have thus replaced the axioms (Hom3), (Hom6), and (Hom7) by the weaker axioms
(wHom3), (wHom6), and (wHom7), respectively. It remains true that the above list of axioms
can be checked on the generators only, i.e., the following analogue of Lemma 23 is true.

Lemma 64. LetM1 andM2 be two AB-algebra as above and assume that M1 satisfies the
following:

(A) The monoid M1 is generated by the set Γ and A ∪B ⊆ Γ
(B) γ1(g) 6= ∅ for all g ∈ Γ
(C) For every m ∈ M1 there exists a decomposition m = g1 · · · gn with g1, . . . , gn ∈ Γ such

that: γ1(m) = γ1(g1) · · · γ1(gn) 8

Let ψ : M1 → M2 be a monoid homomorphism. This map ψ is a weak AB-homomorphism if
and only if for all g ∈ Γ and θ ∈ γ1(g) we have:

(a) ∀a ∈ A : ψ(ιA,1(a)) = ιA,2(a) and ∀b ∈ B : ψ(ιB,1(b)) = ιB,2(b)

(b) g ∈ dom(I1)⇒ ψ(g) ∈ dom(I2)

(c) If g ∈ dom(I1) then I2(ψ(g)) = ψ(I1(g))

(d) γ1(g) ⊆ γ2(ψ(g))
(e) µ1(θ, g) ⊆ µ2(θ, ψ(g))
(f) δ1(θ, g) ⊆ δ2(θ, ψ(g)).

Given two AB-algebras M1,M2, we denote by wHomAB(M1,M2) the set of all weak AB-
homomorphisms fromM1 toM2.

Let us notice that the subalphabet Wt was equal to {W ∈ W | HomAB(〈W 〉,Ht) 6= ∅},
where 〈W 〉 is the smallest sub-AB-algebra containing {W}. We are thus naturally led to
define

W ′
t = {W ∈ W | wHomAB(〈W 〉,Ht) 6= ∅}.

We then define

W′
t = (W ′∗

t ∗ A ∗B)/≡.

Moreover, we define W ′
H = {W ∈ W ′

t | γw(W ) is an H-type} and W′
H = (W ′∗

H ∗A ∗B)/≡. We
can then express the solutions of the original equation over G via some AB-homomorphisms,
resp., weak AB-homomorphisms:

8 If n = 0, i.e., m = 1, then γ1(g1) · · · γ1(gn) is the neutral element {(θ, 0, θ) | θ ∈ T6} of the monoid 2T .
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Lemma 65. Let DS =
∨
j∈J Sj be a finite disjunction of systems of equations over G, with

rational constraints, where Sj = (S, µA,G, µj). Let us suppose that DS is in closed quadratic
normal form (defined at the end of Section 4). A monoid homomorphism

σ : U∗ → G

is a solution of DS if and only if there exist an index j ∈ J , an admissible vector (W ,e) with
all components from W ′

t ∪A∪B, an involution Φ ∈ HInv, an AB-homomorphism σW : W′
t →

W′
t/Φ and a weak AB-homomorphism ψt : W

′
t/Φ→ Ht such that:

(S1) σW is a solution of St(Sj ,W ,e)
(S2) σW ◦ ψt is a solution of SH(Sj ,W ,e)
(S3) σ = σW ,e ◦ σW ◦ ψt ◦ πG

Remark 5. Discarding the adjective “weak” in the above statement and replacing W′
t by Wt

results in a straightforward synthesis of Lemma 45 with Lemma 46. The introduction of
“weak” and W′

t makes the statement usable for an effective characterisation of satisfiable
systems of equations. These maps were summarized in Figure 11 and form the left-lower part
of Figure 21.

Proof. First suppose that a monoid homomorphism

σ : U∗ → G

is a solution of DS. By Lemma 45, there exists an admissible vector (W ,e) over Wt ∪A∪B
and an AB-homomorphism σ̃t : Wt → Ht such that

σ̃t solves St(Sj ,W ,e) and SH(Sj ,W ,e), and (362)

σ = σW ,e ◦ σ̃t ◦ πG. (363)

By Lemma 46, σ̃t can be decomposed over the image of σW ,e as

σ̃t = σ̃W ◦ ψ̃t (364)

where σ̃W ∈ HomAB(Wt,Wt/Φ), ψ̃t ∈ HomAB(Wt/Φ,Ht), and Φ ∈ HInv such that

σ̃W solves St(Sj ,W ,e). (365)

The automorphism Φ can be chosen in such a way that

∀W ∈ W ′
t \Wt : Φ(W ) =W. (366)

For this, it suffices, if necessary, to modify the original Φ over the symbols Wk and W k,
which do not belong to Wt; this can be done without violating the properties (96)–(99)
that define HInv. Let us extend the maps σ̃W and ψ̃t to maps σW ∈ HomAB(W

′
t,W

′
t/Φ) and

ψt ∈ wHomAB(W
′
t/Φ,Ht), respectively, by setting

∀W ∈ W ′
t \Wt : σW(W ) = [W ]≡Φ

and ψt([W ]≡Φ
) = hW (W ),

where hW ∈ wHomAB(〈W 〉,Ht). Lemma 64 and (366) ensure that such extensions exist. We
then define

σt = σW ◦ ψt. (367)
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1 compute the subalphabet W ′
t ⊆ W that generates W′

t

2 for all admissible vectors (W ,e) over W ′
t ∪A ∪B, all Φ ∈ HInv, and

all σH ∈ HomAB(W
′
H,W

′
H/Φ) do

3 construct the systems St(S,W ,e) and SH(S,W ,e) defined on page 53
4 from St(S,W ,e), Φ, and σH construct the system (SE,C) according to Section 8.1
5 check, whether (SE,C) is solvable over E
6 check, whether there is ψH,t ∈ wHomAB(W

′
H/Φ,Ht) such that σH◦ψH,t solves SH(S,W ,e)

7 endfor
8 if solutions in 6 and 7 are found then (S, µA,G, µU ) is satisfiable

else (S, µA,G, µU ) is unsatisfiable

Fig. 20. The algorithm for checking satisfiability of a system of equations with rational con-
straints in a monoid G.

