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Abstract

It is shown that the positive first-order theory of an HNN-extension
G = 〈H, t; t−1at = ϕ(a)(a ∈ A)〉 can be reduced to the existential first-
order theory of G provided that A and B are proper subgroups of the base
group H with A∩B finite. For an amalgamated free product G = H ∗A J ,
we show that the positive first-order theory of G can be reduced to the
existential first-order theory of G in case A is finite.

1 Introduction

This paper is the third paper in a serious of papers on equations over HNN-
extensions and amalgamated free products. These two operations are of funda-
mental importance in combinatorial group theory [15]. Recall that an amalga-
mated free product

G = H ∗A J (1)

of two groupsH and J , whereA is a subgroup ofH and J and w.l.o.g. A = H∩J ,
results from the free product H ∗ J by identifying every element of A ≤ H with
its corresponding element in A ≤ J . An HNN extension

G = 〈H, t; t−1at = ϕ(a)(a ∈ A)〉 (2)

of a group H, where A and B are isomorphic subgroups of H and ϕ : A → B

is an isomorphism, results from adding to H a new generator t such that the
conjugation of the subgroup A ≤ H by t equals the isomorphism ϕ.

In [14] we proved several decidability results for algorithmic problems for
rational subsets in HNN-extensions and amalgamated free products. Based
on theses results, we continued our investigations with existential theories of
equations (together with additional constraints for variables) in HNN-extensions
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and amalgamated free products [13]. Equations over groups and also monoids
are a classical research topic at the borderline between algebra, mathematical
logic, and theoretical computer science. This line of research was initiated by
the work of Lyndon, Tarksi, and others in the first half of the 20th century. For
a given group G, we are mainly concerned with two theories associated with G:
(i) the existential theory of G contains all true statements about G of the form
∃x1 ∈ G · · · ∃xn ∈ G : ϕ, where ϕ is a boolean combination of equations over
G. The left- and right hand sides of these equations are products of elements
from the group G as well as variables xi and their inverses. The positive theory
of G consists of all true statements about G, where also universally quantified
variables are allowed, but the use of negations is forbidden, i.e., conjunction and
disjunction are the only allowed boolean connectives.

Basically, Merzlyakov has shown that the positive theory of a free group
can be reduced to the existential theory of another free group [19], see also
[11]. Toghether with the later result of Makanin concerning the decidability
of the existential theory of a free group [16, 17], this shows that every free
group has a decidable positive theory [17]. This result is an important step
in the recent proof of Tarski’s conjecture by Kharlampovich and Myasnikov,
namely that the full first-order theory of a free group is decidable [12]. Roughly
speaking, Merzlyakov proved that a positive sentence ψ, which is interpreted
in a free group F , is equivalent to the existential sentence θ that results from
ψ by replacing its universally quantified variables x1, . . . , xn by new constants
k1, . . . , kn. These new constants do not interact with the free group F , i.e., the
resulting sentence θ is interpreted in the free product F ∗ F (k1, . . . kn) (where
F (k1, . . . kn) is the free group generated by k1, . . . kn), which is again a free
group.

Merzlyakov’s technique was recently extended to larger classes of groups: [6]
deals with graph products of free and finite groups and [10] considers groups
with a free regular length function. In [5] a general transfer theorem for positive
theories was shown for graph products: under some algebraic restrictions, the
decidability of the existential theory of a graph product implies the decidability
of the positive theory of the graph product. Graph products are a well-known
mathematical construction that generalize both free and direct products, see
e.g. [9].

In this paper we adapt Merzlyakov’s technique to certain HNN-extensions
and amalgamated free products. In order to do this for an HNN-extension
G = 〈H, t; t−1at = ϕ(a)(a ∈ A)〉, we have to assume that A and B = ϕ(A) have
finite intersection. In this situation, we are again able to replace the univer-
sally quantified variables x1, . . . , xn of a positive sentence ψ by new constants
k1, . . . , kn. But unlike for the case of a free group, we cannot avoid some interac-
tion between these new constants and the group G. More precisely, there exists
a (necessarily finite) subgroup X ⊆ A ∩ B ≤ G such that for every 1 ≤ i ≤ n

we have to impose the defining relation k−1
i aki = fi(a) (a ∈ X) for some auto-

morphism fi : X → X. Thus, the existential sentence θ that results from ψ by
replacing the universally quantified variable xi by the constant ki is interpreted
in a multiple HNN-extension G of G, where in each single HNN-extension the
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finite subgroup X is associated with itself. Finally we can apply [13, ] in order
to reduce the existential theory of the this HNN-extension G to the existential
theory of the initial HNN-extension G. This shows that for an HNN-extension
G = 〈H, t; t−1at = ϕ(a)(a ∈ A)〉 with A ∩ ϕ(A) finite, the positive theory of G
is decidable if the existential theory of G is decidable (Theorem 3.1). Similarly,
for an amalgamated free products G = H ∗A J , where A is finite, we show that
the positive theory of G is decidable if the existential theory of G is decidable
(Theorem 4.1). Finally, from Theorem 3.1, 4.1, and [13, ], we can easily deduce
that every virtually free group (i.e., a group with a free subgroup of finite in-
dex) has a decidable positive theory. This result relies on the fact that every
virtually free group can be built up from finite groups using the operations of
amalgamated free products and HNN-extensions, both subject to the finiteness
restrictions above, see e.g. [4].

2 Preliminaries

For sets A and B we write f : A →p B in order to express that f is a partial
mapping from A to B. For C ⊆ A we denote by f↾C the restriction of f to C.
The identity function on a set A is denoted by idA.

Let us fix a group G. Formulas of first-order logic over G are built up
from atomic formulas of the form xy = z, x−1 = y, and x = g (where x and
y are variables ranging over elements of G, and g ∈ G is a constant) using
boolean connectives and quantifications over variables. A boolean formula is
a formula without quantifiers. A formula ϕ is called positive if there are no
negations in ϕ, i.e., it is built up from conjunctions, disjunctions and (universal
and existential) quantifiers. A formula ϕ is called existential (resp. existential
positive) if it is of the form ∃x1 · · · ∃xn : ψ(x1, . . . , xn), where ψ is a boolean
(resp. positive boolean) combination of atomic formulas. For G countable, we
denote with Th∃(G) (resp. Th+(G), Th∃+(G)) the set of all existential (resp.
positive, existential positive) sentences that are true in G, this set is countable
again. For a countable set C ⊆ 2G of constraints we denote with Th∃(G, C) the
extension of Th∃(G), where also atomic formulas of the form x ∈ L for L ∈ C
are allowed. We restrict here to a countable G and a countable C, in order to
ensure that the above theories are countable. Hence, it makes sense to ask for
the decidability of these theories. We will use the following result from [13]:

Theorem 2.1. Let H be a group and let A be a finite subgroup of H. Let
C = {Bi | i ∈ I} be a class of constraints in H, where every Bi is a subgroup
of H, which contains A. Let G = 〈H, t; t−1at = ϕ(a)(a ∈ A)〉 be an HNN-
extension of H, where ϕ : A → A is an automorphism of A. For every i ∈ I
let Ci be the subgroup of G generated by Bi and the stable letter t. Let D =
{Bi | i ∈ I} ∪ {Ci | i ∈ I} If Th∃+(H, C) is decidable, then also Th∃+(G,D) is
decidable.

For a subgroup X of G, we denote with In(X,G) the group of all automor-
phisms f of X such that for some g ∈ G we have: f(x) = g−1xg for all x ∈ X.
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The notation In(X,G) is intended to refer to the inner automorphism group
In(X) = In(X,X) of X.

3 HNN-extensions

In this section we consider positive theories of HNN-extensions. Let us fix
throughout this section a group H (the base group), two proper subgroups
A < H,B < H and an isomorphism ϕ : A → B. The subgroups A and B are
not necessarily finite. Let

G = 〈H, t; t−1at = ϕ(a)(a ∈ A)〉

be the corresponding HNN-extension. The aim of this section is to prove the
following result:

Theorem 3.1. Let G = 〈H, t; t−1at = ϕ(a)(a ∈ A)〉 be an HNN-extension,
where A and B are proper subgroups of H with A ∩ B finite. If Th∃+(G) is
decidable, then also Th+(G) is decidable.

Remark 3.2. Theorem 3.1 can be slightly generalized by only assuming that for
some h ∈ H, h−1Ah ∩ B is finite, because by applying a Tietze transformation
[15], which replaces t by ht, this case can be reduced to the case that A ∩ B is
finite.

3.1 Reduced t-sequences

Recall from [14] that a t-sequence is an element from the free product H ∗
{t, t−1}∗. A t-sequence is reduced if it does not contain a factor from Forbid =
{t−1at | a ∈ A} ∪ {tbt−1 | b ∈ B}. Alternatively, we can view a reduced t-
sequence as a word from the language Red(H, t) = ((H{t, t−1})∗H)\Γ∗ Forbid Γ∗,
where Γ = H ∪ {t, t−1}. Usually, we omit a factor 1 in a reduced t-sequence,
e.g., we identify the reduced t-sequence 1t1t1 with the word tt. For u, v, w ∈
Red(H, t) we write u ·v = w if and only if uv = w as words over the alphabet Γ.
Note that this implies that we cannot have u ∈ Γ∗(H \{1}) and v ∈ (H \{1})Γ∗

at the same time. In this case, we also say that the concatenation u · v of u and
v is defined.

With ∼ we denote the smallest congruence on H ∗ {t, t−1}∗ containing all
pairs (t, a−1tϕ(a)) for a ∈ A and (t−1, b−1t−1ϕ−1(b)) for b ∈ B. Then u, v ∈
Red(H, t) represent the same element of the HNN-extension G if and only if
u ∼ v [14]. Equivalently, if

u = h0t
α1h1t

α2 · · ·hn−1t
αnhn and (3)

v = k0t
β1k1t

β2 · · · km−1t
βmkm (4)

(with n,m ≥ 0, α1, . . . , αn, β1, . . . , βm ∈ {1,−1} and h0, . . . hn, k0, . . . , km ∈ H)
are reduced t-sequences, then u ∼ v if and only if n = m, αi = βi for 1 ≤ i ≤ n,
and there exist c1, . . . , c2n ∈ A ∪B such that:
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• if αi = 1 then c2i−1 ∈ A and c2i = ϕ(c2i−1) ∈ B (1 ≤ i ≤ n)

• if αi = −1 then c2i ∈ A and c2i−1 = ϕ(c2i) ∈ B (1 ≤ i ≤ n)

• hic2i+1 = c2iki in H for 0 ≤ i ≤ n (here we set c0 = c2n+1 = 1)

This situation can be visualized by a diagram of the following form (also called
a Van Kampen diagram, see [15] for more details):
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tα1
h1 tα2 h2 tα3

h3 tα4

h4

k0

tα1

k1 tα2 k2 tα3 k3
tα4

k4

c1 c2 c3 c4 c5 c6 c7 c8

Note that if ei = 1 (resp. ei = −1), then we must have c2i−1 ∈ A and c2i ∈ B
(resp. c2i−1 ∈ B and c2i ∈ A).

In Section 3.4 we will reason a lot with diagrams of the above form. The
elements ci are also called the connecting elements. Sometimes we will also
omit in diagrams some of the connecting elements. The two paths between
the leftmost and the rightmost point in the above diagram are also called the
upper and lower bow, respectively. An interval on one of these bows is called a
segment.

For the above u ∈ Red(H, t) in (3) define πt(u) = tα1tα2 · · · tαn , u−1 =
h−1

n t−αnh−1
n−1 · · · t

−α2h−1
1 t−α1h−1

0 , and |u| = n. Note that |u| is not the length
of u as a word over Γ = H ∪ {t, t−1} but only the number of occurrences of t
and t−1 in u. This definition has the advantage that u ∼ v implies |u| = |v| for
u, v ∈ Red(H, t). In fact, u ∼ v even implies πt(u) = πt(v).

