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Abstract. A grammar-based compressor computes for a given input w
a context-free grammar that produces only w. So-called global grammar-
based compressors (RePair, LongestMatch and Greedy) achieve impressive
practical compression results, but the recursive character of those algo-
rithms makes it hard to achieve strong theoretical results. To this end,
this paper studies the approximation ratio of those algorithms for unary
input strings, which is strongly related to the field of addition chains. We
show that in this setting, RePair and LongestMatch produce equal size
grammars that are by a factor of at most log2(3) larger than a smallest
grammar. We also provide a matching lower bound. The main result of
this paper is a new lower bound for Greedy of 1.348..., which improves
the best known lower bound for arbitrary (not necessarily unary) input
strings.

Keywords: Data compression · Grammar-based compression · Approx-
imation algorithm · Addition chain

1 Introduction

The goal of grammar-based compression is to represent a word w by a small
context-free grammar that produces exactly {w}. Such a grammar is called a
straight-line program (SLP) for w. In the best case, one gets an SLP of size
Θ(log n) for a word of length n, where the size of an SLP is the total length of
all right-hand sides of the rules of the grammar. A grammar-based compressor
is an algorithm that produces an SLP for a given word w. There are various
grammar-based compressors that can be found at many places in the literature.
Well-known examples are the classical LZ78-compressor1 of Lempel and Ziv [21],
BISECTION [12] and SEQUITUR [17], just to mention a few. In this paper, we
study the class of global grammar-based compressors which are also called global
algorithms. A key concept of those algorithms are maximal strings. A maximal
string of an SLP A is a word that has length at least two and occurs at least twice
without overlap as a factor of the right-hand sides of the rules of A. Further,
no strictly longer word appears at least as many times without overlap as a
factor of the right-hand sides of A. For an input word w, a global grammar-based

1 While LZ78 was not introduced as a grammar-based compressor, it is straightforward
to compute from the LZ78-factorization of w an SLP for w of roughly the same size.



compressor starts with the SLP that has a single rule S → w, where S is the start
nonterminal of the grammar. The SLP is then recursively updated by choosing
a maximal string γ of the current SLP and replacing a maximal set of pairwise
non-overlapping occurrences of γ by a fresh nonterminal X. Additionally, a new
rule X → γ is introduced. The algorithm stops when the obtained SLP has
no maximal string. The probably best known example for a global algorithm is
RePair [13], which selects in each round a most frequent maximal string. Note
that the RePair algorithm as it is proposed in [13] always selects a word of length
2, but in this paper we follow the definition of [8], where the algorithm possibly
selects longer words. However, both definitions coincide for unary input strings
as considered in this work. Other global algorithms are LongestMatch [11], which
chooses a longest maximal string in each round, and Greedy [2–4], which selects a
maximal string that minimizes the size of the SLP obtained in the current round.
It is again worth mentioning that the Greedy algorithm as originally presented
in [2–4] is different from the version studied in this work as well as in [8]: The
original Greedy algorithm only considers the right-hand side of the start rule for
the choice and the replacement of the maximal string. In particular, all other
rules do not change after they are introduced.

In the seminal work of Charikar et al. [8], the worst case approximation ratio
of grammar-based compressors is studied. For a grammar-based compressor C
that computes an SLP C(w) for a given word w, one defines the approxima-
tion ratio of C on w as the quotient of the size of C(w) and the size g(w) of a
smallest SLP for w. The approximation ratio αC(n) is the maximal approxima-
tion ratio of C among all words of length n. In [8] the authors provide upper
and lower bounds for the approximation ratios of several grammar-based com-
pressors (among them are all compressors mentioned so far), but for none of
the compressors the lower and upper bounds match. For LZ78 and BISECTION
those gaps were closed in [15]. For all global algorithms, the best upper bound
on the approximation ratio is O((n/ log n)2/3) [8], while the best known lower
bounds are Ω(log n/ log logn) for RePair [14], Ω(log log n) for LongestMatch and
5/(3 log3(5)) = 1.137... for Greedy [8]. In the context of our work, it is worth
mentioning that the lower bound for Greedy uses words over a unary alphabet.
In general, the achieved bounds “leave a large gap of understanding surrounding
the global algorithms” as the authors in [8] conclude.

