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Abstract A linear space data structure for grammar-compressed trees is presented
which allows to carry out tree traversal operations and subtree equality checks in
constant time. A traversal step consists of moving to the parent or to the ith child of
a node.

Keywords Grammar-compressed trees · tree straight-line programs · algorithms for
compressed trees

1 Introduction

Context-free grammars that produce single strings are a widely studied compact
string representation, known as straight-line programs (SLPs). For instance, the string
(ab)1024 can be represented by the SLP with the rules A0 → ab and Ai → Ai−1Ai−1
for 1 ≤ i ≤ 10 (A10 is the start symbol). In general, an SLP of size m can produce a
string of length exponential in m. Besides grammar-based compressors (e.g. LZ78,
RePair, or BISECTION, see [7] for more details) that derive an SLP from a given
string, also algorithmic problems on SLP-compressed strings such as pattern match-
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ing, indexing, and compressed word problems have been investigated thoroughly, see
[17] for a survey.

Motivated by applications where large tree structures occur, like XML processing,
SLPs have been extended to node-labeled ranked ordered trees [4,5,12,15,19]. In
those papers, straight-line linear context-free tree grammars are used. Such grammars
produce a single tree and are also known as tree straight-line programs (TSLPs).
TSLPs generalize dags (directed acyclic graphs), which are widely used as compact
tree representation. Whereas dags only allow to share repeated subtrees, TSLPs can
also share repeated internal tree patterns (i.e., connected subgraphs). The grammar-
based tree compressor from [12] produces for every tree of size n (for a fixed set
of node labels) a TSLP of size O( n

logn ) and height O(logn), which is worst-case
optimal. Implementations of grammar-based tree compressors which have proven to
work well in practise include TreeRePair [19] and BPLEX[5].

Various querying problems on TSLP-compressed trees such as XPath querying
and evaluating tree automata are studied in [18,20,22].

In this paper we study the problem of navigating in a TSLP-represented tree:
given a TSLP G for a tree t, the task is to precompute in time O(|G |) an O(|G |)-
space data structure that allows to move from a node of t in time O(1) to its parent
node or to its ith child and to return in time O(1) the node label of the current node.
Here the nodes of t are represented in space O(|G |) in a suitable way. Such a data
structure has been developed for string SLPs in [10]; it allows to move from left to
right over the string produced by the SLP requiring time O(1) per move. We first
extend the data structure from [10] so that the string can be traversed in a two-way
fashion, i.e., in one step we can move either to the left or right neighboring position
in constant time. This data structure is then used to navigate a TSLP-represented tree.

TSLPs are typically used to compress ranked trees, i.e., trees where the maximal
number r of children of a node is bounded by a constant. For instance, the above
mentioned bound O( n

logn ) from [12] assumes that r is constant. In many applications,
r is indeed bounded (e.g., r = 2 for the following two encodings of unranked trees).
For unranked trees where r is unbounded, it is more realistic to require that the data
structure supports navigation to

(i) the parent node,
(ii) the first child,

(iii) the right sibling, and
(iv) the left sibling.

We can realize these operations by using a suitable constant-rank encoding of un-
ranked trees. Two folklore binary tree encodings of an unranked tree t with maximal
rank r are:

– First-child/next-sibling encoding fcns(t): the left (resp. right) child of a node
in fcns(t) is the first child (resp., right sibling) in t. This coding is popular for
XML, see, e.g., [25]; it is mentioned already in Paragraph 2.3.2 of Knuth’s first
book [16]. Under this encoding we can support O(1) time navigation for (ii)–(iv)
of above. The parent move (i) however, requires O(r) time.

– Binary encoding: we define the binary encoding bin(t) by adding for every node v
of rank s≤ r a binary tree of depth dlogse with s many leaves, whose root is v and
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whose leaves are the children of v. This introduces at most 2s many new binary
nodes (labeled by a new symbol). Thus |bin(t)| ≤ 3|t|. This encoding has also
been used in the context of XML, see [25]. Every navigation step in the original
tree can be simulated by O(logr) many navigation steps in bin(t).

Our second main result concerns subtree equality checks. This is the problem of
checking for two given nodes of a tree whether the subtrees rooted at these two nodes
are identical. We extend our data structure for tree navigation such that subtree equal-
ity checks can be carried out in time O(1). The problem of checking equality of
subtrees occurs in several different contexts, see for instance [6] for details. Typical
applications are common subexpression detection, unification, and non-linear pattern
matching. For instance, checking whether the pattern f (x, f (y,y)) is matched at a
certain tree node needs a constant number of navigation steps and a single subtree
equality check.

Related Work

The ability to navigate efficiently in a tree is a basic prerequisite for most tree query-
ing procedures. For instance, the DOM representation available in web browsers
through JavaScript provides tree navigation primitives (see, e.g., [9]). Tree naviga-
tion has been intensively studied in the context of succinct tree representations. Here,
the goal is to represent a tree by a bit string, whose length is asymptotically equal to
the information-theoretic lower bound. For instance, for ordered trees with n nodes
the information-theoretic lower bound is 2n+o(n) and there exist succinct represen-
tations (e.g., the balanced parentheses representation) that encode an ordered tree of
size n by a bit string of length 2n+o(n). In addition there exist such encodings that
allow to navigate in the tree in constant time (and support many other tree operations),
see e.g. [23] for a survey. Recently, grammatical formalisms for the compression of
unranked trees have been proposed as well. In [2] the authors consider so called top
dags as a compact tree representation. Top dags can be seen as a slight variant of
TSLPs for unranked trees. It is shown in [2] that for every tree of size n the top
dag has size O( n

log0.19 n
). Recently, this bound was improved to O

( n·log logn
logn

)
in [11];

it remains an open problem whether this bound can be improved to the information-
theoretic limit O

( n
logn

)
. Moreover, also the navigation problem for top dags is studied

in [2]. The authors show that a single navigation step in t can be carried out in time
O(log |t|) in the top dag. Nodes are represented by their preorder numbers, which
need O(log |t|) bits. In [3] an analogous result has been shown for unranked trees
that are represented by string SLPs for the balanced parentheses representation of the
tree. This covers also TSLPs: from a TSLP G one can easily compute in linear time
an SLP for the balanced parentheses representation of the tree represented by G . In
some sense our results are orthogonal to the results of [3]:

– We can navigate, determine node labels, and check equality of subtrees in time
O(1), but our representation of tree nodes needs space O(|G |).

– Bille et al. [3] can navigate and execute several other tree queries (e.g. lowest
common ancestor computations) in time O(log |t|), but their node representation
(preorder numbers) only need space O(log |t|)≤ O(|G |).
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An implementation of navigation over TSLP-compressed trees is given in [21]. Their
worst-case time per navigation step is O(h) where h is the height of the TSLP. The
authors demonstrate that on XML trees, full traversals take about 5–7 longer than over
succinct trees (based on an implementation by Sadakane) while using 3–15 times less
space; thus, their implementation provides a competitive space/time trade-off.