By (365), the restriction of σW to Wt solves the system St(Sj ,W ,e). Since all symbols in
St(Sj ,W ,e) are from Wt ∪A ∪B, also σW solves this system. Hence (S1) is true.

By the same argument, (362) and (364) imply that (S2) is true. Finally, by (363) and
(364) we have σ = σW ,e ◦ σ̃W ◦ ψ̃t ◦ πG. But the image of σW ,e is included in Wt, and the
image of σ̃W is included in Wt/Φ. Thus, the above identity is still true after replacing the
maps σ̃W and ψ̃t by σW and ψt, respectively, i.e., (S3) is true.

Conversely, suppose that (W ,e) (with all components from W ′
t ∪ A ∪ B), Φ ∈ HInv,

σW ∈ HomAB(W
′
t,W

′
t/Φ), and ψt ∈ wHomAB(W

′
t/Φ,Ht) are fulfilling (S1), (S2), and (S3).

Let us define σt = σW ◦ ψt and σ = σW ,e ◦ σt ◦ πG. By (S1) and (S2), the map σt is a weak-
AB-homomorphism solving St(Sj ,W ,e) ∧ SH(Sj ,W ,e). The arguments given in Section 5.2
(page 59), adapted to a weak AB-homomorphism ψt from the AB-algebra W′

t/Φ into Ht show
that σ is an over-solution of DS (see Section 4). Since DS is assumed to be in closed quadratic
normal form, σ is a solution of DS. ⊓⊔

Proof of Proposition 8. By Proposition 5, every system S0 of equations with rational con-
straints over G can be reduced to a disjunction DS =

∨
j∈J Sj in closed quadratic normal

form where Sj = (S, µA, µU ,j). Note that the different systems Sj only differ by their maps
µU ,j. Fix a j ∈ J and let µU = µU ,j. Solvability of the system (S, µA, µU ) is checked by the
algorithm from Figure 20, which is a variant of the algorithm from Figure 19.

We summarize in Figure 21 the different maps to be found, where dashed arrows correspond
to weak AB-homomorphisms. Correctness of the algorithm can be shown, using Lemma 65,
in the same way as correctness of the algorithm for the group case (Figure 19). Let us now
argue that every line of the algorithm can be made effective.

In line 1, we have to check for every letter W ∈ W, whether there exists a weak AB-
homomorphism from the induced AB-subalgebra 〈W 〉 to Ht. By Lemma 64, this amounts
to test that conditions (a)–(f) of this lemma are fulfilled. Let us define constraints on the
variable W that express these conditions. Assume that γw(W ) = {θ}. If θ is an H-type, then
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G

U∗

Ht

W′

W ′∗ ∗A ∗B

W′/Φ E

W′
H

W′
H/Φσ

σW,e

σt

πG

π≡

σE

ψt

σW

σH

πE

Fig. 21. The algorithm: monoid case

we set:

CI(W ) =

{
H if W ∈ W ′ \ Ŵ ,

I(H) if W ∈ Ŵ,
(368)

Cγ(W ) = {h ∈ H | θ ∈ γt(h)}, (369)

Cµ(W ) = {h ∈ H | µw(W ) ⊆ µt(θ, h)}, (370)

Cδ(W ) = {h ∈ H | δw(W ) ⊆ δt(θ, h)}. (371)

C(W ) = CI(W ) ∩ Cγ(W ) ∩ Cµ(W ) ∩ Cδ(W ). (372)

If θ is a T-type, then we set:

CI(W ) =

{
H ∗ {t, t−1}∗ if W ∈ W ′ \ Ŵ,

dom(It) if W ∈ Ŵ,
(373)

Cγ(W ) = {s ∈ H ∗ {t, t−1}∗ | θ ∈ γt(s)}, (374)

Cµ(W ) = {s ∈ H ∗ {t, t−1}∗ | µw(W ) ⊆ µt(θ, s)}, (375)

Cδ(W ) = {s ∈ H ∗ {t, t−1}∗ | δw(W ) ⊆ δt(θ, s)}, (376)

C(W ) = CI(W ) ∩ Cγ(W ) ∩ Cµ(W ) ∩ Cδ(W ). (377)

The values of the C(W ) are defined in such a way that now, every set C(W ) with γw(W )
an H-type belongs to EQ(H, bool(Rat(H))), while every set C(W ) with γw(W ) a T-type
is recognized by some fta with labels in EQ(H, bool(Rat(H))). Line 1 thus reduces to in-
stances of Q2. Moreover, line 5 is an instance of Q1. Let us finally show that line 6 can be
achieved by a Turing-reduction to Q2. By Lemma 64 again, line 4 amounts to find some tuple
(ψH,t(W ))W∈W ′

H
over H solving the system of equations

σW(SH(S,W ,e)) ∪ {(Wk, a
−1
k W kb

−1
k ) | 1 ≤ k ≤ p} ∪ {(W k, akWkbk) | 1 ≤ k ≤ p},

together with the constraint C defined for line 1. Line 4 is thus an instance of Q2. We have
thus proved Proposition 8. ⊓⊔

Theorem 5. Let H be a cancellative monoid and G an HNN-extension of H with finite as-
sociated subgroups A and B. The satisfiability problem for systems of equations with rational
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constraints in G is Turing-reducible to the satisfiability problem for systems of equations with
rational constraints in H.