We aim to strengthen the understanding of global grammar-based compres-
sors in this paper by studying the behavior of these algorithms on unary inputs,
i.e., words of the form an for some symbol a. Grammar-based compression on
unary words is strongly related to the field of addition chains, which has been
studied for decades (see [16, Chapter 4.6.3] for a survey) and still is an active
topic due to the strong connection to public key cryptosystems (see [18] for a
review from that point of view). An addition chain for an integer n of size m is
a sequence of integers 1 = k1, k2, . . . , km = n such that for each d (2 ≤ d ≤ m),
there exists i, j (1 ≤ i, j < d) such that ki + kj = kd. It is straightforward to
compute from an addition chain for an integer n of size m an SLP for an of size
2m − 2. Vice versa, an SLP for an of size m yields an addition chain for n of



size m. So this paper can also be interpreted as a study of global algorithms
as addition chain solvers. For RePair and LongestMatch, the restriction to unary
inputs allows a full understanding of the produced SLPs and it turns out that
for all unary inputs the SLP produced by RePair has the same size as the SLP
produced by LongestMatch. In fact, both algorithms are basically identical to
the binary method that produces an addition chain for n by creating powers of
two using repeated squaring, and then the integer n is represented as the sum of
those powers of two that correspond to a one in the binary representation of n.
Based on that information, we show that for any unary input w the produced
SLPs of RePair and LongestMatch have size at most log2(3)·g(w), and we provide
a matching lower bound.

Unfortunately, even for unary inputs it is hard to analyze the general be-
havior of Greedy due to the discrete optimization problem in each round of the
algorithm. The (probably weak) upper bound that we achieve for the approxi-
mation ratio of Greedy on unary inputs is O(n1/4/ log n). We derive this bound
by estimating the size of the SLP obtained by Greedy after three rounds, which
already indicates space for improvement. For the original Greedy algorithm where
only the start rule is compressed, it is a direct consequence of our analysis that
the approximation ratio on unary input strings is Θ(

√
n/ log n). On the positive

side, we provide a new lower bound of 1.348... for the approximation ratio of
Greedy (in the variant where all right-hand sides are considered) that improves
the best known lower bound for inputs over arbitrary alphabets. The key to
achieve the new bound is the sequence yk = y2k−1 + 1 with y0 = 2, which has

been studied in [1] (among other sequences), where it is shown that yk = bγ2kc
for γ = 2.258... . In order to prove the lower bound, we show that the SLP
produced by Greedy on input ayk has size 3 · 2k− 1, while a smallest SLP for ayk

has size 3 · log3(γ) · 2k + o(2k) (this follows from a construction used to prove
the lower bound for Greedy in [8]).

Related work. One of the first appearances of straight-line programs in the liter-
ature are [6, 9], where they are called word chains (since they generalize addition
chains from numbers to words). In [6], Berstel and Brlek prove that the function
g(k, n) = max{g(w) | w ∈ {1, . . . , k}n} is in Θ(n/ logk n). Recall that g(w) is
the size of a smallest SLP for the word w and thus g(k, n) measures the worst
case SLP-compression over all words of length n over a k-letter alphabet.

The smallest grammar problem is the problem of computing a smallest SLP
for a given input word. It is known from [8, 20] that in general no grammar-based
compressor can solve the smallest grammar problem in polynomial time unless
P = NP. Even worse, unless P = NP one cannot compute in polynomial time for
a given word w an SLP of size at most 8569

8568 · g(w) [8]. One should mention that
the constructions to prove those hardness results use alphabets of unbounded
size. While in [8] it is remarked that the construction in [20] works for words over
a ternary alphabet, Casel et al. [7] argue that this is not clear at all and provide
a construction for fixed alphabets of size at least 24. However, for grammar-
based compression on unary strings as it is studied in this work (as well as for
the problem of computing a smallest addition chain), there is no NP-hardness



result, so there might be an optimal polynomial-time algorithm even though it
is widely believed that there is none.

Other notable systematic investigations of grammar-based compression are
provided in [11, 19]. Whereas in [11], grammar-based compressors are used for
universal lossless compression (in the information-theoretical sense), it is shown
in [19] that the size of so-called irreducible SLPs (that include SLPs produced
by global algorithms) can be upper bounded by the (unnormalized) k-th order
empirical entropy of the produced string plus some lower order terms.

2 Preliminaries

For i, j ∈ N, let [i, j] = {i, i + 1, . . . , j} for i ≤ j and [i, j] = ∅ otherwise. For
integers m,n, we denote by m div n the integer division of m and n. We denote
by m mod n the modulo of m and n, i.e., m mod n ∈ [0, n− 1] and

m = (m div n) · n+ (m mod n).