In the following, we identify the set Red(H, t) with the relational structure
that contains the following predicates and constants:

• the ternary relation {(u, v, w) | u · v ∼ w}

• the ternary relation {(u, v, w) | u, v, w ∈ H,uv = w in H}

• the binary relation {(u, v) | u ∼ v−1}

• every element of Red(H, t) as a constant

We will use the following lemma from [13]:

Lemma 3.3. For a given boolean combination φ(x1, . . . , xn) of word equations
over the HNN-extension G we can effectively construct an existential formula
∃y1 · · · ∃ym : χ(x1, . . . , xn, y1, . . . , ym) over the structure Red(H, t) such that for
all s1, . . . , sn ∈ Red(H, t) we have:

φ(s1, . . . , sn) in G ⇔ ∃y1 · · · ∃ym : χ(s1, . . . , sn, y1, . . . , ym) in Red(H, t)
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(here, when writing φ(s1, . . . , sn) in G, we identify si ∈ Red(H, t) with the
element from G it represents).

3.2 The finite normal subgroup X and stabilizing sequences

For a (necessarily finite) subgroup X ≤ A ∩ B and g ∈ G we define the partial
automorphism act[g,X] : X →p X by conjugation: act[g,X](y) = z if and only
if y, z ∈ X and g−1yg = z. For a reduced t-sequence u, act[u,X] is defined as
act[g,X], where g is the element of G represented by u. The goal of this section
is to prove the following lemma:

Lemma 3.4. There exists a subgroup X ≤ A ∩ B and for all α, β ∈ {1,−1}
there exist sαβ ∈ Red(H, t) such that

• sαβ ∈ t
α · Red(H, t) · tβ,

• X is a normal subgroup of G, i.e., for all g ∈ G: act[g,X] is an (totally
defined) automorphism of X, and

• for all c, d ∈ A ∪B, if c sαβ = sαβ d in G then c = d ∈ X.

The subgroup X and the reduced t-sequences sαβ will be used in Section 3.4
in order to construct reduced t-sequences with some desired behavior. The
sequence sαβ has a stabilizing behaviour in the following sense: Note that for
all c, d ∈ A ∪B, c sαβ and sαβ d are reduced t-sequences. If we have a diagram
of the form
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s1

s3

s2

s4

sαβ

sα,β

c d

then we must have c = d ∈ X by the last point from Lemma 3.4.
We will construct the subgroup X as the limit of a decreasing chain A∩B ⊇

X0 ) X1 ) X2 · · · . Since A∩B is finite, this chain has to terminate with some
Xi = X.

Recall that ϕ : A→ B is an isomorphism. We start with the subgroup

Y = {x ∈ A ∩B | ∀k ≥ 0 : ϕk(x) ∈ A ∩B} ≤ A ∩B.

Note that Y is closed under ϕ. Since ϕ is injective and Y is finite, ϕ↾Y is a
permutation on the finite set Y . In particular, Y is also closed under ϕ−1. Let
us fix a number n ∈ N such that n− 1 > |A ∩B| and (ϕ↾Y )n = idY .

Lemma 3.5. For all c, d ∈ A ∪B, if c tn = tnd in G then c = d ∈ Y .

Proof. Assume that c tn = tnd in G for some c, d ∈ A∪B. Since c tn and tnd are
reduced t-sequences, we obtain a Van Kampen diagram of the following kind:
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c = c0 c1 c2 c3 cn−1 cn = d

t t t t

t t t t

We get c0 = c ∈ A, cn = d ∈ B, c1, . . . , cn−1 ∈ A ∩ B, and ϕ(ci) = ci+1 for
0 ≤ i < n. Since n − 1 > |A ∩ B|, there are 1 ≤ i < j < n such that ci = cj .
Thus, ϕ enters a cycle at ci ∈ A ∩ B, i.e., ci ∈ Y . Since Y is closed under ϕ
and ϕ−1, we get c, c1, . . . , cn−1, d ∈ Y . Moreover, (ϕ↾Y )n = idY implies that
c = d.

Next we define sequences s[α, β]i ∈ Red(H, t) (α, β ∈ {1,−1}) and a sub-
group Xi ≤ Y for all i ≥ 0 inductively. We start with i = 0: Choose an
element

h ∈ H \ (A ∪B), (5)

which will be fixed for the rest of Section 3.1 Let act := act[h, Y ] : Y →p Y and
let

X0 = {x ∈ Y | ∀k ≥ 0 : actk(x) is defined} ≤ Y.

Thus, act↾X0
is a permutation on the finite subgroup X0. Now choose a number

m ∈ N such that m + 1 > |Y | and (act↾X0
)m = idX0

, and define (n > 0 is the
constant from Lemma 3.5):

s[1, 1]0 = (tnh)mtn

s[1,−1]0 = (tnh)mt−n

s[−1, 1]0 = (t−nh)mtn

s[−1,−1]0 = (t−nh)mt−n

Note that s[α, β]0 is a reduced t-sequence (because h 6∈ A ∪ B) and s[α, β]0 ∈
tα · Red(H, t) · tβ .

Lemma 3.6. For all c, d ∈ A∪B, if c s[α, β]0 = s[α, β]0 d in G, then c = d ∈ X0.

Proof. We restrict to the case that α = β = 1, the other cases can be dealt anal-
ogously. Assume that we have c, d ∈ A∪B with c(tnh)mtn = (tnh)mtnd. Due to
Lemma 3.5 we obtain a diagram of the following form, where c0, c1, . . . , cm ∈ Y :

c = c0 c0 c1 c1 c2 cm−1 cm−1 cm cm = d

tn h tn h tn h tn

tn h tn h tn h tn

1Such an element exists: Recall that we assume that A 6= H and B 6= H. Let x ∈ H \ A

and y ∈ H \ B. If x 6∈ B (resp. y 6∈ A) then we can choose h = x (resp. h = y). Thus, x ∈ B

and y ∈ A. But then xy 6∈ A ∪ B.
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Hence, act(ci) = ci+1 for 0 ≤ i < m. Since m + 1 > |Y |, there are i < j with
ci = cj . Thus, act enters a cycle at ci, i.e., ci ∈ X0. But since X0 is closed under
act and act−1, we get c, c1, . . . , cm−1, d ∈ X0. Moreover, (act↾X0

)m = idX0

implies c = d.

Now assume that for some i ≥ 0, reduced t-sequences s[α, β]i ∈ Red(H, t)
and a subgroup Xi ≤ A ∩B with the following properties are already defined:

• s[α, β]i ∈ t
α · Red(H, t) · tβ

• for all c, d ∈ A ∪B, if c s[α, β]i = s[α, β]id in G then c = d ∈ Xi

If for all g ∈ G, act[g,Xi] is totally defined, i.e., Xi is a normal subgroup of
G, then we stop and set sαβ = s[α, β]i and X = Xi, which proves Lemma 3.4.
Otherwise there exists g ∈ G such that act = act[g,Xi] is not totally defined on
Xi. We identify g with a reduced t-sequence representing g. Define

Xi+1 = {x ∈ Xi | ∀k ≥ 0 : actk(x) is defined} < Xi.

Note that there exist α, β ∈ {1,−1} such that tα · g · tβ is again a reduced
t-sequence. Let us assume that α = β = 1, the other cases can be dealt
analogously.

Clearly, act↾Xi+1
is a permutation on the subgroup Xi+1. Let m be such

that m+ 1 > |Xi| and (act↾Xi+1
)m = idXi+1

, and define:

s[1, 1]i+1 = (s[1, 1]ig)
ms[1, 1]i

s[1,−1]i+1 = (s[1, 1]ig)
ms[1,−1]i

s[−1, 1]i+1 = s[−1, 1]i(gs[1, 1]i)
m

s[−1,−1]i+1 = s[−1, 1]i(gs[1, 1]i)
m−1gs[1,−1]i

By construction we have s[α, β]i+1 ∈ t
α · Red(H, t) · tβ . The following lemma

can be proved analogously to Lemma 3.6:

Lemma 3.7. For all c, d ∈ A ∪ B, if c s[α, β]i+1 = s[α, β]i+1 d in G, then
c = d ∈ Xi+1.

This concludes the proof of Lemma 3.4.

3.3 Reducing to the existential positive theory

Our strategy for reducing the positive theory of the HNN-extension G to the
existential positive theory of G with rational constraints is similar to [17, 19]:
Given a positive sentence θ, which is interpreted over G, we construct an exis-
tential positive sentence θ′ with subgroup constraints of a very restricted form,
which is interpreted over a multiple HNN-extension G of G, where only finite
subgroups of H ≤ G are associated (in fact, X ⊆ A ∩ B from Lemma 3.4 will
be associated with itself). Roughly speaking, θ′ results from θ by replacing the
universally quantified variables by the stable letters of the HNN-extension G.
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Let X ≤ A∩B be the subgroup from Lemma 3.4. Recall that with In(X,G)
we denote the group of all automorphisms f of X such that for some g ∈ G we
have: f(c) = g−1c g for all c ∈ X. In the following, we use the abbreviation

In = In(X,G).

For new constants k1, . . . , km 6∈ G and f1, . . . , fm ∈ In we define the HNN-
extension

G
f1,...,fm

k1,...,km
= 〈G, k1, . . . , kj ; k

−1
i c ki = fi(c) (c ∈ X, 1 ≤ i ≤ m)〉.

The next two lemmas yield the main steps for the reduction from the positive
to the existential positive theory. For the further consideration let us fix m ∈ N,
groups H1, . . . ,Hm,H

′ such that H ⊆ Hi ⊆ H
′ for 1 ≤ i ≤ m. Let

Gi = 〈Hi, t; t
−1at = ϕ(a)(a ∈ A)〉

G′ = 〈H ′, t; t−1at = ϕ(a)(a ∈ A)〉

These groups contain G = 〈H, t; t−1at = ϕ(a)(a ∈ A)〉. Let k 6∈ G′ be a new
constant and let f ∈ In. In the following symbols with a tilde like x̃ will denote
sequences of arbitrary length over some set that will be always clear form the
context. If say ã = (a1, . . . , am), then ã ∈ A means a1 ∈ A, . . . , am ∈ A.

Lemma 3.8. Assume that φ(x, y1, . . . , ym, z̃) is a positive boolean formula with
constants over the group G. If

∃y1 · · · ∃ym





∧

1≤i≤m

yi ∈ (Gi)
f
k ∧

φ(k, y1, . . . , ym, ũ)





in (G′)f
k ,

then

∀x ∈ {g ∈ G | act[g,X] = f} ∃y1 · · · ∃ym





∧

1≤i≤m

yi ∈ Gi ∧

φ(x, y1, . . . , ym, ũ)



 in G′.

Proof. Assume that there are gi ∈ (Gi)
f
k (1 ≤ i ≤ m) such that φ(k, g1, . . . , gm, ũ)

is true in (G′)f
k . Let g ∈ G be an arbitrary element with act[g,X] = f . Then we

can define a homomorphism ρ : (G′)f
k → G′ by ρ(k) = g and ρ(g) = g for g ∈ G′.

This homomorphism is well-defined since act[k,X] = act[g,X]. Then ρ(gi) ∈ Gi

for 1 ≤ i ≤ m and, since φ is a positive formula, φ(g, ρ(g1), . . . , ρ(gm), ũ) is true
in G′. This proves the lemma.

Note that the assertion of Lemma 3.8 does not hold in general, if φ involves
negations. For example ∀x : x 6= 1 is false, but k 6= 1 is true. On the other
hand, the converse implication of Lemma 3.8 is true for arbitrary formulas:
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Lemma 3.9. Assume that φ(x, y1, . . . , ym, z̃) is a (not necessarily positive)
boolean formula with constants over the group G. If

∀x ∈ {g ∈ G | act[g,X] = f} ∃y1 · · · ∃ym





∧

1≤i≤m

yi ∈ Gi ∧

φ(x, y1, . . . , ym, ũ)



 in G′,

then

∃y1 · · · ∃ym





∧

1≤i≤m

yi ∈ (Gi)
f
k ∧

φ(k, y1, . . . , ym, ũ)





in (G′)f
k .

Let us postpone the quite involved proof of Lemma 3.9. The following theorem
yields the reduction from the positive to the existential theory.

