
The smallest grammar problem revisited

Danny Hucke, Markus Lohrey, and Carl Philipp Reh

University of Siegen, Germany
{hucke,lohrey,reh}@eti.uni-siegen.de

Abstract. In a seminal paper of Charikar et al. on the smallest grammar problem,
the authors derive upper and lower bounds on the approximation ratios for several
grammar-based compressors, but in all cases there is a gap between the lower and
upper bound. Here we close the gaps for LZ78 and BISECTION by showing that
the approximation ratio of LZ78 is Θ((n/ logn)2/3), whereas the approximation
ratio of BISECTION is Θ((n/ logn)1/2). We also derive a lower bound for a
smallest grammar for a word in terms of its number of LZ77-factors, which refines
existing bounds of Rytter. Finally, we improve results of Arpe and Reischuk
relating grammar-based compression for arbitrary alphabets and binary alphabets.

1 Introduction

The idea of grammar-based compression is based on the fact that in many cases a word
w can be succinctly represented by a context-free grammar that produces exactly w.
Such a grammar is called a straight-line program (SLP) for w. In the best case, one gets
an SLP of size O(log n) for a word of length n, where the size of an SLP is the total
length of all right-hand sides of the rules of the grammar. A grammar-based compressor
is an algorithm that produces for a given word w an SLP A for w, where, of course, A
should be smaller than w. Grammar-based compressors can be found at many places
in the literature. Probably the best known example is the classical LZ78-compressor of
Lempel and Ziv [17]. Indeed, it is straightforward to transform the LZ78-representation
of a word w into an SLP for w. Other well-known grammar-based compressors are
BISECTION [9], SEQUITUR [13], and RePair [10], just to mention a few.

One of the first appearances of straight-line programs in the literature are [2, 5],
where they are called word chains (since they generalize addition chains from numbers
to words). In [2], Berstel and Brlek prove that the function g(k, n) = max{g(w) |
w ∈ {1, . . . , k}n}, where g(w) is the size of a smallest SLP for the word w, is in
Θ(n/ logk n). Note that g(k, n) measures the worst case SLP-compression over all
words of length n over a k-letter alphabet. The first systematic investigations of grammar-
based compressors are [4, 8]. Whereas in [8], grammar-based compressors are used for
universal lossless compression (in the information-theoretic sense), Charikar et al. study
in [4] the worst case approximation ratio of grammar-based compressors. For a given
grammar-based compressor C that computes from a given word w an SLP C(w) for w
one defines the approximation ratio of C on w as the quotient of the size of C(w) and
the size g(w) of a smallest SLP for w. The approximation ratio αC(n) is the maximal
approximation ratio of C among all words of length n over any alphabet. In [4] the authors
compute upper and lower bounds for the approximation ratios of several grammar-based



compressors (among them are the compressors mentioned above), but for none of the
compressors the lower and upper bounds match. Our first main contribution (Section 3)
closes the gaps for LZ78 and BISECTION. For this we improve the corresponding lower
bounds from [4] and obtain the approximation ratios Θ((n/ log n)1/2) for BISECTION
and Θ((n/ log n)2/3) for LZ78. For BISECTION (resp., LZ78), we prove this lower
bound for a binary (resp., ternary) alphabet.

In Section 4 we compare the size of a smallest SLP for a word w with the number of
factors of the LZ77-factorization of w (we denote the latter with gLZ77(w)). Rytter [14]
proved for every word w of length n the following bounds on the size g(w) of a smallest
SLP for w: g(w) ≥ gLZ77(w) and g(w) ∈ O(gLZ77(w) · log n). This leads to the question
whether the upper bound g(w) ∈ O(gLZ77(w) · log n) on g(w) can be improved. This
would have immediate consequences for grammar-based compression: If one could con-
struct in polynomial time an SLP of size o(gLZ77(w) · log n) for a given word w, then one
would obtain a grammar-based compressor with an approximation ratio of o(log n). Cur-
rently, the theoretically best grammar-based compressors (which all work in linear time)
achieve an approximation ratio in O(log(n/g(w))) [4, 7, 14], and a polynomial time
grammar-based compressor with an approximation ratio in o(log n/ log logn) would
imply a spectacular breakthrough on a long standing open problem on approximating
addition chains [4]. Here, we partially answer the above question whether the bound
g(w) ∈ O(gLZ77(w) · log n) is sharp. Using a Kolmogorov complexity argument we con-
struct a sequence of words wn for which g(wn) ∈ Ω(gLZ77(wn) · log |wn|/ log log |wn|).