If m/n or m
n is used, then this refers to the standard division over R. Note that

m div n = bm/nc and (m div n) + (m mod n) ≥ m/n.
For an alphabet Σ, let w = a1 · · · an (a1, . . . , an ∈ Σ) be a word or string

over Σ. The length |w| of w is n and we denote by ε the word of length 0. A
unary word is a word of the form an for a ∈ Σ. Let Σ+ = Σ∗ \ {ε} be the set
of all nonempty words. For w ∈ Σ+, we call v ∈ Σ+ a factor of w if there exist
x, y ∈ Σ∗ such that w = xvy.

2.1 Straight-line programs.

A straight-line program, briefly SLP, is a context-free grammar that produces a
single word w ∈ Σ+. Formally, it is a tuple A = (N,Σ,P, S), where N is a finite
set of nonterminals with N ∩Σ = ∅, S ∈ N is the start nonterminal, and P is a
finite set of productions (or rules) of the form A→ w for A ∈ N , w ∈ (N ∪Σ)+

such that:

– For every A ∈ N , there exists exactly one production of the form A → w,
and

– the binary relation {(A,B) ∈ N × N | (A → w) ∈ P, B occurs in w} is
acyclic.

Every nonterminal A ∈ N produces a unique, nonempty word. The word defined
by the SLP A is the word produced by the start nonterminal S. The size of the
SLP A is |A| =

∑
(A→w)∈P |w|. We denote by g(w) the size of a smallest SLP

producing the word w ∈ Σ+. We will use the following inequalities that can be
found in [8]:

Lemma 1 ([8]). For all unary words w of length n, we have

3 log3(n)− 3 ≤ g(w) ≤ 3 log3(n) + o(log n).



Note that the first inequality also holds when w is a word over an arbitrary
alphabet. The proof of the first inequality can be found in Lemma 1 of [8] and
the second inequality is shown in the proof of Theorem 11 of [8].

Approximation ratio. A grammar-based compressor C is an algorithm that com-
putes for a nonempty word w an SLP C(w) that produces the word w. The
approximation ratio αC(w) of C for an input w is defined as |C(w)|/g(w). The
worst-case approximation ratio αC(k, n) of C is the maximal approximation ratio
over all words of length n over an alphabet of size k:

αC(k, n) = max{αC(w) | w ∈ [1, k]n} = max{|C(w)|/g(w) | w ∈ [1, k]n}

In this paper we are mainly interested in the case k = 1, i.e., we are interested
in grammar-based compression on unary words.

3 Global algorithms

For a given SLP A = (N,Σ,P, S), a word γ ∈ (N ∪ Σ)+ is called a maximal
string of A if

– |γ| ≥ 2,
– γ appears at least twice without overlap as a factor of the right-hand sides

of A,
– and no strictly longer word appears at least as many times as a factor of the

right-hand sides of A without overlap.

A global grammar-based compressor starts on input w with the SLP A0 =
({S}, Σ, {S → w}, S). In each round i ≥ 1, the algorithm selects a maximal
string γ of Ai−1 and updates Ai−1 to Ai by replacing a largest set of pairwise
non-overlapping occurrences of γ in Ai−1 by a fresh nonterminal X. Addition-
ally, the algorithm introduces the rule X → γ in Ai. The algorithm stops when
no maximal string occurs. Note that the replacement is not unique, e.g. the
word a5 has a unique maximal string γ = aa, which yields SLPs with rules
S → XXa,X → aa or S → XaX,X → aa or S → aXX,X → aa. We assume
the first variant in this paper, i.e., maximal strings are replaced from left to
right.

3.1 Greedy

The global grammar-based compressor Greedy selects in each round i ≥ 1 a
maximal string of Ai−1 such that Ai has minimal size among all possible choices
of maximal strings of Ai−1.

We start with the main result of this paper, which is a new lower bound for
the approximation ratio of Greedy. The best known lower bound [8] so far is

αGreedy(k, n) ≥ 5

3 log3(5)
= 1.13767699...



for all k ≥ 1 and infinitely many n. This bound is achieved using unary input
strings. A key concept to prove a better lower bound is the sequence xn described
in the following lemma by [1]:

Lemma 2 ([1, Example 2.2]). Let xn+1 = x2n + 1 with x0 = 1 and

β = exp

( ∞∑
i=1

1

2i
log

(
1 +

1

x2i

))
.

