
Compression of Unordered XML Trees∗

Markus Lohrey1, Sebastian Maneth2, and Carl Philipp Reh3

1 University of Siegen, Germany
lohrey@eti.uni-siegen.de

2 University of Edinburgh, UK
smaneth@inf.ed.ac.uk

3 University of Siegen, Germany
reh@eti.uni-siegen.de

Abstract
Many XML documents are data-centric and do not make use of the inherent document order.
Can we provide stronger compression for such documents through giving up order? We first
consider compression via minimal dags (directed acyclic graphs) and study the worst case ratio
of the size of the ordered dag divided by the size of the unordered dag, where the worst case is
taken for all trees of size n. We prove that this worst case ratio is n{ logn for the edge size and
n log logn{ logn for the node size. In experiments we compare several known compressors on the
original document tree versus on a canonical version obtained by length-lexicographical sorting
of subtrees. For some documents this difference is surprisingly large: reverse binary dags can be
smaller by a factor of 3.7 and other compressors can be smaller by factors of up to 190.

1998 ACM Subject Classification E.4 Coding and Information Theory

Keywords and phrases tree compression, directed acyclic graphs, XML

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.23

1 Introduction

Understanding the interplay between ordered and unordered structures is an important
topic of database research. For XML this interplay has received considerable attention, see,
e.g., [1, 4, 20, 3, 18]. A document is deemed document-centric, if the order of elements
matters. Examples of such documents include web pages (e.g., in XHTML). In contrast, a
document is data-centric if the order of elements is unimportant. For instance, the order of
author-, title-, and year-elements in a bibliographic entry is unimportant. Of course, there
could be mixtures of both, unordered and ordered nodes. For instance, an author-node could
be marked “ordered” to contain subtrees for the first author, second author, etc. JSON
naturally supports ordered and unordered nodes (cf. the Conclusions).

The absence of order bears many opportunities such as query optimization and set-oriented
parallel processing, cf. [1]. Unordered XML has also been studied recently with respect to
schema language definitions [4], a topic already considered during the birth years of XML [16].
Here we study the question whether tree compression can benefit from unorderedness.

In XML compression, document trees are typically stored (and compressed) separately
from the data values, see, e.g., [14]. Let us first consider a very basic tree compression
technique: directed acyclic graphs (dags, for short). Let t be an ordered tree. By representing
repeated occurrences of the same subtree in t only once, one obtains a unique minimal dag

∗ The first author was supported by the DFG via project LO 748/10-1.

© Markus Lohrey and Sebastian Maneth and Carl Philipp Reh;
licensed under Creative Commons License CC-BY

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Acces; Article No. 23; pp. 23:1–23:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CVIT.2016.23
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


23:2 Compression of Unordered XML Trees

bib

article

author year title

article

author title year

article

title author year

bib

article

author title year

Figure 1 The tree structure of a bibliography on the left and its unordered dag on the right.

for t. In the following, we denote this minimal dag as the dag of t. It was observed early on
that dags provide high compression ratios for common XML document trees [7] (10% on
average for their documents). Moreover, the dag can be produced in linear time [9] or in
amortized linear time using hashing (the well-known “hash-consing”), see, e.g., [7]. What
happens if we construct the unordered dag of the tree t, which is the minimal dag of the
unordered version of t?1 Figure 1 shows an XML document tree consisting of 12 edges. Since
there are no repeating subtrees (containing any edges), the minimal dag of this tree has 12
edges as well. In contrast, the unordered dag has only 6 edges. This raises the question how
much smaller, at most, the unordered dag can be in comparison to the dag. We answer this
question for two size measures: (i) the number of nodes and (ii) the number of edges. For
each of these measures we study the maximum of the dag size of t divided by the unordered
dag size of t, where the maximum is taken over all node-labelled trees t of size n. We denote
these worst case ratios by αN pnq (for the node size) and αEpnq (for the edge size). Our main
theoretical results provide precise growth rates (up to multiplicative constants) for these
values:

(i) for the edge size we obtain αEpnq P Θpn{ lognq and
(ii) for the node size we obtain αN pnq P Θpn log logn{ lognq.

With respect to the upper bound αEpnq P Opn{ lognq we show that for every tree t of
size n, the unordered dag has at least e{2 ¨ lnpn{2q many edges (e is Euler’s constant and
ln is the logarithm to base e). This is shown using the well-known inequality between the
geometric and arithmetic mean, see e.g., [17]. The upper bound αN pnq P Θpn log logn{ lognq
uses a technique that has been applied in several related contexts, see e.g. [11]: one removes
from a tree t all subtrees of size at most m, where m is logarithmic in the size of t. Then one
bounds (i) the size of the remaining subtree and (ii) the number of different trees of size at
most m. This yields an upper bound on the node size of the dag of t. For the lower bounds
in (i) and (ii) one exploits the obvious fact that the list of subtrees of a node of rank r can
be permuted in r! many ways without affecting the corresponding unordered tree.

Let us also mention that the unordered dag can be computed in linear time as well. This
can be done using the method for unordered tree isomorphism as given in Aho, Hopcraft,
and Ullman’s book [2].

In the second part of the paper, we contrast our theoretical results by experimental data
for two corpora of XML trees. In addition to dags, we are interested in our experiments
to gauge the impact of unorderedness of other tree compression methods. These are the
dag variants introduced in [5] and the grammar-based tree compressor “TreeRePair” [15].

1 Whenever we solely use the term dag (resp., tree), we always refer to the ordered version. If we want to
speak about the unordered versions, we explicitly add the adjective “unordered”.



M. Lohrey and S. Maneth and C. P. Reh 23:3

These are the strongest tree compressors that we are aware of. Instead of introducing
(nontrivial) adaptations of each of these compressors to unordered trees, we opted for a
different approach: we compress canonical trees. For this, we use the well-known canonization
via length-lexicographical sorting of subtree lists, see., e.g., [8]. For an ordered tree t, it is
easy to observe that the dag of t’s canonical tree is isomorphic to the unordered dag of t.
Our experimental results can be summarized as follows: for plain dags as explained above,
the largest difference for any document of our collection is that the unordered dag has 60%
size of the ordered dag. Then, essentially, the stronger the tree compression method as such,
the larger the difference on the canonical tree. For the “hybrid dag” the largest difference is
a factor of 3 smaller. For dag-plus-string-compression (called “DS” in [5]) we obtain some
astonishing results: for one document tree (coming from Wikipedia data) the compression of
the canonical tree is smaller by a factor of 190 than that of the original tree.