Our last contribution deals with the hardness of the smallest grammar problem
for words over a binary alphabet. The smallest grammar problem is the problem of
computing a smallest grammar for a given input word. Storer and Szymanski [15]
and Charikar et al. [4] proved that the smallest grammar problem cannot be solved in
polynomial time unless P = NP. Even worse, unless P = NP one cannot compute
in polynomial time for a given word w an SLP of size < 8569/8568 · g(w) [4]. The
construction in [4] uses an alphabet of unbounded size, and it was open whether this
complexity lower bound also holds for words over a fixed alphabet. In [4] it is remarked
that the construction in [15] shows that the smallest grammar problem for words over
a ternary alphabet cannot be solved in polynomial time unless P = NP. But this is
not clear at all, see the recent paper [3] for a detailed explanation. In the same paper
[3] it was shown that the smallest grammar problem for an alphabet of size 24 cannot
be solved in polynomial time unless P = NP using a rather complicated construction
[3]. It is far from clear whether this construction can be adapted so that it works also
for a binary alphabet. Another idea is to reduce the smallest grammar problem for
unbounded alphabets to the smallest grammar problem for a binary alphabet. This route
was investigated in [1], where the following result was shown: If there is a polynomial
time grammar-based compressor with approximation ratio c (a constant) on binary words,
then there is a polynomial time grammar-based compressor with approximation ratio
24c+ ε for every ε > 0 on arbitrary words. The construction in [1] uses a quite technical
block encoding of arbitrary alphabets into a binary alphabet. Here, we present a very
simple construction that encodes the i-th alphabet symbol by aib, which yields the same
result as [1] but with 24c+ ε replaced by 6.
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2 Straight-line Programs

Let w = a1 · · · an (a1, . . . , an ∈ Σ) be a word over an alphabet Σ. The length |w| of w
is n and we denote by ε the word of length 0. Let Σ+ = Σ∗ \{ε} be the set of nonempty
words. For w ∈ Σ+, we call v ∈ Σ+ a factor of w if there exist x, y ∈ Σ∗ such that
w = xvy. If x = ε (respectively y = ε) then we call v a prefix (respectively suffix) of w.
A factorization of w is a decomposition w = f1 · · · f` into factors f1, . . . , f`. For words
w1, . . . , wn ∈ Σ∗, we further denote by

∏n
i=j wi the word wjwj+1 · · ·wn if j ≤ n and

ε otherwise.
A straight-line program, briefly SLP, is a context-free grammar that produces a

single word w ∈ Σ+. Formally, it is a tuple A = (N,Σ,P, S), where N is a finite set
of nonterminals with N ∩Σ = ∅, S ∈ N is the start nonterminal, and P is a finite set
of productions (or rules) of the form A→ w for A ∈ N , w ∈ (N ∪Σ)+ such that: (i)
For every A ∈ N , there exists exactly one production of the form A→ w, and (ii) the
binary relation {(A,B) ∈ N ×N | (A → w) ∈ P, B occurs in w} is acyclic. Every
nonterminal A ∈ N produces a unique string valA(A) ∈ Σ+. The string defined by A
is val(A) = valA(S). We omit the subscript A when it is clear from the context. The
size of the SLP A is |A| =

∑
(A→w)∈P |w|. We will use the following lemma which

summarizes known results about SLPs.

Lemma 1. Let Σ be a finite alphabet.

1. For every word w ∈ Σ+ of length n, there exists an SLP A of size O(n/ log n) such
that val(A) = w.

2. For an SLP A and a number n > 0, there exists an SLP B of size |A| + O(log n)
such that val(B) = val(A)n.

3. For SLPs A1 and A2 there exists an SLP B of size |A1|+ |A2| such that val(B) =
val(A1)val(A2).

4. For given words w1, . . . , wn ∈ Σ∗, u ∈ Σ+ and SLPs A1,A2 with val(A1) = u
and val(A2) = w1xw2x · · ·wn−1xwn for a symbol x 6∈ Σ, there exists an SLP B
of size |A1|+ |A2| such that val(B) = w1uw2u · · ·wn−1uwn.

Statement 1 can be found for instance in [2]. Statements 2 and 3 are shown in [4]. The
proof of 4 is straightforward: Simply replace in the SLP A2 every occurrence of the
terminal x by the start nonterminal of A1 and add all rules of A1 to A2.

We denote by g(w) the size of a smallest SLP producing the word w ∈ Σ+. The
maximal size of a smallest SLP for all words of length n over an alphabet of size k is

g(k, n) = max{g(w) | w ∈ [1, k]n},

where [1, k] = {1, . . . , k}. By point 1 of Lemma 1 we have g(k, n) ∈ O(n/ logk n). In
fact, Berstel and Brlek proved in [2] that g(k, n) ∈ Θ(n/ logk n). The following result
provides further information about the function g(k, n):

Proposition 2. Let nk = 2k2 +2k+1 for k > 0. Then (i) g(k, n) < n for n > nk and
(ii) g(k, n) = n for n ≤ nk.
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Proof. Let Σk = {a1, . . . , ak} and let Mn,` ⊆ Σ∗k be the set of all words w where
a factor v of length ` occurs at least n times without overlap. It is easy to see that
g(w) < |w| if and only if w ∈M3,2 ∪M2,3. Hence, we have to show that every word
w /∈M3,2∪M2,3 has length at most 2k2+2k+1. Moreover, we present wordswk ∈ Σ∗k
of length 2k2 + 2k + 1 such that wk /∈M3,2 ∪M2,3.

Let w /∈M3,2 ∪M2,3. Consider a factor aiaj of length two. If i 6= j then this factor
does not overlap itself, and thus aiaj occurs at most twice in w. Now consider aiai.
Then w contains at most four (possibly overlapping) occurrence of aiai, because five
occurrences of aiai would yield at least three non-overlapping occurrences of aiai. It
follows that w has at most 2(k2 − k) + 4k positions where a factor of length 2 starts,
which implies |w| ≤ 2k2 + 2k + 1.