Checking equality of subtrees is trivial for minimal dags, since every subtree is
uniquely represented. For so called SL grammar-compressed dags (which can be seen
as TSLPs with certain restrictions) it was shown in [4] that equality of subtrees can
be checked in time O(log |t|) for given preorder numbers.

2 Preliminaries

Let N denote the set {0,1,2, . . .} of non-negative integers. For an alphabet Σ we
denote by Σ ∗ the set of all strings over Σ including the empty string ε . For a string
w = a1 · · ·an (ai ∈ Σ ) we denote by alph(w) the set of symbols {a1, . . . ,an} occurring
in w. Moreover, let |w|= n, w[i] = ai and w[i : j] = ai · · ·a j where w[i : j] = ε , if i > j.
Let w[: i] = w[1 : i] and w[i :] = w[i : n].

2.1 Straight-Line Programs

A straight-line program (SLP) is a triple P = (N,Σ , rhs), where N is a finite set
of nonterminals, Σ is a finite set of terminals (Σ ∩N = /0), and rhs : N → (N ∪Σ)∗

is a mapping such that the binary relation {(A,B) ∈ N ×N | B ∈ alph(rhs(A))} is
acyclic. This condition ensures that every nonterminal A∈N produces a unique string
valP(A)∈ Σ ∗. It is obtained from the string A by repeatedly replacing nonterminals B
by rhs(B), until no nonterminal occurs in the string. We also write A→ α if rhs(A) =
α and call it a rule of P . Usually, an SLP has a start nonterminal as well, but for our
purpose it is convenient to consider SLPs without a start nonterminal.

Let A ∈ N with rhs(A) = X1 · · ·Xn and X1, . . . ,Xn ∈ (N ∪Σ). The derivation tree
of P rooted in A consists of a root node u labeled A. Let i ∈ {1, . . . ,n}. If Xi ∈ N,
then the ith child of u is the root node of a copy of the derivation tree of P rooted in
Xi. If Xi ∈ Σ , then the ith child of u is a single leaf node labeled Xi.

The size of the SLP P is |P| = ∑A∈N |rhs(A)|, i.e., the total length of all right-
hand sides. A simple induction shows that for every SLP P of size m and every
nonterminal A, |valP(A)| ≤ 3dm/3e [7, proof of Lemma 1]. On the other hand, it
is straightforward to define an SLP P of size 2m such that |valP(S)| ≥ 2m for a
nonterminal S of the SLP. Hence, an SLP can be seen as a compressed representation
of the string it generates, and it can achieve (at most) exponential compression ratios.

2.2 Tree Straight-Line Programs

A ranked alphabet is a set Σ such that every a∈ Σ has an associated rank rank(a)∈N.
Let Σi = {a ∈ Σ | rank(a) = i}. Fix ranked alphabets F and N of terminal symbols
and nonterminal symbols such that for every i≥ 0, Fi and Ni are countably infinite.
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Moreover, let X = {x1,x2, . . .} be the set of parameters. We assume that the three
sets F , N , and X are pairwise disjoint. A labeled tree t = (V,E,λ ) is a finite,
directed, and ordered tree t with set of nodes V, set of edges E ⊆ V ×N×V, and
labeling function λ : V → F ∪N ∪X . We require for every node v ∈ V that if
λ (v) ∈Fk ∪Nk, then v has k distinct children u1, . . . ,uk, i.e., (v, i,u) ∈ E if and only
if 1≤ i≤ k and u = ui. A leaf of t is a node with zero children. We require that every
node v with λ (v) ∈X is a leaf of t. The size of t is |t| = |V |. We denote trees by
their usual term notation, e.g. a〈b,c〉 denotes the tree with an a-labeled root node that
has a first child labeled b and a second child labeled c. We use the bracket symbols
〈 and 〉 in terms in order to distinguish them from brackets that arise from function
applications. We define T as the set of all labeled trees. Let labels(t) = {λ (v) | v ∈
V}. For L ⊆F ∪N ∪X we let T (L ) = {t ∈T | labels(t)⊆L }. The tree t ∈T
is linear if there do not exist different leaves that are labeled with the same parameter.

We now define a particular form of context-free tree grammars (see [8] for more
details on context-free tree grammars) with the property that exactly one tree is de-
rived. A tree straight-line program (TSLP) is a triple G = (N,S, rhs), where

– N ⊆N is a finite set of nonterminals,
– S ∈N0∩N is the start nonterminal, and
– rhs : N→T (F ∪N∪X ) is a mapping such that the following hold:

(1) for every A ∈ N, the tree rhs(A) is linear and if A ∈ Nk (k ≥ 0) then X ∩
labels(rhs(A)) = {x1, . . . ,xk}.

(2) The binary relation {(A,B) ∈ N×N | B ∈ labels(rhs(A))} is acyclic.

The conditions (1) and (2) ensure that from every nonterminal A ∈ N ∩Nk exactly
one linear tree valG (A) ∈ T (F ∪{x1, . . . ,xk}) is derived by applying the rules A→
rhs(A) as rewrite rules in the usual sense. More generally, for every tree t ∈ T (F ∪
N ∪ {x1, . . . ,xn}) we can derive the unique tree valG (t) ∈ T (F ∪ {x1, . . . ,xn}) by
applying the rules of G . Formally, we define this tree inductively as follows:

– valG (a〈t1, . . . , tk〉) = a〈valG (t1), . . . ,valG (tk)〉 for a ∈F ,
– valG (A〈t1, . . . , tk〉) = valG (rhs(A)[x1/t1, . . . ,xk/tk]) for A ∈ N ∩ Nk. Here,

rhs(A)[x1/t1, . . . ,xk/tk] is the tree obtained from rhs(A) by replacing the unique
xi-labeled leaf by the tree ti.

The tree defined by G is val(G ) = valG (S). The following example shows the deriva-
tion of val(G ) for a TSLP G .

Example 1 Let G = ({S,A,B,C,D,E,F},S, rhs), a ∈F0, b ∈F2, and rhs be given
by

rhs(S) = A〈B〉
rhs(A) = C〈F,x1〉
rhs(B) = E〈F〉
rhs(C) = D〈E〈x1〉,x2〉
rhs(D) = b〈x1,x2〉
rhs(E) = D〈F,x1〉
rhs(F) = a.
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b

b

a x1

x2

valG (C)

b

a a

valG (B)

b

b

a a

b

a a

valG (C〈F,B〉)

Fig. 1 Example derivations for the grammar G from Example 1.

The derivation of val(G ) = b〈b〈a,a〉,b〈a,a〉〉 from S is:

S→ A〈B〉 →C〈F,B〉 → D〈E〈F〉,B〉 → b〈E〈F〉,B〉 → b〈D〈F,F〉,B〉
→ b〈b〈F,F〉,B〉 → b〈b〈a,F〉,B〉 → b〈b〈a,a〉,B〉 → b〈b〈a,a〉,E〈F〉〉
→ b〈b〈a,a〉,D〈F,F〉〉 → b〈b〈a,a〉,b〈F,F〉〉 → b〈b〈a,a〉,b〈a,F〉〉
→ b〈b〈a,a〉,b〈a,a〉〉.

