
Theory of Computing Systems manuscript No.
(will be inserted by the editor)

Grammar-based Compression of Unranked Trees

Adrià Gascón · Markus Lohrey ·
Sebastian Maneth · Carl Philipp Reh ·
Kurt Sieber

Received: date / Accepted: date

Abstract We introduce forest straight-line programs (FSLPs for short) as
a compressed representation of unranked ordered node-labelled trees. FSLPs
are based on the operations of forest algebra and generalize tree straight-line
programs. We compare the succinctness of FSLPs with two other compression
schemes for unranked trees: top dags and tree straight-line programs of first-
child/next sibling encodings. Efficient translations between these formalisms
are provided. Finally, we show that equality of unranked trees in the setting
where certain symbols are associative and/or commutative can be tested in
polynomial time. This generalizes previous results for testing isomorphism
of compressed unordered ranked trees. An extended abstract of this paper
appeared in [14].

Keywords grammar-based tree compression · top dags · equality testing ·
forest

CR Subject Classification E.4 Data compaction and compression

Adrià Gascón
Warwick University and Alan Turing Institute, UK
E-mail: agascon@inf.ed.ac.uk

Markus Lohrey
Universität Siegen, Germany
E-mail: lohrey@eti.uni-siegen.de

Sebastian Maneth
Universität Bremen, Germany
E-mail: sebastian.maneth@gmail.com

Carl Philipp Reh
Universität Siegen, Germany
Tel.: +49-271-740-3233
E-mail: reh@eti.uni-siegen.de

Kurt Sieber
Universität Siegen, Germany
E-mail: sieber@informatik.uni-siegen.de



2 Adrià Gascón et al.

Mathematics Subject Classification (2000) 68Q42; 68P30

1 Introduction

Grammar-based compression represents an object succinctly by means of a
small context-free grammar. In many grammar-based compression formalisms
such a grammar can be exponentially smaller than the object. Several string
compressors use this idea and represent an input string w by a context-free
grammar that produces only w [8]; such grammars are also known as straight-
line programs—in this paper we use the term string straight-line program,
SSLP for short. One of the biggest advantages of grammar-based compressors
is that many algorithmic problems allow for efficient algorithms that work
directly on the grammar and do not need prior decompression, see the survey
[20] for references. One of the most well-known and fundamental such problems
is testing equality of the strings produced by two string straight-line programs.
Polynomial time solutions to this problem were discovered, in different contexts
by different groups of people [15,17,27,28].

Grammar-based compression has been generalized from strings to ordered
ranked node-labelled trees, by means of linear context-free tree grammars gen-
erating exactly one tree [7]. Such grammars are also known as tree straight-line
programs, TSLPs for short, see [21] for a survey. Equality of the trees produced
by two TSLPs can also be checked in polynomial time: one constructs SSLPs
for the pre-order traversals of the trees, and then applies the above mentioned
result for SSLPs, see [7]. The tree case becomes more complex when unordered
ranked trees are considered. Such trees can be represented using TSLPs, by
simply ignoring the order of children in the produced tree. Checking isomor-
phism of unordered ranked trees generated by TSLPs was recently shown to be
solvable in polynomial time [23]. The solution transforms the TSLPs so that
they generate canonical representations of the original trees and then checks
equality of these canonical forms.

The aforementioned result for ranked trees cannot be applied to unranked
trees (where the number of children of a node is not bounded), which arise for
instance in XML document trees. This is unfortunate, because (i) grammar-
based compression is particularly effective for XML document trees (see [22]),
and (ii) XML document trees can often be considered unordered (one speaks of
“data-centric XML”, see e.g. [1,4,6,29,30]), allowing even stronger grammar-
based compressions [24].

In this paper we introduce a generalization of TSLPs and SSLPs that al-
lows to produce ordered unranked node-labelled trees and forests (i.e., ordered
sequences of trees) that we call forest straight-line programs, FSLPs for short.
In contrast to TSLPs, FSLPs can compress very wide and flat trees. For in-
stance, the tree f(a, . . . , a) with n many a’s is not compressible with TSLPs
but can be produced by an FSLP of size Θ(log n). FSLPs are based on the op-
erations of horizontal and vertical forest composition from forest algebras [5].
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In the following Sections 1.1 and 1.2 we explain the the main contributions of
this paper.

1.1 Comparison with other formalisms

We compare the succinctness of FSLPs with two other grammar-based for-
malisms for compressing unranked node-labelled ordered trees: TSLPs for
“first-child/next-sibling” (fcns) encodings and top dags. The fcns-encoding
is the standard way of transforming an unranked tree into a binary tree. Then
the resulting binary tree can be succinctly represented by a TSLP. This ap-
proach was used to apply the TreeRePair-compressor from [22] to unranked
trees. We prove that FSLPs and TSLPs for fcns-encodings are equally succinct
up to constant multiplicative factors and that one can change between both
representations in linear time (Propositions 3 and 4).

Top dags are another formalism for compressing unranked trees [3]. Top
dags use horizontal and vertical merge operations for tree construction, which
are very similar to the horizontal and vertical concatenation operations from
FSLPs. Whereas a top dag can be transformed in linear time into an equiva-
lent FSLP with a constant multiplicative blow-up (Proposition 1), the reverse
transformation (from an FSLP to a top dag) needs time O(σ ·n) and involves
a multiplicative blow-up of size O(σ) where σ is the number of node labels
of the tree (Proposition 2). A simple example (Example 6) shows that this
σ-factor is unavoidable. The reason for the σ-factor is a technical restriction
in the definition of top dags: In contrast to FSLPs, top dags only allow sharing
of common subtrees but not of common subforests. Hence, sharing between
(large) subtrees which only differ in their root labels may be impossible at all
(as illustrated by Example 6), and this leads to the blow-up by a factor of σ
in comparison to FSLPs. The impossibility of sharing subforests would also
complicate the technical details of our main algorithmic results for FSLPs (in
particular Proposition 4 and Theorem 3 which is discussed below) for which we
make heavy use of a particular normal form for FSLPs that exploits the shar-
ing of proper subforests. We therefore believe that at least for our purposes,
FSLPs are a more adequate formalism than top dags.

1.2 Testing equality modulo associativity and commutativity

Our main algorithmic result for FSLPs can be formulated as follows: Fix a set
Σ of node labels and take a subset C ⊆ Σ of “commutative” node labels and
a subset A ⊆ Σ of “associative” node labels. This means that for all a ∈ A,
c ∈ C and all trees t1, t2, . . . , tn we do not distinguish

(i) between c(t1, . . . , tn) and c(tξ(1), . . . , tξ(n)) for any permutation ξ (commu-
tativity), and

(ii) between a(t1, . . . , tn) and a(t1, . . . , ti−1, a(ti, . . . , tj−1), tj , . . . , tn) for any
indices i, j with 1 ≤ i ≤ j ≤ n+ 1 (associativity).



4 Adrià Gascón et al.

We then show that for two given FSLPs F1 and F2 that produce trees t1 and
t2 (of possible exponential size), one can check in polynomial time whether t1
and t2 are equal modulo commutativity and associativity (Theorem 3). Note
that unordered tree isomorphism corresponds to the case C = Σ and A = ∅
(in particular we generalize the result from [23] for ranked unordered trees).
Theorem 3 also holds if the trees t1 and t2 are given by top dags or TSLPs
for the fcns-encodings, since these formalisms can be transformed efficiently
into FSLPs. Theorem 3 also shows the usefulness of FSLPs even if one is only
interested in say binary trees, which are represented by TSLPs. The law of
associativity will yield very wide and flat trees that are no longer compressible
with TSLPs but are still compressible with FSLPs.

1.3 Related work

In the recent paper [12] a general balancing result is shown, which also applies
to FSLPs: From a given FSLP of size n that produces a forest of size N one can
construct in linear time an equivalent FSLP of size O(n) and height O(logN)
[12, Corollary 11.5]. A corresponding result for top dags is shown as well [12,
Corollary 12.3].

2 Straight-line programs over algebras

We will produce strings, trees and forests by algebraic expressions over certain
algebras. These expressions will be compressed by directed acyclic graphs. In
this section, we introduce the general framework, which will be reused several
times in this paper.

An algebraic structure is a tupleA = (A, f1, . . . , fk) where A is the universe
and every fi : A

ni → A is an operation of a certain arity ni. In this paper, the
arity of all operations will be at most two. If ni = 0, then fi is called a constant.
Moreover, it will be convenient to allow partial operations for the fi. We will
make use of such partial functions but we will not construct expressions that
evaluate to undefined. Algebraic expressions over A are defined in the usual
way: if e1, . . . , eni are algebraic expressions over A, then also fi(e1, . . . , eni) is
an algebraic expressions over A. For an algebraic expression e, JeK ∈ A denotes
the element to which e evaluates (it can be undefined).

A straight-line program (SLP for short) over A is a tuple P = (V, S, ρ),
where V is a set of variables, S ∈ V is the start variable, and ρ maps every
variable A ∈ V to an expression of the form fi(A1, . . . , Ani

) (the so called
right-hand side of A) such that A1, . . . , Ani

∈ V and the edge relation E(P ) =
{(B,A) ∈ V ×V | B occurs in ρ(A)} is acyclic. This allows to define for every
variable A ∈ V its value JAKP inductively by JAKP = fi(JA1KP , . . . , JAniKP )
if ρ(A) = fi(A1, . . . , Ani

). Since the fi can be partially defined, the value of a
variable can be undefined. The SLP P will be called valid if all values JAKP
(A ∈ V ) are defined. We will only construct SLPs that are valid. Moreover,
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for each of our algebras, it will be easy to check whether an SLP is valid.
The value of P is JP K = JSKP . Usually, we prove properties of an SLP P by
induction on the finite partial order ≤P = E(P )∗.

It will be convenient to allow for the right-hand sides ρ(A) algebraic expres-
sions over A, where the variables from V can appear as atomic expressions.
By introducing additional variables, we can transform such an SLP into an
equivalent SLP of the original form. We define the size |P | of an SLP P as
the total number of occurrences of operations f1, . . . , fk in all right-hand sides
(which is the number of variables if all right-hand sides have the standard form
fi(A1, . . . , Ani)).

Sometimes it is useful to view an SLP P = (V, S, ρ) as a directed acyclic
graph (dag) (V,E(P )), together with the distinguished output node S, and
the node labelling that associates the label fi with the node A ∈ V if ρ(A) =
fi(A1, . . . , Ani

). Note that the outgoing edges (A,A1), . . . , (A,Ani
) have to be

ordered since fi is in general not commutative and that multi-edges have to be
allowed. Such dags are also known as algebraic circuits in the literature (see
[2] for the special case of algebraic circuits over fields and [19] for arbitrary
algebraic structures).

2.1 String straight-line programs

A widely studied type of SLPs are SLPs over a free monoid (Σ∗, ·, ε, (a)a∈Σ),
where · is the concatenation operator (which, as usual, is not written explicitly
in expressions) and the empty string ε and every alphabet symbol a ∈ Σ are
added as constants. We use the term string straight-line programs (SSLPs for
short) for these SLPs. If we want to emphasize the alphabet Σ, we speak of an
SSLP over Σ. In many papers, SSLPs are just called straight-line programs;
see [20] for a survey. Occasionally we consider SSLPs without a start variable
S and then write (V, ρ).

Example 1 Consider the SSLP G = ({S,A,B,C}, S, ρ) over the alphabet
{a, b} with ρ(S) = AAB, ρ(A) = CBB, ρ(B) = CaC, ρ(C) = b. We have
JBKG = bab, JAKG = bbabbab, and JGK = bbabbabbbabbabbab. The size of G is
8 (six concatenation operators are used in the right-hand sides, and there are
two occurrences of constants).

In the next two sections, we introduce two types of algebras for trees and
forests.