Now we create a word wk /∈ M3,2 ∪ M2,3 which realizes the above maximal
occurrences of factors of length 2:

wk =

(
k∏
i=1

a5k−i+1

)
k−1∏
i=1

(
j=k∏
i+2

(ajai)
2

)
ai+1aiai+1

For example we have w3 = a53a
5
2a

5
1(a3a1)

2a2a1a2a3a2a3. One can check that |wk| =
2k2 + 2k + 1 and wk /∈M3,2 ∪M2,3. ut

3 Approximation ratio

As mentioned in the introduction, there is no polynomial time algorithm that computes
a smallest SLP for a given word, unless P = NP [4, 15]. This result motivates approx-
imation algorithms which are called grammar-based compressors. A grammar-based
compressor C computes for a word w an SLP C(w) such that val(C(w)) = w. The ap-
proximation ratio αC(w) of C for an input w is defined as |C(w)|/g(w). The worst-case
approximation ratio αC(k, n) of C is the maximal approximation ratio over all words of
length n over an alphabet of size k:

αC(k, n) = max{αC(w) | w ∈ [1, k]n} = max{|C(w)|/g(w) | w ∈ [1, k]n}

If the alphabet size is unbounded, i.e. we allow alphabets of size |w|, then we write
αC(n) instead of αC(n, n). This is the definition of the worst-case approximation ratio
in [4]. The grammar-based compressors studied in our work are BISECTION [9] and
LZ78 [17]. We will abbreviate the approximation ratio of BISECTION (respectively
LZ78) by αBI (respectively αLZ78). The families of words which we will use to prove
new lower bounds for αBI(n) and αLZ78(n) are inspired by the constructions in [4].

3.1 BISECTION

The BISECTION algorithm [9] first splits an input word w with |w| ≥ 2 as w = w1w2

such that |w1| = 2j for the unique number j ≥ 0 with 2j < |w| ≤ 2j+1. This process
is recursively repeated with w1 and w2 until we obtain words of length 1. During the
process, we introduce a nonterminal for each distinct factor of length at least two and
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create a rule with two symbols on the right-hand side corresponding to the split. Note
that if w = u1u2 · · ·uk with |ui| = 2n for all i, 1 ≤ i ≤ k, then the SLP produced by
BISECTION contains a nonterminal for each distinct word ui (1 ≤ i ≤ k).

Example 3. BISECTION constructs an SLP for w = ababbbaabbaaab as follows:

– w = w1w2 with w1 = ababbbaa, w2 = bbaaab
Introduced rule: S →W1W2

– w1 = x1x2 with x1 = abab, x2 = bbaa, and w2 = x2x3 with x3 = ab
Introduced rules: W1 → X1X2, W2 → X2X3, X3 → ab

– x1 = x3x3, x2 = y1y2 with y1 = bb and y2 = aa
Introduced rules: X1 → X3X3, X2 → Y1Y2, Y1 → bb, Y2 → aa

BISECTION performs asymptotically optimal on unary words an since it produces
an SLP of size O(log n). Therefore αBI(1, n) ∈ Θ(1). The following bounds on the
approximation ratio for alphabets of size at least two are proven in [4, Thm. 5 and 6]:

αBI(2, n) ∈ Ω(
√
n/ log n) (1)

αBI(n) ∈ O(
√
n/ log n) (2)

We improve the lower bound (1) so that it matches the upper bound (2):

Theorem 4. For every k, 2 ≤ k ≤ n we have αBI(k, n) ∈ Θ(
√
n/ log n).

Proof. The upper bound (2) implies that αBI(k, n) ∈ O(
√
n/ log n) for all k, 2 ≤ k ≤

n. So it suffices to show αBI(2, n) ∈ Ω(
√
n/ log n). We first show that αBI(3, n) ∈

Ω(
√
n/ log n). In a second step, we encode a ternary alphabet into a binary alphabet

while preserving the approximation ratio.
For every k ≥ 2 let bink : {0, 1, . . . , k − 1} → {0, 1}dlog2 ke be the function where

bink(j) (0 ≤ j ≤ k − 1) is the binary representation of j filled with leading zeros (e.g.
bin9(3) = 0011). We further define for every k ≥ 2 the word

uk =

k−2∏
j=0

bink(j)a
mk

 bink(k − 1),

where mk = 2k−dlog2 ke − dlog2 ke. For instance k = 4 leads to mk = 2 and u4 =
00aa01aa10aa11. We analyse the approximation ratio αBI(sk) for the word

sk =
(
uka

mk+1
)mk

uk.

Claim 1. The SLP produced by BISECTION on input sk has size Ω(2k).

If sk is split into non-overlapping factors of length mk + dlog2 ke = 2k−dlog2 ke, then
the resulting set Fk of factors is

Fk = {aibink(j)amk−i | 0 ≤ j ≤ k − 1, 0 ≤ i ≤ mk}.

For example s4 consecutively consists of the factors 00aa, 01aa, 10aa, 11aa, a00a,
a01a, a10a, a11a, aa00, aa01, aa10 and aa11. The size of Fk is (mk+1) ·k ∈ Θ(2k),
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because all factors are pairwise different and mk ∈ Θ(2k/k). It follows that the SLP
produced by BISECTION on input sk has size Ω(2k), because the length of each factor
in Fk is a power of two and thus BISECTION creates a nonterminal for each distinct
factor in Fk.