Theorem 3.10. Let θ(z̃) ≡ ∀x1∃y1 · · · ∀xn∃yn φ(x1, . . . , xn, y1, . . . , yn, z̃) where
φ a positive boolean combination of word equations (with constants) over the
group G. For all ũ ∈ G we have θ(ũ) in G if and only if

∧

f1∈In

∃y1 · · ·
∧

fn∈In

∃yn





∧

1≤i≤n

yi ∈ G
f1,...,fi

k1,...,ki
∧

φ(k1, . . . , kn, y1, . . . , yn, ũ) in G
f1,...,fn

k1,...,kn




. (6)

Proof. The proof is similar to the proof of [6, Theorem 17]. We proceed by
induction on n. The case n = 0 is clear. If n > 0, then inductively we can
assume that for all s1, t1, ũ ∈ G we have

∀x2∃y2 · · · ∀xn∃yn φ(s1, x2, . . . , xn, t1, y2, . . . , yn, ũ) in G

if and only if

∧

f2∈In

∃y2 · · ·
∧

fn∈In

∃yn





∧

2≤i≤n

yi ∈ G
f2,...,fi

k2,...,ki
∧

φ(s1, k2, . . . , kn, t1, y2, . . . , yn, ũ) in Gf2,...,fn

k2,...,kn




.

Thus, for all ũ ∈ G we have

∀x1∃y1 · · · ∀xn∃yn φ(x1, . . . , xn, y1, . . . , yn, ũ) in G

if and only if

∀x1 ∈ G ∃y1
∧

f2∈In

∃y2 · · ·
∧

fn∈In

∃yn





∧

1≤i≤n

yi ∈ G
f2,...,fi

k2,...,ki
∧

φ(x1, k2, . . . , kn, y1, . . . , yn, ũ) in Gf2,...,fn

k2,...,kn




.

Now we replace the universal quantifier ∀x1 ∈ G by
∧

f1∈In ∀x1 ∈ {g ∈ G |
act[g,X] = f1}. Hence, by Lemmas 3.8 and 3.9 the above formula is true in
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G
f2,...,fn

k2,...,kn
if and only if

∧

f1∈In

∃y1
∧

f2∈In

∃y2 · · ·
∧

fn∈In

∃yn





∧

1≤i≤n

yi ∈ G
f1,...,fi

k1,...,ki
∧

φ(k1, k2, . . . , kn, y1, . . . , yn, ũ) in Gf1,...,fn

k1,...,kn




.

Remark 3.11. In [5], a result analogous to Theorem 3.10 for the case that G is
a free product (in fact, a certain graph product) was shown. In this case, the new
generators k1, . . . , kn do not interact with the group G, i.e., the HNN-extension
G

f1,...,fn

k1,...,kn
is replaced by the free product G ∗ F (k1, . . . , kn), where F (k1, . . . , kn)

is the free group generated by k1, . . . , kn. For the more general case that G is
an HNN-extension, we cannot avoid some nontrivial interaction between ki and
Gi: this interaction is expressed by the identities k−1

i cki = fi(c) for c ∈ X in

the HNN-extension Gf1,...,fn

k1,...,kn
. In order to use Theorem 2.1, it is crucial that the

group X is finite.

Note that the sentence in (6) is not interpreted in a single HNN-extension
of G. In order to reduce (6) to an existential statement over a single group G,
assume that In = {ρ1, . . . , ρℓ}. Let S = {1, . . . , ℓ}. For α > 0 let S≤α be the set
of all non-empty words over S of length at most α. For τ ∈ Sn and 1 ≤ α ≤ n

let τ↾α ∈ Sα be the prefix of τ of length α, whereas τ [α] ∈ {1, . . . , ℓ} denotes
the symbol at position α in τ . Take new constants kσ for every σ ∈ S≤n and
define the multiple HNN-extension G over G that results by adding to G for
every word σ ∈ S≤n the stable letters kσ together with the defining equation
k−1

σ ckσ = ρi(c) (c ∈ X), when i is the last symbol of the word σ. This is a fixed
multiple HNN-extension over G, where only finite subgroups are associated.

Lemma 3.12. For all ũ ∈ G, we have

∧

f1∈In

∃y1 · · ·
∧

fn∈In

∃yn





∧

1≤i≤n

yi ∈ G
f1,...,fi

k1,...,ki
∧

φ(k1, . . . , kn, y1, . . . , yn, ũ) in G
f1,...,fn

k1,...,kn





(7)

if and only if

(∃yσ)σ∈S≤n

∧

τ∈Sn





n∧

α=1

yτ↾α ∈ G
ρτ[1],...,ρτ[α]

kτ↾1,...,kτ↾α
∧

φ(kτ↾1, . . . , kτ↾n, yτ↾1, . . . , yτ↾n, ũ)





in G. (8)

Proof. By tranforming sentence (7) into prenex normal form, we obtain the
equivalent sentence

(∃yσ)σ∈S≤n

∧

τ∈Sn





n∧

α=1

yτ↾α ∈ G
ρτ[1],...,ρτ[α]

k1,...,kα
∧

φ(k1, . . . , kn, yτ↾1, . . . , yτ↾n, ũ) in G
ρτ[1],...,ρτ[n]

k1,...,kn




. (9)
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It remains to show that (8) ⇔ (9). First assume that (9) holds. For every
τ ∈ Sn we define an isomorphism

hτ : G
ρτ[1],...,ρτ[n]

k1,...,kn
→ G

ρτ[1],...,ρτ[n]

kτ↾1,...,kτ↾n

by hτ (g) = g for g ∈ G and hτ (ki) = kτ↾i for 1 ≤ i ≤ n. Since G
ρτ[1],...,ρτ[n]

kτ↾1,...,kτ↾n
⊆ G,

we can view hτ as an embedding of G
ρτ[1],...,ρτ[n]

k1,...,kn
into G. Since (9) is true, there

exist yσ (σ ∈ S≤n) such that for every τ ∈ Sn we have:

• yτ↾α ∈ G
ρτ[1],...,ρτ[α]

k1,...,kα
for 1 ≤ α ≤ n

• φ(k1, . . . , kn, yτ↾1, . . . , yτ↾n, ũ) in the group G
ρτ[1],...,ρτ[n]

k1,...,kn

By applying for every τ ∈ Sn the embedding hτ , we obtain yσ (σ ∈ S≤n) such
that for every τ ∈ Sn we have:

• yτ↾α ∈ G
ρτ[1],...,ρτ[α]

kτ↾1,...,kτ↾α
for 1 ≤ α ≤ n

• φ(kτ↾1, . . . , kτ↾n, yτ↾1, . . . , yτ↾n, ũ) in the group G

Hence, (8) is true.
Now assume that (8) is true. Then, for every τ ∈ Sn we define the isomor-

phism
hτ : G

ρτ[1],...,ρτ[n]

kτ↾1,...,kτ↾n
→ G

ρτ[1],...,ρτ[n]

k1,...,kn

by hτ (g) = g for g ∈ G and hτ (kτ↾i) = ki for 1 ≤ i ≤ n. Since (8) is true there
are yσ (σ ∈ S≤n) such that for every τ ∈ Sn:

• yτ↾α ∈ G
ρτ[1],...,ρτ[α]

kτ↾1,...,kτ↾α
for 1 ≤ α ≤ n

• φ(kτ↾1, . . . , kτ↾n, yτ↾1, . . . , yτ↾n, ũ) is true in the group G and hence is also
true in G

ρτ[1],...,ρτ[n]

kτ↾1,...,kτ↾n
⊆ G

By applying the isomorphisms hτ we obtain yσ (σ ∈ S≤n) such that for every
τ ∈ Sn we have:

• yτ↾α ∈ G
ρτ[1],...,ρτ[α]

k1,...,kα
for 1 ≤ α ≤ n

• φ(k1, . . . , kn, yτ↾1, . . . , yτ↾n, ũ) in the group G
ρτ[1],...,ρτ[n]

k1,...,kn

Thus, (9) is true.

To complete the proof of Theorem 3.1, notice that an iterated application of
Theorem 2.1 enables us to reduce the existential theory of G with constraints
of the form G

ρτ[1],...,ρτ[α]

kτ↾1,...,kτ↾α
to the existential theory of G.

It remains to prove Lemma 3.9, which will be down by a reduction to reduced
t-sequences. For this, we need one more lemma concerning reduced t-sequences.
Note that elements from G′ (resp. Gi) can be represented by reduced t-sequences
from Red(H ′, t) (resp. Red(Hi, t)). Fix a tuple

w̃ = (w1, . . . , wN ), (10)

12



where wi ∈ Red(H, t) is a reduced t-sequence which represents the fixed group
element ui ∈ G. Recall from Section 3.1 that we view Red(F, t) (where F is
some base group) as a relational structure equipped with the multiplication in
the base group F , and the concatenation and inversion of reduced t-sequences.

Lemma 3.13. Let χ(x, y1, . . . , ym, z̃) be a (not necessarily positive) boolean
formula over the signature of the structure Red(H ′, t) and with constants from
Red(H, t). If

∀x ∈ {u ∈ Red(H, t) | act[u,X] = f} ∃y1 · · · ∃ym





∧

1≤i≤m

yi ∈ Red(Hi, t)

∧ χ(x, y1, . . . , ym, w̃)





in Red(H ′, t), then there are v1, v2 ∈ Red(H, t) with act[v1,X]◦f◦act[v2,X] = f

and

∃y1 · · · ∃ym





∧

1≤i≤m

yi ∈ Red((Hi)
f
k , t)

∧ χ(v1 · k · v2, y1, . . . , ym, w̃)





in Red((H ′)f
k , t).

The proof of Lemma 3.13 is the main technical difficulty and shifted to the next
section.

Using Lemma 3.13, we can finish the proof of Lemma 3.9: Assume that

∀x ∈ {g ∈ G | act[g,X] = f} ∃y1 · · · ∃ym





∧

1≤i≤m

yi ∈ Gi ∧

φ(x, y1, . . . , ym, ũ)



 in G′,

By Lemma 3.3, we obtain a boolean formula χ over the structure Red(H ′, t)
such that

∀x ∈ {u ∈ Red(H, t) | act[u,X] = f} ∃y1 · · · ∃ym ∃ỹ





∧

1≤i≤m

yi ∈ Red(Hi, t)

∧ ỹ ∈ Red(H ′, t) ∧

χ(x, y1, . . . , ym, ỹ, w̃)





is true in Red(H ′, t). Note that by applying Lemma 3.3, we only introduce a
sequence ỹ of new existentially quantified variables. Thus, by Lemma 3.13 there
exist v1, v2 ∈ Red(H, t) such that act[v1,X] ◦ f ◦ act[v2,X] = f and

∃y1 · · · ∃ym∃ ỹ





∧

1≤i≤m

yi ∈ Red((Hi)
f
k , t)

∧ ỹ ∈ Red((H ′)f
k , t)

∧ χ(v1 · k · v2, y1, . . . , ym, ỹ, w̃)





in Red((H ′)f
k , t).
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By applying Lemma 3.3 again (with G replaced by (G′)f
k), it follows that

∃y1 · · · ∃ym





∧

1≤i≤m

yi ∈ (Gi)
f
k ∧ φ(v1kv2, y1, . . . , ym, ũ)



 in (G′)f

k , (11)

where vi ∈ Red(H, t) is identified with the group element from G it represents.
Note that act[v−1

1 kv−1
2 ,X] = act[v1,X]−1 ◦ f ◦ act[v2,X]−1 = f = act[k,X].

Thus, we can define a group homomorphism h : (G′)f
k → (G′)f

k by h(k) =
v−1
1 kv−1

2 and h(x) = x for x ∈ G′. First, note that h is injective (the homomor-
phism defined by g(k) = v1kv2 defines an inverse). Hence, since constants from
G′ are mapped to itself by h, the truth value of all (negated) equations in (11)

is preserved by h. Moreover, h(v1kv2) = v1v
−1
1 kv−1

2 v2 = k in (G′)f
k . Hence,

applying h to the above statement yields

∃y1 · · · ∃ym





∧

1≤i≤m

yi ∈ (Gi)
f
k ∧ φ(k, y1, . . . , ym, ũ)



 in (G′)f

k .