2 Preliminaries

With e “ 2, 71828 ¨ ¨ ¨ we always denote Euler’s constant. With lnn (resp. logn) we denote
the logarithm of n to base e (resp., 2). For a positive integer k we denote by rks the set
t1, 2, . . . , ku. Let Σ be an alphabet. For a string w “ a1a2 ¨ ¨ ¨ an P Σ˚ (a1, . . . , an P Σ) we
denote by alphpwq the set ta1, a2, . . . , anu of symbols that appear in w. For a P Σ let |w|a
denote the number |ti P rns | ai “ au| of occurrences of the symbol a in w. For i P rns we
denote the i-th letter ai of w by wris. For a P Σ we denote with am the word a ¨ ¨ ¨ a with m
many occurrences of a.

3 Multi-graphs, Dags, and Trees

In this section we formally define node-labelled trees and dags in the ordered and unordered
setting. Our definitions are non-standard in the sense that we define trees and dags as
multi-graphs, whereas usually they are defined as ordinary graphs. Let Σ be an alphabet. A
Σ-labeled ordered dag (or briefly dag) is a tuple d “ pV, γ, λ, v0q, where

V is a finite set of nodes,
γ : V Ñ V ˚ assigns to each node a finite sequence of successor nodes,
λ : V Ñ Σ assigns to each node a label from Σ, and
v0 P V is the root node.

Moreover, we require that the edge relation Ed :“ tpu, vq | v P alphpγpvqqu satisfies the
following two properties:

Ed is acyclic, i.e., there is no node v with pv, vq P E`d and
every node v is reachable from v0, i.e., pv0, vq P E

˚
d .

Often we speak of the multi-edges of d. Formally, these are triples pv, i, γpvqrisq for v P V
and 1 ď i ď |γpvq|. We use two size measures for a dag d “ pV, γ, λ, v0q:
}d} “

ř

vPV |γpvq| is the number of multi-edges, and
|d| “ |V | is the number of nodes.

A path in d of length n is a sequence v1, k1, v2, k2, . . . , vn`1 such that pvi, ki, vi`1q is a multi-
edge of d for all 1 ď i ď n. The height hpdq of d is the length of a longest path in d. For a
node v P V , ρpvq “ |γpvq| is its rank and the rank of d is ρpdq “ maxtρpvq | v P V u.

A Σ-labeled ordered tree (or briefly tree) can be defined as a dag d “ pV, γ, λ, v0q such that
every node u P V ztv0u has a unique occurrence in the set of strings tγpvq | v P V u. In other
words: alphpγpuqqX alphpγpvqq “ H for u ‰ v and |γpuq|v ď 1 for all u, v P V . Alternatively,
one can use terms over Σ to describe trees: if t1, . . . , tn (n ě 0) are trees and f P Σ then

CVIT 2016



23:4 Compression of Unordered XML Trees

fpt1, . . . , tnq is also a tree. The set of all Σ-labeled ordered trees t with ρptq ď r is denoted as
TrpΣq. Moreover, let T8pΣq “

Ť

rě1 TrpΣq. For r P NY t8u and k P N let Tr,k “ Trprksq. In
this notation, T8,1 is the set of all unlabelled trees (trees, where every node is labelled with
the same symbol 1). For a tree t there is no essential difference between the size measures
}t} and |t| (we have }t} “ |t| ´ 1).

A dag d “ pV, γ, λ, v0q can be unfolded into a tree τpdq. To define this tree, we associate
with every node v P V the tree τpvq inductively as follows: if λpvq “ f and γpvq “ v1v2 ¨ ¨ ¨ vn
then τpvq “ fpτpv1q, τpv2q, . . . , τpvnqq. Finally, let τpdq “ τpv0q. For a tree t we define its
minimal dag dagptq as the smallest dag d with respect to |d| such that τpdq “ t. This is also
the smallest dag d with respect to }d} such that τpdq “ t. The minimal dag dagptq is unique
up to isomorphism. It can be obtained from t by merging nodes u and v with λpuq “ λpvq

and γpuq “ γpvq as long as possible. Also note that |dagptq| is exactly the number of different
subtrees of t. It is known that dagptq can be computed in linear time [9].

There exist obvious unordered counterparts to the above definitions. A Σ-labeled unordered
dag can be defined as a tuple d “ pV, γ, λ, v0q, where V , λ and v0 have the same properties
as for an ordered dag, and γ : V Ñ NV assigns to each node v a V -indexed tuple of
natural numbers, which can be seen as a multiset over V . Let us write γpu, vq instead of
pγpuqqpvq, which is the number of multi-edges from u to v. It is required that the edge
relation Ed :“ tpu, vq P V ˆ V | γpu, vq ą 0u is acyclic and that pv0, vq P E

˚
d for all v P V .

Unordered trees are then defined in the obvious way. As for ordered dags we define the two
size measures }d} “

ř

u,vPV γpu, vq and |d| “ |V |. The unfolding of an unordered dag d is an
unordered tree that we again denote with τpdq. This allows us to define the minimal dag
dagptq of the unordered tree t, which is an unordered dag. We make the following convention
for the rest of the paper:
§ Convention 1. Whenever we solely use the term dag (resp., tree), we always refer to the
ordered version. If we want to speak about the unordered versions, we use the term unordered
dag (resp., unordered tree).
For an ordered dag d “ pV, γ, λ, v0q, we define the corresponding unordered dag du “

pV, γu, λ, v0q, where γupv, wq “ |γpvq|w is the number of occurrences of node w in the list
γpvq. For a tree t we define its unordered minimal dag daguptq of t as the minimal dag of the
corresponding unordered tree tu. In the following we omit the adjective “minimal” when we
speak of the minimal (unordered) dag of a tree. Figure 1 shows on the right the unordered
dag of the tree on the left.

4 Sizes of Dags versus Unordered Dags

We clearly have |daguptq| ď |dagptq| and }daguptq} ď }dagptq}. In this section we study the
question, how much smaller the unordered dag for a given tree can be compared to its ordered
dag. Formally, we study the growth of the following two worst case ratios, where n, r, k P N
and r, k ď n:

αN pn, r, kq “ max
"

|dagptq|
|daguptq|

ˇ

ˇ

ˇ

ˇ

t P Tr,k, |t| ď n

*

,

αEpn, r, kq “ max
"

}dagptq}
}daguptq}

ˇ

ˇ

ˇ

ˇ

t P Tr,k, |t| ď n

*

.