Claim 2. A smallest SLP producing sk has size O(k).

There is an SLP of size O(logmk) = O(k) for the word amk by Lemma 1 (point 2).
This yields an SLP for uk of size O(k) + g(u′k) by Lemma 1 (point 4), where u′k =

(
∏k−2
i=0 bink(i)x)bink(k − 1) is obtained from uk by replacing all occurrences of amk

by a fresh symbol x. The word u′k has length Θ(k log k). Applying point 1 of Lemma 1
(note that u′k is a word over a ternary alphabet) it follows that

g(u′k) ∈ O
(

k log k

log(k log k)

)
= O

(
k log k

log k + log log k

)
= O(k).

Hence g(uk) ∈ O(k). Finally, the SLP of size O(k) for uk yields an SLP of size O(k)
for sk again using Lemma 1 (points 2 and 3).

In conclusion: We showed that a smallest SLP for sk has size O(k), while BISECTION
produces an SLP of size Ω(2k).This implies αBI(sk) ∈ Ω(2k/k). Let n = |sk|. Since
sk is the concatenation of Θ(2k) factors of length Θ(2k/k), we have n ∈ Θ(22k/k) and
thus
√
n ∈ Θ(2k/

√
k). This yields αBI(sk) ∈ Ω(

√
n/k). Together with k ∈ Θ(log n)

we obtain αBI(3, n) ∈ Ω(
√
n/ log n).

Let us now encode words over {0, 1, a} into words over {0, 1}. Consider the homo-
morphism f : {0, 1, a}∗ → {0, 1}∗ with f(0) = 00, f(1) = 01 and f(a) = 10. Then
we can prove the same approximation ratio of BISECTION for the input f(sk) ∈ {0, 1}∗
that we proved for sk above: The size of a smallest SLP for f(sk) is at most twice as
large as the size of a smallest SLP for sk, because an SLP for sk can be transformed
into an SLP for f(sk) by replacing every occurrence of a symbol x ∈ {0, 1, a} by
f(x). Moreover, if we split f(sk) into non-overlapping factors of twice the length as we
considered for sk, then we obtain the factors from f(Fk), whose length is again a power
of two. Since f is injective, we have |f(Fk)| = |Fk| ∈ Θ(2k). ut

3.2 LZ78

The LZ78 algorithm on input w ∈ Σ+ implicitly creates a list of words f1, . . . , f`
(which we call the LZ78-factorization) with w = f1 · · · f` such that the following
properties hold, where we set f0 = ε:

– fi 6= fj for all i, j, 0 ≤ i, j ≤ `− 1 with i 6= j.
– For all i, 1 ≤ i ≤ `− 1 there exist j, 0 ≤ j < i and a ∈ Σ such that fi = fja.
– f` = fi for some 0 ≤ i ≤ `− 1.

Note that the LZ78-factorization is unique for each word w. To compute it, the LZ78
algorithm needs ` steps performed by a single left-to-right pass. In the kth step (1 ≤ k ≤
`− 1) it chooses the factor fk as the shortest prefix of the unprocessed suffix fk · · · f`
such that fk 6= fi for all i < k. If there is no such prefix, then the end of w is reached
and the algorithm sets f` to the (possibly empty) unprocessed suffix of w.
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The factorization f1, . . . , f` yields an SLP for w of size at most 3` as described in
the following example:

Example 5. The LZ78-factorization of w = aabaaababababaa is a, ab, aa, aba, b,
abab, aa and leads to an SLP with the following rules:

– S → F1F2F3F4F5F6F3

– F1 → a, F2 → F1b, F3 → F1a, F4 → F2a, F5 → b, F6 → F4b

We have a nonterminal Fi for each factor fi (1 ≤ i ≤ 6) such that valA(Fi) = fi. The
last factor aa is represented in the start rule by the nonterminal F3.

The LZ78-factorization of an (n > 0) is a1, a2, . . . , am, ak, where k ∈ {0, . . . ,m} such
that n = k +

∑m
i=1 i. Note that m ∈ Θ(

√
n) and thus αLZ78(1, n) ∈ Θ(

√
n/ log n).

The following bounds for the worst-case approximation ratio of LZ78 were shown in [4,
Thm. 3 and 4]:

αLZ78(2, n) ∈ Ω(n2/3/ log n) (3)
αLZ78(n) ∈ O((n/ log n)2/3) (4)

For ternary (or larger) alphabets, we will improve the lower bound so that it matches the
upper bound in (4).

Theorem 6. For every k ≥ 3 we have αLZ78(k, n) ∈ Θ((n/ log n)2/3).

Proof. Due to (4) it suffices to show αLZ78(3, n) ∈ Ω((n/ log n)2/3). For k ≥ 2,m ≥
1, let um,k =

(
akbmc

)k(m+2)−1
and vm,k =

(∏m
i=1 b

iak
)k2

. We now analyse the
approximation ratio of LZ78 on the words

sm,k = ak(k+1)/2 bm(m+1)/2 um,k vm,k.

For example we have u2,4 = (a4b2c)15, v2,4 = (ba4b2a4)16 and s2,4 = a10 b3 u2,4 v2,4.

Claim 1. The SLP produced by LZ78 on input sm,k has size Θ(k2m).