The size |G | of a TSLP G = (N,S, rhs) is defined as |G | = ∑A∈N |rhs(A)|. For
instance, the TSLP from Example 1 has size 18.

A TSLP G = (N,S, rhs) is monadic if N ⊆N0 ∪N1, i.e., every nonterminal has
rank at most one. From now on we only consider monadic TSLPs, which can be
obtained by using the following result, shown in [20]:

Proposition 1 From a given TSLP G , where r and k are the maximal ranks of ter-
minal and nonterminal symbols appearing in a right-hand side, one can construct in
time O(r ·k · |G |) a monadic TSLP G ′ such that val(G ′)= val(G ) and |G ′| ∈O(r · |G |).

2.3 Computational model

For the rest of the paper we use the word RAM model, where registers have a certain
bit length w. Arithmetic operations and comparisons of registers can be carried out
in time O(1). The space of a data structure is measured by the number of registers.
Our algorithms need the following register lengths w, where G is the input TSLP and
t = val(G ).

– For navigation (Section 4) we need a bit length of w = O(log |G |), since we only
have to store numbers of length at most |G |.

– For equality checks (Section 5) we need a bit length of w = O(log |t|)≤ O(|G |),
which is the same assumption as in [2,3].

3 Two-Way Traversal in SLP-Compressed Strings

In [10] the authors present a data structure of size O(|P|) for storing an SLP P that
allows to produce, for any nonterminal X of P , the string valP(X) with time delay
of O(1) per symbol. That is, the symbols of valP(X) are produced from left to right
and for each symbol constant time is needed.
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A

B

C

a D

a b

C

a D

a b

C

a D

a b

Fig. 2 Derivation tree for the SLP H rooted in A from Example 2 below.

In a first step, we enhance the data structure from [10] for traversing SLP-com-
pressed strings in such a way that both operations of moving to the left and right sym-
bol are supported in constant time. For this, we assume that the SLP P = (N,Σ , rhs)
has the property that

|rhs(X)|= 2 for each X ∈ N. (1)

Every SLP P with |val(P)| ≥ 2 can be transformed in linear time into an SLP P ′

with property (1) and so that val(P ′) = val(P): first, we replace all occurrences
of nonterminals B with |rhs(B)| ≤ 2 by rhs(B). If rhs(S) = A ∈ N, then we redefine
rhs(S) = rhs(A). Finally, for every A ∈ N such that rhs(A) = α1 · · ·αn with n≥ 3 and
α1, . . . ,αn ∈ (N ∪Σ) we introduce new nonterminals A2, . . . ,An−1 with rules Ai →
αiAi+1 for 2≤ i≤ n−2, and An−1→ αn−1αn, and redefine rhs(A) = α1A2. It should
be clear that |P ′| ≤ 2 · |P|.

Recall the definition of a derivation tree of an SLP from Section 2.1. For in-
stance, Figure 2 shows the derivation tree of H rooted in A for the SLP H from
Example 2. Note that the positions in valP(X) correspond to root-leaf paths in the
(binary) derivation tree of P rooted in the nonterminal X . We represent a root-leaf
path by merging successive edges where the path moves in the same direction (left
or right) towards the leaf. To formalize this idea, we define for every α ∈ N ∪Σ the
strings L(α),R(α) ∈ N∗Σ inductively as follows: for a ∈ Σ let

L(a) = R(a) = a.

For A ∈ N with rhs(A) = αβ (α,β ∈ N∪Σ ) let

L(A) = AL(α) and R(A) = AR(β ). (2)

Note that for every A ∈ N, the string L(A) has the form A1A2 · · ·Ana with Ai ∈ N,
A1 = A, and a ∈ Σ . We define ωL(A) = a. The terminal ωR(A) is defined analogously
by referring to the string R(A).

Example 2 Let H = ({S,A,B,C,D},{a,b}, rhs), where rhs is given by

S→ AB, A→ BC, B→CC, C→ aD, D→ ab.
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a

C

B

A

S

D

b a b

D

C

A B

S

Fig. 3 The left shows the tries TL(a), TL(b), and the right shows TR(a), TR(b), for the SLP from Example 2.

Then we have
L(S) = SABCa
L(A) = ABCa
L(B) = BCa
L(C) = Ca
L(D) = Da
R(S) = SBCDb
R(A) = ACDb
R(B) = BCDb
R(C) = CDb
R(D) = Db.

Moreover, ωL(X) = a and ωR(X) = b for all X ∈ {S,A,B,C,D}.

We store all strings L(A) (for A ∈ N) in |Σ |-many tries: fix a ∈ Σ and let w1, . . . ,wn
be all strings L(A) such that ωL(A) = a. Let vi be the string wi reversed. Then,
a,v1, . . . ,vn is a prefix-closed set of strings (except that the empty string is miss-
ing) that can be stored in a trie TL(a). Formally, the nodes of TL(a) are the strings
a,v1, . . . ,vn, where each node is labeled by its last symbol (so the root is labeled with
a), and there is an edge from aw to awA for all appropriate w ∈ N∗ and A ∈ N. The
tries TR(a) are defined in the same way by referring to the strings R(A). Note that
the total number of nodes in all tries TL(a) (a ∈ Σ ) is exactly |N|+ |Σ |. In fact, every
α ∈ N∪Σ occurs exactly once as a node label in the forest {TL(a) | a ∈ Σ}.

Example 3 (Example 2 continued) The tries TL(a), TL(b), TR(a), and TR(b) for the
SLP from Example 2 are shown in Figure 3.

Next, we define two alphabets L and R as follows:

L ={(A, `,α) | α ∈ alph(L(A))\{A}} (3)
R ={(A,r,β ) | β ∈ alph(R(A))\{A}}. (4)

Note that the sizes of these alphabets are quadratic in the size of H . On the alphabets
L and R we define the partial operations `-reduce : L→ L and r-reduce : R→ R as
follows: let (A, `,α) ∈ L. Hence we can write L(A) as Auαv for some strings u and
v. If u = ε , then `-reduce(A, `,α) is undefined. Otherwise, we can write u as u′B for
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some B ∈ N. Then we define `-reduce(A, `,α) = (A, `,B). The definition of r-reduce
is analogous: if (A,r,α) ∈ R, then we can write R(A) as Auαv for some strings u and
v. If u = ε , then r-reduce(A,r,α) is undefined. Otherwise, we can write u as u′B for
some B ∈ N and define r-reduce(A,r,α) = (A,r,B).

Example 4 (Example 2 continued) The sets L and R are:

L = {(S, `,A),(S, `,B),(S, `,C),(S, `,a),(A, `,B),

(A, `,C),(A, `,a),(B, `,C),(B, `,a),(C, `,a),(D, `,a)}
R = {(S,r,B),(S,r,C),(S,r,D),(S,r,b),(A,r,C),(A,r,D),

(A,r,b),(B,r,C),(B,r,D),(B,r,b),(C,r,D),(C,r,b),(D,r,b)}.

For instance, `-reduce(S, `,a) = (S, `,C) and r-reduce(B,r,D) = (B,r,C) whereas
`-reduce(S, `,A) is undefined.