Let x P tN,Eu. Note that αxpn, 1, kq “ 1 since for a tree t P T1,k (which is a linear chain)
the ordered as well as the unordered dag is equal to t. Hence, we only consider the ratio
αxpn, r, kq for r ě 2. Note that αxpn, r, kq ď αxpn, r

1, k1q for all r, r1, k, k1 ď n with r ď r1



M. Lohrey and S. Maneth and C. P. Reh 23:5

0

0
0 0

0

0
0 1

0

0
1 0

0

0
1 1

βp0q βp1q

Figure 2 A possible choice for the tree t16 from Theorem 1 with n “ 16, r “ h “ 4 and k “ 2.
For the 0- (resp., 1-labelled) nodes one has to substitute the tree βp0q (resp., βp1q) on the right.

1 2 3 4 2 1 3 4 2 3 1 4 2 3 4 1

Figure 3 A possible choice for the tree t16 from Theorem 2 with n “ 16, x “ 1
2 log logn “ 1,

and r “ k “ 4.

and k ď k1, since this implies Tr,k Ď Tr1,k1 . In the following we mainly concentrate on the
extreme cases αxpn, 2, 1q and αxpn, n, nq. We use the abbreviation αxpnq “ αxpn, n, nq.

4.1 Lower Bounds for αE and αN

In this section, we prove two lower bounds. In the first part we derive a lower bound of
Ωpn{ lognq for αEpn, 2, 1q. For this, we construct a family of binary trees, where the dag
achieves almost no compression, while the unordered dag achieves exponential compression
ratios. Later, we show that this bound is tight by providing a matching upper bound for αEpnq.
Note that αN pn, 2, 1q P ΘpαEpn, 2, 1qq, since for a binary tree we have |dagptq|´1 ď }dagptq} ď
2 ¨ |dagptq| and analogously for daguptq. In the following theorem and its proof, we only
consider trees from T2,1 (binary unlabelled trees). We denote such trees by well-parenthesized
strings over p and q. Formally, pq P T2,1 and if t1, t2 P T2,1 then also pt1q, pt1t2q P T2,1. By
Bh P T2,1 we denote the complete unlabelled binary tree with 2h leaves and height h. This
tree has size 2h`1 ´ 1 and its dag has 2h multi-edges. For a tree t with k leaves and trees
t1, . . . , tk we write trt1, . . . , tks to denote the tree obtained from t by replacing the i-th leaf
(in pre-order) by ti. For k ě 1 let ck “ pkqk denote a chain of k nodes. We encode non-empty
bit strings by trees from T2,1 using the function β that is inductively defined as follows:
βp0q “ ppqppqqq, βp1q “ pppqqpqq, and βpdsq “ pβpdqβpsqq for d P t0, 1u and s P t0, 1u`. The
trees βp0q and βp1q are shown in Figure 2 on the right. Note that if s1, s2 P t0, 1u` and
|s1| “ |s2| then the unordered trees βps1q

u and βps2q
u are isomorphic. The construction in

the proof of the following theorem is similar to a construction from [11].

§ Theorem 1. For every n ě 2 there exists a tree tn P T2,1 with

CVIT 2016



23:6 Compression of Unordered XML Trees

|tn| P Θpnq
}dagptnq} P Θpnq
}daguptnq} P Θplognq

Hence, we have αEpn, 2, 1q P Ωpn{ lognq and αN pn, 2, 1q P Ωpn{ lognq.

Proof. Let n P N and h “ rlogns. Let r “ 2k P Θpn{ lognq be the smallest power of two that
is at least n{h. Let u1, . . . , ur be r distinct bit strings of length h (note that r ď n ď 2h).
Consider the trees s1 “ βpu1q, . . . , sr “ βpurq. We add to si a chain of length h and obtain
the tree s1i “ chrsis (1 ď i ď r). Finally, set tn “ Bkrs

1
1, . . . , s

1
rs. A possible choice for the

tree t16 is shown in Figure 2.
Let us first bound the size of tn. For Bk we have |Bk| P Θprq “ Θpn{ lognq. The total

size of all r copies of the chain ch is Θpr ¨ hq “ Θpnq. Finally, every si has size Θphq; so their
sizes sum up to Θpr ¨ hq “ Θpnq. Altogether, we get |tn| P Θpnq.

To bound }dagptnq}, note that the trees s1, . . . , sr are pairwise different (as ordered trees).
This implies that in the dag of tn, the r copies of the chains ch are still present. Therefore,
dagptnq has at least r ¨ h P Θpnq many nodes (and, of course, it has at most n nodes). Since
every node of tn has rank at most 2, we get }dagptnq} P Θpnq.

Finally, for the unordered dag note that the trees s1, . . . , sr are pairwise isomorphic when
considered as unordered trees. Therefore, the copies of the chains ch are collapsed into a
single chain in daguptnq and also the top Bk-part is collapsed into Θplog rq “ Θplognq many
nodes. We get }daguptnq} P Θplognq as well as |daguptnq| P Θplognq. đ

In the next section, we will prove αEpnq P Opn{ lognq, which yields the same upper bound for
αEpn, 2, 1q. Moreover, also the lower bound of Ωpn{ lognq for αN pn, 2, 1q turns out be sharp
(see Corollary 7 for k “ 1). On the other hand, for αN pnq “ αN pn, n, nq we can improve the
lower bound to Ωpn log logn{ lognq:

§ Theorem 2. Fix a constant δ ą 1. For every n ě 1 large enough (depending on δ) there
exists a tree tn P Tr,k with the following properties:

k “ rδ ¨ logn{ log logns and r P Θpn ¨ log logn{ lognq.
|tn| P Θpnq
|dagptnq| P Θpnq
|daguptnq| P Θplogn{ log lognq

Hence, we have αN pnq P Ωpn ¨ log logn{ lognq.

Proof. Fix n ě 1 and let x “ 1
δ log logn, k “ rplognq{xs “ rδ ¨ logn{ log logns, and r “

tn{ku P Θpn ¨ log logn{ lognq. Let us first show that with this choice we have k! ě r. With
Stirling’s formula (or, more precisely, the inequality z! ě

?
2πz ¨ pz{eqz) we get

k! ě pk{eqk ě plogn{exqplognq{x “ 2plog logn´logpexqqplognq{x “ nplog logn´logpexqq{x.