3 Forest algebras and forest straight-line programs

3.1 Trees and forests

Let us fix a finite set Σ of node labels for the rest of the paper. We consider
Σ-labelled rooted ordered trees, where “ordered” means that the children of a
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node are totally ordered. Every node has a label from Σ. Note that we make
no rank assumption: the number of children of a node (also called its degree) is
not determined by its node label. The set of nodes (resp. edges) of t is denoted
by V (t) (resp., E(t)). A forest is a (possibly empty) sequence of trees. The
size |f | of a forest is the total number of nodes in f . The set of all Σ-labelled
forests is denoted by F0(Σ) and the set of all Σ-labelled trees is denoted by
T0(Σ). As usual, we can identify trees with expressions built up from symbols
in Σ and parentheses. Formally, F0(Σ) and T0(Σ) can be inductively defined
as the following sets of strings over the alphabet Σ ∪ {(, )}.

– If t1, . . . , tn are Σ-labelled trees with n ≥ 0, then the string t1t2 · · · tn is a
Σ-labelled forest (in particular, the empty string ε is a Σ-labelled forest).

– If f is a Σ-labelled forest and a ∈ Σ, then a(f) is a Σ-labelled tree (where
the singleton tree a() is usually written as a).

Let us fix a distinguished symbol x 6∈ Σ for the rest of the paper (called the
parameter). The set of forests f ∈ F0(Σ ∪ {x}) such that x has a unique
occurrence in f and this occurrence is at a leaf node is denoted by F1(Σ).
Similarly, the set of trees t ∈ T0(Σ ∪{x}) such that x has a unique occurrence
in t and this occurrence is at a leaf node is denoted by T1(Σ). Elements of
T1(Σ) (resp., F1(Σ)) are called tree contexts (resp., forest contexts). We finally
define F(Σ) = F0(Σ) ∪ F1(Σ) and T (Σ) = T0(Σ) ∪ T1(Σ). Following [5], we
define the forest algebra FA(Σ) = (F(Σ),�,�, (a)a∈Σ , ε, x) as follows:

– � is the horizontal concatenation operator: for forests f1, f2 ∈ F(Σ), f1�f2
is defined if f1 ∈ F0(Σ) or f2 ∈ F0(Σ) and in this case we set f1�f2 = f1f2
(i.e., we concatenate the corresponding sequences of trees).

– � is the vertical concatenation operator: for forests f1, f2 ∈ F(Σ), f1 � f2
is defined if f1 ∈ F1(Σ) and in this case f1 � f2 is obtained by replacing
in f1 the unique occurrence of the parameter x by the forest f2.

– Every a ∈ Σ is identified with the unary function a : F(Σ) → T (Σ) that
produces a(f) when applied to f ∈ F(Σ).

– ε ∈ F0(Σ) and x ∈ F1(Σ) are constants of the forest algebra.

For better readability, we also write f〈g〉 instead of f � g, fg instead of f � g,
and a instead of a(ε).

As an example for the vertical concatenation, consider the forests f =
aa(bxb) and g = c(dd)c(d), where we have f � g = f〈g〉 = aa(bc(dd)c(d)b).

3.2 First-child/next-sibling encoding

The first-child/next-sibling encoding transforms a forest over some alphabet
Σ into a binary tree over Σ ] {⊥}, where every node labelled with a ∈ Σ has
degree 2 and every node labelled with⊥ has degree 0. We define fcns : F0(Σ)→
T0(Σ ] {⊥}) inductively by:

– fcns(ε) = ⊥,
– fcns(a(f)g) = a(fcns(f) fcns(g)) for f, g ∈ F0(Σ), a ∈ Σ.
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Fig. 1 Forest f on the left and fcns(f) on the right from Example 2.
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Fig. 2 Forest JF K for n = 2 from Example 3.

Thus, the left (resp., right) child of a node in fcns(f) is the first child (resp.,
right sibling) of the node in f or a ⊥-labelled leaf if it does not exist.

Example 2 If f = a(bc)d(e) then

fcns(f) = fcns(a(bc)d(e)) = a(fcns(bc) fcns(d(e)))

= a(b(⊥ fcns(c))d(fcns(e)⊥)) = a(b(⊥c(⊥⊥))d(e(⊥⊥)⊥)),

see also Figure 1.

3.3 Forest straight-line programs

A forest straight-line program over Σ, FSLP for short, is a valid straight-line
program over the algebra FA(Σ) such that JF K ∈ F0(Σ). Iterated vertical and
horizontal concatenations allow to generate forests, whose depth and width is
exponential in the FSLP size. For an FSLP F = (V, S, ρ) and i ∈ {0, 1} we
define Vi = {A ∈ V | JAKF ∈ Fi(Σ)}.

Example 3 Let n ∈ N and let F = (S, V, ρ) be the FSLP over {a, b, c} with
V0 = {S,A0, . . . , An}, V1 = {B0, . . . , Bn} where ρ is defined by ρ(A0) = a,
ρ(B0) = b(AnxAn), ρ(Ai) = Ai−1Ai−1 and ρ(Bi) = Bi−1〈Bi−1〉 for 1 ≤ i ≤ n,
and ρ(S) = Bn〈c〉. Then we have JF K = b(a2

n

b(a2
n · · · b(a2nc a2n) · · · a2n)a2

n

),
where b occurs 2n many times. This is a forest whose width and depth is
exponential in the size of the FSLP F . See Figure 2 for n = 2.
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Example 4 Consider the alphabet Σ = {a, b, c, d, e}. Let n ≥ 0 be a natural
number, and let F = (V, S1, ρ) be the FSLP with

V0 = {A1, A2, B, S1},
V1 = {B0, . . . , Bn, C0, . . . , Cn},

ρ(A1) = e(e(ab)c),

ρ(A2) = e(a e(bc)),

ρ(B0) = A1xA2,

ρ(Bi) = Bi−1〈Bi−1〉 for 1 ≤ i ≤ n,
ρ(B) = Bn〈A1〉,
ρ(C0) = d(xB),

ρ(Ci) = Ci−1〈Ci−1〉 for 1 ≤ i ≤ n, and

ρ(S1) = Cn〈B〉.

Note that, although F has size O(n), JF K has exponential width and depth,
as it is the tree

d(d(· · · d(d(︸ ︷︷ ︸
2n many d(

f f)f) · · · f)f)︸ ︷︷ ︸
2n many f)

,

where f = JBKF is the forest (e(e(ab)c))2
n+1(e(a e(bc)))2

n

; see Figure 3 for
n = 1.

Now consider a second FSLP F ′ = (V ′, S2, ρ
′) over Σ with

V ′0 = {D,E0, . . . , En, E, S2},
V ′1 = {F0, . . . , Fn},

ρ(D) = e(abc),

ρ(E0) = DD,

ρ(Ei) = Ei−1Ei−1 for 1 ≤ i ≤ n,
ρ(E) = EnD,

ρ(F0) = d(Ex),

ρ(Fi) = Fi−1〈Fi−1〉 for 1 ≤ i ≤ n, and

ρ(S2) = Fn〈E〉.

Then JF ′K is the tree

d(f ′d(f ′ · · · d(f ′d(f ′︸ ︷︷ ︸
2n many d(f ′

f ′)) · · ·)),

where f ′ = JEKF ′ is the forest e(abc)2
n+1+1; see Figure 3 for n = 1.

Note that if we consider e as associative then f and f ′ represent the same
forest. If in addition we consider d as commutative then the FSLPs F and F ′ in
fact represent the same unranked tree. Our main contribution is a polynomial
time algorithm for performing this kind of equivalence check.
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Fig. 3 Example 4 for n = 1.

FSLPs generalize tree straight-line programs (TSLPs for short) that have
been used for the compression of ranked trees before, see e.g. [21]. In this work,
we only use TSLPs for binary trees. A TSLP over Σ can then be defined as
an FSLP T = (V, S, ρ) such that for every A ∈ V , ρ(A) has the form a,
a(BC), a(xB), a(Bx), or B〈C〉 with a ∈ Σ, B,C ∈ V . TSLPs can be used to
compress the fcns-encoding of an unranked tree; see also [22]. It is not hard
to see that an FSLP F that produces a binary tree can be transformed into
a TSLP T such that JF K = JT K and |T | ∈ O(|F |). This is an easy corollary
of our normal form for FSLPs that we introduce in Section 3.5 (see also the
proof of Proposition 3). For the construction of the normal form, we first need
a technical result about SSLP factorizations that we show in the next section.

3.4 Factorization of SSLPs

Let Σ be an alphabet, let Σ1 ⊆ Σ and Σ2 = Σ \ Σ1. Then every string
w ∈ Σ∗ has a unique factorization w = v0a1v1 · · · anvn with n ≥ 0, ai ∈ Σ1

and v0, vi ∈ Σ∗2 for 1 ≤ i ≤ n, which we call the Σ1-factorization of w. Let
G = (V, ρ) and G′ = (V ′, ρ′) be SSLPs over Σ. We call G′ a Σ1-factorization
of G if JAKG = JAKG′ for all A ∈ V , and there are sets U ,L of (upper and
lower) variables such that V ′ = V ] U ] L and

ρ′(V ) ⊆ L ∪ LΣ1L ∪ LUΣ1L,
ρ′(U) ⊆ Σ1L ∪ U U ,
ρ′(L) ⊆ {ε} ∪Σ2 ∪ LL.

Note that the partition V ′ = V ] U ] L is uniquely determined by V ′ and ρ.
Moreover, JAKG′ ∈ Σ∗2 for every A ∈ L and JAKG′ ∈ (Σ1Σ

∗
2 )∗ for every A ∈ U .

This implies that G′ describes the Σ1-factorization w = v0a1v1 · · · anvn for
every string w = JAKG′ = JAKG (A ∈ V ) in the following sense: If ρ′(A) =
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B ∈ L, then n = 0 and JBKG′ = v0. If ρ′(A) = BaC ∈ LΣ1L, then n = 1,
JBKG′ = v0, a = a1 and JCKG′ = v1. Finally, if ρ′(A) = BCaD ∈ LUΣ1L then
n ≥ 2, JBKG′ = v0, a = an, JDKG′ = vn and there are variables Ci, Di with
JCKG′ = JC1KG′ · · · JCn−1KG′ , ρ(Ci) = aiDi and JDiKG′ = vi for 1 ≤ i < n.

Lemma 1 Let G = (V, ρ) be an SSLP over Σ and let Σ1 ⊆ Σ. We can
compute in linear time a Σ1-factorization of G of size O(|G|).

Proof We may assume w.l.o.g. that ρ(V ) ⊆ V V ∪Σ. For every string w ∈ Σ∗
with Σ1-factorization w = v0a1v1 · · · anvn we define w`, wm, wr ∈ Σ∗ and
σw ∈ Σ1 ∪ {ε} as follows:

– If n = 0 then w` = v0 and wm = wr = σw = ε.
– If n > 0 then w` = v0, wm = a1v1 · · · an−1vn−1, σw = an and wr = vn.

Note that in both cases w = w`wmσwwr and w`, wm, σw, wr satisfy the follow-
ing equations:

– If w = ε then w` = wm = σw = wr = ε.
– If w = a ∈ Σ1 then σw = a and w` = wm = wr = ε.
– If w = b ∈ Σ2 then w` = b and wm = σw = wr = ε.
– If w = uv with u, v ∈ Σ∗ then

– if σu = ε then also um = ur = ε, hence w` = u`v`, wm = vm, σw = σv
and wr = vr,

– if σu ∈ Σ1 and σv = ε then also vm = vr = ε, hence w` = u`, wm = um,
σw = σu and wr = urv`,

– if σu, σv ∈ Σ1 then w` = u`, wm = umσuurv`vm, σw = σv and wr = vr.