An element (A, `,α) can be represented by a pair (v1,v2) of different nodes in the
forest {TL(a) | a ∈ Σ}, where v1 (resp. v2) is the unique node labeled with α (resp.,
A). Note that v1 and v2 belong to the same trie and that v2 is below v1. This observation
allows us to reduce the computation of the mapping `-reduce to a so-called next link
query: from the pair (v1,v2) we have to compute the unique child v of v1 such that v
is on the path from v1 to v2. If v is labeled with B, then `-reduce(A, `,α) = (A, `,B),
which is represented by the pair (v,v2). Clearly, the same remark applies to the map
r-reduce. The following result is mentioned in [10], see Section 6 for a discussion.

Proposition 2 A trie T can be represented in space O(|T |) such that any next link
query can be answered in time O(1). Moreover, this representation can be computed
in time O(|T |) from T .

We represent a path in the derivation tree of P rooted in X by a sequence of
triples

γ = (A1,δ1,A2)(A2,δ2,A3) · · ·(An−1,δn−1,An)(An,δn,a) ∈ (L∪R)+

such that n≥ 1 and the following properties hold:

– A1 = X , a ∈ Σ

– δi = ` if and only if δi+1 = r for all 1≤ i≤ n−1.

We call such a sequence a valid X-sequence for P in the following, or briefly a valid
sequence if X is not important and P is clear from the context. Note that a valid
X-sequence γ indeed defines a unique path in the derivation tree rooted at X that ends
in a leaf that is labeled with the terminal symbol a if γ ends with (A,δ ,a). This path,
in turn, defines a unique position in the string valP(X) that we denote by pos(γ).

We now define a procedure right (see Algorithm 1) that takes as input a valid X-
sequence γ and returns a valid X-sequence γ ′ such that pos(γ ′) = pos(γ)+1 in case
the latter is defined and otherwise returns “undefined”. It is based on the obvious fact
that in order to move in a full binary tree from a leaf to the next leaf (where “next”
refers to the natural left-to-right order on the leaves) one has to repeatedly move to
parent nodes as long as right-child edges are traversed (in the opposite direction);
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Algorithm 1: right(γ)
Input: valid sequence γ

Output: valid sequence γ ′ with pos(γ ′) = pos(γ)+1 if it exists, and “undefined” otherwise
(A,δ ,a) := pop(γ)
if δ = ` then

γ := expand-right(γ,A,a)
else

if γ = ε then
return “undefined”

else
(A′, `,A) := pop(γ)
γ := expand-right(γ,A′,A)

end
end
return γ

Algorithm 2: expand-right(γ,A,α)

Input: sequence γ , A ∈ N, α ∈ N∪Σ such that γ(A, `,α) is a prefix of a valid sequence
Output: valid sequence γ , representing the next position
let rhs(A) = α1α2
if α 6= α1 then

(A, `,B) := `-reduce(A, `,α)
push(γ,(A, `,B))
let rhs(B) = β1β2
push(γ,(B,r,β2))
if β2 ∈ N then

push(γ,(β2, `,ωL(β2)))
end

else
if γ = ε then

push(γ,(A,r,α2))
else

(B,r,A) := pop(γ)
push(γ,(B,r,α2))

end
if α2 ∈ N then

push(γ,(α2, `,ωL(α2)))
end

end
return γ

when this is no longer possible, the current node is the left child of its parent p. One
now moves to the right child of p and from here repeatedly to left children until a
leaf is reached. Each of these four operations can be implemented in constant time
on valid sequences, using the fact that consecutive edges to left (resp., right) children
are merged into a single triple from L (resp., R) in our representation of paths. We
use the valid sequence γ as a stack with the operations pop (which returns the right-
most triple of γ , which is thereby removed from γ) and push (which appends a given
triple on the right end of γ). The procedure right uses the procedure expand-right (see
Algorithm 2) that takes as input a (non-valid) sequence γ of triples, A ∈ N, and a
symbol α ∈ N∪Σ such that γ(A, `,α) is a prefix of a valid sequence. The sequence γ
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has to be treated as a global variable in order to obtain an O(1)-time implementation
(to make the presentation clearer, we pass γ as a parameter to expand-right).

In a completely analogous way we can define a procedure left that takes as input a
valid X-sequence γ and returns a valid X-sequence γ ′ such that pos(γ ′) = pos(γ)−1
in case the latter is defined, and otherwise returns “undefined”. The details are left to
the reader.

4 Traversal in TSLP-Compressed Trees

In this section, we extend the traversal algorithm from the previous section from
SLPs to TSLPs. We only consider monadic TSLPs. If the TSLP is not monadic,
then we transform it into a monadic TSLP using Proposition 1. Furthermore, we say
that a monadic TSLP G = (N,S, rhs) is in normal form, if each of its right-hand
sides rhs(A), where A ∈ N, uses one of the following four forms (we write x for the
parameter x1):

(a) B〈C〉 for B,C ∈ N (and A has rank 0)
(b) B〈C〈x〉〉 for B,C ∈ N (and A has rank 1)
(c) a ∈F0 (and A has rank 0)
(d) f 〈A1, . . . ,Ai−1,x,Ai+1, . . . ,An〉 for A1, . . . ,Ai−1,Ai+1, . . . ,An ∈ N, f ∈Fn, n ≥ 1

(and A has rank 1).

Let us write Nx (x ∈ {a,b,c,d}) for the set of all nonterminals whose right-hand side
is of the above type (x). Let N1 = Na∪Nb and N2 = Nc∪Nd .

Lemma 1 A monadic TSLP G can be transformed in linear time into a TSLP G ′ that
is in normal form such that val(G ) = val(G ′).

This transformation is done in a similar way as the transformation of SLPs at the be-
ginning of Section 3: remove nonterminals A ∈N1 with rhs(A) = x1 (resp., rhs(A) =
B〈x1〉, B∈N ) by replacing in all right-hand sides every subtree A〈t〉 by t (resp., B〈t〉)
and iterate this as long as possible. Similarly, we eliminate nonterminals A∈N0\{S}
with rhs(A) ∈N . If rhs(S) = B ∈N0 then redefine rhs(S) := rhs(B). Finally, right-
hand sides of size at least two are split top-down into new nonterminals with right-
hand sides of the above types (a), . . . , (d). In case the right-hand side contains the
parameter x1 (in a unique position), we decompose along the path to x1. For example,
the rule

Z→ h〈 f 〈A,a〉, f 〈A,g〈x〉〉,B〈A〉〉

is replaced by
Z → C〈D〈x〉〉
C → h〈E,x,F〉
D → G〈H〈x〉〉
E → G〈J〉
F → B〈A〉
G → f 〈A,x〉
H → g〈x〉
J → a.
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The resulting TSLP has size at most 2|G |. The derivation tree of a TSLP can be
conveniently defined, similar to the definition for SLPs; in this derivation tree, the
ith child of a node labeled by a nonterminal X corresponds to the ith nonterminal in
the tree t, where A→ t is a rule of the TSLP. Thus, every node of the derivation tree
is labeled by a nonterminal, i.e., it is an “abstract derivation tree” in which terminal
nodes are not represented.