Since moreover n ě n{k ě r, it suffices to show

nplog logpnq´logpexqq{x ě n,

i.e., log logn ´ logpexq ě x “ 1
δ log logn, or, equivalently p1 ´ 1

δ q log logn ě logpexq “
logpe{δq ` log log logn, which holds for n large enough. This shows that, indeed, k! ě r.

We now construct the tree tn P Tr,k as follows: take r many pairwise different trees
s1, . . . , sr consisting of a root node with k many children, which are leaves. The sequence of
labels of these k leaves forms a permutation of rks. Since k! ě r, these r pairwise different
trees exist. From si we next construct s1i by adding a chain of length k on top of si. Finally,



M. Lohrey and S. Maneth and C. P. Reh 23:7

the tree tn is obtained by taking a new root node, whose children are the roots of the trees
s11, . . . , s

1
r. A possible choice for the tree t16 is shown in Figure 3. Note that for n large

enough we have k ď r since k P Θplogn{ log lognq and r P Θpn ¨ log logn{ lognq. Hence,
tn P Tr,k.

We get |tn| “ 1 ` 2rk P Θpnq. For the node size of the dag, we obtain |dagptnq| “
1` rk ` k P Θpnq. Finally, for the node size of the unordered dag, note that the unordered
trees corresponding to s11, . . . , s1r are all isomorphic. Hence, we obtain that |daguptnq| “
1` 2k P Θpkq “ Θplogn{ log lognq, which proves the statement. đ

4.2 Upper Bound for αE

In this section we prove an upper bound for αEpnq via a lower bound of Ωplognq for the
function

µpnq :“ min t}daguptq} | t P Tn,n, |t| ď nu .

Thus, the unordered dag of a tree of size n has at least logarithmic size in n. Note that for
binary trees (or trees of constant rank) this is obvious since the height of such a tree is at
least logn, which implies that also the minimal unordered dag has at least logn many edges.
Also note that

µpnq “ min t}dagptq} | t P Tn,n, |t| ď nu .

The reason is that for every tree t there is a tree t1 with |t| “ |t1| and daguptq “ pdagpt1qqu
and thus }daguptq} “ }dagpt1q}. Moreover, it holds that

µpnq “ min t}dagptq} | t P Tn,1, |t| ď nu ,

i.e., it suffices to consider unlabelled trees. This is because adding labels to a tree can make
the minimal dag only larger. Therefore we do not consider labels in the following and consider
dags as triples pV, γ, v0q without a labelling function λ.

Let d “ pV, γ, v0q be such a dag. For a node v P V define depthpvq as the length of a longest
path from the root v0 to v. Thus, depthpv0q “ 0. Note that hpdq “ maxtdepthpvq | v P V u.
For 1 ď i ď hpdq` 1 let Vipdq “ tv P V | depthpvq “ i´ 1u be the set of nodes at depth i´ 1.
Finally, let ρipdq “

ř

vPVipdq
|γpvq| for 1 ď i ď hpdq. This is the total number of multi-edges

that start in a node at depth i ´ 1. Every such multi-edge goes to a node at depth j ě i.
We write Vi and ρi for Vipdq and ρipdq, respectively, if d is clear from the context.

§ Lemma 3. Let d “ pV, γ, v0q be a dag of height h “ hpdq. The number of leaves of the
unfolding τpdq is bounded by

śh
i“1 ρi.

Proof. Consider the dag d1 “ pt1, . . . , h` 1u, γ1, 1q with γ1piq “ pi` 1qρi (the string with ρi
many occurrences of i` 1) for 1 ď i ď h and γ1ph` 1q “ ε. It is a chain of h` 1 nodes with
ρi many multi-edges from node i to node i` 1. The unfolding of d1 has

śh
i“1 ρi many leaves.

It therefore suffices to transform d into d1 and show that this transformation does not reduce
the number of leaves of the unfolding.

First of all, we can merge in d all nodes v with γpvq “ ε to a single node. This does
not change the unfolding, the height of the dag, and the number of multi-edges starting at
depth i. Hence, Vh`1 consists of the unique sink node of d; let us call this node s. Next, we
construct from d the dag d1 “ pV, γ1, v0q, where γ1 is defined as follows: we set γ1psq “ ε.
Now, let v P Vi with 1 ď i ď h and γpvq “ v1v2 ¨ ¨ ¨ vr. We set γ1pvq “ v11v

1
2 ¨ ¨ ¨ v

1
r, where the

nodes v1j are defined as follows: if vj P Vi`1 then set v1j “ vj . Otherwise, i.e., if vj P Vk with
k ą i` 1, then let v1j be a node in Vi`1 such that there exists a path from v1j to vj . Note

CVIT 2016



23:8 Compression of Unordered XML Trees

that such a node v1j exists, since every node in Vk (k ą 1) has a predecessor in Vk´1. Note
that the unfolding τpvjq is a subtree of the unfolding τpv1jq. Therefore, τpd1q has indeed at
least as many leaves as τpdq.

The dag d1 has still height h and ρipd1q “ ρipdq for 1 ď i ď h. But in contrast to d, all
multi-edges in d1 go from a node in Vi to a node in Vi`1 for some 1 ď i ď h. Moreover,
every node in Vi (1 ď i ď h) has at least one successor node (in Vi`1). If we now merge all
nodes in Vi to a single node, we obtain (up to isomorphism) the dag d1. Clearly, this merging
increases the number of paths from the root v0 to the sink s. But the number of such paths
is exactly the number of leaves in the unfolding. This shows the lemma. đ

§ Theorem 4. We have µpnq ě e
2 ¨ lnpn{2q.

Proof. Let t be an arbitrary (unlabelled tree) of size n. We first transform t into a new tree
t1 by adding exactly one additional child node to every non-leaf of t. These new children are
leaves in t1. Now t1 has the property that every non-leaf node has at least two children. Note
that n ď |t1| ď 2n. Moreover, for the dag we also have }dagptq} ď }dagpt1q} ď 2 ¨ }dagptq}.
Intuitively, dagpt1q is obtained from dagptq by adding for every internal node v an additional
multi-edge to the unique sink node of dagptq.

Let ` be the number of leaves of t1. Since every non-leaf node of t1 has at least two
children, we have ` ě |t1|{2 ě n{2. Moreover, let h be the height of t1 and let ρi “ ρipdagpt1qq.
From Lemma 3 we obtain

` ď
h
ź

i“1
ρi.

On the other hand, we have

}dagpt1q} “
h
ÿ

i“1
ρi.