We have xn =
⌊
β2n
⌋
.

In this work, we use the shifted sequence yn = xn+1, i.e., we start with
y0 = 2. It follows that yn =

⌊
γ2

n⌋
, where γ = β2 = 2.25851845... . Additionally,

we need the following lemma:

Lemma 3. Let m ≥ 1 be an integer. Let fm : R>0 → R with

fm(x) = x+
m2 + 1

x
.

We have fm(x) > 2m for all x > 0.

Proof. The unique minimum of fm(x) is 2
√
m2 + 1 for x =

√
m2 + 1. It follows

that fm(x) ≥ 2
√
m2 + 1 > 2

√
m2 = 2m.

Now we are able to prove the new lower bound for Greedy:

Theorem 1. For all k ≥ 1 and infinitely many n, we have

αGreedy(k, n) ≥ 1

log3(γ)
= 1.34847194... .

Proof. Let Σ = {a} be a unary alphabet. We define wk = ayk . By Lemma 2, we

have |wk| ≤ γ2
k

. Applying Lemma 1 yields

g(wk) ≤ 3 · log3(γ) · 2k + o(2k).

In the remaining proof we show that on input wk, Greedy produces an SLP of
size 3 · 2k − 1, which directly implies αGreedy(1, n) ≥ 3/(3 log3(γ)). We start with
the SLP A0 which has the single rule S → ayk . Consider now the first round
of the algorithm, i.e., we need to find a maximal string ax of A0 such that the
grammar A1 with rules

X1 → ax, S → Xyk div x
1 ayk mod x

has minimal size. We have |A1| = x + (yk div x) + (yk mod x) ≥ x + yk/x. By
the definition of yk we have |A1| ≥ x+ (y2k−1 + 1)/x. Applying Lemma 3 yields
|A1| ≥ 2yk−1 + 1. Note that for x = yk−1 this minimum is achieved, i.e., we can
assume that Greedy selects the maximal string ayk−1 and A1 is

X1 → ayk−1 , S → X
yk−1

1 a.



S → ayk

X1 → ayk−1

X2 → ayk−2 X1 → X
yk−2
2 a

S → X
yk−1
1 a

X3 → X
yk−2
1 S → X

yk−2
3 X1a

Fig. 1. Three rounds of Greedy on input ayk .

Each maximal string of A1 is either a unary word over X or a unary word over a,
i.e., we can analyze the behavior of Greedy on both rules independently. The rule
X1 → ayk−1 is obviously treated similarly as the initial SLP A0, so we continue
with analyzing S → X

yk−1

1 a. But again, the same arguments as above show that
Greedy introduces a rule X3 → X

yk−2

1 which yields S → X
yk−2

3 X1a as the new
start rule. This process can be iterated using the same arguments for the leading
unary strings of length yi for some i ∈ [1, k].

The reader might think of this process as a binary tree, where each node is
labelled with a rule (the root is labelled with S → ayk) and the children of a
node are the two rules obtained by Greedy when the rule has been processed. We
assume that the left child represents the rule for the chosen maximal string and
the right child represents the parent rule where all occurrences of the maximal
string are replaced by the fresh nonterminal. In Figure 1 this binary tree is
depicted for the steps we discussed above. Note that when a rule is processed,
the longest common factor of the two new rules has length 1 (the remainder).
More generally, after each round there is no word of length at least two that
occurs as a factor in two different rules, since a possibly shared remainder has
length 1 and otherwise only fresh nonterminals are introduced. It follows that
we can iterate this process independently for each rule until no maximal string
occurs. This is the case when each rule starts with a unary string of length
y0 = 2 or, in terms of the interpretation as a binary tree, when a full binary
tree of height k is produced. Each right branch occurring in this tree adds a new
remainder to those remainders that already occur in the parent rule and a left
branch introduces a new (smaller) instance of the start problem. We show by
induction that on level i ∈ [0, k] of this full binary tree of height k, there is one
rule of size yk−i + i and 2i−j−1 many rules of size yk−i + j for j ∈ [0, i − 1].
On level 0, this is true since there is only a single rule of size yk + 0. Assuming
that our claim is true on level i < k, we derive from each rule on level i two
new rules on level i + 1: A right branch yields a rule that starts with a leading
unary string of size yk−i−1 and adds a new remainder to the parent rule. A left
branch yields a rule that contains only a unary string of size yk−i−1. If we first
consider the left branches, we derive that each of the 2i many rules on level i
adds a rule of size yk−i−1 on level i+ 1. For the right branches, the single rule of
size yk−i + i on level i yields a rule of size yk−i−1 + i+ 1 on level i+ 1. Further,
each of the 2i−j−1 many rules of size yk−i + j (j ∈ [0, i − 1]) yields a rule of
size yk−i−1 + j + 1. When we put everything together, we get that on level i+ 1