Proof. Let H be a cancellative monoid and G an HNN-extension of H with finite associated
subgroups A and B. By Proposition 8 the satisfiability problem for systems of equations with
rational constraints in G is Turing-reducible to the pair of problems (Q1, Q2), where Q1 is the
satisfiability problem for systems of equations with rational constraints in a group E having
a presentation in PHNN(A). But, due to the structure of E (see Section 7.4) and Theorem 4,
this problem Q1 is decidable. Thus, the satisfiability problem for systems of equations with
rational constraints in G is Turing-reducible to the single problem Q2, i.e., the satisfiability
problem for systems of equations with rational constraints in H. ⊓⊔

The two following sections are stating some variants of the main Theorem 5. The variations
consist in considering:

– other kinds of constraints: positive rational constraints, positive subgroup constraints, con-
stant constraints,

– not only equations but also disequations

– the operation of free product with amalgamation instead of the operation of HNN-extension.

It turns out that all these variations lead to analogues of Theorem 5.

10 Equations with positive rational constraints over G

10.1 Positive rational constraints

We consider here constraints for the variables consisting of rational subsets of the monoid
(while in Theorem 5 the constraint sets are boolean combinations of rational subsets). More
formally, a system of equations with positive rational constraints in the monoid M is a system
(S,C) with constraints in C = Rat(M).

Theorem 6. Let H be a cancellative monoid and G an HNN-extension of H with finite as-
sociated subgroups. The satisfiability problem for systems of equations with positive rational
constraints in G is Turing-reducible to the satisfiability problem for systems of equations with
positive rational constraints in H.

Proof. It suffices to adapt the reduction given in the proof of Theorem 5:

– The strict normal partitioned fta A with labeling set bool(Rat(H)) is merely replaced by a
normal partitioned fta A with labeling set Rat(H). The existence of such an fta recognizing
the given positive constraints is ensured by point (1) from Proposition 2.

– The AB-algebra Ht is replaced by the AB-algebra Ht,+(defined in (67)).

– For every W ∈ W ′
H: Cγ(W ) = {h ∈ H | γw(W ) ⊆ γ+(h)}.

– For W ∈ W ′
t \W

′
H: Cγ(W ) = {s ∈ H ∗ {t, t−1}∗ | γw(W ) ⊆ γ+(s)}.

– For W ∈ W ′
t \ W

′
H, each of the sets CI(W ), Cγ(W ), Cµ(W ), and Cδ(W ) is recognized by

an fta with labels in EQ(H,Rat(H)). ⊓⊔
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10.2 Positive subgroup constraints

We consider here the case where G is the HNN-extension of a group H by an isomorphism
ϕ : A → A from a finite subgroup A of H into itself. Let C1, . . . , Cn be finitely generated
subgroups of H containing A. Let us consider the sets

CH = {C1, . . . , Cn} and CG = {C1, . . . , Cn, 〈C1, t〉, . . . , 〈Cn, t〉}.

The set of constraints CG turns out to be useful for the decidability of the positive first-order
theory of G (see [LS05]).

Theorem 7. Let H be a group and G an HNN-extension of H with finite associated subgroups
A = B. The satisfiability problem for systems of equations over G with constraints in CG is
Turing-reducible to the satisfiability problem for systems of equations over H with constraints
in CH.

Proof sketch. It suffices to adapt the reduction given in the proof of Theorem 5:

– The strict normal partitioned fta A with labeling set bool(Rat(H)) is replaced by a normal
partitioned fta A with labeling set {{a} | a ∈ A} ∪ CH.

– The AB-algebra Ht is replaced by the AB-algebra Ht,+ (defined by (67)).

Let us describe more precisely the necessary adaptations. Given a finitely generated subgroup
Ci, we consider the fta Ai that posesses exactly two states (1,H) (its initial state) and (1, 1)
(its terminal state) and one transition ((1,H), Ci, (1, 1)). This fta Ai is trivially partitioned,
≈-compatible, ∼-saturated, unitary and it recognizes the subgroup Ci. Let us consider now
the fta Bi obtained from the fta G6 by replacing each occurence of the label H by the label
Ci. This fta Bi is partitioned, ≈-compatible (because A ⊆ Ci), ∼-saturated (because each of
the four states (A,T ), (B,H), (B,T ), (A,H) has a loop labeled by A) unitary (because, for
every vertex-type θ, there exists only one state mapped to the type θ by τ) and recognizes
the subgroup 〈Ci, t〉.

LetA be the direct product of all these partitioned ftaAi and Bi. The ftaA is a partitioned
fta which is also ≈-compatible and ∼-saturated (by [LS08, Lemma 5]) and unitary (because
unitarity is also preserved by direct products). Given a finite set of constraints µ : U∗ → CG,
there exist IU ⊆ QA, TU ⊆ QA such that

C(U) = {g ∈ G | (IU × TU ) ∩ µA,G(g) 6= ∅}.