We use these equations as a guideline for the construction of a Σ1-factorization
G′ = (V ]U ]L, ρ′) of G. Take new variables A`, Am, Ar, UBC , U

′
BC , LBC /∈ V

and let

U = {Am | A ∈ V } ∪ {UBC , U ′BC | BC ∈ ρ(V )},
L = {A`, Ar | A ∈ V } ∪ {LBC | BC ∈ ρ(V )}.

For every A ∈ V we define σA ∈ Σ1 ∪ {ε} and the right-hand sides of the new
variables by the following induction on ≤G:

– If ρ(A) = a ∈ Σ1 then σA = a and ρ′(A`) = ρ′(Am) = ρ′(Ar) = ε.
– If ρ(A) = b ∈ Σ2 then ρ′(A`) = b and ρ′(Am) = σA = ρ′(Ar) = ε.
– If ρ(A) = BC then

– if σB = ε then ρ′(A`) = B`C`, ρ
′(Am) = ρ′(Cm), σA = σC and ρ′(Ar) =

ρ′(Cr),
– if σB ∈ Σ1 and σC = ε then ρ′(A`) = ρ′(B`), ρ

′(Am) = ρ′(Bm), σA = σB
and ρ′(Ar) = BrC`,

– if σB , σC ∈ Σ1 then
• ρ′(A`) = ρ′(B`),
• ρ′(Am) = ρ′(U ′BC) if ρ′(Bm) = ε, otherwise ρ′(Am) = BmU

′
BC ,

• ρ′(U ′BC) = ρ′(UBC) if ρ′(Cm) = ε, otherwise ρ′(U ′BC) = UBCCm,
• ρ′(UBC) = σBLBC ,
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• ρ′(LBC) = BrC`,
• σA = σC ,
• ρ′(Ar) = ρ′(Cr).

Finally we remove every variable Am with ρ′(Am) = ε from U and define ρ′(A)
for every A ∈ V as follows: If σA = ε then ρ′(A) = A` ∈ L. If σA ∈ Σ1 and
Am /∈ U then ρ′(A) = A`σAAr ∈ LΣ1L. Otherwise ρ′(A) = A`AmσAAr ∈
LUΣ1L.

A straightforward induction on ≤G shows that JA`KG′ = w`, JAmKG′ = wm,
σA = σw and JArKG′ = wr whenever JAKG = w. From this and the definition
of the new right-hand sides ρ′(A) we finally obtain

JAKG′ = (JA`KG′)(JAmKG′)σA(JArKG′) = w`wmσwwr = w.

This proves the lemma. ut

3.5 Normal form FSLPs

In this subsection, we introduce a normal form for FSLPs that turns out to
be crucial in the rest of the paper. An FSLP F = (V, S, ρ) is in normal form
if V0 = V >0 ] V ⊥0 and all right-hand sides have one of the following forms:

– ρ(A) = ε, where A ∈ V >0 ,
– ρ(A) = BC, where A ∈ V >0 , B,C ∈ V0,
– ρ(A) = B〈C〉, where B ∈ V1 and either A,C ∈ V ⊥0 or A,C ∈ V1,
– ρ(A) = a(B), where A ∈ V ⊥0 , a ∈ Σ and B ∈ V0,
– ρ(A) = a(BxC), where A ∈ V1, a ∈ Σ and B,C ∈ V0.

Note that the partition V0 = V >0 ]V ⊥0 is uniquely determined by ρ. Also note
that variables from V1 produce tree contexts and variables from V ⊥0 produce
trees, whereas variables from V >0 produce forests with arbitrarily many trees.

Let F = (V, S, ρ) be a normal form FSLP. Every variable A ∈ V1 produces
a vertical concatenation of (possibly exponentially many) variables, whose
right-hand sides have the form a(BxC). This vertical concatenation is called
the spine of A. Formally, we split V1 into V >1 = {A ∈ V1 | ∃B,C ∈ V1 : ρ(A) =
B〈C〉} and V ⊥1 = V1 \ V >1 . We then define the vertical SSLP F� = (V >1 , ρ1)
over V ⊥1 with ρ1(A) = BC whenever ρ(A) = B〈C〉. For every A ∈ V1 the
string JAKF� ∈ (V ⊥1 )∗ is called the spine of A, denoted by spineF (A) or just
spine(A) if F is clear from the context. We also define the horizontal SSLP
F� = (V >0 , ρ0) over V ⊥0 , where ρ0 is the restriction of ρ to V >0 . For every
A ∈ V0 we denote the string JAKF� ∈ (V ⊥0 )∗ by horF (A) or just hor(A) if F is
clear from the context. Note that spine(A) = A (resp., hor(A) = A) for every
A ∈ V ⊥1 (resp., A ∈ V ⊥0 ).

The intuition behind the normal form can be explained as follows: Consider
a tree context t ∈ T1(Σ)\{x}. By decomposing t along the nodes on the unique
path from the root to the x-labelled leaf, we can write t as a vertical concate-
nation of tree contexts a1(f1xg1), . . . , an(fnxgn) for forests f1, g1, . . . , fn, gn
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and symbols a1, . . . , an. In a normal form FSLP one would produce t by first
deriving a vertical concatenation A1〈· · · 〈An〉 · · ·〉. Every Ai is then derived to
ai(BixCi), where Bi (resp., Ci) produces the forest fi (resp., gi). Computing
an FSLP for this decomposition for a tree context that is already given by an
FSLP is the main step in the proof of the normal form theorem below. Another
insight is that proper forest contexts from F1(Σ) \ T1(Σ) can be eliminated
without significant size blow-up.

Theorem 1 From a given FSLP F one can construct in linear time an FSLP
F ′ in normal form such that JF ′K = JF K and |F ′| ∈ O(|F |).

Proof To convert an FSLP to normal form, we first introduce a weak normal
form, where all right-hand sides have one of the following forms:

– ρ(A) = ε, where A ∈ V0,
– ρ(A) = B〈C〉, where A,C ∈ V0 and B ∈ V1,
– ρ(A) = B〈C〉, where A,B,C ∈ V1,
– ρ(A) = a(x), where A ∈ V1, a ∈ Σ,
– ρ(A) = BxC, where A ∈ V1, B,C ∈ V0.

Converting an FSLP into weak normal form is straightforward: By splitting
up right-hand sides, we can assume that all right-hand sides have the form
ε, x, a(x), BC, or B〈C〉 for a ∈ Σ, B,C ∈ V . This transformation does not
increase the size of the FSLP. Right-hand sides of the form ρ(A) = BC, where
w.l.o.g. B ∈ V0, can be replaced by ρ(A) = B′〈C〉 and ρ(B′) = Bx, where B′

is a new variable.
We may now assume that F = (V, S, ρ) is in weak normal form. Like we

did with FSLPs in normal form, we split V1 into V >1 = {A ∈ V1 | ∃B,C ∈ V1 :
ρ(A) = B〈C〉} and V ⊥1 = V1 \ V >1 and define its vertical SSLP as the SSLP
F� = (V >1 , ρ1) over V ⊥1 with ρ1(A) = BC whenever ρ(A) = B〈C〉.

Let V = {A ∈ V ⊥1 | ρ(A) has the form a(x)} and H = V ⊥1 \ V. Thus, ρ(A)
has the form BxC for A ∈ H. The idea of the construction is to consider maxi-
mal factors of the form A0A1 · · ·An with A0 ∈ V and A1, . . . , An ∈ H in JAKF�

(for some A ∈ V >1 ). In the FSLP F , such a factor corresponds to an iterated
vertical concatenation A0〈A1〈· · · 〈An〉 · · ·〉〉. Assume that ρ(A0) = a(x) and
ρ(Ai) = BixCi for 1 ≤ i ≤ n. Then, A0〈A1〈· · · 〈An〉 · · ·〉〉 can be rewritten into
a(B1B2 · · ·BnxCn · · ·C2C1). We will introduce additional variables in order
to produce the horizontal concatenations B1B2 · · ·Bn and Cn · · ·C2C1 and a
variable with right-hand side a(BxC). Note that the latter form of right-hand
sides is allowed in normal form FSLPs.

At this point, V-factorizations turn out to be useful. The maximal factors
A0 · · ·An are explicitly generated by a V-factorization of the vertical SSLP
F�. By Lemma 1 we can compute in linear time a V-factorization G = (V >1 ]
U ] L, ρG) of F� with |G| ∈ O(|F�|) ≤ O(|F |). From F and G we obtain the
FSLP F ′ = (V ′, S, ρ′) where V ′0 = V0 ] {A`, Ar | A ∈ L} with new variables
A`, Ar, V

′
1 = U , and ρ′ is defined by:

1. If A ∈ L with ρG(A) = ε then ρ′(A`) = ρ′(Ar) = ε.
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2. If A ∈ L with ρG(A) = B ∈ H and ρ(B) = CxD then ρ′(A`) = C and
ρ′(Ar) = D.

3. If A ∈ L with ρG(A) = BC ∈ LL then ρ′(A`) = B`C` and ρ′(Ar) = CrBr.
4. If A ∈ U with ρG(A) = BC ∈ VL and ρ(B) = a(x) then ρ′(A) = a(C`xCr).
5. If A ∈ U with ρG(A) = BC ∈ UU then ρ′(A) = B〈C〉.
6. If A ∈ V0 with ρ(A) = ε then ρ′(A) = ε.
7. If A ∈ V0 with ρ(A) = B〈A0〉, B ∈ V ⊥1 and ρ(B) = a(x) then ρ′(A) =
a(A0).

8. If A ∈ V0 with ρ(A) = B〈A0〉, B ∈ V ⊥1 and ρ(B) = CxD then ρ′(A) =
CA0D.

9. If A ∈ V0 with ρ(A) = B〈A0〉, B ∈ V >1 and ρG(B) = C ∈ L then ρ′(A) =
C`A0Cr.

10. If A ∈ V0 with ρ(A) = B〈A0〉, B ∈ V >1 , ρG(B) = CDE ∈ LVL and
ρ(D) = a(x) then ρ′(A) = C`a(E`A0Er)Cr.

11. If A ∈ V0 with ρ(A) = B〈A0〉, B ∈ V >1 , ρG(B) = CDD′E ∈ LUVL and
ρ(D′) = a(x) then ρ′(A) = C`D〈a(E`A0Er)〉Cr.

Note that this FSLP is not in normal form, but by further splitting up ρ′(A) in
points 8–11 (and eliminating the “chain definitions” in point 2), we can obtain
normal form. For instance, in point 11, we have to introduce new variables
A1, . . . , A5 and set ρ′(A) = A1Cr, ρ

′(A1) = C`A2, ρ′(A2) = D〈A3〉, ρ′(A3) =
a〈A4〉, ρ′(A4) = A5Er, and ρ′(A5) = E`A0. An easy induction on ≤F ′ shows
that

– if B ∈ L with JBKF� = H1 · · ·Hn ∈ H∗ then JH1〈· · · 〈Hn〉 · · ·〉KF =
JB`xBrKF ′ ,

– if A ∈ V0 ∪ U then JAKF = JAKF ′ .