there is a single rule of size yk−i−1 + i+ 1 and 2i−j many rules of size yk−i−1 + j
for j ∈ [0, i]. That finishes the induction. It follows that the final SLP (which
consists of the rules on level k) has a single rule of size y0 +k = 2+k and 2k−j−1

many rules of size 2 + j for j = 0, . . . , k − 1. This gives a total size of

2 + k +

k−1∑
j=0

2k−j−1(2 + j) = 2 + k + 2k
k−1∑
j=0

2−j + 2k
k−1∑
j=0

2−j−1j

= 2 + k + 2k(2− 2−k+1) + 2k(−2−kk − 2−k + 1)

= 2 + k + 2k+1 − 2− k − 1 + 2k

= 2k+1 + 2k − 1

= 3 · 2k − 1.

In the remaining part of this section, we prove an upper bound on the size
of the SLP produced by Greedy on input an:

Theorem 2. The SLP produced by Greedy (after three rounds) on input an has
size O(n1/4).

Proof. Consider an input an with n ≥ 4 (otherwise S → an is the final SLP
since there is no maximal string). The SLP A1 obtained by Greedy after the first
round has the form

X → ax, S → Xn div xan mod x, (1)

where ax is the selected maximal string. We first show

1

3

√
n ≤ x ≤ 3

√
n,

1

3

√
n ≤ n div x ≤ 3

√
n, n mod x < 3

√
n.

Assume x = d
√
ne in equation (1). In this case, the size of the SLP is

⌈√
n
⌉

+

⌊
n

d
√
ne

⌋
+ n mod

⌈√
n
⌉
≤ 3
√
n+ 1.

Since the maximal string ax is selected greedily such that A1 has minimal size,
we have |A1| ≤ 3

√
n+ 1. It follows that x ≤ 3

√
n, because otherwise the size of

A1 would be at least 3
√
n+ 2 due to the fact that a maximal string (represented

by the nonterminal X) occurs at least twice. It follows that n mod x < 3
√
n and

n div x ≥ 1/3
√
n. Further, we have n div x ≤ 3

√
n because otherwise the size of

A1 would be at least 3
√
n+ 2 due to the fact that x ≥ 2 (a maximal string has

length at least two). It follows that x ≥ 1/3
√
n. Actually, a slightly more careful

analysis allows sharper bounds for x, n div x and n mod x, but for the matter
of this proof it is easier to work with the constants 3 and 1/3.

Now the only maximal strings occurring in A1 are of the form Xy or az (for
integers y, z ≥ 2) since no other factor of the right-hand sides of A1 occurs at least



twice. Note that both optimization problems (for Xy and az) are independent,
so we assume the chosen maximal string in the second round has the form Xz,
afterwards we proceed with az. Let d = n div x, where ax is again the maximal
string that has been selected in the first round. Then the SLP A2 obtained after
the second round of Greedy has the form

X → ax, Y → Xy, S → Y d div yXd mod yan mod x. (2)

Let g(x) = x + (n mod x), which is the size of those parts of A2 that are inde-
pendent of the choice of the maximal string Xy. Assume y = dn1/4e in (2) and
let n be large enough such that Y occurs at least twice in the start rule. This
yields an SLP of size

dn 1
4 e+

⌊
d

dn 1
4 e

⌋
+ d mod dn 1

4 e+ g(x) ≤ 5n
1
4 + 1 + g(x).

The inequality is achieved by using d = n div x ≤ 3
√
n as argued above. It

follows again from the greedy nature of the algorithm that |A2| ≤ 5n1/4+1+g(x)
and similar arguments as above show that the exponents y, d div y and d mod y
can be upper bounded by 5n1/4.