We consider the LZ78-factorization f1, . . . , f` of sm,k. The prefix ak(k+1)/2 produces
the factors fi = ai for every i, 1 ≤ i ≤ k and the substring bm(m+1)/2 produces the
factors fk+i = bi for every i, 1 ≤ i ≤ m.

We next show that the substring um,k then produces (among other factors) all factors
aibj , where 1 ≤ i ≤ k, 1 ≤ j ≤ m. All other factors produced by um,k contain the
letter c and therefore do not affect the factorization of the final suffix vm,k ∈ {a, b}∗.

The first factors of um,k in sm,k are fk+m+1 = akb and fk+m+2 = bm−1c, which
together form the first occurrence of akbmc. The next two factors are akb2 and bm−2c.
This pattern continues and the prefix (akbmc)m of um,k yields the next 2m factors
fk+m+2i−1 = akbi and fk+m+2i = bm−ic for every i, 1 ≤ i ≤ m. The factorization
of um,k continues with fk+3m+1 = akbmc followed by fk+3m+2 = akbmca. Next,
we have fk+3m+3 = ak−1b and fk+3m+4 = bm−1ca, which is the beginning of a
similar pattern as we discovered for (akbmc)m. Therefore, the next 2m factors are
fk+3m+2i+1 = ak−1bi and fk+3m+2i+2 = bm−ica for every i, 1 ≤ i ≤ m. The next
two factors are fk+5m+3 = ak−1bmc followed by fk+5m+4 = akbmca2. The iteration
of these arguments yields k (consecutive) blocks of 2m+ 2 factors (resp. 2m+ 1 in the
last block) in um,k:
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1st block:
∏m
i=1

(
akbi bm−ic

)
akbmc akbmca

2nd block:
∏m
i=1

(
ak−1bi bm−ica

)
ak−1bmc akbmca2

· · ·
(k − 1)th block:

∏m
i=1

(
a2bi bm−icak−2

)
a2bmc akbmcak−1

kth block:
∏m
i=1

(
abi bm−icak−1

)
abmc

We will show that the remaining suffix vm,k of sm,k produces then the set of factors{
aibpaj | 0 ≤ i ≤ k − 1, 1 ≤ j ≤ k, 1 ≤ p ≤ m

}
.

Let x = k + m + k(2m + 2) − 1 and note that this is the number of factors that
we have produced so far. The factorization of vm,k in sm,k slightly differs whether
m is even or is odd. We now assume that m is even and explain the difference to the
other case afterwards. The first factor of vm,k in sm,k is fx+1 = ba. We already have
produced the factors ak−1bi for every i, 1 ≤ i ≤ m and hence fx+i = ak−1bia for every
i, 2 ≤ i ≤ m and fx+m+1 = ak−1ba. The next m factors are fx+m+i = ak−1bia2

if i is even, fx+m+i = ak−2bia if i is odd (2 ≤ i ≤ m) and fx+2m+1 = ak−2ba.
This pattern continues: The next m factors are fx+2m+i = ak−1bia3 if i is even,
fx+2m+i = ak−3bia if i is odd (2 ≤ i ≤ m) and fx+3m+1 = ak−3ba and so on. Hence,
we get the following sets of factors for (

∏m
i=1 b

iak)k:

(i) {ak−ibpa | 1 ≤ i ≤ k, 1 ≤ p ≤ m, p is odd} for fx+1, fx+3 . . . , fx+km−1
(ii) {ak−1bpaj | 1 ≤ j ≤ k, 1 ≤ p ≤ m, p is even} for fx+2, fx+4, . . . , fx+km

The remaining word then starts with the factor fy+1 = ba2, where y = x+ km. Now
the former pattern can be adapted to the next k repetitions of

∏m
i=1 b

iak which gives us
the following factors:

(i) {ak−ibpa2 | 1 ≤ i ≤ k, 1 ≤ p ≤ m, p is odd} for fy+1, fy+3 . . . , fy+km−1
(ii) {ak−2bpaj | 1 ≤ j ≤ k, 1 ≤ p ≤ m, p is even} for fy+2, fy+4, . . . , fy+km

The iteration of this process then reveals the whole pattern and thus yields the claimed
factorization of vm,k in sm,k into factors aibpaj for every i, 0 ≤ i ≤ k−1, j, 1 ≤ j ≤ k
and p, 1 ≤ p ≤ m. If m is odd then the patterns in (i) and (ii) switch after each
occurrence of

∏m
i=1 b

iak, which does not affect the result but makes the pattern slightly
more complicated. But the case that m is even suffices in order to derive the lower bound
from the theorem.

We conclude that there are exactly k+m+ k(2m+2)− 1+ k2m factors (ignoring
f` = ε) and hence the SLP produced by LZ78 on input sm,k has size Θ(k2m).

Claim 2. A smallest SLP producing sm,k has size O(log k +m).