Any system of equations S0 over G with constraints in CG can thus be reduced to a disjunction∨
j∈J S1,j of systems of equations with rational constraints over G with set of variables U1 ⊇
U0, of the form (126), fulfiling points (a), (c), (d), and (e) of Proposition 5 and point (b), with
the modification that the fta A is a normal partitioned fta (which might be non-strict) over
the labelling set {{a} | a ∈ A}∪CH. Line 6 of the algorithm scheme amounts to the following:

– Find a solution in H to the system

σW(SH(S,W ,e)) ∪ {(Wk, a
−1
k W kb

−1
k ) | 1 ≤ k ≤ p} ∪ {(W k, akWkbk) | 1 ≤ k ≤ p}

with the additional constraints C(W ) for W ∈ W ′
H; this is an instance of the satisfiability

problem for systems of equations with constraints in CH.
– Find an element in the set C(W ) for W ∈ W ′

t−W
′
H; the set C(W ) is recognized by an fta

where each label is the set of solutions of a system of equations in H with constraints in
CH. This problem thus reduces to finitely many instances of the satisfiability problem for
systems of equations with constraints in CH. ⊓⊔
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10.3 Constants

The sets of constraints corresponding to so called equations with constants are

CH = {{h} | h ∈ H} ∪ {H} and CG = {{g} | g ∈ G} ∪ {G}.

Theorem 8. Let H be a cancellative monoid and G an HNN-extension of H with finite as-
sociated subgroups. The satisfiability problem for systems of equations with constants in G is
Turing-reducible to the satisfiability problem for systems of equations with constants in H.

Proof sketch. It suffices to adapt the reduction given in the proof of Theorem 5:

– The strict normal partitioned fta A with labeling set bool(Rat(H)) is replaced by a normal
partitioned fta A with labeling set CH.

– The AB-algebra Ht is replaced by the AB-algebra Ht,+ (defined in (67)). ⊓⊔

11 Equations and disequations with rational constraints over G

We recall that the notion of systems of equations and disequations with rational constraints
over a monoid has been defined in Section 2.6.

11.1 Rational constraints

Let us show how to reduce a system of equations and disequations (with rational constraints)
over G to a systems of equations (with rational constraints) over Ht together with a system
of (dis)equations (with rational constraints) over H.

Let us start with a system of equations/disequations with rational constraints, over G,
which is in normal form (see Proposition 5):

((Ei)1≤i≤n, (Ei)n+1≤i≤2n, µA,G, µU ) (378)

The equations Ei have the form

Ei : (Ui,1, Ui,2Ui,3) for all 1 ≤ i ≤ n

while the disequations Ei have the form

Ei : (Ui,1, Ui,2) for all n+ 1 ≤ i ≤ 2n

where, for every i ∈ [1, n], the symbols Ui,1, Ui,2, Ui,3, Un+i,1, Un+i,2 belong to the alphabet
of unknowns U . Let us consider the alphabet V0 = [1, 2n] × [1, 3] × [1, 5] × [0, N0] and the
alphabet W constructed from this V0 in Section 3.6. We choose the integer N0 in such a way
that

Card({W ∈ W | ∃i, j, k, p1(W ) = (i, j, k, 0)}) <
1

2
Card(V0) (379)

(one can still take, as in the case of equations, N0 := 2Card({−1, 0, 1} × THT × B2(Q) ×
PGI{A,B}) + 1 in order to achieve this inequality).

We consider all the vectors (Wi,j,k) where 1 ≤ i ≤ 2n, 1 ≤ j ≤ 3, 1 ≤ k ≤ 5 of elements of
W ∪ {1} and all triple (ei,1,2, ei,2,3, ei,3,1) ∈ (A ∪B)3 such that: the vectors

(Wi,j,k)1≤i≤n,1≤j≤3,1≤k≤5, (ei,1,2, ei,2,3, ei,3,1)1≤i≤n
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fulfill conditions (137)-(145) and their counterpart for disequations

(Wi,j,k)n+1≤i≤2n,1≤j≤2,1≤k≤5, (ei,1,2)n+1≤i≤2n

fulfill the analogous conditions:

p1(Wi,j,k) = (i, j, k, 0) ∈ V0 for Wi,j,k 6= 1 (380)

γ(
5∏

k=1

Wi,j,k) = (1,H, b, 1, 1) for some b ∈ {0, 1} (381)

µ(
5∏

k=1

Wi,j,k) = µU(Ui,j) (382)

γ(
2∏

k=1

Wi,1,k) = γ(
2∏

k=1

Wi,2,k) (383)

Wi,j,3 ∈ W ∧ γw(Wi,j,3) is an H-type (384)

ei,1,2 ∈ Gi(Wi,1,3) = Gi(Wi,2,3) (385)

A vector (W ,e) fulfilling (137)-(145) for the indices i ∈ [1, n] and (380)–(385) for the indices
i ∈ [n+1, 2n] is called an admissible vector. For every admissible vector (W ,e) we define the
following equations and disequations:

– For all 1 ≤ i ≤ 2n:

5∏

k=1

Wi,j,k =

5∏

k=1

Wi′,j′,k if Ui,j = Ui′,j′ (386)

Wi,1,1Wi,1,2ei,1,2 =Wi,2,1Wi,2,2 (387)

– For all 1 ≤ i ≤ n:

Wi,2,4Wi,2,5 = ei,2,3Iw(Wi,3,2)Iw(Wi,3,1) (388)

ei,3,1Wi,1,4Wi,1,5 =Wi,3,4Wi,3,5 (389)

Wi,1,3 = ei,1,2Wi,2,3ei,2,3Wi,3,3ei,3,1 (390)

– For all n+ 1 ≤ i ≤ 2n such that τe(Wi,1,3) = τe(Wi,2,3) and all d ∈ Ge(Wi,1,3):