All maximal strings occurring in A2 are again unary words, but since ax has
length at least 1/3

√
n and the lengths of all other unary factors over X or Y are

bounded by 5n1/4, we can assume that (for n large enough) Greedy selects az

for some integer z ≥ 2 as the maximal string in order to achieve a minimal size
SLP A3. Note that if we would have assumed that the chosen maximal string in
round two is az instead of Xy, then similar arguments would show that Xy is
selected in round three if n is large enough. Now, let e = n mod x, then the SLP
A3 obtained after the third round has the form

Z → az, X → Zx div zax mod z, Y → Xy,

S → Y d div yXd mod yZe div zae mod z.
(3)

Let h(y) = y + (d div y) + (d mod y), which is the size of those parts of A3 that
are independent of the choice of the maximal string az. Assume now z = dn1/4e
and let n be large enough such that Z occurs at least twice in the right-hand
sides of (3). The obtained SLP has size

dn1/4e+

⌊
x

dn1/4e

⌋
+ (x mod dn1/4e) +

⌊
e

dn1/4e

⌋
+ (e mod dn1/4e) + h(y).

Using x ≤ 3
√
n and e = n mod x < 3

√
n we can upper bound this size by

9n1/4+1+h(y). Note that we have already bounded the size of h(y) by 5n1/4+1
in the previous step, so the SLP A3 obtained by Greedy after three rounds has
size at most 14n1/4 + 2.

The bound on the approximation ratio is now achieved using Lemma 1, which
shows that a smallest grammar for an has size Ω(log n).



Corollary 1. We have αGreedy(1, n) ∈ O(n1/4/ log n).

The reader might wonder why our estimation stops after three rounds of Greedy.
The most important reason is that a precise invariant is missing in order to
iterate our arguments for a non constant number of rounds. On the other hand,
it seems likely that similar arguments as provided in the proof of Theorem 2 can
be used to show that the SLP produced by Greedy after some more rounds has
size O(n1/8) and maybe again after some rounds has size O(n1/16). However,
further analysis would require more and more case distinctions since it is not
clear anymore that the selected maximal string is always unary as the reader
can see in (3), where factors of the form Z∗a∗ can occur more than once on the
right-hand sides. It seems therefore necessary to apply some new information in

order to improve the upper bound beyond O(n1/2
k

) for some fixed k.
An interesting consequence of the proof of Proposition 2 applies to the orig-

inally proposed Greedy variant [2–4]. Recall from the introduction that in this
setting, the algorithm recursively chooses the maximal string only in dependence
on the right-hand side of the start rule and replaces the occurrences of the cho-
sen string only there. In other words, the right-hand side of the start rule is
compressed in a greedy way and all other rules do not change after they are
introduced. Note that in the first round both variants of Greedy (the one studied
here and the original one) are identical, because in this case the only rule of the
SLP is the start rule S → an. Hence, our analysis of the first step in the proof
of Proposition 2 applies to the original variant as well. We have shown that the
selected maximal string in the first round (and thus the right-hand side of the
introduced rule) has length Θ(

√
n) and since the original variant does not modify

the corresponding rule any further, it follows directly that the SLP produced by
the original algorithm has size Ω(

√
n). But since the modified start rule has also

size Θ(
√
n) after the first step, it follows that the SLP produced by the original

algorithm has size O(
√
n) as well (the size of the SLP does not increase later).

Together with Lemma 1, it follows that this variant of the Greedy algorithm has
approximation ratio Θ(

√
n/ log n) on unary inputs of length n.

3.2 RePair and LongestMatch

In this section we analyze the global grammar-based compressors RePair and
LongestMatch. In each round i, RePair selects a most frequent maximal string of
Ai−1 and LongestMatch selects a longest maximal string of Ai−1.

We will abbreviate the approximation ratio αLongestMatch by αLM for better
readability. We will first show that RePair and LongestMatch produce SLPs of
equal size for unary inputs an and we prove the exact size of those SLPs in
dependency on n. In a second step, we use this information to obtain our result
for αRePair(1, n), respectively αLM(1, n). Fix an integer n ≥ 2 and consider the
binary representation

n =

blog2 nc∑
i=0

bi · 2i (4)



of n, where bi ∈ {0, 1} for i ∈ [0, blog2 nc]. We denote by ν(n) the number of 1’s
in the binary representation of n, i.e.,

ν(n) =

blog2 nc∑
i=0

bi.

For example, we have 11 = 1 ·23 +0 ·22 +1 ·21 +1 ·20 and thus b0 = b1 = b3 = 1,
b2 = 0 and ν(11) = 3.