We will combine the points stated in Lemma 1 to prove this claim. Points 2 and 3 yield an
SLP of sizeO(log k+logm) for the prefix ak(k+1)/2 bm(m+1)/2 um,k of sm,k. To bound
the size of an SLP for vm,k note at first that there is an SLP of size O(log k) producing
ak by point 2 of Lemma 1. Applying point 4 and again point 2, it follows that there is an
SLP of sizeO(log k)+g(v′m,k) producing vm,k, where v′m,k =

∏m
i=1 b

ix for some fresh
letter x. To get a small SLP for v′m,k, we can introduce m nonterminals B1, . . . , Bm
producing b1, . . . , bm by adding rules B1 → b and Bi+1 → Bib (1 ≤ i ≤ m− 1). This
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is enough to get an SLP of sizeO(m) for v′m,k and therefore an SLP of sizeO(log k+m)
for vm,k. Together with our first observation and point 3 of Lemma 1 this yields an SLP
of size O(log k +m) for sm,k.

Claim 1 and 2 imply αLZ78(sm,k) ∈ Ω(k2m/(log k + m)). Let us now fix m =
dlog ke. We get αLZ78(sm,k) ∈ Ω(k2). Moreover, for the length n = |sm,k| of sm,k
we have n ∈ Θ(k3m+ k2m2) = Θ(k3 log k). We get αLZ78(sm,k) ∈ Ω((n/ log k)2/3)
which together with log n ∈ Θ(log k) finishes the proof. ut

It remains open whether also αLZ78(2, n) ∈ Θ((n/ log n)2/3) holds. In contrast to
BISECTION it is not clear how to encode a ternary alphabet into a binary alphabet while
preserving the approximation ratio for LZ78.

4 LZ77 and composition systems

The LZ77-factorization of a non-empty word w ∈ Σ+ is w = f1f2 · · · fm, where for
every i, 1 ≤ i ≤ m, fi is (i) the longest non-empty prefix of fifi+1 · · · fm which is a
factor of f1f2 · · · fi−1 or (ii) the first symbol of fifi+1 · · · fm if such a prefix does not
exist. Let gLZ77(w) = m be the number of factors in the LZ77-factorization of w.

Example 7. The LZ77-factorization of w = aabaaababababaa is a, a, b, aa, aba, ba,
baba, a and we have gLZ77(w) = 8.

We are interested in the following ratios, where 1 ≤ k ≤ n:

βLZ77(k, n) = max{g(w)/gLZ77(w) | w ∈ [1, k]n} and βLZ77(n) = βLZ77(n, n).

For a word w over a unary alphabet one has gLZ77(w) ∈ Θ(log |w|) and therefore
βLZ77(1, n) ∈ Θ(1). Rytter proved that for every word w, g(w) ≥ gLZ77(w) and hence
βLZ77(k, n) ≥ 1 for all k, 1 ≤ k ≤ n [14].1 Moreover, in the same paper, he con-
structed for a word w an SLP of size O(gLZ77(w) · log |w|). This yields βLZ77(n) ∈
O(log n). Using Kolmogorov complexity we prove the lower bound βLZ77(2, n) ∈
Ω(log n/ log log n).

For a partial recursive function φ : {0, 1}∗ → {0, 1}∗ and a word w ∈ {0, 1}∗ let
Cφ(w) = min{|p| | p ∈ {0, 1}∗, φ(p) = w} (where we define min(∅) = ∞) be the
Kolmogorov complexity of w with respect to φ. The invariance theorem of Kolmogorov
complexity states that there is a partial recursive surjective function U : {0, 1}∗ →
{0, 1}∗ such that for every partial recursive function φ : {0, 1}∗ → {0, 1}∗ there is a
constant c ≥ 0 with CU (w) ≤ Cφ(w) + c for all w. We fix such a function U (it can be
obtained from a universal Turing machine) and define the Kolmogorov complexity of w
as C(w) := CU (w). It is well known that for every n ≥ 0 there is a word w ∈ {0, 1}n
with C(w) ≥ n (such a word is called Kolmogorov random). See [11] for further details.

Theorem 8. βLZ77(2, n) ∈ Ω(log n/ log log n).
1 It is shown in [14] that every SLP in Chomsky normal form for w has at least gLZ77(w) many

nonterminals. But the number of nonterminals in a smallest Chomsky normal form SLP for w
is bounded by g(w).

9



Proof. Let m ∈ N, w ∈ {0, 1}∗, |w| = m2 and C(w) ≥ m2. We factorize w as
w = w1 · · ·wm where |wi| = m for every i, 1 ≤ i ≤ m. We encode every wi into a
binary number of size Θ(2m) using the following (ranking) function p : {0, 1}∗ → N:
We define p(u) = i if and only if u is the ith word in the length-lexicographic enumeration
of all words from {0, 1}∗ (where p(ε) = 0). This is a computable bijection from
{0, 1}∗ to N such that p(x) ∈ Θ(2|x|). Let Ni = p(wi) for every i, 1 ≤ i ≤ m. Thus,
we have Ni ∈ Θ(2m). Let N = max{N1, . . . , Nm} ∈ Θ(2m) and define the word
v = aN#aN1# . . .#aNm# over the alphabet {a,#}. Let A be a smallest SLP for v.
Note that v and hence A uniquely encodes the word w. Since an SLP of size k can
be encoded by a bit string of size O(k log k) [16] and C(w) ≥ m2, it follows that
|A| · log |A| ∈ Ω(m2). Note that this is the point where the Kolmogorov randomness of
w is applied. Moreover, there exists an SLP for v of size O(m · logN) = O(m2). Thus,
|A| ∈ O(m2), which together with |A| · log(|A|) ∈ Ω(m2) implies |A| ∈ Ω(m2/ logm)
and hence g(v) ∈ Ω(m2/ logm). On the other hand, the LZ77-factorization of v has
O(m) factors: The prefix aN# of v contributes O(logN) = O(m) factors. Because
N = max{N1, . . . , Nm}, every aNi#, where 1 ≤ i ≤ m, contributes at most one
additional factor. Altogether, we get gLZ77(v) ∈ O(m). Let n = |v| ∈ Θ(m ·2m), which
implies log n ∈ Θ(m). We get

βLZ77(2, n) ≥
g(v)

gLZ77(v)
∈ Ω

(
m2

m logm

)
= Ω

(
m

logm

)
= Ω

(
log n

log log n

)
.