Wi,1,3d 6= ei,1,2Wi,2,3 (391)

We denote by St(S,W ,e) the system of equations (386)–(389), and by SH(S,W ,e) the system
of equations and disequations (390)–(391). For every (i, j) ∈ [1, n]× [1, 3] ∪ [n+1, 2n]× [1, 2]
we denote by i, j the smallest pair such that Ui,j = Ui,j. By σW ,e : U∗ → W we denote the
unique monoid homomorphism such that

σW ,e(Ui,j) =

5∏

k=1

Wi,j,k.
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Fig. 22. A disequation cut into parts

Lemma 66. Let S = ((Ei)1≤i≤n, (Ei)n+1≤i≤2n, µA,G, µU ) be a system of equations and dise-
quations over G with rational constraint. Let us suppose that S is in quadratic normal form.
A monoid homomorphism

σ : U∗ → G

is a solution of S if and only if there exists an admissible vector (W ,e) of variables from Wt

and elements of A ∪B and an AB-homomorphism

σt : Wt → Ht

solving simultaneously the system St(S,W ,e) of equations over Ht and the system SH(S,W ,e)
of equations and disequations over H, and such that

σ = σW ,e ◦ σt ◦ πG.

From G-solutions to t-solutions. Let σ : U∗ → G be a monoid homomorphism solving
the system S. For every 1 ≤ i ≤ n we construct the vector (Wi,∗,∗, ei,∗,∗) as in Section 5.2.
Let us fix now some disequation from S, i.e. some integer n+ 1 ≤ i ≤ 2n. Let us choose, for
every j ∈ {1, 2} some si,j ∈ Red(H, t) such that

σ(Ui,j) = πG(si,j).

Let us consider some decomposition of the form (5) for si,1 and si,2:

si,1 = h0t
α1h1 · · · t

αλhλ · · · t
αℓhℓ, (392)

si,2 = h′0t
α′
1h′1 · · · t

α′
λh′λ · · · t

α′

ℓ′h′ℓ′ . (393)
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Fig. 23. Disequations, case 1

We know that si,1 6≈ si,2. Let us distinguish the possible forms for si,1, as represented in
Figures 23-25.

Case 1. There exists 2 ≤ λ ≤ min{ℓ, ℓ′} and ei,1,2 ∈ B(αλ−1) such that αs = α′
s for 1 ≤ s ≤ λ

and

h0t
α1h1 · · · t

αλ−1ei,1,2 = h′0t
α1h′1 · · · t

αλ−1 , hλ−1d 6= ei,1,2h
′
λ−1 for all d ∈ A(αλ).

We consider the following factors of si,1 and si,2:

Li,1 = h0t
α1h1 · · · t

αλ−1 , Mi,1 = hλ−1, Ri,1 = tαλhλt
αλ+1 · · · tαℓhℓ,

Li,2 = h′0t
α1h′1 · · · t

αλ−1 , Mi,2 = h′λ−1, Ri,2 = tαλh′λt
α′
λ+1 · · · tα

′

ℓ′h′ℓ′ .

Following the lines of Section 5.2, the reduced sequences si,j (1 ≤ j ≤ 2) can be cut into five
factors vi,j,k (1 ≤ k ≤ 5) and subsequently lifted to five letters (Wi,j,k) (1 ≤ k ≤ 5) such that
the vector (Wi,∗,∗, ei,1,2) fulfills conditions (380)-(385) and the classes ([vi,∗,∗]∼) fulfill equation
(387) and disequations (391). We can define σt(Wi,j,k) = [vi,j,k]∼. Then, σt can be extended
to an AB-homomorphism solving both systems St(S,W ,e), SH(S,W ,e) and such that

σ = σW ,e ◦ σt ◦ πG.

Case 2. There exist 2 ≤ λ ≤ min{ℓ, ℓ′} and ei,1,2 ∈ B(αλ−1) such that αs = α′
s for 1 ≤ s ≤

λ− 1, αλ = −α′
λ and

h0t
α1h1 · · · t

αλ−1ei,1,2 = h′0t
α1h′1 · · · t

αλ−1 .

We consider the factors Li,1,Mi,1, Ri,1, Li,2,Mi,2 defined by the same formulas as in case 1,
and define

Ri,2 = t−αλh′λt
α′
λ+1 · · · tα

′

ℓ′h′ℓ′ .
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Fig. 24. Disequations, case 2

This time we obtain a vector (Wi,∗,∗) such that τe(Wi,1,3) 6= τe(Wi,2,3). Hence, there is no
disequation (391) associated to this index i. The vector (Wi,∗,∗, ei,1,2) fulfills conditions (380)-
(385) and the classes [vi,∗,∗]∼ fulfill equation (387).

Case 3. 1 ≤ ℓ ≤ ℓ′, αs = α′
s for 1 ≤ s ≤ ℓ and there exists ei,1,2 ∈ B(αℓ) such that

h0t
α1h1 · · · t

αℓei,1,2 = h′0t
α1h′1 · · · t

αℓ .

This case can be treated similarly as case 2. We just define Ri,1 = 1 and, correspondingly
Wi,1,k = 1, for 4 ≤ k ≤ 5.

Case 4. 1 ≤ ℓ′ ≤ ℓ, αs = α′
s for 1 ≤ s ≤ ℓ

′ and there exists ei,1,2 ∈ B(αℓ′) such that

h0t
α1h1 · · · t

αℓ′ ei,1,2 = h′0t
α1h′1 · · · t

αℓ′ .

This case is obtained from Case 3 by exchanging si,1 and si,2.
It remains to treat some degenerated cases.