The well-known inequality between the arithmetic and geometric mean states that for all
x1, . . . , xm P R,

1
m
¨

m
ÿ

i“1
xi ě

˜

m
ź

i“1
xi

¸1{m

.

Applying this to the numbers ρi (1 ď i ď h), we get

}dagpt1q} “
h
ÿ

i“1
ρi ě h ¨

˜

h
ź

i“1
ρi

¸1{h

ě h ¨ `1{h.

To further bound the term h ¨ `1{h, we consider it as a function of h: let fpxq “ x ¨ `1{x. Its
derivative is

f 1pxq “ `1{x
ˆ

1´ lnp`q
x

˙

.

Therefore fpxq has a minimum at x “ ln ` in the interval p0,8q, from which it follows that

h ¨ `1{h ě `1{ lnp`q ¨ ln ` “ e ¨ ln `.

With ` ě n{2 we finally get

}dagptq} ě 1
2 ¨ }dagpt1q} ě e

2 ¨ ln ` ě
e

2 ¨ lnpn{2q

đ



M. Lohrey and S. Maneth and C. P. Reh 23:9

For every tree t of size n we have }dagptq} ď n. Moreover, by Theorem 4 it holds that
}daguptq} ě e

2 ¨ lnpn{2q. Hence, we obtain

}dagptq}
}daguptq} ď

2n
e ¨ lnpn{2q P Θpn{ lognq,

which is stated in the next corollary.

§ Corollary 5. It holds that αEpnq P Opn{ lognq.

4.3 Upper Bound for αN

In this section, we derive an upper bound on the node size of the minimal dag.

§ Theorem 6. For every tree t P Tn,k of size n and height h, it holds that2

|dagptq| P O
ˆ

n ¨ h ¨ logpk ` 1q
logn

˙

.

Proof. Let t P Tn,k be a tree of size n and height h. Note that |dagptq| is the number of
different subtrees of t. Let t1 be the tree that is obtained from t by removing all maximal
subtrees of size at most

m :“ 1
2 ¨ log4k n “

logn
2 ¨ log 4k .

Let F be the forest consisting of all these removed subtrees. Then the number of different
subtrees of t (i.e., |dagptq|) is bounded by |t1| plus the number of different subtrees in F . But
the latter is bounded by the number of trees s P T8,k with |s| ď m, which by [11, Lemma 2]
is at most 4

3 p4kq
m “ 4

3n
1{2.

Let us now bound |t1|. Consider a leaf v of t1. Then, the subtree of t rooted in v must
have size larger than m; otherwise v would not belong to t1. Therefore, t1 has at most n{m
many leaves. Clearly, if every internal node in t1 would have at least two children, then we
could conclude that t1 has at most 2n{m many nodes. But t1 may contain nodes with a single
child. Let us call such nodes unary. Moreover, let ` be the length of a longest path in t1 in
which all nodes except the last one are unary. Then, we get |t1| ď 2p``1qn{m ď 2ph`1qn{m.
In total, we get

|dagptq| ď 2ph` 1qn
m

`
4
3 ¨ n

1{2

“
4 ¨ ph` 1q ¨ n ¨ log 4k

logn `
4
3 ¨ n

1{2 P O

ˆ

n ¨ h ¨ logpk ` 1q
logn

˙

.

đ

§ Corollary 7. It holds that αN pn, n, kq P O
´

n¨logpk`1q
logn

¯

and αN pnq P O
´

n¨log logn
logn

¯

.

Proof. Let us first show αN pn, n, kq P O
´

n¨logpk`1q
logn

¯

. Let t be a tree of size n and height h
with labels from rks. By Theorem 6 we have

|dagptq| P O
ˆ

n ¨ h ¨ logpk ` 1q
logn

˙

.

2 We write logpk ` 1q instead of log k in order to avoid log k “ 0 for k “ 1.

CVIT 2016



23:10 Compression of Unordered XML Trees

On the other hand, we clearly have |daguptq| ě h. Therefore, we get

|dagptq|
|daguptq| P O

ˆ

n ¨ logpk ` 1q
logn

˙

.

Let us now prove αN pnq P O
´

n¨log logn
logn

¯

. Consider an arbitrary tree t of size n with labels
from rns. If more than logn labels occur in t, then we clearly have |daguptq| ą logn. Since
|dagptq| ď n we get (for n large enough)

|dagptq|
|daguptq| ď

n

logn ď
n ¨ log logn

logn .

On the other hand, if at most logn many different labels occur in t then the bound
αN pn, n, kq P O

´

n¨logpk`1q
logn

¯

implies

|dagptq|
|daguptq| P O

ˆ

n ¨ log logn
logn

˙

.

This proves the bound αN pnq P O
´

n¨log logn
logn

¯

. đ

4.4 Summary of the Results for αN and αE

The following result summarizes our theoretical bounds for the functions αN pn, 2, 1q, αN pnq,
αEpn, 2, 1q, and αEpnq:

§ Corollary 8. It holds that:

αN pn, 2, 1q “ Θ
ˆ

n

logn

˙

, αN pnq “ Θ
ˆ

n ¨ log logn
logn

˙

,

αEpn, 2, 1q “ Θ
ˆ

n

logn

˙

, αEpnq “ Θ
ˆ

n

logn

˙

.

5 Experimental Results

In this section we experimentally evaluate the impact of unorderedness with regards to
compression of XML trees. We compute for an XML tree t its canonical tree canonptq.
The tree canonpfpt1, t2, . . . , tnqq is obtained by sorting the trees canonpt1q, . . . , canonptnq
according to their size, and in case of equal sizes, according to the lexicographical order
of their XML traversal strings. Clearly, for all trees s, t we have su “ tu if and only if
canonpsq “ canonptq. The minimal unordered dag can be obtained from the canonical tree by
computing its minimal dag. Clearly, this is a very expensive way of obtaining the minimal
unordered dag: it can be obtained in linear time by a variant of the algorithm of Aho,
Hopcroft and Ullman [2], see also [19]. We have implemented that procedure and can confirm
its efficiency: it runs at least as fast as our (ordered) dag programs based on hashing. The
reason for computing the canonical tree is to provide a simple way of gauging how other
compressors benefit from unorderedness (by imposing a canonical order). It should be
understood that our experiment only gives a rough indication of the benefit of unorderedness
for compressors other than the dag. We expect that a more careful adaptation of those
compressors to unordered trees will provide stronger compression.

We only report number of edges, so “size” in this section always refers to number of edges.