This concludes the proof. ut

It remains open, whether the lower bound in Theorem 8 can be raised to Ω(log n).
A common generalization of SLPs and LZ77-factorizations are so called composition

systems [6] or Cut-SLP [12] (briefly CSLP), which we define next. For a word w =
a1 · · · an ∈ Σ∗ and 1 ≤ i ≤ j ≤ n we define w[i : j] = ai · · · aj . A CLSP C =
(N,Σ,P, S) is defined analogously to an SLP but in addition may contain rules of the
form A→ B[i : j] for A,B ∈ N and 1 ≤ i ≤ j ≤ |val(B)|. We then define val(A) =
val(B)[i : j]. The size of a right-hand side B[i : j] is set to |B[i : j]| = 1 and the size of
a CSLP is |C| =

∑
(A→w)∈P |w|. We denote by gCSLP(w) the size of a smallest CSLP

C such that val(C) = w and define βCSLP(k, n) = max{g(w)/gCSLP(w) | w ∈ [1, k]n}
and βCSLP(n) = βCSLP(n, n).

Note that if a non-empty word w has an LZ77-factorization w = f1f2 · · · fm of
length m then gCSLP(w) ≤ 3m: We introduce for every i, 1 ≤ i ≤ m a nonterminal Ai
which evaluates to f1 · · · fi. For this, we set A1 → f1 (f1 must be a single symbol). For
every i, 2 ≤ i ≤ m we set Ai → Ai−1fi if fi is a single symbol and Ai → Ai−1Bi,
Bi → Ai−1[j : k] if fi = (f1 · · · fi−1)[j : k]. Together with Theorem 8 this yields
the lower bound in the following theorem. The upper bound follows easily using the
techniques from [14].

Theorem 9. We have βCSLP(2, n) ∈ Ω(log n/ log log n) and βCSLP(n) ∈ O(log n).

5 Hardness of grammar-based compression for binary alphabets

The goal of this section is to prove the following result:

10



Theorem 10. Let c ≥ 1 be a constant. If there exists a polynomial time grammar-based
compressor C with αC(2, n) ≤ c then there exists a polynomial time grammar-based
compressor D with αD(n) ≤ 6c.

For a factor 24 + ε (with ε > 0) instead of 6 this result was shown in [1] using a more
complicated block encoding.

We split the proof of Theorem 10 in two lemmas that state translations between SLPs
over arbitrary alphabets and SLPs over a binary alphabet. For the rest of this section
fix the alphabets Σ = {a0, . . . , ak−1} and Σ2 = {a, b}. To translate between these two
alphabets, we define an injective homomorphism ϕ : Σ∗ → Σ∗2 by

ϕ(ai) = aib (0 ≤ i ≤ k − 1). (5)

Lemma 11. Let w ∈ Σ∗ such that every symbol from Σ occurs in w. From an SLP A
for w one can construct in polynomial time an SLP B for ϕ(w) of size at most 3 · |A|.

Proof. To translate A into an SLP B for ϕ(w), we first add the productions A0 → b and
Ai → aAi−1 for every i, 1 ≤ i ≤ k − 1. Finally, we replace in A every occurrence of
ai ∈ Σ by Ai. This yields an SLP B for ϕ(w) of size |A| + 2k − 1. Because k ≤ |A|
(since every symbol from Σ occurs in w), we obtain |B| ≤ 3 · |A|. ut

Lemma 12. Let w ∈ Σ∗ such that every symbol from Σ occurs in w. From an SLP B
for ϕ(w) one can construct in linear time an SLP A for w of size at most 2 · |B|.

Proof. A factor of a word from ϕ(Σ∗) is of the form s = ai1b · · · ainbain+1 for some
n ≥ 0, and 0 ≤ i1, . . . , in+1 ≤ k − 1. Take new symbols ãi, 0 ≤ i ≤ k − 1.
Intuitively, ãi is an abbreviation for ai (whereas ai is an abbreviation for aib). The
symbols ãi are only used during the construction for clarification, and disappear at the
end. For the word s = ai1b · · · ainbain+1 define `(s) ∈ Σ ∪ {ε}, m(s) ∈ Σ∗, and
r(s) ∈ {ãi | 0 ≤ i ≤ k − 1} as follows:

`(s) =

{
ai1 if n ≥ 1

ε if n = 0
m(s) = ai2 · · · ain r(s) = ãin+1

Note that `(s) = ε implies that m(s) = ε as well. Finally, let

ψ(s) = ai1︸︷︷︸
`(s)

ai2 · · · ain︸ ︷︷ ︸
m(s)

ãin+1︸ ︷︷ ︸
r(s)

.