Case 5. α1 = −α′
1 or (α1 = α′

1 and h0d 6= h′0 for all d ∈ A(α1)). We set Li,1 = Li,2 = 1,

ei,1,2 = 1, Mi,1 = h0, Mi,2 = h′0, Ri,1 = tα1h1 · · · t
αℓhℓ, and Ri,2 = tα

′
1h′1 · · · t

α′

ℓ′h′ℓ′ . The
construction is ended as in the degenerated cases from Section 5.2.

Case 6. ℓ = 0 < ℓ′. We set Li,1 = Li,2 = Ri,1 = 1, ei,1,2 = 1, Mi,1 = h0, Mi,2 = h′0, and

Ri,2 = tα
′
1h′1 · · · t

α′

ℓ′h′ℓ′ . The construction is ended as in the degenerated cases of Section 5.2.

Case 7. ℓ′ = 0 < ℓ. This case is treated analogously to the previous case.

Case 8. ℓ = ℓ′ = 0. We set Li,1 = Li,2 = Ri,1 = Ri,2 = 1, ei,1,2 = 1, Mi,1 = h0, and Mi,2 = h′0.

From t-solutions to G-solutions Let σt : Wt → Ht be an AB-homomorphism solving both
systems St(S,W ,e) and SH(S,W ,e). Owing to the proofs of Section 5.2, we just have to
prove that for every i ∈ [n+ 1, 2n],

σt(σW ,e(Ui,1)) 6≈ σt(σW ,e(Ui,2)).
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Fig. 25. Disequations, case 3

Using equation (386) and the definition of σW ,e, the above inequalities are equivalent with

σt(

5∏

k=1

Wi,1,k) 6≈ σt(
5∏

k=1

Wi,2,k). (394)

Equation (387) states that

σt(Wi,1,1Wi,1,2)ei,1,2 = σt(Wi,2,1Wi,2,2). (395)

Since G is cancellative, we must show

σt(

5∏

k=3

Wi,1,k) 6≈ ei,1,2σt(
5∏

k=3

Wi,2,k). (396)

Let us distinguish several cases according to the values of τe(Wi,j,3). Since by (384), the
γw(Wi,j,3) are H-types, one of the following cases must occur.

Case 1. τe(Wi,1,3) = τe(Wi,2,3) = (1, 1). With (381), we get γ(Wi,j,4Wi,j,5) = (1, 1, 0, 1, 1), i.e.,
σt(Wi,j,4Wi,j,5) = 1 for j ∈ [1, 2]. Hence, the negation of (396) and cancellativity of G imply
σt(Wi,1,3) ≈ ei,1,2σt(Wi,2,3), i.e., σt(Wi,1,3) 6= ei,1,2σt(Wi,2,3) But this contradicts disequation
(391) for d = 1.

Case 2. τe(Wi,1,3) = τe(Wi,2,3) = (A,T ). Then we would get an identity of the form σt(Wi,1,3)d 6=
ei,1,2σt(Wi,2,3) for some d ∈ A from the negation of (396). But this contradicts disequation
(391).

Case 3. τe(Wi,1,3) = τe(Wi,2,3) = (B,T ). The same argument as for Case 2 works.

Case 4. τe(Wi,1,3) 6= τe(Wi,2,3). This implies that the projections of σt(
∏5
k=3Wi,1,k) and

σt(
∏5
k=1Wi,2,3) on {t, t

−1}∗ are not equal. Hence, inequality (396) holds.

This concludes the proof of Lemma 66. ⊓⊔
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Theorem 9. Let H be a cancellative monoid and G an HNN-extension of H with finite asso-
ciated subgroups A and B. The satisfiability problem for systems of equations and disequations
with rational constraints in G is Turing-reducible to the satisfiability problem for systems of
equations and disequations with rational constraints in H.

In order to prove this theorem we must, as for the proof of Theorem 5, cope with the fact
that we do not know an algorithm for testing the satisfiability over H of an equation with the
constraint H \ I(H) (the set of non-units of the monoid H). Therefore we use again the notion
of a weak AB-homomorphism. 9 We first adapt Lemma 65 to:

Lemma 67. Let DS =
∨
j∈J Sj be a finite disjunction of systems of equations and disequa-

tions over G, with rational constraint where Sj = ((Ei)1≤i≤n, (Ei)n+1≤i≤2n, µA, µU ,j). Let us
suppose that DS is in closed quadratic normal form. A monoid homomorphism

σ : U∗ → G

is a solution of DS if and only if, there exists and index j ∈ J , an admissible vector (W ,e)
of variables of W and elements of A ∪ B, an involution Φ ∈ HInv, an AB-homomorphism
σW : W′

t →W′
t/Φ and a weak AB-homomorphism ψt : W

′
t/Φ→ Ht such that:

(S1) σW is a solution of the system of equations St(Sj ,W ,e),
(S2) σW ◦ ψt is a solution of the system of equations and disequations SH(Sj,W ,e),
(S3) σ = σW ,e ◦ σW ◦ ψt ◦ πG.

This lemma can be proved in the same way as Lemma 65.

Sketch of the proof of Theorem 9. It suffices to adapt the reductions given in the proof of
Theorem 5 as follows:

– Lemma 65 is replaced by Lemma 67.
– Instead of a system of equations with rational constraints inH we use the system SH(S,W ,e)

of equations and disequations with rational contraints in H supplied by Lemma 66. ⊓⊔

11.2 Positive rational constraints

Here we consider CG = Rat(G) and CH = Rat(H).