3.4 Proof of Lemma 3.13

The following data were already fixed:

• the element h ∈ H \ (A ∪B) from (5) in Section 3.2

• the finite normal subgroup X ≤ A ∩B and the elements sαβ ∈ Red(H, t)
(α, β ∈ {1,−1}) from Lemma 3.4

• f ∈ In from Section 3.3

• the sets Red(H, t) ⊆ Red(Hi, t) ⊆ Red(H ′, t) ⊆ Red((H ′)f
k , t) of reduced

t-sequences

• the tuple w̃ = (w1, . . . , wN ) with wi ∈ Red(H, t) from (10) in Section 3.3

Moreover, let us fix a (not necessarily positive) boolean formula χ(x, y1, . . . , ym, z̃)
over the signature of the structure Red(H ′, t). Thus, χ is a boolean combination
of propositions of the form x · y ∼ z, x ∼ y−1, and xy = z in the base group
H ′, where x, y, and z are either variables or constants from Red(H ′, t). Let W
be the union of {w1, . . . , wN} and the set of all constants appearing in χ, and
let d be the number of atomic propositions of the form x · y ∼ z that occur in
χ. Choose a number λ > 2d such that |X|! divides λ − 1. Finally, choose an
element xf ∈ Red(H, t) such that act[xf ,X] = f , which exists since f ∈ In.
By appending suitable sequences sαβ to the left and right of xf , we can enforce
that xf is of the form t · y · t for some y ∈ Red(H, t).

A t-system of degree n (n ≥ 2) is a tuple R = (r0, . . . , rλ) with

ri ∈ (th)|X|!{(th)|X|!, (t−1h)|X|!}nt|X|!.

14



The value of n will be made more precise later; but recall that λ is already
defined. The idea is to encode sequences over a binary alphabet {a, b} using
the correspondence a = (th)|X|! and b = (t−1h)|X|!. The information density
of a sequence ri is only n

(n+1)2|X|!+|X|! ≥
1

5|X|! , but since |X|! is a constant,

this won’t be a problem. The exponent |X|! enforces that the sequences rα
i

(α ∈ {1,−1}) have a trivial action by conjugation on the subgroup X. The
element h makes sequences reduced: since h ∈ H \ (A ∪ B), t−1ht and tht−1

are reduced t-sequences. Finally, the initial (resp. final) sequence (th)|X|! (resp.
t|X|!) ensures that every ri starts (resp. ends) with t. It follows that for every
1 ≤ i ≤ λ, ri−1s11xfs11ri is a reduced t-sequence with act[ri−1s11xfs11ri,X] =
act[xf ,X] = f .

There are 2n(λ+1) t-systems of degree n. The t-system R = (r0, . . . , rλ) has
no long overlapping, if for all 0 ≤ i, j ≤ λ and α, β ∈ {1,−1} we have:2 if

πt(r
α
i ) = xy and πt(r

β
j ) = yz, and |y| ≥

|ri|−|s11xf s11|
2 then: x = z = ε, i = j,

and α = β.
This condition implies that if we have a Van Kampen diagram of the form

shown in Section 3.1, the upper bow contains a segment rα
i , which overlapps a

segment rβ
j in the lower bow, then either these two segments are exactly opposite

to each other (and i = j and α = β), or their overlapping region has length less

than
|ri|−|s11xf s11|

2 .
The next lemma follows immediately from the above definition:

Lemma 3.14. Assume that R has no long overlapping. If

(ri−1s11xfs11ri)
α ∼ p · rβ

j · q

for p, q ∈ Red(H, t) and α, β ∈ {1,−1}, then we either have |p| = 0 or |q| = 0,

i.e., rβ
j cannot be properly contained in a segment which is opposite to a segment

(ri−1s11xfs11ri)
α in a diagram.

Lemma 3.15. There exists n0 (depending only on λ) such that for all n ≥ n0

there exists a t-system of degree n without long overlapping.

Proof. There are 2n(λ+1) t-systems of degree n and every t-system can be de-
scribed with n(λ+ 1) bits. We show that if the t-system R = (r0, . . . , rλ) has a
long overlapping and n is large enough, then R can be described with strictly
less than n(λ + 1) bits. It follows that there is at least one t-system without
long overlapping. We can distinguish the following four cases:

Case 1: for some α ∈ {1,−1} and some 0 ≤ i, j ≤ λ with i 6= j, πt(r
α
i )

and πt(r
α
j ) have a long overlapping, i.e., πt(r

α
i ) = xy, πt(r

α
j ) = yz, and |y| ≥

|ri|−|s11xf s11|
2 . Thus, rα

j can be reconstructed from the pair (i, z) (note that the
length of y is fixed by z). Since λ is a fixed constant, i ∈ {0, . . . , λ} can be
specified by O(1) many bits. Thus, in the description of R we can save at least
|y|
|X|! − O(1) ≥

|ri|−|s11xf s11|
2|X|! − O(1) =

(n+2)|X|!−|s11xf s11|
2|X|! − O(1) = n

2 − O(1)

2Recall that the length of a reduced t-sequence s was defined as the number of occurrences
of t and t−1 in s.
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many bits. For a sufficiently large n, this term is strictly greater than 0; note
that |s11xfs11| is a constant.

Case 2: for some 0 ≤ i ≤ λ, πt(ri) has a long overlapping with itself, i.e.,

πt(ri) = xy = yz, and |y| ≥
|ri|−|s11xf s11|

2 . It follows that πt(ri) = xpx′ for some
p > 0, where x′ is a prefix of x. Thus, ri can be reconstructed from x. Hence,

in the description of R we can save at least
|ri|−|s11xf s11|

2|X|! = n
2 −O(1) many bits.

Case 3: for some 0 ≤ i, j ≤ λ with i 6= j, πt(ri) and πt(r
−1
j ) have a long

overlapping. This case can be treated analogous to Case 1.

Case 4: for some 0 ≤ i ≤ λ, πt(ri) and πt(r
−1
i ) have a long overlapping,

i.e., πt(ri) = xy, πt(r
−1
i ) = πt(ri)

−1 = yz, and |y| ≥
|ri|−|s11xf s11|

2 . From
πt(ri)

−1 = yz we get πt(ri) = z−1y−1 = xy, i.e., y = y−1. But this means that

the last ⌊ |y|2 ⌋ many symbols in y can be reconstructed from the first ⌈ |y|2 ⌉ many

symbols. Hence, in the description of R we can save at least
|ri|−|s11xf s11|

4|X|! −

O(1) = n
4 −O(1) many bits.

We will use R to construct a sequence s, which can be replaced by the
sequence v1 · k · v2 in Lemma 3.13.

Let us fix a t-system R = (r0, . . . , rλ) of degree n without long overlapping,
where moreover n is chosen large enough such that

∀w ∈W : |ri−1s11xfs11ri| > |w|. (12)

For 1 ≤ i ≤ λ, u, v ∈ Red((H ′)f
k , t), and 0 ≤ j ≤ |u| we write u

j
→i v if there

exist u1, u2 ∈ Red((H ′)f
k , t) and α ∈ {1,−1} such that

• u = u1 · (ri−1s11xfs11ri)
α · u2,

• v = u1 · (ri−1s11ks11ri)
α · u2, and

• |u1| = j.

We write u →i v if there exist 0 ≤ j ≤ |u| such that u
j
→i v. Thus →i can be

seen as a string rewriting relation (see e.g. [1]), which is restriced to reduced t-

sequences. In the notation
j
→i we also specify the position, where the rewriting

step is carried out. We write u
j
⇒i v if there exist u′, v′ ∈ Red((H ′)f

k , t) such

that u ∼ u′
j
→i v

′ ∼ v, and we write u ⇒i v if there exist 0 ≤ j ≤ |u| such

that u
j
⇒i v. Clearly, the relation ⇒i is terminating, i.e., there does not exist

an infinite chain u0 ⇒i u1 ⇒i u2 ⇒i · · · . Let IRRi = {u | ¬∃v : u⇒i v}. Note
that W ⊆ IRRi by (12). Moreover, s⇒i t implies also s−1 ⇒i t

−1.

Lemma 3.16. If p i⇐x⇒i q then p ∼ q or there exists w ∈ Red((H ′)f
k , t) such

that p⇒i w i⇐ q.
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Proof. Assume that

p i
j
←u ∼ v

ℓ
→i q, (13)

where w.l.o.g. j ≤ ℓ. We will show that either p ∼ q or there exists w ∈
Red((H ′)f

k , t) such that p⇒i w i⇐ q. This proves the lemma.
From (13) we obtain a diagram of the following form, where α, β ∈ {1,−1},

the upper bow is u, and the lower bow is v:

(†).

.............................

..........................

........................

.....................

......................


..............
........

...........
..........

..........
..........
....

.........
.........
........

.........
.........
.........
..

.

.........
.........
.........
..

.........
.........
........

..........
..........
....

...........
..........

..............
........

....... .......... ............. ................ .................... ....................... .......................... ........ ......... ............ ................ ................... ...................... .......................... ......................................................................................................................................................................................................................................................... .......................... ...................... ................... ................ ............ ......... ........ .......................... ....................... .................... ................ ............. .......... .......
......................

.....................

........................

..........................

.............................

(ri−1s11xfs11ri)
α

(ri−1s11xfs11ri)
β

Case 1. j = ℓ. Then p i
j
←u ∼ v

j
→i q. We can distinguish on the values of α

and β. This results in four different cases. We only consider the following two
cases, the other two cases are symmetric:

Case 1.1 α = 1 and β = −1. We obtain a diagram of the following kind:

.

.............................

...........................

........................

......................

.....................

.....................


..............
.......

...........
..........

..........
..........
..

..........
..........
....

..........
..........
.......

.........
.........
.........
..

.

.........
.........
.........
..

..........
..........
.......

..........
..........
....

..........
..........
..

...........
..........

..............
.......


.....................

.....................

......................

........................

...........................

.............................

ri−1 s11 xf s11 ri

r−1
i s−1

11 x−1
f s−1

11 r−1
i−1

c0 c1 c2 c3 c4 c5

But this is not possible, since R has no long overlapping and hence ri−1 and
r−1
i cannot be exactly opposite to each other in a diagram.

Case 1.2. α = β = 1. Together with Lemma 3.4 and the fact that act[ri−1,X] =
act[ri,X] = idX and act[xf ,X] = f , we obtain a diagram of the following kind,
where c ∈ X, the upper bow represents u and the lower bow represents v:

.

.............................

...........................

........................

......................

.....................

.....................


..............
.......

...........
..........

..........
..........
..

..........
..........
....

..........
..........
.......

.........
.........
.........
..

.

.........
.........
.........
..

..........
..........
.......

..........
..........
....

..........
..........
..

...........
..........

..............
.......


.....................

.....................

......................

........................

...........................

.............................

ri−1 s11 xf s11 ri

ri−1 s11 xf s11 ri

c c c f(c) f(c) f(c)
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But due to the defining relations for the generator k (namely k−1ck = f(c) for

c ∈ X) in (H ′)f
k , we obtain also the following diagram:

.

.............................

...........................

........................

......................

.....................

.....................


..............
.......

...........
..........

..........
..........
..

..........
..........
....

..........
..........
.......

.........
.........
.........
..

.

.........
.........
.........
..

..........
..........
.......

..........
..........
....

..........
..........
..

...........
..........

..............
.......


.....................

.....................

......................

........................

...........................

.............................

ri−1 s11 k s11 ri

ri−1 s11 k s11 ri

c c c f(c) f(c) f(c)

Here, the upper bow is precisely p and the lower bow is q from (13). Thus,
p ∼ q.

Case 2. j < ℓ. Diagram (†) together with Lemma 3.14 implies that ℓ − j ≥
|ri−1s11xfs11|. Thus, the xα

f -segment in the upper bow of diagram (†) and

the xβ
f -segment in the lower bow of diagram (†) are separated by a segment

of length at least |s11ris11|, and the diagram (†) looks as follows, where |u2| =
|v2| ≥ |s11ris11| (we omit in this diagram the context (ri−1s11 · · · s11ri)

α around
the xα

f -segment in the upper bow and analogously for the lower bow):

(‡).

.............................

..........................

........................

.....................

......................


..............
........

...........
..........

..........
..........
....

.........
.........
........

.........
.........
.........
..

.

.........
.........
.........
..

.........
.........
........

..........
..........
....

...........
..........

..............
........


......................

.....................

........................

..........................