Note that for every word w ∈ Σ∗ we have ψ(ϕ(w)) = wã0.
Let w ∈ Σ∗ and B = (N,Σ2, P, S) be an SLP for ϕ(w). For a nonterminal A ∈

N we define `(A),m(A), r(A) as `(val(A)),m(val(A)), r(val(A)). We now define
an SLP A′ that contains for every nonterminal A ∈ N a nonterminal A′ such that
val(A′) = m(A). Moreover, the algorithm also computes `(A) and r(A).

We define the productions of A′ inductively over the structure of B. Consider a
production (A → α) ∈ P , where α = w0A1w1A2 · · ·wn−1Anwn with n ≥ 0,
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A1, . . . , An ∈ N , and w0, w1, . . . , wn ∈ Σ∗2 . Let `i = `(Ai) and ri = r(Ai). The
right-hand side for A′ is obtained as follows. We start with the word

ψ(w0) `1A
′
1 r1 ψ(w1) `2A

′
2 r2 · · ·ψ(wn−1) `nA′n rn ψ(wn). (6)

Note that each of the factors `iA′iri produces (by induction) ψ(val(Ai)). Next we remove
everyA′i that derives the empty word (which is equivalent tom(Ai) = ε). After this step,
every occurrence of a symbol ãi is either the last symbol of the word or it is followed by
another symbol ãj or aj . This allows us to eliminate all occurrences of symbols ãi except
for the last symbol using the two reduction rules ãiãj → ãi+j (which corresponds to
aiaj = ai+j) and ãiaj → ai+j (which corresponds to aiajb = ai+jb). If we perform
these rules as long as possible (the order of applications is not relevant since these rules
form a confluent and terminating system), only a single occurrence of a symbol ãi at the
end of the right-hand side will remain. The resulting word α′ produces ψ(A). Hence, we
obtain the right-hand side for the nonterminal A′ by removing the first symbol of α′ if it
is of the form ai (this symbol is then `(A)) and the last symbol of α′, which must be of
the form ãj (this symbol is r(A)).

Note that for the start variable S of B we must have r(S) = ã0 since val(S) belongs
to the image of ϕ. Let S′ → σ be the production for S′ in A′. We obtain the SLP A by
replacing this production by S′ → `(S)σ. Since valA′(S′) = m(S) and valB(S) = ϕ(w)
we have valA(S

′) = `(S)m(S) = w.
To bound the size of A note that the length of the word in (6) is at most |α| + 2n.

But when forming the right-hand side of A′, all symbols r1, . . . , rn are removed from
(6). Hence, |A′| is bounded by the size of B plus the total number of occurrences of
nonterminals in right-hand sides of B, which is at most 2|B| − 1 (there is at least one
terminal occurrence in a right-hand side). Since |A| = |A′|+ 1 we get |A| ≤ 2|B|.

It is easy to observe that the runtime of the algorithm is linear. ut

Example 13. Consider the production A → a3ba5A1a
3A2a

2b2A3a
2 and assume that

val(A1) = a2, val(A2) = aba3ba and val(A3) = ba2ba3. Hence, when we produce the
right-hand side for A′ we have: val(A′1) = ε, val(A′2) = a3, val(A′3) = a2, `1 = ε,
r1 = ã2, `2 = a1, r2 = ã1, `3 = a0, r3 = ã3. We start with the word

a3ã5A
′
1ã2ã3a1A

′
2ã1a2a0ã0a0A

′
3ã3ã2.

Then we replace A′1 by ε and obtain a3ã5ã2ã3a1A
′
2ã1a2a0ã0a0A

′
3ã3ã2. Applying

the reduction rules finally yields a3a11A′2a3a0a0A
′
3ã5. Hence, we have `(A) = a3,

r(A) = ã5 and the production for A′ is A′ → a11A
′
2a3a0a0A

′
3.

Proof of Theorem 10. Let C be an arbitrary grammar-based compressor working in
polynomial time such that αC(2, n) ≤ c. The grammar-based compressor D works for
an input word w over an arbitrary alphabet as follows: Let Σ = {a0, . . . , ak−1} be
the set of symbols that occur in w and let ϕ be defined as in (5). Using C, one first
computes an SLP B for ϕ(w) such that |B| ≤ c · g(ϕ(w)). Then, using Lemma 12, one
computes from B an SLP A for w such that |A| ≤ 2c · g(ϕ(w)). Lemma 11 implies
g(ϕ(w)) ≤ 3 · g(w) and hence |A| ≤ 6c · g(w), which proves the theorem. ut
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6 Open problems

Several open problems arise from this paper. First of all, it would be nice to to prove (or
disprove) the lower bound Ω((n/ log n)2/3) for the approximation ratio of LZ78 also
for a binary alphabet. Our proof needs a ternary alphabet. Another interesting question
arises from the gap between the lower bound Ω(log n/ log log n) and the upper bound
O(log n) for βLZ77(n) (worst case size of a smallest SLP in relation to the number of
LZ77-factors). It is open whether the factor 1/ log log n in the lower bound is necessary.
Finally, one should try to narrow also the gaps between the lower and upper bounds for
the other grammar-based compressors analyzed in [4]. In particular, for the so called
global algorithms from [4] these gaps are quite large.
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