From the last point we finally obtain JF K = JSKF = JSKF ′ = JF ′K. ut

4 Cluster algebras and top dags

In this section we introduce top dags [3,16] as an alternative grammar-based
formalism for the compression of unranked trees. A cluster of rank 0 is a tree
t ∈ T0(Σ) of size at least two. A cluster of rank 1 is a tree t ∈ T0(Σ) of size
at least two together with a distinguished leaf node that we call the bottom
boundary node of t. In both cases, the root of t is called the top boundary node
of t. Note that in contrast to forest contexts there is no parameter x. Instead,
one of the Σ-labelled leaf nodes may be declared as the bottom boundary
node. When writing a cluster of rank 1 in term representation, we underline
the bottom boundary node. For instance a(b c(a b)) is a cluster of rank 1.
An atomic cluster is of the form a(b) or a(b) for a, b ∈ Σ. Let Ci(Σ) be
the set of all clusters of rank i ∈ {0, 1} and let C(Σ) = C0(Σ) ∪ C1(Σ). We
write rank(s) = i if s ∈ Ci(Σ) for i ∈ {0, 1}. We define the cluster algebra
CA(Σ) = (C(Σ),�,�, (a(b), a(b))a,b∈Σ) as follows:

– � is the horizontal merge operator: s�t is only defined if rank(s)+rank(t) ≤
1 and s, t are of the form s = a(f), t = a(g), i.e., the root labels coincide.
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Then s � t = a(fg). Note that at most one symbol in the forest fg is
underlined. The rank of s� t is rank(s) + rank(t). For instance,

a(b c(a b)) � a(b c) = a(b c(a b)b c).

– � is the vertical merge operator: s� t is only defined if s ∈ C1(Σ) and the
label of the root of t (say a) is equal to the label of the bottom boundary
node of s. We then obtain s� t by replacing the unique occurrence of a in
s by t. The rank of s� t is rank(t). For instance,

a(b c(a b)) � a(bc) = a(b c(a(bc) b)).

– The atomic clusters a(b) and a(b) are constants of the cluster algebra.

A top tree for a tree t ∈ T0 is an algebraic expression e over the algebra CA(Σ)
such that JeK = t. A top dag over Σ is a valid straight-line program D over the
algebra CA(Σ) such that JDK ∈ T0(Σ). In our terminology, cluster straight-line
program would be a more appropriate name, but we prefer to call them top
dags.

Example 5 Consider the top dag D = ({S,A0, . . . , An, B0, . . . , Bn}, S, ρ) with
ρ(A0) = b(a), ρ(Ai) = Ai−1 � Ai−1 for 1 ≤ i ≤ n, ρ(B0) = An � b(b) � An,
ρ(Bi) = Bi−1 �Bi−1 for 1 ≤ i ≤ n, and ρ(S) = Bn � b(c). We have

JDK = b(a2
n

b(a2
n

· · · b(a2
n

b(c) a2
n

) · · · a2
n

) a2
n

),

where b occurs 2n + 1 many times.

5 Relative succinctness

We have now three grammar-based formalisms for the compression of unranked
trees: FSLPs, top dags, and TSLPs for fcns-encodings. In this section we study
their relative succinctness. It turns out that up to multiplicative factors of
size |Σ| (number of node labels) all three formalisms are equally succinct.
Moreover, the transformations between the formalisms can be computed in
time linear in the output size. This allows us to transfer algorithmic results
for FSLPs to top dags and TSLPs for fcns encodings, and vice versa. We start
with top dags:

Proposition 1 For a given top dag D one can compute in linear time an
FSLP F such that JF K = JDK and |F | ∈ O(|D|).

Proof For t ∈ T (Σ) we denote with4(t) the forest obtained by removing from
t the root node. Translating a cluster with a bottom boundary node to a tree
with a parameter is done by the function Ox : C1(Σ) → T1(Σ), where Ox(t)
replaces the bottom boundary node in t labelled with a ∈ Σ by the tree a(x).
We translate a cluster to a forest by ϕ : C(Σ)→ F(Σ), where ϕ(t) = 4(t) for



Grammar-based Compression of Unranked Trees 15

t ∈ C0(Σ) and ϕ(t) = 4(Ox(t)) for t ∈ C1(Σ). Then the following identities
hold:

ϕ(s)� ϕ(t) = ϕ(s� t), (1)

ϕ(s)� ϕ(t) = ϕ(s� t), (2)

ϕ(a(b)) = b, (3)

ϕ(a(b)) = b(x). (4)

Let D = (V, S, ρ) be a top dag and let α be the label of the root of JDK, which
can be easily computed in linear time. We define F = (V ] {S′}, S′, ρ′), such
that for every A ∈ V we have JAKF = ϕ(JAKD). We set ρ′(S′) = α(S), which
yields

JF K = JS′KF = Jα(S)KF = α(JSKF ) = α(4(JSKD)) = JSKD = JDK.

We translate the right-hand sides of the top dag as follows:

– If ρ(A) = a(b) then ρ′(A) = b.
– If ρ(A) = a(b) then ρ′(A) = b(x).
– If ρ(A) = B � C then ρ′(A) = B � C.
– If ρ(A) = B � C then ρ′(A) = B � C.

Then JAKF = ϕ(JAKD) for all A ∈ V follows immediately from (1)–(4). ut

Proposition 2 For a given FSLP F with JF K ∈ T0(Σ) and |JF K| ≥ 2 one
can compute in time O(|Σ| · |F |) a top dag D such that JDK = JF K and |D| ∈
O(|Σ| · |F |).

Proof For every a ∈ Σ we define the mapping ψa : T1(Σ) \ {x} → C1(Σ) as
follows: for t ∈ T1(Σ), t 6= x, let ψa(t) be the rank-1 cluster obtained from
replacing in t the label of the unique x-labelled node (which is not the root) by
a and declaring this node as the bottom boundary node. Then, the following
identities are obvious, where s, t ∈ T1(Σ) \ {x}, u ∈ T0(Σ), |u| ≥ 2, and b ∈ Σ
is the label of the roots of t and u:

ψa(s〈t〉) = ψb(s) � ψa(t), (5)

s〈u〉 = ψb(s) � u. (6)

Moreover, for all forests f, g ∈ F0(Σ) with f 6= ε 6= g we have

a(fg) = a(f) � a(g). (7)

Let us now come to the construction for T . By Theorem 1 we can assume that
the input FSLP F = (V, S, ρ) is in normal form. We can easily eliminate right-
hand sides of the form ε without a size increase. This might lead to “chain
definitions” of the form ρ(A) = B which can be also eliminated without size
increase. After this preprocessing step, we may have also right-hand sides of
the form ρ(A) = a ∈ Σ (with A ∈ V ⊥0 ), ρ(A) = a(x), ρ(A) = a(Bx) (with
B ∈ V0), and ρ(A) = a(xC) (with C ∈ V0). We still denote the resulting FSLP
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with F . Since we started with an FSLP in normal form, we have JAKF ∈ T0(Σ)
for every A ∈ V ⊥0 and JAKF ∈ T1(Σ) \ {x} for every A ∈ V1. Hence, for
A ∈ V ⊥0 ∪ V1 we can define αA ∈ Σ as the label of the root node in the tree
(context) JAKF . Also note that every forest JAKF for A ∈ V0 has size at least
one. Moreover, if A ∈ V ⊥0 and ρ(A) 6∈ Σ then the tree JAKF has size at least
two. Let U⊥0 = {A ∈ V ⊥0 | ρ(A) 6∈ Σ}.

We define a top dag D = (V ′, S, ρ′), where V ′ = V ′0 ∪ V ′1 with

V ′0 = U⊥0 ] {Aa | A ∈ V0, a ∈ Σ},
V ′1 = {Aa | A ∈ V1, a ∈ Σ}.

We will define the right-hand side mapping ρ′ of D such that the following
identities hold:

JAKD = JAKF for every A ∈ U⊥0 ,
JAaKD = a(JAKF ) for every A ∈ V0,
JAaKD = ψa(JAKF ) for every A ∈ V1.

In order to obtain these identities, we define ρ′ as follows:

– If ρ(A) = BC for A,B,C ∈ V0 then ρ′(Aa) = Ba � Ca.
– If A ∈ U⊥0 then ρ′(Aa) = a(αA)�A.
– If ρ(A) = b ∈ Σ then ρ′(Aa) = a(b).
– If ρ(A) = a(B) (hence A ∈ U⊥0 ) then ρ′(A) = Ba.
– If ρ(A) = B〈C〉 for A,C ∈ U⊥0 and B ∈ V1 then ρ′(A) = BαC

� C.
– If ρ(A) = B〈C〉, ρ(C) = a ∈ Σ and C ∈ V1 (hence A ∈ U⊥0 ) then ρ′(A) =
Ba.

– If ρ(A) = B〈C〉 for A,B,C ∈ V1 then ρ′(Aa) = BαC
〈Ca〉.

– If ρ(A) = b(BxC) for A ∈ V1, B,C ∈ V0 then ρ′(Aa) = Bb � b(a) � Cb.
– If ρ(A) = b(Bx) for A ∈ V1, B ∈ V0 then ρ′(Aa) = Bb � b(a).
– If ρ(A) = b(xC) for A ∈ V1, C ∈ V0 then ρ′(Aa) = b(a)� Cb.
– If ρ(A) = b(x) for A ∈ V1 then ρ′(Aa) = b(a).

The correctness of this construction follows easily by induction, using (5)–(7).
To conclude the proof, note that since JF K is a tree of size two, the start

symbol S of F must belong to U⊥0 . Hence, the above point (i) implies JDK =
JF K. ut

The following example shows that the size bound in Proposition 2 is sharp:

Example 6 Let Σ = {a, a1, . . . , aσ} and let tn = a(a1(am) · · · aσ(am)) where
n ≥ 1 and m = 2n. For every n > σ the tree tn can be produced by an FSLP
of size O(n): using n = logm many variables we can produce the forest am

and then O(n + σ) = O(n) many additional variables suffice to produce tn.
On the other hand, every top dag for tn has size Ω(σ · n): consider a top tree
e that evaluates to tn. Then e must contain a subexpression ei that evaluates
to the subtree ai(a

m) (1 ≤ i ≤ σ) of tn. The subexpression ei has to produce
ai(a

m) using the �-operation from copies of ai(a). Hence, the expression for
ai(a

m) has size n = log2m and different ei contain no identical subexpressions.
Therefore every top dag for tn has size at least σ · n.
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In contrast, FSLPs and TSLPs for fcns-encodings turn out to be equally suc-
cinct up to constant factors:

Proposition 3 Let f ∈ F(Σ) be a forest and let F be an FSLP (or TSLP)
over Σ ] {⊥} with JF K = fcns(f). Then we can transform F in linear time
into an FSLP F ′ over Σ with JF ′K = f and |F ′| ∈ O(|F |).
Proof Let F = (V, S, ρ) be an FSLP over Σ ∪ {⊥}. By Theorem 1, we may
assume that F is in normal form and every variable is reachable from S.
This implies |hor(A)| ≤ 2 for every A ∈ V0, because fcns(f) is a binary
tree. Hence we can compute the strings hor(A) = JAKF� ∈ (V ⊥0 )∗ with A ∈
V >0 all together in linear time, substitute hor(A) for each occurrence of A
in the right-hand sides, and finally erase the production for A. In particular,
right-hand sides of the form ε and BC do not occur any more. Moreover,
right-hand sides of the form a(BxC) and a(B) will be transformed as follows
by the above replacement: In the first case (a(BxC)) we have a ∈ Σ and
|hor(B)| + |hor(C)| = 1. Hence the substitution leads to a(Dx) or a(xD)
with D ∈ V ⊥0 . In the second case (a(B)) either a = ⊥ and |hor(B)| = 0 or
a ∈ Σ and |hor(B)| = 2, hence the substitution leads to ⊥ or a(CD) with
C,D ∈ V ⊥0 . Thus we finally obtain an FSLP in which all right-hand sides have
one of the following forms:

– ⊥,
– a(BC),
– a(Bx),
– a(xB),
– B〈C〉.

This is in fact a TSLP as defined in Section 3. We can now easily translate
right-hand sides of the above forms into right-hand sides of an FSLP F ′ for f :

– ρ(A) = ⊥ becomes ρ(A) = ε.
– ρ(A) = a(BC) becomes ρ(A) = a(B)C.
– ρ(A) = a(Bx) becomes ρ(A) = a(B)x.
– ρ(A) = a(xB) becomes ρ(A) = a(x)B.
– ρ(A) = B〈C〉 stays the same.