M. Lohrey and S. Maneth and C. P. Reh 23:11

5.1 Tree Compressors
We compare seven known tree compressors, which are considered in [5]:

1. minimal dag,
2. minimal binary dag,
3. minimal reverse binary dag,
4. minimal hybrid dag,
5. minimal reverse hybrid dag,
6. DS, and
7. TreeRePair.
We choose these compressors, since they all produce a graph-based representation of the
input tree. This makes the output sizes of the compressors comparable.

It should be clear that the minimal dag of the canonical tree is isomorphic to the unordered
dag of the original tree. Thus, the size of the minimal dag of a canonical tree is always
smaller than or equal to the size of the minimal dag of the original tree.

The minimal binary dag (bdag) of an unranked tree t is the minimal dag of the “first-
child/next-sibling encoding” (for short, fcns encoding) of t. The fcns encoding s is common
for XML: it has the same nodes as t, a node v is the left child in s of a node u if and
only if v is the first child of u in t, and, a node v is the right child in s of a node u if and
only if v is the next sibling of u in t. This encoding is considered in Paragraph 2.3.2 of
Knuth’s first book [12]. The minimal reverse binary dag (rbdag) is the minimal dag of the
“first-child/previous-sibling encoding” (fcps), defined in the obvious way. Binary dags and
reverse binary dags share end- and begin-sequences, respectively, of subtrees. This implies
that both the bdag and rbdag of a canonical tree can be larger than the corresponding dags
of the original tree. As an example consider the following tree

t “ fpgpc, d, b, a, hq, gpc, d, bq, gpb, d, c, d, bqq.

This tree has 16 edges. Its minimal binary dag has only 14 edges, because the end-sequence
of subtrees “c, d, b” occurs twice and can be shared. Similarly, the minimal reverse binary
dag has size 14 (because “c, d, b” appears twice). In contrast, the canonical tree of t

canonptq “ fpgpb, c, dq, gpa, b, c, d, hq, gpb, b, c, d, dqq

has a bdag and rbdag of 16 edges. Interestingly, such scenarios where bdag and rbdag become
larger for the canonical tree appear frequently in practice.

The hybrid dag (hdag) (and reverse hybrid dag (rhdag)) were introduced in [5] as data
structures that are guaranteed to be smaller than or equal in size to both the dag and
the bdag (rbdag) of an unranked tree. The hdag (resp., rhdag) is obtained from a dag by
applying the fcns-encoding (resp., fcps-encoding) to the rules of the dag (where the dag is
viewed as a regular tree grammar), and then computing the minimal dag of the resulting
forest of encoded rules; see [5] for a precise definition. Similarly as with bdag and rbdag, the
hdag and rhdag can be larger for the canonical tree than for the original one.

The acronym DS stands for “dag and string compression”. The idea is to compute a
minimal dag and to then apply a string compressor to the above mentioned rules of the
dag. As in [5], we use RePair [13] as our string compressor. Finally, TR refers to the
grammar-based tree compressor TreeRePair of [15]. The sizes are numbers of edges of the
compressed structures, see [5] for details.

CVIT 2016



23:12 Compression of Unordered XML Trees

Table 1 Document characteristics, Edges = average number of edges in a tree, aD = average
depth of a node, mD = maximum depth of a node in any tree, aR = average rank of a node, mR =
maximum rank of a tree

Corpus Documents Edges aD mD aR mR

I 21 3.1 ¨ 106 6.6 36 5.7 3.9 ¨ 106

II 1131 79465 7.9 65 6.0 2925

5.2 Corpora of XML Documents
We use two different Corpora of XML documents. These corpora were also used in [5]. For
each document we consider the unranked tree of its element nodes, i.e., we ignore attribute
and text values. Corpus I consists of XML documents from the web which are often used in
XML compression research. Many of the files of this corpus can be downloaded from the
XMLCompBench site3 (see [5] for details). Corpus II is a subset of files from the University
of Amsterdam XML Web Collection4. We have verified by hand that, according to the tag
names, all of the documents in Corpus I appear to be order independent. By sampling
Corpus II we also did not find order dependent documents.

The characteristics of the Corpora are quite different: Corpus I consists of few and very
large files while Corpus II has many small files. Some characteristics are shown in Table 1. As
can be seen, the average size of documents from Corpus I is about 40 times larger than that
of Corpus II, and the rank (=maximum length of sibling lists) of documents from Corpus I is
about 1300 times larger; this indicates that most of the documents from Corpus I are indeed
very long lists of (small) subtrees.

5.3 Experimental Setup
The implementations for dag, bdag, rbdag, hdag, and DS are the same ones as used in [5].
Note that DS uses Gonzalo Navarro’s implementation of RePair for strings5. For TreeRePair,
called “TR” in what follows, we use Roy Mennicke’s implementation6; we do not change any
parameters and run it plain from the command line (thus, the maxRank parameter of TR is
at its default value of 4). We do not report running times (they are provided in [5]). The
canonizer was implemented from scratch in java using integer and string sorting as provided
by java (this runs quite slow and can take several hours for some of the documents).

5.4 Compression of Canonical versus Original Tree
The results of applying the different compressors to the documents of Corpus I are shown
in Table 2. The first line shows how the compression ratio on the canonical tree changes
with respect to the compression ratio for the original tree (a percentage of more than 100%
means that the compression ratio is better on the canonical tree). The second row shows the
sizes of the compressed canonical trees (in number of edges). For instance, the compression
ratio of the hdag of the canonical tree of document “sprot39.dat” is 67% of the ratio for
the original tree. On the other hand, DS compressor over the canonical tree of document

3 http://xmlcompbench.sourceforge.net
4 http://data.politicalmashup.nl/xmlweb
5 http://www.dcc.uchile.cl/~gnavarro/software/
6 http://code.google.com/p/treerepair

http://xmlcompbench.sourceforge.net
http://data.politicalmashup.nl/xmlweb
http://www.dcc.uchile.cl/~gnavarro/software/
http://code.google.com/p/treerepair


M. Lohrey and S. Maneth and C. P. Reh 23:13

dag bdag rbdag hdag rhdag DS TR

1

2

3

4
¨105

Original Canonical

dag bdag rbdag hdag rhdag DS TR
0.2

0.4

0.6

0.8

1

1.2

1.4

¨104

Original Canonical

Figure 4 Comparison of average sizes of Corpus I (left) and Corpus II (right).