For the rest of the section we fix a monadic TSLP G = (N,S, rhs) in normal form
and define Na,Nb,Nc,Nd ,N1,N2 as above. Note that if we start with a nonterminal
A ∈ Na and then replace nonterminals from N1 by their right-hand sides repeatedly,
we obtain a tree that consists of nonterminals from Nd followed by a single nontermi-
nal from Nc. After replacing these nonterminals by their right-hand sides, we obtain
a caterpillar tree (CP-tree) which is composed of right-hand sides of the form (d)
followed by a single constant from F0. Hence, there is a unique path of terminal
symbols from F , and we call this path the spine path of A. All other nodes of the
caterpillar tree are leaves and labeled with nonterminals of rank zero to which we can
apply again the TSLP rules. The size of a caterpillar tree and therefore a spine path
can be exponential in the size of the TSLP.

For the TSLP G we define the derived SLP P = (N1,N2, rhs1) as follows: if A ∈
N1 with rhs(A) = B〈C〉 or rhs(A) = B〈C〈x〉〉, then rhs1(A) = BC. The triple alphabets
L and R from (3) and (4) refer to this SLP P . Moreover, we define M as the set
of triples (A,k,Ak) such that A ∈ Nd , rhs(A) = f 〈A1, . . . ,Ai−1,x,Ai+1, . . . ,An〉 and
k ∈ {1, . . . ,n}\{i}.

Note that the nodes of the tree val(G ) can be identified with the nodes of G ’s
derivation tree that are labeled with a nonterminal from N2 (every nonterminal from
N2 has a unique occurrence of a terminal symbol on its right-hand side).

A valid sequence for G is a sequence

γ = (A1,e1,A2)(A2,e2,A3) · · ·(An−1,en−1,An)(An,en,An+1) ∈ (L∪R∪M)∗

such that n≥ 0 (note that e1, . . . ,en ∈ {`,r}]N) and the following hold:

– if S ∈ Na then n≥ 1.
– If n≥ 1 then A1 = S and An+1 ∈ N2.
– If ei,ei+1 ∈ {`,r} then ei = ` if and only if ei+1 = r.

Such a valid sequence represents a path in the derivation tree of the TSLP G from
the root to an N2-labeled node, and hence represents a node of the tree val(G ). Note
that in case S ∈ Nc, the empty sequence is valid too and represents the root of the
single-node tree val(G ). Moreover, if the last triple (An,en,An+1) belongs to M, then
we must have An+1 ∈ Nc, i.e., rhs(An+1) ∈F0.
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Example 5 Consider the monadic TSLP G with nonterminals S, A, B, C, D, E, F , G,
H, J and the following rules

S → A〈B〉
A → C〈D〈x〉〉
B → C〈E〉
C → f 〈F,x〉
D → f 〈x,F〉
E → D〈F〉
F → G〈H〉
G → J〈J〈x〉〉
H → a
J → g〈x〉.

It is in normal form and produces the tree shown in Figure 4. We have

N1 = {S,A,B,E,F,G} and N2 = {C,D,J}.

The SLP P consists of the rules

S → AB
A → CD
B → CE
E → DF
F → GH
G → JJ

The terminal symbols are C, D, H, and J. The triple set M is

M = {(C,1,F),(D,2,F)}.

A valid sequence is for instance (S, `,A)(A,r,D)(D,2,F)(F, `,J). It represents the
circled g-labeled node in Figure 4.

From a valid sequence γ we can clearly compute in time O(1) the label of the tree
node represented by γ . Let us denote this terminal symbol with label(γ): if γ ends
with the triple (A,e,B), then we have B ∈ N2 and label(γ) is the unique terminal
symbol in rhs(B). If γ = ε , then S ∈ Nc and label(γ) is the unique terminal symbol in
rhs(S).

Using valid sequences of G it is easy to carry out a single navigation step in
constant time. Let us fix a valid sequence γ . We consider the following possible nav-
igation steps: move to the parent node (if it exists) and move to the ith child (if it
exists). Consider for instance the navigation to the ith child (similar arguments can
be used to navigate to the parent node). If γ is empty or ends with a triple from
M ∪ (N×{`,r}×Nc), then γ represents a leaf node of val(G ); hence the ith child
does not exist. Otherwise let β 6= ε be the maximal suffix of γ , which belongs to
(L∪R)∗. Then β represents a path in the derivation tree of the string SLP P that is
rooted in a certain nonterminal A∈Na and that leads to a certain nonterminal B∈Nd .
This path corresponds to a node of valG (A) that is located on the spine path of A.
We can now apply our SLP-navigation algorithms left and right to the sequence β in
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Algorithm 3: parent(γ)
Input: valid sequence γ representing a node u of val(G )
Output: valid sequence γ representing the parent of u if it exists, and “undefined” otherwise
if γ ∈ {ε}∪L then

return “undefined”
end
if γ belongs to α ·M ·L or α ·M for some α ∈ (L∪R∪M)∗ then

return α //Note that α is a valid sequence.

end
let γ = α ·β , where α ∈ {ε}∪ (L∪R∪M)∗ ·M and β ∈ (L∪R)+

return α· left(β ) //β 6∈ L, hence left(β ) 6= undefined.

Algorithm 4: child(γ, i)
Input: valid sequence γ representing a node u of val(G ), positive integer i
Output: valid sequence representing the ith child of u if it exists, and “undefined” otherwise
if i > r, where r is the rank of label(γ) then

return “undefined”
end
let γ = α ·β , where α ∈ {ε}∪ (L∪R∪M)∗ ·M and β ∈ (L∪R)+

let β end with the triple (C,δ ,B) //Note that B ∈ Nd.

let rhs(B) = f 〈A1, . . . ,A j−1,x1,A j+1, . . . ,An〉
if i = j then

return α · right(β )
end
return α ·β · (B, i,Ai) · root(Ai)

order to move up or down on the spine path. More precisely, let β end with the triple
(C,δ ,B) (we must have δ ∈ {`,r} and B∈Nd). We can now distinguish the following
cases, where f 〈A1, . . . ,A j−1,x,A j+1, . . . ,An〉 is the right-hand side of B:

(i) if i 6= j, then the ith child is obtained by appending to γ the triple (B, i,Ai) ∈M
followed by the path that represents the root of Ai (which consists of at most one
triple).

(ii) If i = j, then the ith child of the current node is obtained by moving down on the
spine path. Thus, we replace the suffix β by right(β ).

Algorithm 3 shows the pseudo code for moving to the parent node, and Algo-
rithm 4 shows the pseudo code for moving to the i-th child. If this node does not
exist, then “undefined” is returned. To make the code more readable we denote the
concatenation operator for sequences of triples (or sets of triple sequences) by “·”.
We make use of the procedures left and right from Section 3, applied to the SLP P
derived from our TSLP G . Note that in Algorithm 3 we apply in the final case the
procedure left to the maximal suffix β from (L∪R)+ of the current valid sequence
γ (and similarly for Algorithm 4). To provide an O(1) time implementation we do
not copy the sequence β and pass it to left (which is not possible in constant time)
but apply left directly to γ . The right-most triple from M in γ (if it exists) works as
a left-end marker. Algorithm 4 uses the procedure root(A) (with A of rank 0). This
procedure is not shown explicitly: it simply returns ε if A ∈N2, and otherwise returns
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Fig. 4 The tree produced from the TSLP in Example 5

(A, `,ωL(A)) (recall ωL from Page 7). Hence, it returns the representation of the root
node of valG (A).