For the correctness of the construction, we have to show that fcns(JF ′K) = JF K.
In order to do this, we show the following properties:

fcns(JAKF ′) = JAKF for all A ∈ V0,
fcns(JAKF ′〈f〉) = JAKF 〈fcns(f)〉 for all A ∈ V1, f ∈ F0(Σ).

These are shown using a simple induction and case analysis:

– ρ(A) = ⊥: fcns(JAKF ′) = fcns(ε) = ⊥ = JAKF .
– ρ(A) = a(BC): We obtain (“ind” refers to induction on B and C)

fcns(JAKF ′) = fcns(Ja(B)CKF ′)
= fcns(a(JBKF ′)JCKF ′)
= a(fcns(JBKF ′) fcns(JCKF ′))
ind
= a(JBKF JCKF ) = JAKF .
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– ρ(A) = a(Bx): We obtain

fcns(JAKF ′〈f〉) = fcns(Ja(B)xKF ′〈f〉)
= fcns(a(JBKF ′)f)

= a(fcns(JBKF ′) fcns(f))

ind
= a(JBKF fcns(f))

= Ja(Bx)KF 〈fcns(f)〉 = JAKF 〈fcns(f)〉.

– ρ(A) = a(xB): We obtain

fcns(JAKF ′〈f〉) = fcns(Ja(x)BKF ′〈f〉)
= fcns(a(f)JBKF ′)
= a(fcns(f) fcns(JBKF ′))
ind
= a(fcns(f)JBKF )

= Ja(xB)KF 〈fcns(f)〉 = JAKF 〈fcns(f)〉.

– ρ(A) = B〈C〉 with C ∈ V0: We obtain the following, where the first (resp.,
second) induction step uses induction on B (resp., C):

fcns(JAKF ′) = fcns(JB〈C〉KF ′)
= fcns(JBKF ′〈JCKF ′〉)
ind
= JBKF 〈fcns(JCKF ′)〉
ind
= JBKF 〈JCKF 〉
= JB〈C〉KF = JAKF .

– ρ(A) = B〈C〉 with C ∈ V1: We obtain

fcns(JAKF ′〈f〉) = fcns(JB〈C〉KF ′〈f〉)
= fcns((JBKF ′〈JCKF ′〉)〈f〉)
= fcns(JBKF ′〈JCKF ′〈f〉〉)
ind
= JBKF 〈fcns(JCKF ′〈f〉)〉
ind
= JBKF 〈JCKF 〈fcns(f)〉〉
= JB〈C〉KF 〈fcns(f)〉 = JAKF 〈fcns(f)〉.

This concludes the proof of the proposition. ut

Proposition 4 For every FSLP F over Σ, we can construct in linear time a
TSLP T over Σ ∪ {⊥} with JT K = fcns(JF K) and |T | ∈ O(|F |).

Proof We start with the definition of two functions which are closely related
to fcns. The first function π : F0(Σ)→ T1(Σ ∪ {⊥}) is defined inductively by

π(ε) = x,

π(a(f)g) = a(fcns(f)π(g)) for all a ∈ Σ, f, g ∈ F0(Σ);
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in particular its restriction to T0(Σ) is given by

π(a(f)) = a(fcns(f)x) for all a ∈ Σ, f ∈ F0(Σ). (8)

Simple inductive proofs show that

fcns(f) = π(f)〈⊥〉 for all f ∈ F0(Σ), (9)

π(fg) = π(f)〈π(g)〉 for all f, g ∈ F0(Σ). (10)

The second function ϕ : F(Σ)→ T (Σ ∪ {⊥}) is defined inductively by

ϕ(ε) = ⊥,
ϕ(xg) = x for all g ∈ F0(Σ),

ϕ(a(f)g) = a(ϕ(f)ϕ(g)) for all a ∈ Σ, f, g ∈ F(Σ) with a(f)g ∈ F(Σ).

Simple inductive proofs show that

fcns(f) = ϕ(f) for all f ∈ F0(Σ), (11)

ϕ(fxg) = π(f) for all f, g ∈ F0(Σ). (12)

The most important equation for ϕ is

ϕ(f〈a(g)〉) = ϕ(f)〈a(ϕ(g) fcns(sib(f)))〉
for all f ∈ F1(Σ), a ∈ Σ, g ∈ F0(Σ),

(13)

where sib(f) ∈ F0(Σ) denotes the sequence of all right siblings of x in f ∈
F1(Σ), i.e.,

sib(xg) = g for all g ∈ F0(Σ),

sib(a(f)g) =

{
sib(f) if f ∈ F1(Σ) and g ∈ F0(Σ),

sib(g) if f ∈ F0(Σ) and g ∈ F1(Σ).

Equation (13) tells us how to obtain ϕ(f〈a(g)〉) from ϕ(f) and ϕ(g). For
its proof note that a(ϕ(g) fcns(sib(f))) = a(ϕ(g)ϕ(sib(f))) = ϕ(a(g) sib(f)).
Hence it suffices to prove

ϕ(f〈t〉) = ϕ(f)〈ϕ(t sib(f))〉 for all f ∈ F1(Σ), t ∈ T (Σ),

which can be done by the following induction on the length of the sequence f
(and case distinction on the first element of f):

– f = xg:

Then g ∈ F0(Σ) and we have

ϕ(f〈t〉) = ϕ(tg) = x〈ϕ(tg)〉 = ϕ(f)〈ϕ(tg)〉 = ϕ(f)〈ϕ(t sib(f))〉.
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– f = a(g)h with a ∈ Σ and g ∈ F0(Σ):

Then h ∈ F1(Σ) and we obtain

ϕ(f〈t〉) = ϕ(a(g)h〈t〉)
= a(ϕ(g)ϕ(h〈t〉)) by the definition of ϕ

= a(ϕ(g)ϕ(h)〈ϕ(t sib(h))〉) by induction for h

= a(ϕ(g)ϕ(h)〈ϕ(t sib(f))〉) because sib(f) = sib(h)

= a(ϕ(g)ϕ(h))〈ϕ(t sib(f))〉
= ϕ(f)〈ϕ(t sib(f))〉 by the definition of ϕ.

– f = a(g)h with a ∈ Σ and g ∈ F1(Σ):

Then h ∈ F0(Σ) and the proof is the same as in the previous step except
that the roles of g and h are exchanged.

Equations (8) to (13) are a guideline for the construction of the TSLP T .
Let F = (V, S, ρ). As usual we may assume that F is in normal form. Then
T = (V ′, S, ρ′) where

V ′0 = V0 ] {A4 | A ∈ V ⊥0 } and

V ′1 = {Aπ | A ∈ V0} ] {A4 | A ∈ V1}

with new variables A4, A
π /∈ V . To explain the role of these variables let

∆ : T (Σ) \ {x} → F(Σ) be defined by ∆(a(f)) = f . We want to achieve that

JAKT = fcns(JAKF ) for every A ∈ V0, (14)

JAπKT = π(JAKF ) for every A ∈ V0, (15)

JA4KT = ϕ(∆(JAKF )) for every A ∈ V ⊥0 ∪ V1. (16)

From (14) we obtain JT K = JSKT = fcns(JSKF ) = fcns(JF K) which concludes
the proof of the proposition (assuming that T satisfies the size bound |T | ∈
O(|F |)).

It remains to define ρ′ in such a way that (14), (15) and (16) are satisfied.
For every A ∈ V ⊥0 ∪ V1 let αA denote the root label of JAKF , and for every
A ∈ V1 let RA ∈ V0 be a variable with JRAKF = sib(JAKF ). Such a variable
exists in V0, namely

– RA = C if ρ(A) = a(BxC),

– RA = RC if ρ(A) = B〈C〉 for B,C ∈ V1.

Then we define ρ′ by

– ρ′(A) = Aπ〈⊥〉 if A ∈ V0,

– ρ′(Aπ) = αA(A4x) if A ∈ V ⊥0 ,

– ρ′(Aπ) = x if A ∈ V >0 with ρ(A) = ε,

– ρ′(Aπ) = Bπ〈Cπ〉 if A ∈ V >0 with ρ(A) = BC,

– ρ′(A4) = B if A ∈ V ⊥0 with ρ(A) = a(B),
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– ρ′(A4) = Bπ if A ∈ V1 with ρ(A) = a(BxC),

– ρ′(A4) = B4〈αC(C4RB)〉 if A ∈ V ⊥0 ∪ V1 with ρ(A) = B〈C〉.

This concludes the definition of the TSLP T . It is clear that T can be con-
structed from F in linear time and that |T | ∈ O(|F |).

Equations (14), (15) and (16) are proved by the following induction on ≤T .
Note that A4 ≤T Aπ for all A ∈ V ⊥0 and Aπ ≤T A for all A ∈ V0.

– If A ∈ V0 then ρ′(A) = Aπ〈⊥〉 and thus

JAKT = JAπKT 〈⊥〉
= π(JAKF )〈⊥〉 by induction for Aπ

= fcns(JAKF ) by equation (9).

– If A ∈ V ⊥0 with JAKF = a(f) then ρ′(Aπ) = a(A4x) and thus

JAπKT = a(JA4KTx)

= a(ϕ(∆(JAKF ))x) by induction for A4

= a(ϕ(f)x)

= a(fcns(f)x) by equation (11)

= π(a(f)) by equation (8)

= π(JAKF ).

– If A ∈ V >0 with ρ(A) = ε then ρ′(Aπ) = x and thus

JAπKT = x

= π(ε) by the definition of π

= π(JAKF ).

– If A ∈ V >0 with ρ(A) = BC then ρ′(Aπ) = Bπ〈Cπ〉 and thus

JAπKT = JBπKT 〈JCπKT 〉
= π(JBKF )〈π(JCKF )〉 by induction for Bπ and Cπ

= π(JBKF JCKF ) by equation (10)

= π(JAKF ).

– If A ∈ V ⊥0 with ρ(A) = a(B) then ρ′(A4) = B and thus

JA4KT = JBKT
= fcns(JBKF ) by induction for B

= ϕ(JBKF ) by equation (11)

= ϕ(∆(JAKF )).
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– If A ∈ V1 with ρ(A) = a(BxC) then ρ′(A4) = Bπ and thus

JA4KT = JBπKT
= π(JBKF ) by induction for B

= ϕ(JBKF x JCKF ) by equation (12)

= ϕ(∆(JAKF )).

– If A ∈ V ⊥0 ∪ V1 with ρ(A) = B〈C〉, JBKF = b(f) and JCKF = c(g) then
ρ′(A) = B4〈c(C4RB)〉 and we have JRBKF = sib(b(f)) = sib(f). Thus we
obtain

JA4KT = JB4KT
〈
c(JC4KT JRBKT )

〉
= ϕ(∆(JBKF ))

〈
c(ϕ(∆(JCKF )) fcns(JRBKF ))

〉
by induction for B4, C4 and RB

= ϕ(f)
〈
c(ϕ(g) fcns(sib(f)))

〉
= ϕ(f

〈
c(g)

〉
) by equation (13)

= ϕ(∆(b(f)
〈
c(g)

〉
))

= ϕ(∆(JBKF
〈
JCKF

〉
))

= ϕ(∆(JAKF )).

This concludes the proof of Proposition 4. ut

Proposition 4 and the construction from [9, Proposition 8.3.2] allow to reduce
the evaluation of forest automata on FSLPs (for a definition of forest and tree
automata, see [9]) to the evaluation of ordinary tree automata on binary trees.
The latter problem can be solved in polynomial time [25], which yields:

Corollary 1 Given a forest automaton A and an FSLP (or top dag) F we
can check in polynomial time whether A accepts JF K.