.............................

u1
xα

f u2 x′ u3

v1 x′′ v2 x
β
f

v3

c0 c1 c2 c3

Let us assume α = β = 1 for simplicity. We obtain the derivations in Figure 1,
where diagram (c) is diagram (‡) above. Note that the sequence in (e) is identical
to the lower bow in diagram (a). It is important to note that in diagram (b),
|u2| ≥ |s11ri|. This ensures that the context u1 · · ·u2 around xf in the lower bow
contains the context ri−1s11 · · · s11ri. This is crucial in order to carry out the

reduction u1xfu2(c2kc
−1
3 )u3

j
→i u1ku2(c2kc

−1
3 )u3. The same remark applies to

the context v1 · · · v2 around xf in diagram (d). This finishes the proof of the
lemma.

By general results about rewriting systems modulo a congruence (see e.g.
[3]), Lemma 3.16 implies:

Lemma 3.17. The relation⇒i is confluent modulo ∼, i.e., u i
∗
⇐ v

∗
⇒i w implies

that u ∼ w or there exists p ∈ Red((H ′)f
k , t) such that u

∗
⇒i p i

∗
⇐w.

18



(a)

(b)

(c)

(d)

(e)

.

.............................

..........................

........................

.....................

......................


..............
........

...........
..........

..........
..........
....

.........
.........
........

.........
.........
.........
..

.

.........
.........
.........
..

.........
.........
........

..........
..........
....

...........
..........

..............
........


......................

.....................

........................

..........................

.............................

.

.............................

..........................

........................

.....................

......................


..............
........

...........
..........

..........
..........
....

.........
.........
........

.........
.........
.........
..

.

.........
.........
.........
..

.........
.........
........

..........
..........
....

...........
..........

..............
........


......................

.....................

........................

..........................

.............................

.

.............................

..........................

........................

.....................

......................


..............
........

...........
..........

..........
..........
....

.........
.........
........

.........
.........
.........
..

.

.........
.........
.........
..

.........
.........
........

..........
..........
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......................

.....................

........................

..........................

.............................

u1 k u2 c2kc
−1
3 u3

v1 c−1
0 kc1

v2 k v3

c0 c1 c2 c3

v1 x′′ v2 k v3

u1 xf u2 c2kc
−1
3

u3

c0 c1 c2 c3

u1
xf u2 x′ u3

v1 x′′ v2 xf v3

c0 c1 c2 c3

v1 c−1
0 kc1 v2 xf v3

u1 k u2 x′ u3

c0 c1 c2 c3

v1 c−1
0 kc1

v2 k v3

Figure 1:
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The previous lemma implies that for every 1 ≤ i ≤ λ and every sequence
u ∈ Red((H ′)f

k , t), if u
∗
⇒i v ∈ IRRi and u

∗
⇒i w ∈ IRRi, then v ∼ w. Since the

relation ⇒i is terminating, there exists at least one v ∈ IRRi with u
∗
⇒i v. In

the following, NFi(u) denotes an arbitrary sequence with u
∗
⇒i NFi(u) ∈ IRRi;

we only (w.l.o.g.) require that if u starts (resp. ends) with tα (α ∈ {1,−1}) then
also NFi(u) starts (resp. ends) with tα. This ensures that if the concatenation
u ·v of u and v is defined then also the concatenation NFi(u) ·NFi(v) is defined.
Note that the sequence NFi(u) is unique up to ∼.

Lemma 3.18. For all 1 ≤ i ≤ λ we have:

• NFi(w) ∼ w for all w ∈W ,

• if u ∼ v−1 for u, v ∈ Red(H ′, t), then NFi(u) ∼ NFi(v)
−1.

Proof. The first point follows from the fact that W ⊆ IRRi, see (12). For the
second point note that u ∼ v−1 implies NFi(u) ∼ NFi(v

−1). Since x ⇒i y

implies x−1 ⇒i y
−1, we have NFi(v

−1) ∼ NFi(v)
−1.

Lemma 3.19. Let u, v, u′, v′, w ∈ Red((H ′)f
k , t) such that

• the concatenations u · v and u′ · v′ are defined (as reduced t-sequences),

• (u′ →i u and v′ = v) or (v′ →i v and u′ = u) (thus, u′ · v′ →i u · v),

• u · v
j
⇒i w, and

• 0 < |u| − j < |ri−1s11xfs11ri|.

Then there exists w′ ∈ Red((H ′)f
k , t) and j′ ∈ N such that u′ · v′

j′

⇒i w
′ and

|u′| − j′ = |u| − j.

Proof. Let us assume that u′ →i u and v′ = v, the other case is only sim-
pler. Since u′ →i u, there exists a factorization u′ = u1(ri−1s11xfs11ri)

αu2

and u = u1(ri−1s11ks11ri)
αu2. Together with u · v

j
⇒i w and 0 < |u| − j <

|ri−1s11xfs11ri| we obtain a diagram of the following form, where β ∈ {1,−1}
and c ∈ A ∪B:
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..............
.......


.....................

.....................

......................

........................

...........................

.............................

u1 (ri−1s11xfs11ri)
α u2 v

u1
(ri−1s11ks11ri)

α u2 v

(ri−1s11xfs11ri)
β

c

Note that 0 < |u|−j < |ri−1s11xfs11ri| means that the end point of the vertical
c-edge lies strictly within the segment (ri−1s11xfs11ri)

β of the lower bow.
Lemma 3.14 implies that the segment (ri−1s11ks11ri)

α in the upper bow
overlaps the segment (ri−1s11xfs11ri)

β in the lower bow by at most |ri−1| = |ri|
(these two segments cannot be exactly opposite to each other, since the segment
(ri−1s11ks11ri)

α in the upper bow is completely contained in the left factor u
but the segment (ri−1s11xfs11ri)

β in the lower bow contains the end point of
the vertical c-edge). Thus, the above diagram looks in fact as follows, where we
omit the context (ri−1s11 · · · s11ri)

α in the rewriting step within u:

.

.............................

...........................

........................

......................

.....................

.....................


..............
.......

...........
..........

..........
..........
..

..........
..........
....

..........
..........
.......

.........
.........
.........
..

.

.........
.........
.........
..

..........
..........
.......

..........
..........
....

..........
..........
..

...........
..........

..............
.......


.....................

.....................

......................

........................

...........................

.............................

u′1 xα
f

x u′2
v1 v2

u′1

w1

kα x u′2 v1 v2

w2c−1
0 kαc1

y

(ri−1s11xfs11ri)
β

c0 c1 c2 c c3

Here v = v1v2 and

u′1 =

{
u1ri−1s11 if α = 1

u1r
−1
i s−1

11 if α = −1

x · u′2 =

{
s11riu2 if α = 1

s−1
11 r

−1
i−1u2 if α = −1
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The existence of the sequences x and y follows from Lemma 3.14. Moreover,
u = u′1k

αxu′2 and j = |u′1k
αx| and hence |u| − j = |u′2|. By replacing kα by xα

f ,
we get the following diagram:

.

.............................

...........................

........................

......................

.....................

.....................


..............
.......

...........
..........

..........
..........
..

..........
..........
....

..........
..........
.......

.........
.........
.........
..

.

.........
.........
.........
..

..........
..........
.......

..........
..........
....

..........
..........
..

...........
..........

..............
.......


.....................

.....................

......................

........................

...........................

.............................

u′1

w1

xα
f x u′2 v1 v2

w2a−1
0 xα

f a1

y

(ri−1s11xfs11ri)
β

c0 c1 c2 c c3

which shows that there exist w′ and j′ with u′1x
α
f xu

′
2v1v2 = u′v = u′v′

j′

⇒i w
′.

Moreover, u′ = u′1x
α
f xu

′
2 and j′ = u′1x

α
f x, and hence |u′| − j′ = |u′2| = |u| − j.

This proves the lemma.

By Lemma 3.18, every normal form mapping NFi preserves sequences from
W and the inverse mapping −1 modulo ∼. On the other hand, concatenation on
Red(H ′, t) is in general not preserved, but the following statement will suffice:

Lemma 3.20. Let v, w ∈ Red(H ′, t) such that v · w is defined (as a reduced
t-sequence). There are at most two i ∈ {1, . . . , λ} with NFi(v) · NFi(w) 6∼
NFi(v · w).

Proof. Since ⇒i is confluent modulo ∼ we have v · w
∗
⇒i NFi(v) · NFi(w)

∗
⇒i

x ∼ NFi(v · w) for some x. Now assume that NFi(v) · NFi(w) 6∼ NFi(v · w).

Thus, v · w
∗
⇒i NFi(v) · NFi(w)

j
⇒i z for some position j and some sequence

z. If j ≥ |NFi(v)|, then we would have NFi(w) 6∈ IRRi. Similarly, if j ≤
|NFi(v)|−|ri−1s11xfs11ri|, then NFi(v) 6∈ IRRi. Thus, we obtain 0 < |NFi(v)|−
j < |ri−1s11xfs11ri|. By applying Lemma 3.19 to every rewriting step in the

derivations v
∗
⇒i NFi(v) and w

∗
⇒i NFi(w), it follows that v · w

j′

⇒i z
′ for some

sequence z′ and some position j′ such that 0 < |v| − j′ < |ri−1s11xfs11ri|.
Now assume that there are three different i1, i2, i3 ∈ {1, . . . , λ} such that

NFiℓ
(v) · NFiℓ

(w) 6∼ NFiℓ
(v · w) for ℓ ∈ {1, 2, 3}. By the above consideration,

we obtain v · w
jℓ
⇒iℓ

zℓ for sequences z1, z2, z3 and positions j1, j2, j3 such that
0 < |v| − jℓ < |ri−1s11xfs11ri|. W.l.o.g. assume that j1 ≤ j2 ≤ j3. Then

either j2− j1 <
|ri−1s11xf s11ri|

2 or j3− j2 <
|ri−1s11xf s11ri|

2 . W.l.o.g. assume that

j2 − j1 <
|ri−1s11xf s11ri|

2 . Lemma 3.14 implies j2 = j1. But with i1 6= i2 this
leads to a contradiction.

Recall that λ was chosen to be larger than 2d, where d is the number of
atomic propositions of the form x · y ∼ z that occur in our boolean formula χ.
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Lemma 3.21. Let xj , yj , zj ∈ Red(H ′, t) for 1 ≤ j ≤ d. Then there exists
1 ≤ i ≤ λ such that for all 1 ≤ j ≤ d, xj · yj ∼ zj if and only if NFi(xj) ·
NFi(yj) ∼ NFi(zj).

Proof. The “only if”-direction follows from Lemma 3.20 and the fact that λ >
2d, where d is the number of equations in the formula χ. For the “if”-direction
assume that NFi(xj) · NFi(yj) ∼ NFi(zj). Thus, NFi(xj) · NFi(yj) ∈ IRRi,
which implies NFi(xj · yj) ∼ NFi(xj) · NFi(yj) ∼ NFi(zj). Hence, it suffices to
show that NFi(u) ∼ NFi(v) for u, v ∈ Red(H ′, t) implies u ∼ v. For this, define

a morphism σ : (H ′)f
k → H ′ by σ(k) = xf and σ(x) = x for all x ∈ H ′, which is

well-defined. This morphism can be extended to a mapping σ : Red((H ′)f
k , t)→

Red(H ′, t) in the natural way. Note that p ∼ q (for p, q ∈ Red((H ′)f
k , t)) implies

σ(p) ∼ σ(q).

We claim that p ⇒i q (for p, q ∈ Red((H ′)f
k , t)) implies σ(p) ∼ σ(q). If

p ⇒i q then there exist p′, q′ such that p ∼ p′ →i q
′ ∼ q. This implies σ(p) ∼

σ(p′) = σ(q′) ∼ σ(q), i.e., σ(p) ∼ σ(q).
Now assume that NFi(u) ∼ NFi(v) for u, v ∈ Red(H ′, t). Since u⇒∗

i NFi(u)
and v ⇒∗

i NFi(v), we obtain u = σ(u) ∼ σ(NFi(u)) ∼ σ(NFi(v)) ∼ σ(v) =
v.

Now we are able to prove Lemma 3.13: Assume that

∀x ∈ {s ∈ Red(H, t) | act[s,X] = f} ∃y1 · · · ∃ym





∧

1≤i≤m

yi ∈ Red(Hi, t)

∧ χ(x, y1, . . . , ym, w̃)





in Red(H ′, t). Let

s = r0s11xfs11r1s11xfs11r2 · · · s11xfs11rλ−1s11xfs11rλ ∈ Red(H, t).