The following theorem summarizes the results of this section.

Theorem 1 Given a monadic TSLP G we can compute in linear time on a word RAM
with register length O(log |G |) a data structure of size O(|G |) that allows to carry out
the following computations in time O(1), where γ is a valid sequence that represents
the tree node v:

– compute the valid sequence for the parent node of v, and
– compute the valid sequence for the ith child of v.

5 Subtree Equality Checking

Consider a monadic TSLP G = (N,S, rhs) in normal form, which again means that
for every nonterminal A ∈ N, rhs(A) has one of the following four forms:

(a) B〈C〉 for B,C ∈ N (and A has rank 0)
(b) B〈C〈x〉〉 for B,C ∈ N (and A has rank 1)
(c) a ∈F0 (and A has rank 0)
(d) f 〈D1, . . . ,Di−1,x,Di+1, . . . ,Dn〉 for D1, . . . ,Di−1,Di+1, . . . ,Dn ∈N, f ∈Fn, n≥ 1

(and A has rank 1)

Let t = val(G ) be the tree produced by G . The goal of this section is to extend the
navigation algorithm from the previous section such that for two nodes of t (repre-
sented by valid sequences) we can test in O(1) time whether the subtrees rooted at
the two nodes are equal. For this we will allow polynomial time preprocessing of the
TSLP G . We make use of the following algorithmic result from [5]:

Proposition 3 For two given TSLPs G1 and G2 it can be checked in polynomial time
whether or not val(G1) = val(G2).
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Fig. 5 Caterpillar trees of A, D, I and J of the TSLP G from Example 6. Thick lines represent spine paths.
The subtrees at the two nodes marked by circles derive equal trees.

We also make use of some algorithmic facts about SLPs, which are collected in the
following proposition, see [17] for details:

Proposition 4 There are polynomial time algorithms that compute, for a given SLP
P = (N,Σ , rhs), X ,Y ∈ N, 1≤ i, j ≤ |valP(X)| and i < j:

– the symbol valP(X)[i],
– an SLP for the string valP(X)[i : j], and
– the length of the longest common prefix of valP(X) and valP(Y ).

To simplify the following constructions, we assume that G is reduced in the sense that
valG (A) 6= valG (B) for all A,B ∈ N with A 6= B. This can be checked using Proposi-
tion 3 since we allow polynomial time preprocessing. In case there are two nonter-
minals that produce the same trees we simply replace one of them by the other. The
next step is to characterize the equal subtrees of a TSLP in a suitable way: for that,
we reuse some of the notations introduced in the previous section. Recall that in the
beginning of Section 4 we derived an SLP P = (N1,N2, rhs1) from G . It was defined
by rhs1(A) = BC if A ∈ N1 with rhs(A) = B〈C〉 or rhs(A) = B〈C〈x〉〉. So, for every
A ∈ Na we have

valP(A) = A1A2 · · ·AnAn+1 ∈ N∗d Nc

for some n ≥ 1. Let `(A) = n + 1 (this is the length of the spine path of A) and
i, j ∈ {1, . . . ,n+1} set A[i : j] = AiAi+1 · · ·A j, A[i :] = Ai · · ·AnAn+1, A[: i] = A1 · · ·Ai
and A[i] = Ai. The subtree produced by the spine path of A at depth i is denoted by
A.(i) and defined by

A.(i) = valG (Ai〈Ai+1〈· · ·An〈An+1〉 · · ·〉〉).

Let A ∈ Na. We define s(A) as the smallest number i≥ 2 such that A.(i) = valG (D)
for some nonterminal D ∈ N of rank zero. This unique nonterminal D is denoted by
A′. Moreover, let

rA = rhs(A[s(A)−1]).

By definition, A[s(A)−1] ∈ Nd , so rA is of the form f 〈D1, . . . ,D j−1,x,D j+1, . . . ,Dm〉
for some f ∈Fm, D1, . . . ,D j−1,D j+1, . . . ,Dm ∈ N. A convenient notation is to treat
rA as a function rA : T (F ∪N)→T (F ∪N) that substitutes x for an actual tree:

rA(t) = f 〈D1, . . . ,D j−1, t,D j+1, . . . ,Dm〉
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With these notations, we have

A.(s(A)−1) = valG (A[s(A)−1](A′)) = valG (rA(A′)). (5)

Note that s(A), rA, and A′ are well-defined since A.(n + 1) = valG (A[n + 1]) and
A[n+1] has rank zero.

Example 6 We give an example of a TSLP G that has two non-trivially equal subtrees
in A and D respectively. The rules for the caterpillar tree that is derived from A are:

A → B〈C〉
B → B1〈B2〈x〉〉
B1 → g〈x,K〉
B2 → B3〈B4〈x〉〉
B3 → f 〈I,x〉
B4 → f 〈K,x〉

Additionally, we have rules that generate a caterpillar tree from D:

D → E〈H〉
E → E1〈E2〈x〉〉
E1 → g〈x, I〉
E2 → E3〈E4〈x〉〉
E3 → f 〈x,J〉
E4 → f 〈x,K〉

Finally, the rules for deriving caterpillar trees from I and J and some terminal rules
are added:

I → L〈K〉
L → f 〈H,x〉
J → M〈C〉
M → f 〈K,x〉
C → c
K → k
H → h

The reader can check that this TSLP is reduced. See Figure 5 for a visualization. The
SLP P that is derived from G has the following rules:

A → BC
B → B1B2
B2 → B3B4
D → EH
E → E1E2
E2 → E3E4
I → LK
J → MC
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We have valP(A) = B1B3B4C and valP(D) = E1E3E4H. Also, we have

A.(1) = valG (B1〈B3〈B4〈C〉〉〉) = g〈 f 〈 f 〈h,k〉, f 〈k,c〉〉,k〉 and
D.(1) = valG (E1〈E3〈E4〈H〉〉〉) = g〈 f 〈 f 〈h,k〉, f 〈k,c〉〉, f 〈h,k〉〉.

The equal subtrees, marked by circles in Figure 5, are

A.(2) = valG (B3〈B4〈C〉〉)
= f 〈 f 〈h,k〉, f 〈k,c〉〉
= valG (E3〈E4〈H〉〉)
= D.(2).

Moreover, s(A) = 3, s(D) = 3, A′ = J, D′ = I, rA = rhs(A[2]) = f 〈I,x〉, and rD =
rhs(D[2]) = f 〈x,J〉.

Lemma 2 For every nonterminal A ∈ Na, we can compute s(A),rA and A′ in polyno-
mial time.