Proof First, we construct a TSLP T for fcns(JF K) using Proposition 4. We
also convert A in polynomial time into a tree automaton A′ such that A′

accepts fcns(f) if and only if A accepts f , using the construction from [9,
Proposition 8.3.2]. Finally, we use the result from [25] to check in polynomial
time whether A′ accepts JT K. ut

In [3], a linear time algorithm is presented that constructs from a tree of
size n with σ many node labels a top dag of size O(n/ log0.19

σ n). In [16] this
bound was improved toO(n log log n/ logσ n) (for the same algorithm as in [3]).
In [26] we recently presented an alternative construction that achieves the
information-theoretic optimum of O(n/ logσ n); another optimal construction
was presented in [11]. Moreover, as in [3], the constructed top dag satisfies the
additional size bound O(d · log n), where d is the size of the minimal dag of t.
With Proposition 1 and 4 we obtain:

Corollary 2 Let t be a tree of size n with σ many node labels. Then we
can construct in linear time an FSLP for t (or a TSLP for fcns(t)) of size
O(n/ logσ n) ∩ O(d · log n), where d is the size of the minimal dag of t.
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6 Testing equality modulo associativity and commutativity

In this section we will give an algorithmic application which proves the useful-
ness of FSLPs (even if we deal with binary trees). We fix two subsets A ⊆ Σ
(the set of associative symbols) and C ⊆ Σ (the set of commutative symbols).
This means that we impose the following identities for all a ∈ A, c ∈ C, all
trees t1, . . . , tn ∈ T0(Σ), all permutations ξ : {1, . . . , n} → {1, . . . , n}, and all
1 ≤ i ≤ j ≤ n+ 1:

a(t1 · · · tn) = a(t1 · · · ti−1a(ti · · · tj−1)tj · · · tn), (ASSOC)

c(t1 · · · tn) = c(tξ(1) · · · tξ(n)). (COMM)

Note that the standard law of associativity x ◦ (y ◦ z) = (x ◦ y) ◦ z for a binary
operator ◦ is an instance of (ASSOC) if we consider ◦ as a symbol in A.

6.1 Associative symbols

Below, we define the associative normal form nfA(f) of a forest f and show
that from an FSLP F we can compute in linear time an FSLP F ′ with JF ′K =
nfA(JF K). For trees s, t ∈ T0(Σ) we have that s = t modulo the identities in
(ASSOC) if and only if nfA(s) = nfA(t). The generalization to forests is needed
for the induction, where a slight technical problem arises. Whether the forests
t1 · · · ti−1a(ti · · · tj−1)tj · · · tn and t1 · · · tn are equal modulo the identities in
(ASSOC) actually depends on the symbol on top of these two forests. If it is
an a, and a ∈ A, then the two forests are equal modulo associativity, otherwise
not. To cope with this problem, we use for every associative symbol a ∈ A a
function φa : F0(Σ)→ F0(Σ) that pulls up occurrences of a whenever possible.

Let • /∈ Σ be a new symbol. For every a ∈ Σ∪{•} let φa : F0(Σ)→ F0(Σ)
be defined as follows, where f ∈ F0(Σ), n ≥ 0 and t1, . . . , tn ∈ T0(Σ):

φa(b(f)) =

{
φa(f) if a ∈ A and a = b,

b(φb(f)) otherwise,

φa(t1 · · · tn) = φa(t1) · · ·φa(tn).

Note that φa(ε) = ε. We define nfA : F0(Σ)→ F0(Σ) by nfA(f) = φ•(f).

Example 7 Let t = a(a(cd)b(cd)a(e)) and A = {a}. We obtain

φa(t) = φa(a(cd)b(cd)a(e))

= φa(a(cd))φa(b(cd))φa(a(e))

= φa(cd)b(φb(cd))φa(e)

= cdb(cd)e,

φb(t) = a(φa(a(cd)b(cd)a(e)))

= a(cdb(cd)e).
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Fig. 4 t on the left, φa(t) in the middle and φb(t) on the right from Example 7

To show the following simple lemma one considers the terminating and con-
fluent rewriting system obtained by directing the equations in (ASSOC) from
right to left.

Lemma 2 For two forests f1, f2 ∈ F0(Σ), nfA(f1) = nfA(f2) if and only if
f1 and f2 are equal modulo the identities in (ASSOC) for all a ∈ A.

Proof Consider the (infinite) term rewriting system consisting of all rules

a(t1 · · · ti−1a(ti · · · tj−1)tj · · · tn)→ a(t1 · · · tn) (→-ASSOC)

for a ∈ A, t1, . . . , tn ∈ T0(Σ) and 1 ≤ i ≤ j ≤ n+ 1. Let →A be the resulting
rewrite relation. It is clearly terminating. Moreover, by considering all possible
overlappings of left-hand sides, one sees that the system is also confluent.
Hence, every forest f rewrites into a unique normal form, which is in fact
nfA(f). The lemma follows since f1 and f2 are equal modulo the identities in
(ASSOC) if and only if they rewrite into the same normal forms, which means
that nfA(f1) = nfA(f2). ut

Lemma 3 From a given FSLP F over Σ one can construct in time O(|F |·|Σ|)
an FSLP F ′ with JF ′K = nfA(JF K).

Proof By Theorem 1, we may assume that F = (V, S, ρ) is in normal form.
We introduce new variables Aa for all a ∈ Σ ∪ {•} and define the right-hand
sides of F ′ such that JAaKF ′ = φa(JAKF ) for all A ∈ V0 and JBa〈φb(f)〉KF ′ =
φa(JB〈f〉KF ) for all B ∈ V1, f ∈ F0(Σ), where b is the label of the parent node
of the parameter x in JBKF . This parent node exists since F is in normal form.
For every B ∈ V1 let ωB be the symbol above x in JBKF . These symbols exist
by definition of the normal form, and they can be computed all together in
linear time. Now let F ′ = (V ′, S•, ρ

′) where V ′ = {Aa | A ∈ V, a ∈ Σ ∪ {•}},
and ρ′ is defined by

– ρ′(Aa) = ε if ρ(A) = ε,
– ρ′(Aa) = BaCa if ρ(A) = BC,
– ρ′(Aa) = Ba〈CωB

〉 if ρ(A) = B〈C〉,
– ρ′(Aa) = Ba if ρ(A) = a(B) and a ∈ A,
– ρ′(Aa) = b(Bb) if ρ(A) = b(B) with b 6= a or b /∈ A,
– ρ′(Aa) = BaxCa if ρ(A) = a(BxC) with a ∈ A,
– ρ′(Aa) = b(BbxCb) if ρ(A) = b(BxC) with b 6= a or b 6∈ A.

An induction shows:
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(i) JAaKF ′ = φa(JAKF ) for all A ∈ V0 and a ∈ Σ ∪ {•}, and
(ii) JBa〈φωB

(f)〉KF ′ = φa(JB〈f〉KF ) for all B ∈ V1, a ∈ Σ∪{•} and f ∈ F0(Σ).

From (i) we obtain JF ′K = JS•KF ′ = φ•(JSKF ) = nfA(JSKF ) = nfA(JF K). ut

6.2 Commutative symbols

To test whether two trees over Σ are equivalent with respect to commutativity,
we define a commutative normal form nfC(t) of a tree t ∈ T0(Σ) such that
nfC(t1) = nfC(t2) if and only if t1 and t2 are equivalent with respect to the
identities in (COMM) for all c ∈ C.

We start with a general definition: Let < be a total order on a possi-
bly infinite alphabet ∆, and let ≤ be its reflexive closure. Then we define
sort< : ∆∗ → ∆∗ by sort<(a1 · · · an) = ai1 · · · ain with {i1, . . . , in} = {1, . . . , n}
and ai1 ≤ · · · ≤ ain .

Lemma 4 Let G be an SSLP over ∆ and let < be some total order on ∆. We
can construct in time O(|∆| · |G|) an SSLP G′ such that JG′K = sort<(JGK).

Proof Let G = (V, S, ρ). We define the SSLP G′ = (V ′, S, ρ′) over ∆ where
V ′ = {S}∪{Aa | A ∈ V, a ∈ ∆} with new variables Aa /∈ V , and ρ′ defined by

– ρ′(Aa) = ε if ρ(A) ∈ {ε} ∪ (∆ \ {a}),
– ρ′(Aa) = a if ρ(A) = a,
– ρ′(Aa) = BaCa if ρ(A) = BC,
– ρ′(S) = Sa1 · · ·San if ∆ = {a1, . . . , an} with a1 < · · · < an.

A straightforward induction shows that JAaKG′ = ama where ma is the number
of occurrences of a in JAKG. Hence JG′K = JSa1 · · ·SamKG′ = sort<(JGK). ut

In order to define the commutative normal form, we introduce a total order
on the set T0(Σ). To this end, let < be an arbitrary total order on the alphabet
Γ = Σ ∪ {(, )}, and let <llex be the induced length-lexicographic order on Γ ∗,
which is defined by

x <llex y ⇔ |x| < |y| or

|x| = |y|, x = uav, y = ubv′ with u, v, v′ ∈ Γ ∗, a, b ∈ Γ, a < b.

Note that <llex is a total order which can be restricted to T0(Σ) or F0(Σ).
For the latter restriction we obtain:

Lemma 5 For two FSLPs F1 and F2 we can check in polynomial time whether
JF1K = JF2K, JF1K <llex JF2K or JF2K <llex JF1K.

Proof From F1 and F2 we first construct two SSLPs G1 and G2 that produce
JF1K and JF2K as strings over the alphabet Γ = Σ ∪{(, )}. The construction is
similar to the case of TSLPs; see [7]: Consider F1 = (V, S, ρ). By Theorem 1
we can assume that F1 is in normal form. We define the SSLP G1 = (V ′, S, ρ′)
over Γ , where V ′ = V0 ∪ {A`, Ar | A ∈ V1} and ρ′ is defined as follows:
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– If ρ(A) = ε or ρ(A) = BC or ρ(A) = a(B) then ρ′(A) = ρ(A).
– If ρ(A) = B〈C〉 with C ∈ V0 then ρ′(A) = B`CBr.
– If ρ(A) = a(BxC) then ρ′(A`) = a(B, and ρ′(Ar) = C).
– If ρ(A) = B〈C〉 with C ∈ V1 then ρ′(A`) = B`C` and ρ′(Ar) = CrBr.

Notice that in the above definition, “(” and “)” appear as elements of Γ on
the right-hand side of ρ′.

The rest of the proof follows immediately from [23, Lemma 3]: Given SSLPs
G1 and G2 over the same terminal alphabet Γ , we can check in polynomial
time whether JG1K <llex JG2K, JG2K <llex JG1K or JG1K = JG2K. ut

From now on we use <llex only to compare trees, i.e., we restrict <llex to T0(Σ).
From this restricted order we obtain the function sort<llex on F0(Σ) = T0(Σ)∗,
and we define nfC : F0(Σ)→ F0(Σ) inductively by

nfC(a(f)) =

{
a(sort<llex(nfC(f))) if a ∈ C,
a(nfC(f)) otherwise,

nfC(t1 · · · tn) = nfC(t1) · · · nfC(tn).

Obviously, f1, f2 ∈ F(Σ) are equal modulo the identities in (COMM) for all
c ∈ C if and only if nfC(f1) = nfC(f2). Using this fact and Lemma 2 it is not
hard to show:

Lemma 6 For f1, f2 ∈ F0(Σ) we have nfC(nfA(f1)) = nfC(nfA(f2)) if and
only if f1 and f2 are equal modulo the identities in (ASSOC) and (COMM)
for all a ∈ A, c ∈ C.