Proposition 1. For n ≥ 2, let A be the SLP produced by RePair on input an

and B be the SLP produced by LongestMatch on input an. We have

|A| = |B| = 2blog2 nc+ ν(n)− 1.

Proof. If n = 2 or n = 3 (we only consider n ≥ 2), then an has no maximal
string and thus the final SLP of any global algorithm has a single rule S → an.
The reader can easily verify the claimed result for those cases.

We assume n ≥ 4 in the following. Let m = blog2 nc− 1. We prove the claim
for RePair first, afterwards we proceed with LongestMatch. On input an, RePair
runs for exactly m rounds and creates rules X1 → aa and Xi → Xi−1Xi−1 for

i ∈ [2,m], i.e., the nonterminal Xi produces the string a2
i

. This rules have total
size 2m. After this steps, the start rule is

S → XmXmX
bm
m X

bm−1

m−1 · · ·X
b1
1 a

b0 ,

where the bi’s are the coefficients occurring in the binary representation of n,
see equation (4). In other words, the symbol a only occurs in the start rule if the
least significant bit b0 = 1, and the nonterminal Xi (i ∈ [1,m− 1]) occurs in the
start rule if and only if bi = 1. Since RePair only replaces words with at least two
occurrences, the most significant bit bm+1 = 1 is represented by XmXm. A third
Xm occurs in the start rule if and only if bm = 1. The size of the start rule is
2+
∑m

i=0 bi. It follows that the total size of the SLP produced by RePair on input
an is 2m + 2 +

∑m
i=0 bi, which together with m = blog nc − 1 and bblognc = 1

(the most significant bit is always 1) yields the claimed size.
Now we prove the same result for LongestMatch. In the first round, the chosen

maximal string is abn/2c, which yields rules X1 → abn/2c and S → X1X1a
b0 , i.e.,

the symbol a occurs in the start rule if and only if n is odd and thus the least
significant bit b0 = 1. Assuming n ≥ 8, this procedure is now repeated for the rule
X1 → abn/2c (for n < 8 there is no maximal string and the algorithm stops after
the first round). This yields X2 → abn/4c, X1 → X2X2a

b1 and S → X1X1a
b0

(note that b(bn/2c)/2c = bn/4c). Afterm = blog nc−1 steps, the iteration of that
process results in the final SLP with rules S → X1X1a

b0 , Xi → Xi+1Xi+1a
bi

for i ∈ [1,m− 1] and Xm → aaabm . The size of this SLP is 2 · (m+ 1) +
∑m

i=0 bi,
which directly implies the claimed result for LongestMatch.

Using Proposition 1, we prove the matching bounds for αRePair(1, n), αLM(1, n):

Theorem 3. For all n, we have αRePair(1, n) = αLM(1, n) ≤ log2(3).



Proof. As a consequence of Proposition 1, RePair and LongestMatch produce on
input an SLPs of size at most 3 log2 n, since ν(n) − 1 ≤ log2 n. By Lemma 1,
we have g(an) ≥ 3 log3 n − 3. The equality log2 n/ log3 n = log2(3) finishes the
proof.

Theorem 4. For infinitely many n, we have αRePair(1, n) = αLM(1, n) ≥ log2(3).

Proof. Let wk = a2
k−1. We have 2k − 1 =

∑k−1
i=0 2i and thus ν(2k − 1) = k.

By Proposition 1, the size of the SLPs produced by RePair and LongestMatch is
3k − 3. By Lemma 1, we have

g(wk) ≤ 3 log3(2k − 1) + o(log(2k − 1) ≤ 3 log3(2) · k + o(k).

The equality 1/ log3(2) = log2(3) finishes the proof.

4 Future work

The obvious question concerns the gap between the lower and upper bound for
Greedy. First of all, it might be possible to improve our lower bound by finding
a similar sequence such that Greedy produces larger remainders in each round,
but care has to be taken since for larger remainders it is not true anymore that
the rules can be analyzed independently because the rules could share factors
of length greater 1. Concerning the upper bound, we conjecture that Greedy
achieves logarithmic compression for all unary inputs and thus the approximation
ratio is constant, but the direct analysis of the algorithm as we tried in Theorem 2
misses a clear invariant for a non constant number of rounds. For arbitrary
alphabets, a non-constant lower bound for Greedy as well as an improvement of
the upper bound of O((n/ log n)2/3) for any global algorithm seems to be natural
starting points for future work.
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