Theorem 10. Let H be a cancellative monoid and G an HNN-extension of H with finite
associated subgroups A,B. The satisfiability problem for systems of equations and disequations
with positive rational constraints in G is Turing-reducible to the satisfiability problem for
systems of equations and disequations with positive rational constraints in H.

In order to prove this theorem we must, as for Theorem 5, cope with the fact that we do not
know an algorithm for testing emptiness of a set of the form {s ∈ H∗{t, t−1}∗ | µt(s) = µ(W )}:
such a set is not known to be recognized by an fta with labels which are defined by equations,
disequations and positive rational constraints over H. Therefore we use the notion of weak-
AB-homomorphism.

Sketch of the proof of Theorem 10. It suffices to adapt the reduction given in the proof of
Theorem 5 as follows:
9 Though we might also use a notion weaker than AB-homomorphisms and stronger than weak AB-
homomorphisms, since we are able to translate the conditions over γ, µ, δ by equations and disequations
with rational constraints.
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– Lemma 65 is replaced by Lemma 67.

– The initial positive constraints given by the system of equations and disequations are
defined by normal (possibly non-strict) ftas with labelling set Rat(H).

– Instead of a system of equations with rational constraints inH we use the system SH(S,W ,e)
of equations and disequations with positive rational contraints in H supplied by Lemma 66.

– For every W ∈ W ′
H, C(W ) belongs to DEQ(H,Rat(H)).

– For every W ∈ W ′
t \ W

′
H, C(W ) is recognized by an fta with labels in DEQ(H,Rat(H)):

this is clear for CI(W ),Cµ(W ),Cδ(W ); for Cγ(W ), the trick consists just in seeing the
subset H \ A (resp. H \ B) as defined by the system of disequations

∧
a∈A v 6= a (resp.∧

b∈B v 6= b). ⊓⊔

11.3 Constants

Here, the sets of constraints are CG = {{g} | g ∈ G} ∪ {G} and CH = {{h} | h ∈ H} ∪ {H}.

Theorem 11. Let H be a cancellative monoid and G an HNN-extension of H with finite
associated subgroups. The satisfiability problem for systems of equations and disequations with
constants in G is Turing-reducible to the satisfiability problem for systems of equations and
disequations with constants in H.

Proof sketch. We adapt the reductions given in the proof of Theorem 5 as follows:

– Lemma 65 is replaced by Lemma 67.

– For every W ∈ W ′
t, C(W ) is recognized by an fta with labeling set DEQ(H, CH), i.e. the

set of subsets of H which are definable by systems of equations and disequations with
constants. ⊓⊔

12 Equations and disequations over an amalgamated product

12.1 Equations and disequations

In this section we adapt the transfer result about the operation of HNN-extension (i.e. The-
orem 9) as a transfer result about free product with amalgamation (see Theorem 12 below).
We recalled in Section 2 Theorem 1 for equations and disequations and the operation of free
product. Let us use here the same notation L(CH1

, CH2
) and state a more general theorem.

Theorem 12. Let us consider two cancellative monoids H1,H2, two finite subgroups A1 ≤
H1, A2 ≤ H2, and an isomorphism ϕ : A1 → A2. The satisfiability problem for systems of equa-
tions and disequations with rational constraints in the amalgamated product G = 〈H1,H2; a =
ϕ(a) (a ∈ A1)〉 is Turing-reducible to the pair of problems (S1, S2) where

– S1 is the satisfiability problem for systems of equations and disequations with rational
constraints in H1 and

– S2 is the satisfiability problem for systems of equations and disequations with rational
constraints in H2.
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Proof. Let us use the embedding η : G → Ĝ defined in Section 2.2 by formula (12), where
Ĝ = 〈H1 ∗H2, t; t

−1at = ϕ(a)(a ∈ A1)〉. By Lemma 20 the satisfiability problem for systems
of equations and disequations with rational constraints in G is reduced to the same problem
in Ĝ. By Theorem 5 this problem reduces to the same problem in the product H1 ∗H2 and by
Theorem 1 this last problem reduces to the same problem in every factor, i.e., to (S1, S2). ⊓⊔

Note that when CHi
= {{h} | h ∈ Hi} ∪ {Hi} then L(CH1

, CH2
) ⊇ {{g} | g ∈ G} ∪ {G}. Hence,

by similar arguments as above, one can prove the variant of Theorem 12 where equations and
disequations with constants are considered.

12.2 Equations

We strongly believe that one can adapt the main transfer result about equations and the
operation of HNN-extension (i.e. Theorem 5) as a transfer result about free product with
amalgamation. Since we lack such a theorem even in the case of a free product, the most
natural method would consist in adapting all the method developed in Sections 3-6 to the case
of a free product with amalgamation over finite subgroups. As well, analogues of Theorem 6,
dealing with equations with positive rational constraints, and of Theorem 8, dealing with
equations with constants, should hold for free products with amalgamation.

13 Equations and disequations over a graph of groups

A (finite) graph in the sense of Serre [Ser77] is a tuple (V,E, ι, τ), where V is a finite
set of vertices, E is a finite set of edges, and ι : E → V (resp., τ : E → V ) maps
each edge to its initial (resp., terminal) vertex. Recall that a graph of groups is a tuple
G = (V,E, ι, τ, (Gv)v∈V , (ϕe)e∈E), where (V,E, ι, τ) is a finite graph, Gv is a group for every
vertex v ∈ V , and for every edge e ∈ E, ϕe is a partial isomorphism from Gι(e) into Gτ(e).
For every vertex v, we denote by π1(G, v) the fundamental group of G with base point v (see
[Ser77] or [DD90] for background on graphs of groups).