Proof It suffices to show that nfC(nfA(f1)) = nfC(nfA(f2)) if f1 and f2 can be
transformed into each other by a single application of (ASSOC) or (COMM);
let us write f1 =A f2 or f1 =C f2, respectively, for the latter. The case f1 =A f2
is clear, since this implies nfA(f1) = nfA(f2) by Lemma 2. Now assume that
f1 =C f2. As in the proof of Lemma 2, consider the infinite rewriting system
(→-ASSOC) and the associated rewrite relation →A. The crucial observation
is that f =C g →A h implies f →A g′ =C h for some g′ ∈ F0(Σ) (a single
application of (→-ASSOC) commutes with a permutation of the children of
a node). Since f1 =C f2 →∗A nfA(f2), it follows that f1 →∗A f ′1 =C nfA(f2)
for some f ′1 ∈ F0(Σ). But f ′1 =C nfA(f2) implies that f ′1 is irreducible with
respect to →A, i.e., f ′1 = nfA(f1). Thus we obtain nfA(f1) =C nfA(f2) and
hence nfC(nfA(f1)) = nfC(nfA(f2)). ut

We now come to our main construction: From an FSLP F = (V, S, ρ) in
normal form we want to obtain in polynomial time an FSLP F ′ = (V ′, S, ρ′)
with JF ′K = nfC(JF K). We will construct F ′ = (V ′, S, ρ′) in such a way that
V0 ⊆ V ′0 , V1 ⊆ V ′1 and JAKF ′ = nfC(JAKF ) for every A ∈ V0. The new right-
hand sides ρ′(A) for all A ∈ V will be defined by induction on ≤F . Before we
present the details we want to point out the main difficulties.

Let A ∈ V ⊥0 with ρ(A) = B〈C〉 ∈ V1〈V0〉 and let spineF (B) = B1 · · ·BN ∈
(V ⊥1 )∗. For 0 ≤ p ≤ N let tp = JBp+1〈· · · 〈BN 〈C〉〉 · · ·〉KF be the tree which
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is substituted for the parameter x in Bp, in particular t0 = JAKF and tN =
JCKF . Note that |t0| > · · · > |tN | and that the length N of the spine may be
exponential in |F |, hence we may have exponentially many different trees tp.

Let now D ∈ V ⊥1 with ρ(D) = a〈LxR〉 and Bp = D for some position p in
the spine. Let w = JLRKF� ∈ (V ⊥0 )∗. By induction we may assume for every
variable A′ in w that JA′KF ′ is already defined and that JA′KF ′ = nfC(JA′KF ).
For the definition of ρ′(D) we distinguish two cases.

For a /∈ C we set ρ′(D) = ρ(D). Then nfC(tp−1) = nfC(a(JLKF tp JRKF )) =
a(nfC(JLKF ) nfC(tp) nfC(JRKF )) = a(JLKF ′ nfC(tp) JRKF ′) = JBpKF ′〈nfC(tp)〉.

The problematic case is a ∈ C. Then nfC(tp−1) = nfC(a(JLKF tpJRKF )) =
a(sort<llex(nfC(JLRKF ) nfC(tp))) = a(sort<llex(nfC(JwKF ) nfC(tp))). The prob-
lem is that the position of nfC(tp) in sort<llex(nfC(JwKF ) nfC(tp)) may depend
on the index p. This problem disappears if F satisfies a further condition: Let
F = (V, S, ρ) be an FSLP in normal form. For every B ∈ V1 let

big argsF (B) = {t ∈ T0(Σ) | |t| ≥ |JD〈ε〉KF | for every D in spineF (B)}.

We say that F is in strong normal form if JCKF ∈ big argsF (B) for every
A ∈ V ⊥0 with ρ(A) = B〈C〉 ∈ V1〈V0〉.

If we assume that F is in strong normal form, then we have |nfC(tp)| =
|tp| ≥ |JCKF | ≥ |JBp〈ε〉KF | > |JA′KF | = |nfC(JA′KF )| for all p with Bp =
D and all A′ which occur in w. This means that for all p with Bp = D
the tree nfC(tp) goes to the last position in sort<llex(nfC(JwKF nfC(tp)). Hence
we can set ρ′(D) = a(Swx), where Sw is a new nonterminal with JSwKF ′ =
sort<llex(nfC(JwKF )). Such a nonterminal Sw can be obtained with Lemma 5
and Lemma 4, see the proof of Theorem 2 for details. Thus we have nfC(tp−1) =
a(sort<llex(nfC(JwKF )) nfC(tp)) = Ja(Swx)KF ′〈nfC(tp)〉 = JBpKF ′〈nfC(tp)〉 as in
the case a /∈ C.

Finally, we set ρ′(A) = ρ(A). Then we have JCKF ′ = nfC(JCKF ) = nfC(tN )
by induction for C hence nfC(JAKF ) = nfC(t0) = JB1〈· · · 〈BN 〉 · · ·〉KF ′〈nfC(tN )〉
= JB1〈· · · 〈BN 〈C〉〉 · · ·〉KF ′ = JAKF ′ as desired.

If F is only in normal form, then we cannot expect that |tp| ≥ |JBp〈ε〉KF |
holds for all indices p, but we are close: Let Bp = D, where p is not the
last position of D in the spine, i.e., Bq = D for some q > p. Then |tp| =
|JBp+1〈· · · 〈BNC〉〉 · · ·〉KF | ≥ |JBq〈ε〉KF | = |JBp〈ε〉KF |. This means that the in-
equation |tp| ≥ |JBp〈ε〉KF | can only fail, if p is the last position of some variable
D in the spine. Example 8 shows that it can indeed fail for all these positions,
even if the spine has exponential length and even if the distance between two
subsequent last positions is growing exponentially. The only important point is
that we have at most polynomially (even linearly) many of these last positions.
This is the clue for proving the following lemma.

Lemma 7 From a given FSLP F = (V, S, ρ) in normal form we can construct
in polynomial time an FSLP F ′ = (V ′, S, ρ′) in strong normal form with JF K =
JF ′K.

Proof We obtain F ′ from F by modifying (only) the right-hand sides of vari-
ables A ∈ V ⊥0 with ρ(A) ∈ V1〈V0〉: Let ρ(A) = B〈C〉 with spineF (B) =
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B1 · · ·BN (N ≥ 1), and let {D1, . . . , Dm} ⊆ (V1)⊥ (m ≥ 1) be the set of all
variables which occur in spineF (B). For 1 ≤ i ≤ m let pi be the position of
the last occurrence of Di in spineF (B), i.e., pi = max{1 ≤ p ≤ N | Bp = Di}.
The set {D1, . . . , Dm} and the positions p1, . . . , pm can be computed from F
in polynomial time, hence we may assume w.l.o.g. that pm < · · · < p1 by
reordering the symbols Di in this way. This means in particular that p1 = N .
Additionally, we set pm+1 = 0.

The idea for the construction of F ′ is to divide the spine B1 · · ·BN into all
nonempty spine segments of the form Bpi+1+1 · · ·Bpi−1 (which do not con-
tain any last occurences of the variables Di) and the remaining singleton
spine segments Bpi (which are the last occurences of the variables Di). This
can be achieved by introducing new variables Ei, Ai, Ci with spineF ′(Ei) =
Bpi+1+1 · · ·Bpi−1, ρ′(Ai) = Ei〈Ci〉 and ρ′(Ci) = Di〈Ai−1〉 = Bpi〈Ai−1〉. After
this transformation the right-hand sides ρ′(Ai) satisfy the restriction of the
strong normal form, because JCiKF ′ ∈ big argsF ′(Ei), but the right-hand sides
ρ′(Ci) need to be repaired: If ρ(Di) = LixRi then we set ρ′(Ci) = LiAi−1Ri,
i.e., we get rid of the singleton spines Bpi = Di by explicitly substituting Ai−1
for the parameter x of Di. The details, which are slightly more complicated,
are as follows.

For 1 ≤ i ≤ m we construct in polynomial time SSLPs Gi = (Ni, Ei, ρi)
over V ⊥1 with JGiK = Bpi+1+1 · · ·Bpi−1 (see e.g. [25, Lemma 1]). We may
assume that the variable sets Ni are pairwise disjoint and that they only
contain new variables, i.e., variables which are not in V and have not been
added to V ′ by previous steps. We may also assume that ρi(Ni) ⊆ V ⊥1 ∪NiNi
whenever JGiK 6= ε. In this case we add each X ∈ Ni to the variable set V ′1 of
F ′ and define its right-hand side by

– ρ′(X) = Y 〈Z〉 if ρi(X) = Y Z,
– ρ′(X) = ρ(D) if ρi(X) = D ∈ V ⊥1 .

By induction on ≤Gi we obtain spineF ′(X) = JXKGi for every X ∈ Ni, in
particular spineF ′(Ei) = JEiKGi = JGiK = Bpi+1+1 · · ·Bpi−1 for all 1 ≤ i ≤ m
with JGiK 6= ε.

Now we add new variables Ai for 1 ≤ i ≤ m−1 and Ci, C
′
i, C
′′
i for 1 ≤ i ≤ m

to the variable set V ′0 of F ′. Additionally, we set A0 = C and Am = A. The
right-hand sides of the new variables and the new right-hand side of A = Am
are then defined by

(1) ρ′(Ci) = a(C ′i), ρ
′(C ′i) = LC ′′i and ρ′(C ′′i ) = Ai−1R if ρ(Di) = a(LxR),

(2) ρ′(Ai) = Ei〈Ci〉 if JEiKG 6= ε, otherwise ρ′(Ai) = ρ′(Ci)

for 1 ≤ i ≤ m. Equation (1) means that

JCiKF ′ = Ja(C ′i)KF ′ = Ja(LAi−1R)KF ′ = JDi〈Ai−1〉KF ′ = JBpi〈Ai−1〉KF ′

because the right-hand side of Di is not modified. From this and (2) we obtain

JAiKF ′ = JBpi+1+1〈· · · 〈Bpi〈Ai−1〉〉 · · ·〉KF ′ .
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Since A0 = C an induction on i implies JAiKF ′ = JBpi+1+1〈· · · 〈BN 〈C〉〉 · · ·〉KF ′
for 0 ≤ i ≤ m, in particular JAKF ′ = JAmKF ′ = JB1〈· · · 〈BN 〈C〉〉 · · ·〉KF ′ . Note
that this holds for every A ∈ V ⊥0 with ρ(A) ∈ V1〈V0〉 and that the right-hand
sides of other variables in V are not modified. Thus we obtain JAKF ′ = JAKF
for every A ∈ V by induction on ≤F , in particular JF ′K = JSKF ′ = JSKF = JF K.

It remains to be shown that F ′ is in strong normal form. The only vari-
ables A′ ∈ (V ′0)⊥ with ρ′(A′) ∈ V ′1〈V ′0〉 are the variables Ai (1 ≤ i ≤ m)
with ρ′(Ai) = Ei〈Ci〉. Hence it suffices to prove JCiKF ′ ∈ big argsF ′(Ei), i.e.,
|JCiKF ′ | ≥ |JDj〈ε〉KF ′ | whenever Dj ∈ V ⊥1 occurs in spineF ′(Ei). If j > i,
then pj ≤ pi+1 is the last position of Dj in B1 · · ·BN , hence Dj does not
occur in spineF ′(Ei) = Bpi+1+1 · · ·Bpi−1. If j ≤ i, then pi ≤ pj ≤ N and
thus |JCiKF ′ | = |JBpi〈Ai−1〉KF ′ | = |JBpi〈· · · 〈BN 〈C〉〉 · · ·〉KF ′ | ≥ |JBpj 〈ε〉KF ′ | =
|JDj〈ε〉KF ′ |, which concludes the proof. ut

Example 8 For everym ≥ 1 let Fm = (V, S, ρ) be an FSLP over {a} with a ∈ C,
|Fm| ∈ O(m), V ⊇ {S,B,E} ∪ {Ui | 0 ≤ i ≤ 2m} ∪ {Di, Li, Ri | 1 ≤ i ≤ m}
and

ρ(E) = ε,

ρ(R1) = a(E),

ρ(Ri) = Ri−1Ri−1 for 2 ≤ i ≤ m,
ρ(U0) = a(ExE),

ρ(Ui) = Ui−1〈Ui−1〉, for 1 ≤ i ≤ 2m,

ρ(Li) = U2i〈R1〉, for 1 ≤ i ≤ m,
ρ(Di) = a(LixRi), for 1 ≤ i ≤ m,

spineFm
(B) = D2m−1

1 DmDmD
2m−2

1 Dm−1Dm−1 · · ·D21

1 D2D2D1,

ρ(S) = B〈R1〉.