Note that act[s,X] = act[xf ,X]λ = act[xf ,X] = f since λ − 1 is a multi-
ple of |X|!. Thus, there exist sequences ti ∈ Red(Hi, t) (1 ≤ i ≤ m) with
χ(s, t1, . . . , tm, w̃) in Red(H ′, t). By Lemma 3.18 and Lemma 3.21 there ex-
ists 1 ≤ j ≤ λ such that χ(NFj(s),NFj(t1), . . . ,NFj(tm), w̃) in the structure

Red((H ′)f
k , t). Moreover, we have NFj(ti) ∈ Red((Hi)

f
k , t). Since R has no

long overlapping, there exists exactly one occurrence of rj−1s11xfs11rj in every
sequence which is ∼-equivalent to s. Hence, we can write s = v1 · xf · v2 and
NFj(s) ∼ v1 · k · v2 for v1, v2 ∈ Red(H, t). Thus,

f = act[s,X] = act[v1 · xf · v2,X] =

act[v1,X] ◦ act[xf ,X] ◦ act[v2,X] = act[v1,X] ◦ f ◦ act[v2,X]

and

∃y1 · · · ∃ym





∧

1≤i≤m

yi ∈ Red((Hi)
f
k , t)

∧ χ(v1 · k · v2, y1, . . . , ym, w̃)



 in Red((H ′)f

k , t).

This finishes the proof of Lemma 3.13.
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4 Amalgamated free products

In this section we consider positive theories of amalgamated free products. Let
us fix throughout Section 4 two groups H and J where A = H ∩ J is a proper
subgroup of both H and J . Let

G = H ∗A J. (14)

The aim of this section is to prove the following result:

Theorem 4.1. Let G = H ∗A J be an amalgamated free product, where A =
H∩J is a proper subgroup of both H and J and such that A is finite. If Th∃+(G)
is decidable, then Th+(G) is decidable.

Remark 4.2. Note that Theorem 3.1 cannot be extended by allowing monoids
for H and J , since already the ∀∃3-theory of the free monoid {a, b}∗ is undecid-
able [7, 18].

Let us first consider a special case of Theorem 4.1, namely the case that the
index of A in H and J is both 2: [H : A] = [J : A] = 2. In this case, G = H ∗AJ
has Z as a subgroup of finite index [2, p. 31], hence, the whole first-order theory
of G is decidable [8]. Thus, we may assume that either [H : A] ≥ 3 or [J : A] ≥ 3
in the following. W.l.o.g. we assume for the rest of Section 4 that [J : A] ≥ 3.

4.1 Reduced (H, J)-sequences

Recall from [14] that an (H,J)-sequence is an element from the free product
H ∗ J . Similarly to HNN-extensions, elements from H ∗A J can be represented
by certain reduced sequences: An (H,J)-sequence s is reduced if either s ∈ A
or s does not contain a factor from A. Alternatively, we can view a reduced
t-sequence as a word from the language Red(H,J) = A ∪ Γ∗ \ Γ∗{xy | x, y ∈
H or x, y ∈ J}Γ∗, where Γ = (H ∪ J) \ A. For u, v, w ∈ Red(H,J) we write
u · v = w if and only if uv = w as words over the alphabet Γ. In this case, we
also say that the concatenation u · v of u and v is defined. With ∼ we denote
the smallest congruence on H ∗J such that j(ah) ∼ (ja)h and h(aj) ∼ (ha)j for
a ∈ A, h ∈ H, and j ∈ J . Then u, v ∈ Red(H,J) represent the same element of
the amalgamated free product G if and only if u ∼ v [14]. Equivalently, if

u = h0j1h1j2 · · ·hn−1jnhn and (15)

v = h′0j
′
1h

′
1j

′
2 · · ·h

′
m−1j

′
mh

′
m (16)

(with n,m ≥ 0, h0, · · ·hn, h
′
0, . . . , h

′
m ∈ H, and j1, · · · jn, j

′
1, . . . , j

′
m ∈ J) are

reduced (H,J)-sequences, then u ∼ v if and only if n = m and there exist
a1, . . . , a2n ∈ A such that:

• hia2i+1 = a2ih
′
i in H for 0 ≤ i ≤ n (here we set a0 = a2n+1 = 1)

• jia2i = a2i−1j
′
i in J for 1 ≤ i ≤ n
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In other words, there exists a Van Kampen diagram of the following kind:

.

.....................................

..................................

................................

.............................

..........................
...... .......... .............. ................. ..................... .........................

..................................
..............................

........................... ....................... ................... ........ ......... ............ ................ ................... ....................... .............................................................................................................................. ....................... ................... ................ ............ ......... ........ ................... ....................... ........................... .............................. .................................. ......................... ..................... ................. .............. .......... ......
................

..........

..............
..............

.

.............
.............

......

............
............

..........

............
............

............
.

.

............
............

............
.

............
............

..........

.............
.............

......

..............
..............

.

................
..........


..............................

..................................
......................... ..................... ................. .............. .......... ......

..........................

.............................

................................

..................................

.....................................

h0

j1
h1 j2 h2 j3 h3 j4

h4

h′0

j′1 h′1 j′2 h′2 j′3
h′3

j′4

h′4

a1 a2 a3 a4 a5 a6 a7 a8

As for HNN-extensions, the elements ai are called the connecting elements and
occasionally we will omit in diagrams some of the connecting elements.

For the above u ∈ Red(H,J) in (15) let u−1 = h−1
n j−1

n h−1
n−1 · · · j

−1
2 h−1

1 j−1
1 h−1

0 .
The length |u| of u ∈ Red(H,J) is the number of occurences of letters from
(H ∪ J) \A in the sequence u. As for reduced t-sequences in the case of HNN-
extensions, u ∼ v implies |u| = |v|. We identify the set Red(H,J) with the
relational structure that contains the following predicates and constants:

• the ternary relation {(u, v, w) | u · v ∼ w}

• the ternary relation {(u, v, w) | u, v, w ∈ H,uv = w in H}

• the ternary relation {(u, v, w) | u, v, w ∈ J, uv = w in J}

• the binary relation {(u, v) | u ∼ v−1}

• every element of Red(H,J) as a constant

We will use the following lemma from [13]:

Lemma 4.3. For a given boolean combination φ(x1, . . . , xn) of word equations
over the amalgamated free product G we can effectively construct an existen-
tial formula ∃y1 · · · ∃ym : χ(x1, . . . , xn, y1, . . . , ym) over the structure Red(H,J)
such that for all s1, . . . , sn ∈ Red(H,J) we have:

φ(s1, . . . , sn) in G ⇔ ∃y1 · · · ∃ym : χ(x1, . . . , xn, y1, . . . , ym) in Red(H,J)

(here, when writing φ(s1, . . . , sn) in G, we identify si ∈ Red(H,J) with the
element from G it represents).

4.2 The finite normal subgroup X and stabilizing sequences

Analogously to Section 3.2 we define stabilizing reduced (H,J)-sequences and
a normal finite subgroup X of A in this section.

For a subgroup X ≤ A and g ∈ G we define a partial automorphism
act[g,X] : X →p X by conjugation: act[g,X](y) = z if and only if y, z ∈ X and
g−1yg = z. For a reduced (H,J)-sequence u, act[u,X] is defined as act[g,X],
where g is the element of G represented by u. The goal of this section is to
prove the following lemma:
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Lemma 4.4. There exists a finite subgroup X ≤ A and there exist sequences
sHH , sJJ , sJH , sHJ ∈ Red(H,J) such that

• sαβ ∈ (α \A) · Red(H,J) · (β \A),

• X is a normal subgroup of G, i.e., for all g ∈ G: act[g,X] is an (totally
defined) automorphism of X, and

• for all a, b ∈ A, if a sαβ = sαβb in G then a = b ∈ X.

Recall that we assume [J : A] ≥ 3 and that A is finite. For reasons, which
will become clear in Section 4.3, we will assume the following weaker restriction
in this Section 4.2:

[J : A] ≥ 3 and ∃h ∈ H \A : A ∩ hAh−1 is finite (17)

Choose an arbitrary j ∈ J \A and let

j′ ∈ J \ (A ∪ j−1A), (18)

which exists since [J : A] ≥ 3. Next, let h ∈ H \A such that

Y = A ∩ hAh−1

is finite, which exists by assumption (17). Note that ah = hb for a, b ∈ A implies
a ∈ Y .

We will first construct the sequences sJH and sHJ together with the normal
and finite subgroup X ≤ A. We will construct the subgroup X as the limit of
a decreasing chain Y ⊇ X0 ) X1 ) X2 · · · . Let act = act[hj, Y ] and define the
subgroup

X0 = {x ∈ Y | ∀k ≥ 0 : actk(x) is defined}.

The restriction act↾X0
is a permutation on the finite subgroup X0. Hence we

can fix a number n ∈ N such that n > |Y | and (act↾X0
)n = idX0

.

Lemma 4.5. For all a, b ∈ A, if a (hj)n = (hj)nb in G then a = b ∈ X0.

Proof. Assume that a (hj)n = (hj)nb inG for some a, b ∈ A, i.e., (ah)j(hj)n−1 =
(hj)n−1h(jb). Since (ah)j(hj)n−1 and (hj)n−1h(jb) are reduced (H,J)-sequences,
we obtain a Van Kampen diagram of the following kind:

a = a0 a1 a2 a3 an−1 an = b

hj hj hj hj

hj hj hj hj

We get a0, . . . , an−1 ∈ Y , act(ai) = ai+1 for 0 ≤ i < n−1, and act[hj,A](an−1) =
an. Since n > |Y | there are 0 ≤ i < j ≤ n− 1 such that ai = aj , i.e., act enters
a cycle at ai and ai ∈ X0. Since X0 is closed under act and act−1, we obtain
a, a1, . . . , an−1, b ∈ X0. Moreover, (act↾X0

)n = idX0
implies a = b.
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Let sHJ

0 = (hj)n and sJH

0 = (j−1h−1)n. Next we define sJH

i , sHJ

i ∈ Red(H,J)
and a subgroup Xi ≤ Y for larger i inductively:

Assume that for some i ≥ 0, reduced (H,J)-sequences sJH

i , sHJ

i ∈ Red(H,J)
and a finite subgroup Xi ≤ A with the following properties are already defined:

• sαβ
i ∈ (α \A) · Red(H,J) · (β \A)

• for all a, b ∈ A, if a sαβ
i = s

αβ
i b in G then a = b ∈ Xi

If for all g ∈ G, act[g,Xi] is totally defined, then we stop and set sαβ = s
αβ
i and

X = Xi. Otherwise there exists g ∈ G such that act[g,Xi] is not totally defined
on Xi. We can assume that g ∈ (H ∪ J) \ A.3 Hence, we can choose elements
h0 ∈ H \A and j0 ∈ J \A such that either act[h0,Xi] is not totally defined on
Xi or act[j0,Xi] is not totally defined on Xi.

Let s = sHJ

i h0s
JH

i j0s
HJ

i ∈ Red(H,J) and let act = act[s,Xi]. If act[h0,Xi] is
not totally defined on Xi, then dom(act) ( Xi and if act[j0,Xi] is not totally
defined on Xi, then ran(act) ( Xi. Hence, act is not totally defined on Xi.
Define

Xi+1 = {x ∈ Xi | ∀k ≥ 0 : actk(x) is defined} < Xi.

Clearly, act↾Xi+1
is a permutation on Xi+1. Let m be such that m + 1 > |Xi|

and (act↾Xi+1
)m = idXi+1

, and define

sHJ

i+1 = sm.

The sequence sJH

i+1 is constructed similarly, we only have to take sHJ

i+1 = sm

for s = sJH

i j0s
HJ

i h0s
JH

i ∈ Red(H,J). By construction we have sαβ
i+1 ∈ (α \ A) ·

Red(H,J) · (β \A).

Lemma 4.6. For all a, b ∈ A and αβ ∈ {JH,HJ}, if a sαβ
i+1 = s

αβ
i+1 b in G,

then a = b ∈ Xi+1.

Proof. We restrict to the case that αβ = HJ , the other case can be dealt
analogously. Assume that we have a, b ∈ A with

a(sHJ

i h0s
JH

i j0s
HJ

i )m = (sHJ

i h0s
JH

i j0s
HJ

i )mb in G.