Proof We first compute the position s(A) as follows. Let B1, . . . ,Bk be a list of all
nonterminals of rank zero. We can compute the size ni = |valG (Bi)| by a simple
bottom-up computation. Let us assume w.l.o.g. that n1 ≤ n2 ≤ ·· · ≤ nk. Note that
there can be only one position 1 ≤ si ≤ `(A) (1 ≤ i ≤ k) on the spine path of A such
that the tree A.(si) has size ni. This position (if it exists) can be found in polynomial
time using binary search. Note that for a given position 1≤ s≤ `(A) we can compute
the size of the tree A.(s) in polynomial time by first computing a TSLP for this
tree (using the second statement in Proposition 4) and then compute the size of the
produced tree bottom-up. Once the positions s1, . . . ,sk are computed, we can compute
in polynomial time TSLPs for the trees ti = A.(si). The position s(A) is the smallest
si ≥ 2 such that ti is equal to one of the trees valG (B j), and the latter can be checked
in polynomial time by Proposition 3. This also yields the nonterminal A′. Finally, the
right-hand side rA can be computed by computing in polynomial time the symbol
B ∈ N2 in valP(A) at position s(A)−1 by the first statement of Proposition 4. Then,
rA = rhs(B).

For the following proof, let us first state a few simple observations: let A,B ∈ Na and
1≤ i < `(A), 1≤ j < `(B). The definition of A.(i) implies

A.(i) = valG (A[i]〈A.(i+1)〉). (6)
If A.(i+1) = B.( j+1) and A[i] = B[ j], then A.(i) = B.( j). (7)
If A.(i) = B.( j) and A[i] = B[ j], then A.(i+1) = B.( j+1). (8)

Non-trivial equalities arise when right-hand sides do not place their variables in the
same position. If for instance A1 → f 〈x,D〉 and A2 → f 〈E,x〉, then valG (A1〈E〉) =
valG (A2〈D〉). Here, the nonterminals D and E fill in for each other.

Proposition 5 Let D,E ∈ Nd , D 6= E and t,u ∈ T (Σ). If valG (D〈t〉) = valG (E〈u〉),
then there exist A,B ∈ N of rank zero such that valG (A) = t and valG (B) = u.
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Proof Let us assume that

rhs(D) = f 〈D1, . . . ,Di−1,x,Di+1, . . . ,Dn〉 and
rhs(E) = g〈E1, . . . ,E j−1,x,E j+1, . . . ,Em〉.

Since G is reduced, we have valG (D〈t〉) = valG (E〈u〉) if and only if f = g (and thus
m= n), i 6= j, Dk =Ek for k∈ {1, . . . ,m}\{i, j}, t = valG (Ei) and u= valG (D j). Note
that if i = j, then, since G is reduced, we would obtain D = E, which contradicts the
assumption.

Lemma 3 For all A,B ∈ Na and all 1 ≤ i < s(A), 1 ≤ j < s(B), the following two
conditions are equivalent:

(i) A.(i) = B.( j)
(ii) valP(A[i : s(A)−2]) = valP(B[ j : s(B)−2]) and rA(A′) = rB(B′).

Proof To obtain (i) from (ii), note that by (5) valG (rA(A′)) = valG (rB(B′)) implies
A.(s(A)− 1) = B.(s(B)− 1). Repeated application of equation (7) implies A.(i) =
B.( j). Now assume that (i) holds, so A.(i) = B.( j). By induction on i and j, we show
that valP(A[i : s(A)−2]) = valP(B[ j : s(B)−2]) and rA(A′) = rB(B′).

Case 1. i = s(A)−1. Then equation (5) becomes

A.(i) = valG (rA(A′)) = valG (A[s(A)−1]〈A′〉).

By equation (6) we have B.( j) = valG (B[ j]〈B.( j+1)〉). Therefore, we obtain

valG (A[s(A)−1]〈A′〉) = valG (B[ j]〈B.( j+1)〉).

Now there are two cases: either A[s(A)−1] =B[ j] in which case valG (A′)=B.( j+1),
or A[s(A)− 1] 6= B[ j] in which case we obtain from Proposition 5 that there is a
nonterminal of rank zero that expands to B.( j + 1). In both cases, there is a non-
terminal of rank zero that expands to B.( j + 1). Since j + 1 ≤ s(B), we must have
j+1 = s(B), B.( j+1) = valG (B′), and rB = rhs(B[ j]). Therefore we have valP(A[i :
s(A)− 2]) = ε = valP(B[ j : s(B)− 2]) and valG (rA(A′)) = valG (rB(B′)). The latter
implies rA(A′) = rB(B′) since G is reduced.

Case 2. j = s(B)−1. This case is symmetric to Case 1.

Case 3. i < s(A)−1 and j < s(B)−1. We claim that A[i] = B[ j]. Assume that A[i] 6=
B[ j]. From A.(i) = B.( j) we obtain valG (A[i]〈A.(i+ 1)〉) = valG (B[ j]〈B.( j + 1)〉)
by equation (6). Proposition 5 implies that there are nonterminals of rank zero that
expand to A.(i+1) and B.( j+1), respectively. This contradicts i+1 < s(A) as well
as j+ 1 < s(B). Hence we have A[i] = B[ j]. Because A.(i) = B.( j) it follows from
equation (8) that A.(i+1) = B.( j+1). We can now conclude with induction.

Consider a valid sequence γ ∈ (L∪R∪M)∗ for G . We can uniquely factorize γ as

γ = γ1(A1,k1,B1)γ2(A2,k2,B2) · · ·γn−1(An−1,kn−1,Bn−1)γn, (9)

where γi ∈ (L∪R)∗ (1 ≤ i ≤ n) and (Ai,ki,Bi) ∈M (1 ≤ i ≤ n− 1). To simplify the
notation, let us set B0 = S (the start nonterminal of G ). Hence, every γi is either
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empty or a valid Bi−1-sequence for the SLP P , and we have defined the position
pos(γi) in the string valP(Bi−1) according to Section 3. It is easy to modify our
traversal algorithms from the previous section such that for every 1≤ i≤ n we store
in the sequence γ also the nonterminal Bi−1 and the number pos(γi) right after γi (if
γi 6= ε), i.e., just before (Ai,ki,Bi). The number pos(γi) has to be incremented (resp.,
decremented) each time one moves down (resp., up) in the spine path for Bi−1. We
do not explicitly write these nonterminals and positions in valid sequences in order
to not complicate the notation.

We would like to use Lemma 3 for equality checks. To achieve this, we have
to assume that pos(γi) < s(Bi−1) in (9) for every 1 ≤ i ≤ n with γi 6= ε (this corre-
sponds to the assumptions 1≤ i < s(A) and 1≤ j < s(B) in Lemma 3). This requires
a modification of the traversal algorithms from the previous section as follows: as-
sume that the current valid sequence is γ from (9). As remarked above, we store the
numbers pos(γi) right after each γi. Assume that the final number pos(γn) has reached
the value s(Bn−1)− 1 and we want to move to the ith child of the current node. We
proceed as in Algorithm 4 with one exception: in case (ii) (Section 4) we would in-
crease pos(γi) to s(Bn−1). To avoid this, we start a new valid sequence for the root of
the tree valG (B′n−1). Note that by the definition of B′n−1, this is exactly the tree rooted
at the ith child of the node represented by γ . So, we can continue the traversal in the
tree valG (B′n−1). Therefore, we continue with the sequence γ | root(B′n−1), where |
is a separator symbol, and the root-function is defined at the end of Section 4. The
navigation to the parent node can be easily adapted as well. The only new case that
we have to add to Algorithm 3 is for γ = α | β , where β ∈ (L∪R)+. In that case, we
compute β ′ = left(β ) and return α | β ′ if β ′ is not undefined, and α otherwise. Thus,
the separator symbol | is treated in the same way as triples from M.