“EnWikTionary” has a compression that is 191-times better than the ratio for the original
tree. For each document we indicate in bold the unique best increase of compression, and
underline the smallest size.

Note that the dag of the canonical tree can never be larger than the dag of the original tree.
Intuitively, every original repeating subtree (that gets shared in the dag) is also repeating in
the canonical tree. Thus, there cannot be percentages below 100 in the column for the dag.
In every other column the percent number can potentially be below 100. This is because
these compressors take into account sibling sequences and hence are effected by the change
of sibling orders due to canonization. In fact, this happens for the file “EXI-factbook”: here
all compression ratios (except that for the dag) become worse for the canonical tree. It
means the the ordering of the canonization removes repetitions that are meaningful for the
compressor. It is interesting to see that for this outlier, the strongest overall compressor TR
(with respect to size) is affected the most: the compression goes down to 81% of the original;
this is also the only file where this ever happens for TR. Another outlier that comes from
the EXI group is EXI-weblog, where no compression ratio changes; this document is in an
order that is isomorphic to that of the canonical tree.

The majority (almost one half) of documents have the strongest increase for the DS
compressor. In particular, all the EnWik documents belong to this group. It is interesting
to observe that for all the EnWik documents only DS and TR give (massive) compression,
while for all the dag variants the compression ratio does not change. This means that after
canonization there are (i) no repeating subtrees and (ii) no repeating prefixes or suffixes of
sibling lists that were different before canonization. Note also that for this group, DS achieves
the smallest size values for each document. It means that there are no complex tree patterns
that are repeating, and hence would be compressed by TR but not by DS; all repetition
seems to be purely on the level of sibling lists. In contrast to that, observe the treebank
file which features (by far) the most complex tree structure of all the documents: here the
size of TR is almost twice smaller than that of DS. Curiously, the rhdag has the highest
increase for this document. There is another interesting group of documents, namely those
where the rbdag has the largest increase. It means that after canonization there are a lot
of repeating prefixes of sibling sequences; thus, optional elements which typically appear at
the end of sibling lists (the reverse dags profit from that) have, after canonization, remained
to appear at the end. Apparently, this is less often the case for the reverse hybrid dag, i.e.,

CVIT 2016



23:14 Compression of Unordered XML Trees

Table 2 difference (in %) of canonical versus original tree compression, and size of canonical
compression output (largest in bold and smallest underlined, respectively).

document dag bdag rbdag hdag rhdag DS TR

1998statistics 118% 352% 373% 306% 333% 239% 211%
1164 682 632 422 373 200 238

catalog-01 146% 82% 177% 84% 182% 146% 117%
5856 8514 5830 5302 3295 2994 3390

catalog-02 114% 98% 111% 98% 113% 473% 331%
28496 53647 50858 27912 25823 5761 8072

dictionary-01 107% 102% 225% 104% 187% 130% 136%
54575 75827 33386 45214 24960 24634 16434

dictionary-02 116% 116% 254% 117% 207% 138% 145%
469915 588665 257228 353365 197197 194324 115932

EnWikiNew 100% 100% 100% 100% 100% 2712% 2282%
35075 70018 70025 35057 35054 341 422

EnWikiQuote 100% 100% 100% 100% 100% 2370% 2091%
23904 47692 47699 23888 23887 267 316

EnWikiVersity 100% 100% 100% 100% 100% 2672% 2287%
43693 87258 87263 43676 43673 264 326

EnWikTionary 100% 100% 100% 100% 100% 19108% 15839%
726221 1452273 1452279 726197 726191 428 531

EXI-Array 100% 100% 100% 100% 100% 425% 375%
95584 128009 128011 95562 95563 213 267

EXI-factbook 100% 100% 91% 96% 96% 93% 81%
4477 5090 3227 3766 2225 1937 1708

EXI-Invoice 100% 100% 100% 100% 100% 98% 102%
1073 2073 2067 1071 1066 98 106

EXI-Telecomp 100% 100% 100% 100% 100% 99% 102%
9933 19807 19808 9932 9931 111 137

EXI-weblog 100% 100% 100% 100% 100% 100% 100%
8504 16997 16997 8504 8504 44 58

JST_gene.chr1 100% 99% 100% 99% 100% 430% 396%
9176 14718 14103 7840 7206 917 1062

JST_snp.chr1 100% 98% 101% 97% 101% 382% 347%
23509 41444 37425 22805 19111 2571 2980

medline 165% 150% 240% 141% 222% 145% 141%
395754 493136 158984 326638 113932 122270 88109

NCBI_gene.chr1 100% 93% 110% 91% 116% 148% 137%
16038 15504 9839 11606 5912 4237 3764

NCBI_snp.chr1 100% 100% 100% 100% 100% 100% 100%
404704 809394 809394 404704 404704 61 83

sprot39.dat 102% 60% 269% 67% 237% 102% 102%
1724689 2394532 586523 1484814 376067 328469 257376

treebank 101% 99% 106% 99% 107% 104% 103%
1292198 1455300 1171666 1246195 1039933 1073301 510683



M. Lohrey and S. Maneth and C. P. Reh 23:15

after building the dag there is less profit from canonization. An interesting document that
has always been challenging with respect to compression [6] is medline: with 165% it has the
largest increase within the dag column. This means that many permutations of the same
subtree sequences exist. This could be because these bibliography entries have been entered
manually by different persons, each having their own preferences of ordering sibling lists.
Observe also that every single compressor has an increase of at least 140% for the medline
document. Similar to this is the 1998statistics document: here the dag only increases by
118%, but all others increase by 210% or more. Thus, there are not many subtrees with
precisely the same subtrees (possibly in different orders), but, there is a large number of
repetitions of subsequences of sibling lists, in particular of prefix subsequences (viz. the
highest increases of rbdag and bdag).

In summary, Figure 4 shows the average sizes for the different compressors for Corpus I
and Corpus II, respectively. For Corpus I, all compressors, except bdag (91%) and hdag
(93%), show an improvement of the compression ratio. DS (118%) and TR (124%), which
already give very high compression ratios, also have high increases. The biggest increases,
however, are seen for rbdag (134%) and rhdag (130%). For Corpus II, we see that there
is almost no difference in the case of bdag and hdag. Again, DS (121%) and TR (123%)
improve on their already high compression ratios, while rbdag (117%) and rhdag (120%)
achieve improvements as well.