We obtain a diagram of the following form, where a0 = a, a2m = b, and
a0, a1, . . . , a2m ∈ Xi due to the assumptions on sHJ

i and sJH

i :

a0 a0 a1 a1 a2 a2 a2 a3 a3 a4 a4 a2m−2 a2m−1 a2m a2m

sHJ

i h0 sJH

i j0 sHJ

i sHJ

i h0 sJH

i j0 sHJ

i sHJ

i h0 sJH

i j0 sHJ

i

sHJ

i h0 sJH

i j0 sHJ

i sHJ

i h0 sJH

i j0 sHJ

i sHJ

i h0 sJH

i j0 sHJ

i

3Since H ∪ J generates G, we can assume that g ∈ H ∪ J . If g = a ∈ A but act[h, Xi]
is a permutation on Xi for all h ∈ H \ A, then set h′ = ha ∈ H \ A. We obtain that also
act[h′, Xi] is not totally defined on Xi, a contradiction.
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Hence, act(a2i) = a2i+2 for 0 ≤ i < m. Since m + 1 > |Xi|, there are i < j

with a2i = a2j . Thus, act enters a cycle at a2i, i.e., a2i ∈ Xi+1. But since Xi+1

is closed under act and act−1, we get a, a2, . . . , a2(m−1), b ∈ Xi+1. Moreover,
(act↾Xi+1

)m = idXi+1
implies a = b.

This concludes the construction of the sequences sHJ and sJH as well as the
normal finite subgroup X ≤ A. In order to construct sHH note that sHJ = s · j
for some sequence s and that j′ was chosen in (18) such that j′ ∈ J \(A∪j−1A),
i.e., jj′ 6∈ A. Now define

sHH = sHJ s (jj′)h (j′h)|X|!−1sJH ∈ (H \A) · Red(H,J) · (H \A).

In the group G, this sequence equals sHJsHJ (j′h)|X|!sJH . Now assume that
asHH = sHHb in G for some a, b ∈ A. We have to show that a = b ∈ X.
From asHH = sHHb and the properties of sHJ and sJH we obtain the following Van
Kampen diagram, where a, b ∈ X.

a a b b

sHJ
s (jj′)h (j′h)|X|!−1 sJH

sHJ s (jj′)h (j′h)|X|!−1 sJH

Moreover, we have b = act[sHH ,X](a) = act[sHJsHJ (j′h)|X|!sJH ,X](a) = a.
Finally, it remains to construct sJJ . We set

sJJ = sJHj
′(sHH(jj′))|X!|−1sHHjsHJ ∈ (J \A) · Red(H,J) · (J \A),

which is a reduced (H,J)-sequence, since jj′ ∈ J \ A. Note that act[sJJ ,X] =
act[sJH(j′sHHj)

|X!|sHJ ,X] = idX . This concludes the proof of Lemma 4.4.

4.3 Reducing to the existential positive theory

The reduction of the positive theory of the amalgamated free product G =
H ∗A J to the existential positive theory of G is very similar to the case of an
HNN-extension in Section 3.3: Given a positive sentence θ, which is interpreted
over G, we construct an existential positive sentence θ′, which is interpreted
over a multiple HNN-extension G of G, where only finite subgroups of A ≤ G

are associated (in fact, X ⊆ A from Lemma 4.4 will be associated with itself).
Let us fix a formula

θ(z̃) ≡ ∀x1∃y1 · · · ∀xn∃yn φ(x1, . . . , yn, y1, . . . , yn, z̃),

with φ a positive boolean combination of word equations (with constants) over
the group G. Let X ≤ A be the subgroup from Lemma 4.4. Recall that with
In(X,G) we denote the group of all automorphisms f of X such that for some
g ∈ G we have: f(c) = g−1c g for all c ∈ X. In the following, we use the
abbreviation In = In(X,G).

The following theorem yields the reduction from the positive to the existen-
tial positive theory; k1, . . . , kn 6∈ G are new constants.
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Theorem 4.7. Let θ(z̃) ≡ ∀x1∃y1 · · · ∀xn∃yn φ(x1, . . . , xn, y1, . . . , yn, z̃) be as
above. For all ũ ∈ G we have θ(ũ) in G if and only if

∧

f1∈In

∃y1 · · ·
∧

fn∈In

∃yn





∧

1≤i≤n

yi ∈ G
f1,...,fi

k1,...,ki
∧

φ(k1, . . . , kn, y1, . . . , yn, ũ)





in G
f1,...,fn

k1,...,kn
. (19)

Theorem 4.7 will be deduced completely analogous to Theorem 3.10. The
only new ingredient will be the proof of Lemma 4.8 below, which corresponds
to Lemma 3.13.

Fix a number m ∈ N, groups H1, . . . ,Hm,H
′ such that H ⊆ Hi ⊆ H ′

and Hi ∩ J = H ′ ∩ J = H ∩ J = A for 1 ≤ i ≤ m. Let Gi = Hi ∗A J and
G′ = H ′∗AJ . Thus, elements from G′ (resp. Gi) can be represented by elements
from Red(H ′, J) (resp. Red(Hi, J)). Let k 6∈ G′ be a new constant, let f ∈ In,
and let w̃ = (w1, . . . , wN ), where wi ∈ Red(H,J) is a reduced (H,J)-sequence.
Recall from Section 4.1 that we view Red(F, J) (where F is some base group)
as a relational structure equipped with the multiplication in the base groups F
and J and the concatenation and inversion of reduced (F, J)-sequences.

Lemma 4.8. Let χ(x, y1, . . . , ym, z̃) be a (not necessarily positive) boolean for-
mula over the signature of the structure Red(H ′, J) and with constants from
Red(H,J). If

∀x ∈ {u ∈ Red(H,J) | act[u,X] = f} ∃y1 · · · ∃ym





∧

1≤i≤m

yi ∈ Red(Hi, J)

∧ χ(x, y1, . . . , ym, w̃)





in Red(H ′, J), then there are v1, v2 ∈ Red(H,J) with act[v1,X]◦f ◦act[v2,X] =
f and

∃y1 · · · ∃ym





∧

1≤i≤m

yi ∈ Red((Hi)
f
k , J)

∧ χ(v1 · k · v2, y1, . . . , ym, w̃)





in Red((H ′)f
k , J).

Remark 4.9. The reader may observe some asymmetry in the above consid-
eration: We put the new generator k into the left factor (which is initially H)
of the amalgamated free product. But this is an arbitrary choice. If G1 and G2

are groups such that G1 ∩G2 = A is a subgroup of G1 and G2, X ≤ A, and f
is an automorphism of X, then (G1)

f
k ∗A G2 = G1 ∗A (G2)

f
k . In particular, in

Theorem 4.7 one gets Gf1,...,fi

k1,...,ki
≃ Hf1,...,fi

k1,...,ki
∗A J ≃ H ∗A J

f1,...,fi

k1,...,ki
.

4.4 Proof of Lemma 4.8

The following data were already fixed:

• the finite normal subgroup X ≤ A and the elements sαβ from Lemma 4.4
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• f ∈ In

• the sets Red(H,J) ⊆ Red(Hi, J) ⊆ Red(H ′, J) ⊆ Red((H ′)f
k , J) of re-

duced sequences from Section 4.3

• elements w1, . . . , wN ∈ Red(H,J) from Section 4.3

Moreover, let us fix a (not necessarily positive) boolean formula χ(x, y1, . . . , ym, z̃)
over the signature of the structure Red(H ′, J). Thus, χ is a boolean combina-
tion of propositions of the form x ·y ∼ z, x ∼ y−1, and xy = z in the base group
H ′ or J , where x, y, and z are either variables or constants from Red(H ′, J).
Let W be the union of {w1, . . . , wN} and the set of all constants appearing in χ
and let d be the number of atomic propositions of the form x · y ∼ z that occur
in χ. Choose a number λ > 2d such that |X|! divides λ − 1. Finally, choose
an element xf ∈ Red(H,J) such that act[xf ,X] = f , which exists since f ∈ In.
By appending, if necessary, suitable sequences sαβ to the left (right) of xf , we
may w.l.o.g. assume that xf = (H \A) · Red(H,J) · (H \A).

Fix an element h ∈ H \ A and two elements j0, j1 ∈ J \ A with j1 6∈ j0A.
Since we assume that [J : A] ≥ 3, j0 and j1 exist.

A J-system of degree n (n ≥ 2) is a tuple R = (r0, . . . , rλ) with

ri ∈ {(hj0)
|X|!, (hj1)

|X|!}n.

There are 2n(λ+1) J-systems of degree n. Note that ri−1sHJxfsJJri ∈ Red(H,J).
The J-system R = (r0, . . . , rλ) has no long overlapping, if for all 0 ≤ i, j ≤ λ

and all α, β ∈ {1,−1} we have:4 if rα
i = u1 · u2, r

β
j = v1 · v2, |u2| = |v1| ≥

|ri|−|sHJxf sJJ |
2 , and there exist a, b ∈ A with av1 = u2b in G, then: u1 = v2 = ε,

i = j, and α = β.
The next lemma follows immediately from the previous definition:

Lemma 4.10. Assume that R has no long overlapping. If

(ri−1sHJxfsJJri)
α ∼ p · rβ

j · q

for p, q ∈ Red(H,J) and α, β ∈ {1,−1}, then either p = ε or q = ε, i.e.,

r
β
j cannot be properly contained in a segment which is opposite to a segment

(ri−1sHJxfsJJri)
α in a diagram.

Note the difference between the definition of a J-system without long over-
lappings and a t-system without long overlappings in Section 3.4. For t-systems
we formulated the restrictions concerning overlappings in terms of the projec-
tions πt(r

α
i ) (α ∈ {1,−1}). One might think that for J-systems we may use the

projections of the sequences rα
i onto the letters jα

i (α ∈ {1,−1}, i ∈ {0, 1}). But
this would not work. For reduced t-sequences, it was crucial that u ∼ v implies
πt(u) = πt(v). A corresponding property for reduced (H,J)-sequences does not
hold: for instance, for every choice of j0 ∈ J\A above, we may have j−1

0 ∈ Aj0A.

4Recall that the length of a sequence s ∈ Red(H, J) was defined as the the number of
occurences of symbols from (H ∪ J) \ A in the sequence s.

30



Hence we may have j0 ∼ j−1
0 . Therefore, in the above definition, we have to

exclude long overlappings by directly forbidding certain Van Kampen diagrams
in order to obtain Lemma 4.10: Note that excluding an identity av1 = u2b in the
group G (with u2 a “long” suffix of some rα

i and v1 a “long” prefix of some rβ
j ),

means that we exclude the existence of a Van Kampen diagram of the following
form:

a b

u2

v1

For reduced t-sequences, in order to exclude such a diagram, one only has to
require πt(u2) 6= πt(v1). Nevertheless, thanks to the finiteness of A, we can prove
the existence of J-systems (of sufficiently high degree) without long overlapping:

Lemma 4.11. There exists n0 (depending only on λ) such that for all n ≥ n0

there exists a J-system of degree n without long overlapping.

Proof. Analogously to the proof of Lemma 3.15 it suffices to show that if the
J-system R = (r0, . . . , rλ) has a long overlapping, then it can be described with
strictly less than n(λ+ 1) bits. Again, we distinguish four cases:

Case 1: for some α ∈ {1,−1} and some 0 ≤ i, j ≤ λ with i 6= j, rα
i and

rα
j have a long overlapping. Thus, assume that rα

i = u1 · u2, r
α
j = v1 · v2,

|u2| = |v1| ≥
|ri|−|sHJxf sJJ |

2 , and av1 = u2b in G for some a, b ∈ A. W.l.o.g.
assume that α = 1. We first claim that the sequence v1 can be reconstructed
from the sequence u2, and a ∈ A: We know that v1 ∈ Red(H,J) is a sequence
over the letter h, j0, j1. Assume that w ∈ Red(H,J) is a sequence over the
letters h, j0, j1 such that aw = u2c in G for some c ∈ A. Thus, v1 = w(c−1b)
in G. This implies |v1| = |w|. We have to show that v1 = w (as reduced
(H,J)-sequences). We prove this by induction over |v1| = |w|. If |v1| = 0, then
v1 = ε = w. If v1 = h · v′, then we must have also w = h ·w′ for some sequence
w′. It follows v′ = w′(c−1b) in G. Inductively we obtain v′ = w′ and thus
v1 = w. Now assume that (w.l.o.g.) v1 = j0 · v

′. If also w = j0 ·w
′ for some w′,

then we can conclude as above. Hence, assume that w = j1 · w
′. We obtain a

Van Kampen diagram of the following form, where a′ ∈ A:

a′ c−1b

j1

j0

w′

v′

Thus, j1 ∈ j0A, which contradicts our choice for j0 and j1.
From the above consideration, it follows that rj can be reconstructed from

the triple (i, a, v2) (note that the length of v1 can be calculated from |v2|). Hence,

in the description of R we can save at least
|ri|−|sHJxf sJJ |

2
1

2|X|! − O(λ + |A|) =
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2n|X|!−|sHJxf sJJ |
2 · 1

2|X|! −O(1) = n
2 −O(1) many bits. For a sufficiently large n,

this term is strictly greater than 0; note that |sHJxfsJJ |, λ, and |A| are constants.