Let us now consider two sequences γ1 and γ2 (that may contain the separator
symbol | as explained in the previous paragraph). Let vi be the node of val(G ) rep-
resented by γi and let ti be the subtree of val(G ) rooted in vi. We want to check in
time O(1) whether t1 = t2. We can first compute in time O(1) the labels label(γ1) and
label(γ2) of the nodes v1 and v2, respectively. In case one of these labels belongs to
F0 (i.e., one of the nodes v1, v2 is a leaf) we can easily determine whether t1 = t2.
Hence, we can assume that neither v1 nor v2 is a leaf. In particular we can assume
that γ1 6= ε 6= γ2 (recall that ε is a valid sequence only in case val(G ) consists of a
single node) and that neither γ1 nor γ2 ends with a triple from M. Let us factorize γi
as γi = αiβi, where βi is the maximal suffix of γi that belongs to (L∪R)∗. Hence, we
have β1 6= ε 6= β2.

Assume that βi is a valid Ci-sequence of P , and that ni = pos(βi). Thus, the suffix
βi represents the nith leaf of the derivation tree of P with root Ci. Recall that we store
Ci and ni at the end of the sequence γi. Hence, we have constant time access to Ci and
ni. We have Ci ∈ Na and ni < s(Ci). With the notation introduced before, we obtain
ti = Ci.(ni). Since n1 < s(C1) and n2 < s(C2), Lemma 3 implies that t1 = t2 if and
only if the following two conditions hold:

(i) valP(C1[n1 : s(C1)−2]) = valP(C2[n2 : s(C2)−2]) and
(ii) rC1(C

′
1) = rC2(C

′
2).
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Fig. 6 The Patricia tree (left) and the modified Patricia tree (right) for Example 7

Condition (ii) can be checked in time O(1), since we can precompute in polynomial
time rA and A′ for every A ∈ Na by Lemma 2, and the length of each right-hand side
is bounded by the maximal rank of the grammar, which is a constant. Now, let us
concentrate on condition (i). First, we check whether s(C1)−n1 = s(C2)−n2. If not,
then the lengths of valP(C1[n1 : s(C1)− 2]) and valP(C2[n2 : s(C2)− 2]) differ and
we cannot have equality. Hence, assume that k := s(C1)−1−n1 = s(C2)−1−n2. Let
` be the length of the longest common suffix of valP(C1[: s(C1)−2]) and valP(C2[:
s(C2)− 2]). Then, it remains to check whether k ≤ `. Clearly, in space O(|G |) we
cannot store explicitly all these lengths ` for all C1,C2 ∈ Na. Instead, we precompute
in polynomial time a modified Patricia tree for the set of strings wA := valP(A[:
s(A)−2])rev$ ($ is a new symbol that is appended in order to make the set of strings
prefix-free and wrev is the string w reversed) for A ∈ Na. Then, we need to compute
in time O(1) the length of the longest common prefix for two of these strings wA and
wB. Recall that the Patricia tree for a set of strings w1, . . . ,wn is obtained from the
trie for the prefixes of the wi by eliminating nodes with a single child. But instead
of labeling edges of the Patricia tree with factors of the wi, we label every internal
node with the length of the strings that lead from the root to the node. Let us give an
example instead of a formal definition.

Example 7 Consider the strings wA = abba$, wB = abbb$, wC = ba$, wD = baba$
and wE = babb$. Figure 6 shows their Patricia tree (left) and the modified Patricia
tree (right).

Since our modified Patricia tree has |Na|many leaves (one for each A∈Na) and every
internal node has at least two children, we have at most 2|Na|−1 many nodes in the
tree and every internal node is labeled with a (log |t|)-bit number (note that the length
of every string valP(A) (A ∈ Na) is bounded by |t|). Hence, on the word RAM model
we can store the modified Patricia tree in space O(|G |). Finally, the length of the
longest common prefix of two string wA and wB can be obtained by computing the
lowest common ancestor of the two leaves corresponding to the strings wA and wB
in the modified Patricia tree. The number stored in the lowest common ancestor is
the length of the longest common prefix of wA and wB. Using a data structure for
computing lowest common ancestors in time O(1) [1,24] we obtain an O(1)-time
implementation of subtree equality checking. Finally, from Proposition 4 it follows
that the modified Patricia tree for the strings wA (A ∈ Na) can be precomputed in
polynomial time.

The following theorem summarizes the main result of this section.
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Theorem 2 Given a monadic TSLP G for a tree t = val(G ) we can compute in poly-
nomial time on a word RAM with register length O(log |t|) a data structure of size
O(|G |) that allows to carry out the following computations in time O(1), where γ

and γ ′ are valid sequences (as modified in this section) that represent the tree nodes
v and v′, respectively:

– compute the valid sequence for the parent node of v (if it exists),
– compute the valid sequence for the ith child of v (if it exists), and
– check whether the subtrees rooted in v and v′ are equal.

6 Discussion

We have presented a linear-space data structure for grammar-compressed ranked
trees, that provides constant-time traversal operations over the represented tree, and
constant-time equality check for subtrees of the represented tree. The solution is
based on the ideas of [10] and the fact that next link queries can be answered in
time O(1) (after linear time preprocessing). It would be interesting to develop an
efficient implementation of the technique. Next link queries can be implemented in
many different ways. The solution given in [10] is based on a variant of the lowest
common ancestor algorithm due to Schieber and Vishkin [24] (described in [13]).
Another solution is to use level-ancestor queries (together with depth-queries), as are
available in implementations of succinct tree data structures (e.g., the one of Navarro
and Sadakane [23]). Yet another alternative is to store the first-child/next-sibling en-
coded binary tree of the original tries. The first-child/next-sibling encoding is defined
for ordered trees. In our situation, we have to answer next-link queries for the tries
TL(a) and TR(a) for a ∈ Σ , which are unordered. Hence we order the children of a
node in an arbitrary way. Then the next link of v1 above v2 is equal to the lowest
common ancestor of v2 and the last child of v1 in the original tree. This observation
allows to use simple and efficient lowest common ancestor data structures like for
instance the one of Bender and Farach-Colton [1].

Recall that we use polynomial time preprocessing to build up our data structure
for subtree equality checks. It remains to come up with a more precise time bound. We
already argued that the problem is at least as difficult as checking equality of SLP-
compressed strings, for which the best known algorithm is quadratic. It would be
interesting to show that our preprocessing has the same time complexity as checking
equality of SLP-compressed strings.
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