Finally, we also tried a different canonizer: It assigns to every subtree t a number iptq such
that for every pair of subtrees t1, t2 it holds that ipt1q “ ipt2q if and only if the unordered
trees of t1 and t2 are equal. The children t1, . . . , tn of a subtree t are then sorted with respect
to ipt1q, . . . , iptnq. While this algorithm runs a lot faster than sorting the whole subtrees, the
compression ratios only change very slightly.

6 Conclusions

In this paper we showed that the minimal unordered dag of a tree can be exponentially smaller
than the minimal (ordered) dag of that tree. Furthermore, we proved that this difference is
exponential at most, thus providing matching upper and lower bounds for the ratio of the
ordered and unordered dag size of a tree. These results hold for both size measures: number
of nodes and the number of multi-edges. It would be interesting in the future to investigate
also the number of “collapsed” edges, where multi-edges between the same pair of nodes are
collapsed to a single edge. For the unordered dag, this size measure makes sense, since one
only needs to store the number of multi-edges between two nodes and these numbers can be
stored succinctly in binary notation. Another interesting theoretical research problem is to
compute the average size of the unordered dag, where the average is taken with respect to
the uniform distribution on all trees of size n. The corresponding average for ordered dags
was analysed in [10] and the asymptotic growth rate Θpn{

?
lognq was derived using tools

from analytic combinatorics, see also [5]. We conjecture that the average unordered dag size
has the same asymptotic growth. Related to this, one might study the average values of the
ratios αN and αE for which we only derived worst case bounds.

In the second part of this paper, we have experimentally evaluated the difference of sibling
orders for different compressors. Within the compressors that are based on dags, the biggest
impact of ignoring order is observed for the reverse binary dag (thus, the minimal dag of the
first-child/previous-sibling-encoded tree); the biggest difference is a better compression in
the unordered setting by a factor of 3.7. Within the RePair-variants DS and TreeRePair,
DS features the larger difference, with a factor of 191 for one document. Such a massive

CVIT 2016



23:16 Compression of Unordered XML Trees

improvement due to ignoring document order could be useful in practice: it could mean that
the entire tree structure of a document that is Terabytes large, can be conveniently stored
(and queried) in main memory, while the data values would be stored on secondary memory.

It would be interesting to consider trees with ordered and unordered nodes. For XML
documents this can be done via XML Schema Definition. JSON very naturally provides this
possibility: its two primitives are lists (= ordered) and sets of key-value pairs (= unordered).
We expect that canonization of unordered nodes will improve compression. In the future, we
would like to find also a method that combines features of the compressors presented here,
and is guaranteed to compress equally well or better than each of the the compressors.

References
1 S. Abiteboul, P. Bourhis, and V. Vianu. Highly expressive query languages for unordered

data trees. Theory of Computing Systems, 57(4):927–966, 2015.
2 A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer

Algorithms. Addison-Wesley, 1974.
3 A. Boiret, V. Hugot, J. Niehren, and R. Treinen. Logics for unordered trees with data

constraints on siblings. In Proceedings of LATA 2015, volume 8977 of Lecture Notes in
Computer Science, pages 175–187. Springer, 2015.

4 I. Boneva, R. Ciucanu, and S. Staworko. Schemas for unordered XML on a DIME. Theory
of Computing Systems, 57(2):337–376, 2015.

5 M. Bousquet-Mélou, M. Lohrey, S. Maneth, and E. Noeth. XML compression via directed
acyclic graphs. Theory of Computing Systems, 57(4):1322–1371, 2015.

6 P. Buneman. Private Communication, 2005.
7 P. Buneman, M. Grohe, and C. Koch. Path queries on compressed XML. In Proceedings

of VLDB 2003, pages 141–152. Morgan Kaufmann, 2003.
8 S. R. Buss. Alogtime algorithms for tree isomorphism, comparison, and canonization. In

Proceedings of KGC 1997, volume 1289 of Lecture Notes in Computer Science, pages 18–33.
Springer, 1997.

9 P. J. Downey, R. Sethi, and R. Endre Tarjan. Variations on the common subexpression
problem. Journal of the ACM, 27(4):758–771, 1980.

10 P. Flajolet, P. Sipala, and J.-M. Steyaert. Analytic variations on the common subexpression
problem. In Proceedings of ICALP 1990, volume 443 of Lecture Notes in Computer Science,
pages 220–234. Springer, 1990.

11 M. Ganardi, D. Hucke, A. Jeż, M. Lohrey, and E. Noeth. Constructing small tree grammars
and small circuits for formulas. Technical report, arXiv.org, 2014. http://arxiv.org/abs/
1407.4286.

12 D. E. Knuth. The Art of Computer Programming, Vol. I: Fundamental Algorithms. Addison-
Wesley, 1968.

13 N. J. Larsson and A. Moffat. Offline dictionary-based compression. In Proceedings of DCC
1999, pages 296–305. IEEE Computer Society, 1999.

14 H. Liefke and D. Suciu. XMILL: an efficient compressor for XML data. In Proceedings of
ACM SIGMOD Conference 2000, pages 153–164. ACM, 2000.

15 M. Lohrey, S. Maneth, and R. Mennicke. XML tree structure compression using RePair.
Information Systems, 38(8):1150–1167, 2013.

16 F. Neven and T. Schwentick. XML schemas without order. Unpublished manuscript, 1999.
17 J. M. Steele. The Cauchy-Schwarz Master Class: An Introduction to the Art of Mathemat-

ical Inequalities. MAA Problem Books Series. Cambridge University Press, 2004.
18 S. Sundaram and S. Kumar Madria. A change detection system for unordered XML data

using a relational model. Data & Knowledge Engineering, 72:257–284, 2012.

http://arxiv.org/abs/1407.4286
http://arxiv.org/abs/1407.4286


M. Lohrey and S. Maneth and C. P. Reh 23:17

19 Gabriel Valiente. Algorithms on Trees and Graphs. Springer, 2002.
20 S. Zhang, Z. Du, and J. Tsong-Li Wang. New techniques for mining frequent patterns in

unordered trees. IEEE Transactions on Cybernetics, 45(6):1113–1125, 2015.

CVIT 2016


	Introduction
	Preliminaries
	Multi-graphs, Dags, and Trees
	Sizes of Dags versus Unordered Dags
	Lower Bounds for alpha_E and alpha_N
	Upper Bound for alpha_E
	Upper Bound for alpha_N
	Summary of the Results for alpha_N and alpha_E

	Experimental Results
	Tree Compressors
	Corpora of XML Documents
	Experimental Setup
	Compression of Canonical versus Original Tree

	Conclusions