Theorem 13. Let G = (V,E, ι, τ, (Gv)v∈V , (ϕe)e∈E) be a finite graph of groups where all the
partial isomorphisms ϕe have finite domain and let v0 ∈ V . For a vertex v let Satv be the
satisfiability problem for systems of equations and disequations with rational constraints in the
group Gv. The satisfiability problem for systems of equations and disequations with rational
constraints in the fundamental group π1(G, v0) is Turing-reducible to the join of the problems
Satv (v ∈ V ).

Proof. We can assume that (V,E, ι, τ) is connected (otherwise adding some edges with trivial
partial isomorphisms would preserve the fundamental group and makes the graph connected).
Let T ⊆ E be a spanning tree, and let k = |T | − |E| and ℓ = |T |. The group π1(G, v0) can
be obtained as a k-fold HNN-extension of an ℓ-fold free product with amalgamation of the
vertex groups Gv , where the associated (or amalgamated) subgroups are dom(ϕe) and im(ϕe)
for e ∈ E. Hence, using k times Theorem 9 and ℓ times Theorem 12, we obtain the desired
Turing reduction. ⊓⊔

Related works In [DG07], Dahmani and Guirardel proved Theorem 3 by geometrical meth-
ods. Using this result, they get an algorithm that solves equations in any word hyperbolic
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group (even with torsion) [DG10]. As mentioned in the introduction, Myasnikov and Khar-
lampovich showed that the full first-order theory of a free group of finite rank is decidable.
Their solution includes methods for solving equations in so called fully residually free groups
[KM05a,KM05b].

Perspectives We think that part of the techniques exposed here can be extended to HNN-
extensions where the subgroups A and B are infinite but assumed to be nicely embedded in
the base group (or monoid) H.

We extend in [LS05] our transfer theorems to the positive first-order theory of HNN-
extensions (or free products with amalgamation) of groups. Whether an extension to the full
first-order theory is true (or not) is a fascinating open question.

References

[BO93] Ronald V. Book and Friedrich Otto. String–Rewriting Systems. Springer-Verlag, 1993.
[DD90] W. Dicks and M.J. Dunwoody. Groups acting on graphs. Cambridge University Press, 1990.
[DG07] F. Dahmani and V. Guirardel. Geometric Makanin algorithm for solving equations in virtually free

groups. In Talk given on November 08, 2007. MSRI,Lecture nr 12581, 2007.
[DG10] F. Dahmani and V. Guirardel. Foliations for solving equations in groups: free, virtually-free and

hyperbolic groups. arXiv:09101.1830v2, pages 1–70, 2010.
[DHG05] V. Diekert, C. Hagenah, and C. Gutierrez. The existential theory of equations with rational con-

straints in free groups is PSPACE-complete. TOCS, pages 1–45, 2005.
[DL03] Volker Diekert and Markus Lohrey. Word equations over graph products. In Proceedings FSTTCS,

pages 156–167. LNCS 2914, 2003.
[DL04] Volker Diekert and Markus Lohrey. Word equations over graph products. Theory of Computing

Systems, 37(1):133–156, 2004.
[DM06] Volker Diekert and Anca Muscholl. Solvability of equations in free partially commutative groups is

decidable. International Journal of Algebra and Computation, 2006. to appear.
[ES69] Samuel Eilenberg and M. P. Schützenberger. Rational sets in commutative monoids. J. Algebra,

13:173–191, 1969.
[Gre90] Elisabeth R. Green. Graph Products of Groups. PhD thesis, The University of Leeds, 1990.
[HNN49] Graham Higman, B. H. Neumann, and Hanna Neumann. Embedding theorems for groups. J. London

Math. Soc., 24:247–254, 1949.
[HU79] J.E. Hopcroft and J.D. Ullman. Introduction to Automata theory Theory, Languages and Computa-

tion. Addison-Wesley, Reading, Mass., 1979.
[KM98] Olga G. Kharlampovich and Alexei Myasnikov. Tarski’s problem about the elementary theory of free

groups has a positive solution. Electronic Research Announcements of the American Mathematical
Society, 4:101–108, 1998.

[KM05a] Olga Kharlampovich and Alexei Myasnikov. Implicit function theorem over free groups. J. Algebra,
290(1):1–203, 2005.

[KM05b] Olga Kharlampovich and Alexei G. Myasnikov. Effective JSJ decompositions. In Groups, languages,
algorithms, volume 378 of Contemp. Math., pages 87–212. Amer. Math. Soc., Providence, RI, 2005.

[KMS05] B. Khan, A. G. Myasnikov, and D. E. Serbin. On positive theories of groups with regular free length
function. Manuscript, 2005.

[KP98] Antoni Kościelski and Leszek Pacholski. Makanin’s algorithm is not primitive recursive. Theoretical
Computer Science, 191(1-2):145–156, 1998.

[LS77] Roger C. Lyndon and Paul E. Schupp. Combinatorial group theory. Springer-Verlag, Berlin, 1977.
Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 89.

[LS05] M. Lohrey and G. Sénizergues. Positive theories of HNN-extensions and amalgamated free products.
Manuscript, 2005.

[LS06] M. Lohrey and G. Sénizergues. Theories of HNN-extensions and amalgamated products. In Proceed-
ings ICALP’06, volume 4052 of LNCS, pages 504–515. Springer-Verlag, 2006.

[LS08] M. Lohrey and G. Sénizergues. Rational subsets in HNN-extensions and amalgamated products.
Internat. J. Algebra Comput., 18(1):111–163, 2008.

126
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