Case 2: for some 0 ≤ i ≤ λ, ri has a long overlapping with itself. Thus, assume

that ri = u1 · u
′ = v1 · v2, |u

′| = |v1| ≥
|ri|−|sHJxf sJJ |

2 , and av1 = u′b in G for
some a, b ∈ A, see the following diagram:

a b

u1 u′

v1 v2

It follows that there exists p > 1, a factorization ri = u1 · u2 · · ·up, and
a1, . . . , ap ∈ A (we have a1 = a and ap = b) such that

• |u1| = |u2| = · · · |up−1| ≥ |up|,

• ai−1ui−1 = uiai in G for 1 < i ≤ p− 1, and

• ap−1w = upap in G, where w is the prefix of up−1 of length |up|,

see also the following diagram:

a1 a2 a3 ap−2 ap−1 ap

u1 u2 u3 up−1 up

u1 u2 up−2 w up

We claim that ri can be reconstructed from the pair (u1, a1): First, u1 and a1

determine u2. The idea is the same as in Case 1. If x ∈ Red(H,J) is a sequence
over the letters h, j0, j1 with a1u1 = xc in G (for some c ∈ A), then xc = u2a2,
i.e., u2 = x(ca−1

2 ) in G. We then obtain u2 = x as in Case 1. Next from u1, u2,
and a1 we can determine a2 ∈ A by the equation a1u1 = u2a2. Having u2 and
a2 available, we can determine u3. We continue in this way.

By the previous paragraph, in the description of R we can save at least
|ri|−|sHJxf sJJ |

2
1

2|X|! −O(1) = n
2 −O(1) many bits.

Case 3: for some 0 ≤ i, j ≤ λ with i 6= j, ri and r−1
j have a long overlapping.

This case is analogous to Case 1.

Case 4: for some 0 ≤ i ≤ λ, ri and r−1
i have a long overlapping. Hence,

ri = u1 · u2, r
−1
i = v1 · v2, |u2| = |v1| ≥

|ri|−|sHJxf sJJ |
2 , and av1 = u2b in G for

some a, b ∈ A. Thus, we have a diagram of the following form:

a b

u1 u2

v1 v2
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From r−1
i = v1 · v2 we get ri = v−1

2 · v−1
1 = u1 · u2. With |u2| = |v1| = |v

−1
1 |

we get v1 = u−1
2 , i.e., au−1

2 = u2b in G. Assume that |u2| is even (the case that
|u2| is odd is similar) and write u2 = w1 ·w2 with |w1| = |w2|. Thus, the above
diagram looks as follows:

a c b

w1 w2

w−1
2 w−1

1

u1

v2

But then we can shorten the description ofR to less than n(λ+1) bits as follows:
Instead of writing down ri using n bits, we write down the triple (u1, w1, a).
From w1 and a we can reconstruct w−1

2 in the same way as v1 was reconstructed

from u2 and a in Case 1. This saves at least |u2|
2 ·

1
2|X|! −O(1) ≥

|ri|−|sHJxf sJJ |
4 ·

1
2|X|! −O(1) = n

4 −O(1) many bits.

The proof of Lemma 4.11 is the only place, where we need the assumption
that A is finite.

Remark 4.12. With some other restrictions on J and A, we can prove the
existence of a J-system without long overlapping also in the case that A is not
necessarily finite. Recall that a double coset of A in J is a set of the form
AjA for some j ∈ J . The group J can be partitioned into double cosets of A.
Now assume for a moment that there are at least three double cosets of A in J .
Clearly, A is one of them. If follows that we can choose j0, j1 ∈ J such that
(i) j0, j1 6∈ A and (ii) j1 6∈ Aj0A. With these restrictions, it is not difficult to
prove again the existence of a J-system without long overlapping. The proof is
similar to the proof of Lemma 4.11. One only has to notice that in each of the
four cases, we never have to specify an element from the subgroup A in order to
reduce the size of the description of the J-system R. Since the finiteness of A
was only used in the proof of Lemma 4.11, it follows together with the weaker
restrictions (17), which where sufficient in order to prove the main Lemma 4.4
from Section 4.2, that Th+(G) can be reduced to Th∃(G) also in case one of the
following restrictions hold for G = H ∗A J :

• [H : A] = [J : A] = 2 or

• A has at least three double cosets in H (this implies that [H : A] ≥ 3) and
∃j ∈ J \A : A ∩ jAj−1 finite or

• A has at least three double cosets in J (this implies that [J : A] ≥ 3) and
∃h ∈ H \A : A ∩ hAh−1 finite.

Let us fix a J-system R = (r0, . . . , rλ) of degree n without long overlap-
ping, where moreover |ri−1sHJxfsJJri| > |w| for all w ∈ W . For 1 ≤ i ≤ λ,

u, v ∈ Red((H ′)f
k , J), and 0 ≤ j ≤ |u| we write u

j
→i v if there exist u1, u2 ∈

Red((H ′)f
k , J) and α ∈ {1,−1} such that

33



• u = u1 · (ri−1sHJxfsJJri)
α · u2,

• v = u1 · (ri−1sHJksJJri)
α · u2, and

• |u1| = j

We write u ⇒i v if there exist u′, v′ ∈ Red((H ′)f
k , J) and 0 ≤ j ≤ |u| = |u′|

such that u ∼ u′
j
→i v

′ ∼ v. Clearly, the relation ⇒i is terminating. Let
IRRi = {u | ¬∃v : u⇒i v}. Note that W ⊆ IRRi by the choice of n, Moreover,
s⇒i t implies also s−1 ⇒i t

−1.
The next four lemmas can be shown analogously to the corresponding lem-

mas in Section 3.4.

Lemma 4.13. The relation⇒i is confluent modulo ∼, i.e., u i
∗
⇐ v

∗
⇒i w implies

that u ∼ w or there exists p ∈ Red((H ′)f
k , J) such that u

∗
⇒i p i

∗
⇐w.

The previous lemma implies that for every 1 ≤ i ≤ λ and every sequence
u ∈ Red((H ′)f

k , J), if u
∗
⇒i v ∈ IRRi and u

∗
⇒i w ∈ IRRi, then v ∼ w. Let

NFi(u) denote an arbitrary sequence with u
∗
⇒i NFi(u) ∈ IRRi; it is unique up

to ∼. Note that if the concatenation u · v of u and v is defined then also the
concatenation NFi(u) ·NFi(v) is defined.

Lemma 4.14. For all 1 ≤ i ≤ λ we have:

• NFi(w) ∼ w for all w ∈W ,

• if u ∼ v−1 for u, v ∈ Red(H ′, J), then NFi(u) ∼ NFi(v)
−1.

Lemma 4.15. Let v, w ∈ Red(H ′, J) such that v · w is defined (as a reduced
(H ′, J)-sequence). There are at most two i ∈ {1, . . . , λ} with NFi(v) ·NFi(w) 6∼
NFi(v · w).

Lemma 4.16. Let xj , yj , zj ∈ Red(H ′, J) for 1 ≤ j ≤ d. Then there exists
1 ≤ i ≤ λ such that for all 1 ≤ j ≤ d, xj · yj ∼ zj if and only if NFi(xj) ·
NFi(yj) ∼ NFi(zj).

Now, Lemma 4.8 can be shown analogously to Lemma 3.13: Assume that

∀x ∈ {s ∈ Red(H,J) | act[s,X] = f} ∃y1 · · · ∃ym





∧

1≤i≤m

yi ∈ Red(Hi, J)

∧ χ(x, y1, . . . , ym, w̃)





in Red(H ′, J). Let

s = r0sHJxfsJJr1sHJxfsJJr2 · · · sHJxfsJJrλ−1sHJxfsJJrλ ∈ Red(H,J).

Note that act[s,X] = act[xf ,X]λ = act[xf ,X] = f since λ − 1 is a multi-
ple of |X|!. Thus, there exist sequences ti ∈ Red(Hi, J), 1 ≤ i ≤ m, with
χ(s, t1, . . . , tm, w̃) in Red(H ′, J). By Lemma 4.14 and Lemma 4.16 there exists

1 ≤ j ≤ λ such that χ(NFj(s),NFj(t1), . . . ,NFj(tm), w̃) in Red((H ′)f
k , J). Since
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R has no long overlapping, there exists exactly one occurrence of rj−1sHJxfsJJrj
in every sequence which is ∼-equivalent to s. Hence, we can write s = v1 ·xf ·v2
and NFj(s) ∼ v1 · k · v2 for some v1, v2 ∈ Red(H,J). Thus,

f = act[s,X] = act[v1 · xf · v2,X] =

act[v1,X] ◦ act[xf ,X] ◦ act[v2,X] = act[v1,X] ◦ f ◦ act[v2,X]

and

∃y1 · · · ∃ym





∧

1≤i≤m

yi ∈ Red((Hi)
f
k , J)

∧ χ(v1 · k · v2, y1, . . . , ym, w̃)



 in Red((H ′)f

k , J).

This finishes the proof of Lemma 4.8.

5 Applications

The number of ends of a group G is, roughly speaking, the maximal number
of connected components in the Cayley-graph of G which can be obtained by
removing an arbitrary finite set of nodes, see e.g. [4] for more details. It is well
known that the number of ends of G is either 1, 2, or ∞. Moreover, a famous
result of Stallings states that a group G has more than one end if and only if it
can be written as G = H ∗A J or G = 〈H, t; t−1at = ϕ(a)(a ∈ A)〉 with A finite
[24]. Hence we obtain:

Theorem 5.1. If the group G has more than one end and Th∃+(G) is decidable,
then Th+(G) is decidable.

Recall that a group is virtually free if it has a free subgroup of finite index.
Every virtually-free group has more than one end. Moreover, in [13], we have
shown that every virtually-free group has a decidable existential theory. Thus,
Theorem 5.1 implies:

Theorem 5.2. Let G be a virtually-free group. Then Th+(G) is decidable.

In [20, 23], it is shown that the existential theory of a torsion-free hyperbolic
group is decidable. Again, with Theorem 5.1 we get:

Theorem 5.3. Let G be a torsion-free hyperbolic group. If G has more than
one end, then Th+(G) is decidable.

It should be noted that the statements of Theorem 5.2 and Theorem 5.3 are
orthogonal: By a result of Stallings [24], a torsion-free virtually-free group is
already free.
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6 Open problems

We presented quite general conditions under which the positive theory of a group
G can be reduced to the existential positive theory of G. To the knowledge of
the authors there is currently no example of a group G such that the existential
positive theory of G is decidable but the positive theory of G is undecidable.
The decidability of the positive theory of a virtually-free group leads of course
to the question, whether the full first-order theory of a virtually-free group is
decidable. One might try to extend the techniques developed by Kharlampovich
and Myasnikov in their solution of Tarski’s problem about the theory of a free
group [12] to the virtually-free case.

Underlying the definition of a t-system (resp. J-system) without long over-
lapping is a certain small cancellation condition. Similar conditions were also
used in the construction of SQ-universal HNN-extensions [21] and amalgamated
free products [22]. Recall that a groupG is SQ-universal if every countable group
embedds into a quotient of G. One might ask, whether there is some relation
between SQ-universality and the positive theory of a group.
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