Note thatO(m) productions are sufficient to produce the spine of B. We do not
present them in detail because they are irrelevant for the following illustration.

Let pi (1 ≤ i ≤ m) be the last position of Di in spineFm
(B), and let tpi be

the tree which is substituted for x in Di at this last position, i.e.,

tp1 = JR1KFm
,

tp2 = JD1〈R1〉KFm
,

tpi+1
= JD1〈· · · 〈D1〈︸ ︷︷ ︸

2i−1

Di〈Di〈tpi〉〉〉〉 · · ·〉KFm
for 2 ≤ i ≤ m− 1.

Let us define

ui := JUiKFm
= a(. . . a(︸ ︷︷ ︸

2i

x) . . .) for 0 ≤ i ≤ 2m,

`i := JLiKFm = u2i〈a〉 = a(. . . a(︸ ︷︷ ︸
4i

a) . . .) for 1 ≤ i ≤ m,

ri := JRiKFm
= a2

i−1

for 1 ≤ i ≤ m.
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For 1 ≤ i ≤ m we have |JDiKFm〈t〉| = |a(`itri)| = |t|+ 4i + 2i−1 + 2 for every
t ∈ T0({a}), hence |tpi+1 | = |tpi | + 2 · (4i + 2i−1 + 2) + 2i−1 · 7 ≤ |tpi | + 3 · 4i
for every i ≥ 3. By induction on i this implies |tpi | ≤ 4i < |`i| and thus
nfC(tpi) <llex `i = nfC(`i) for 1 ≤ i ≤ m, which explains the shape of the tree
nfC(JF3K) in Figure 5.

By the construction of Lemma 7 we obtain the strong normal form FSLP
F ′m from Fm by modifying (only) the right-hand sides of the variables S and
L1, . . . , Lm. The modification of ρ(Li) is easy since ρ(Li) = U2i〈R1〉 and only
the variable U0 occurs in the spine of U2i. Hence we focus on the modification
of ρ(S) = B〈R1〉.

The spine of B contains all the variables D1, . . . , Dm and they are already
ordered in such a way that pm < · · · < p1 holds for their last positions pi.
Hence we obtain F ′m = (V ′, S, ρ′) with

V ′ ⊇ V ∪ {Ci, C ′i, C ′′i | 1 ≤ i ≤ m} ∪ {Ei | 2 ≤ i ≤ m} ∪ {Ai | 1 ≤ i < m},

A0 = R1, Am = S and

spineF ′m(Ei) = D2i−1

1 Di, for 2 ≤ i ≤ m,
ρ′(A1) = C1,

ρ′(Ai) = Ei〈Ci〉 for 2 ≤ i ≤ m,
ρ′(Ci) = a(C ′i) for 1 ≤ i ≤ m,
ρ′(C ′i) = LiC

′′
i for 1 ≤ i ≤ m,

ρ′(C ′′i ) = Ai−1Ri for 1 ≤ i ≤ m.

Note that spineF ′m(Ei) is the spine segment between the last positions of Di+1

and Di and that E1 is missing in V ′ because this spine segment is empty for
i = 1.

The case m = 3 is illustrated in Figure 5. We have

spineF3
(B) = D4

1D3D3D
2
1D2D2D1,

hence | spineF3
(B)| = 11. The positions of the last occurrences of D1, D2, D3

in the spine are p1 = 11, p2 = 10 and p3 = 6, respectively. These are the
occurrences that are replaced by C1, C2 and C3. We therefore obtain

JC1KF ′3 = Ja(L1A0R1)KF ′3 ,

ρ′(A1) = C1,

JC2KF ′3 = Ja(L2A1R2)KF ′3 ,

spineF ′3(E2) = D2
1D2,

ρ′(A2) = E2〈C2〉,
JC3KF ′3 = Ja(L3A2R3)KF ′3 ,

spineF ′3(E3) = D4
1D3,

ρ′(A3) = E3〈C3〉.
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Fig. 5 The trees JF3K = JF ′
3K and nfC(JF3K) = nfC(JF ′

3K) for the FSLP F3 from Example 8.
The size of each subtree is written in ( ) after the node label. The last positions of D1, D2, D3

are p1 = 11, p2 = 10 and p3 = 6, respectively. The roots of the trees tpi and nfC(tpi ) are
marked with Ai since JAiKF ′3 = tpi . They are the only argument trees which are smaller

than their siblings `i, hence nfC(tpi ) goes to the left of `i in nfC(JF3K) and all the others go
to the right. The roots of JCiKF ′3 and nfC(JCiKF ′3 ) are marked with Ci.

This concludes our example.
It remains to be shown how an FSLP F in strong normal form can be

turned into an FSLP F ′ with JF ′K = nfC(JF K). We have already given an
outline of this construction. Now we present the details.
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Theorem 2 From a given FSLP F we can construct in polynomial time an
FSLP F ′ with JF ′K = nfC(JF K).

Proof Let F = (V, S, ρ). By Theorem 1 and Lemma 7 we may assume that F is
already in strong normal form. We want to construct an FSLP F ′ = (V ′, S, ρ′)
with V0 ⊆ V ′0 and V1 = V ′1 such that

(1) JAKF ′ = nfC(JAKF ) for all A ∈ V0,
(2) JAKF ′〈nfC(t)〉 = nfC(JAKF 〈t〉) for all A ∈ V1, t ∈ big argsF (A).

From (1) we obtain JF ′K = JSKF ′ = nfC(JSKF ) = nfC(JF K), which will be
enough to conclude the proof.

To define ρ′, let V c = {A ∈ V ⊥0 | ρ(A) ∈ C(V0)} ∪ {A ∈ V ⊥1 | ρ(A) ∈
C(V0xV0)} be the set of commutative variables of F . We set ρ′(A) = ρ(A) for
every A ∈ V \ V c. For A ∈ V c we define ρ′(A) by induction on ≤F :

– If ρ(A) = a(B) ∈ C(V0), then let MA = {C ∈ V ⊥0 | C ≤F A} and w =
horF (B) = JBKF� ∈M∗A. By induction, ρ′(C) and hence JCKF ′ are already
defined for every C ∈ MA. By Lemma 5, we can compute in polynomial
time a total order < on MA such that C < D implies JCKF ′ ≤llex JDKF ′
for all C,D ∈MA. By Lemma 4, we can construct in linear time an SSLP
Gw = (Vw, Sw, ρw) with JGwK = sort<(w), and we may assume that all
variables D ∈ Vw are new. We add these variables to V ′0 together with
their right-hand sides ρ′(D) = ρw(D), and set ρ′(A) = a(Sw).

– If ρ(A) = a(BxC) ∈ C(V0xV0), then define Gw = (Vw, Sw, ρw) as before,
but with w = JBCKF� instead of w = JBKF� , and set ρ′(A) = a(Swx).

Properties (1) and (2) are proved by induction on ≤F . We only consider the
interesting cases, i.e., those in which <llex plays a role.

(i) A ∈ V0 with ρ(A) = a(B) ∈ C(V0):

Let w = JBKF� = A1 · · ·Am with m ≥ 0. Then

nfC(JAKF ) = nfC(a(JBKF ))

= a(sort<llex(nfC(JBKF ))) by definition of nfC since a ∈ C
= a(sort<llex(nfC(JA1KF ) · · · nfC(JAmKF )))

= a(sort<llex(JA1KF ′ · · · JAmKF ′)) by induction for A1, . . . , Am

= a(sort<llex(JwKF ′))
= a(Jsort<(w)KF ′)

since Ai < Aj implies JAiKF ′ ≤llex JAjKF ′ for 1 ≤ i, j ≤ m
= a(JhorF ′(Sw)KF ′)

since horF ′(Sw) = JSwKGw
= JGwK = sort<(w)

= a(JSwKF ′)
= JAKF ′ by definition of ρ′(A).

(ii) A ∈ V0 with ρ(A) = B〈C〉 ∈ V1〈V0〉:
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Then ρ′(A) = B〈C〉 and JCKF ∈ big argsF (B) by definition of the strong
normal form. We obtain

nfC(JAKF ) = nfC(JBKF 〈JCKF 〉)
= JBKF ′〈nfC(JCKF )〉 by induction for B

= JBKF ′〈JCKF ′〉 by induction for C

= JAKF ′ .

(iii) A ∈ V1 with ρ(A) = a(BxC) ∈ C(V0xV0):

Let w = JBCKF� = A1 · · ·Am with m ≥ 0, say JBKF� = A1 · · ·Ak and
JCKF� = Ak+1 · · ·Am with 0 ≤ k ≤ m. For every t ∈ big argsF (A) and
1 ≤ i ≤ m we have |nfC(t)| = |t| ≥ |JA〈ε〉KF | > |JBCKF | ≥ |JAiKF | =
|nfC(JAiKF )|, which implies nfC(JAiKF ) ≤llex nfC(t). Hence we obtain

nfC(JAKF 〈t〉) = nfC(a(JBKF t JCKF ))

= a(sort<llex(nfC(JBKF t JCKF )))

by definition of nfC since a ∈ C
= a(sort<llex(nfC(JA1KF · · · JAkKF t JAk+1KF · · · JAmKF )))

= a(sort<llex( nfC(JA1KF ) · · · nfC(JAkKF ) nfC(t)
nfC(JAk+1KF ) · · · nfC(JAmKF )))

by definition of nfC

= a(sort<llex(nfC(JA1KF ) · · · nfC(JAmKF )) nfC(t))

since nfC(JAiKF ) ≤llex nfC(t) for 1 ≤ i ≤ m
= a(JSwKF ′ nfC(t))

since JSwKF ′ = sort<llex(nfC(JA1KF ) · · · nfC(JAmKF ))

by the same reasoning as in (i)

= Ja(Swx)KF ′〈nfC(t)〉
= JAKF ′〈nfC(t)〉 by definition of ρ′(A).

(iv) A ∈ V1 with ρ(A) = B〈C〉 ∈ V1〈V1〉:
Then ρ′(A) = B〈C〉. Let t ∈ big argsF (A) ⊆ big argsF (B)∩big argsF (C).
Since |JCKF 〈t〉| ≥ |t|, we obtain JCKF 〈t〉 ∈ big argsF (B) and thus

nfC(JAKF 〈t〉) = nfC(JBKF 〈JCKF 〈t〉〉)
= JBKF ′〈nfC(JCKF 〈t〉)〉 by induction for B

= JBKF ′〈JCKF ′〈nfC(t)〉〉 by induction for C

= JAKF ′〈nfC(t)〉.

This concludes the proof of the theorem. ut

Example 9 Let F be the strong normal form FSLP F ′m = (V ′, S, ρ′) (m ≥ 1)
which we obtained in Example 8. From F we construct a new FSLP which
produces nfC(JF K). Again, we will only consider the spine of B and ignore the
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spines of the U2i. We have to replace the right-hand sides of Ci and Di for
1 ≤ i ≤ m. For ρ′(Ci) = a(C ′i) we have

w = horF (C ′i) = JLiAi−1RiKF� = LiAi−1R
2i−1

1 .

Let < be the total order on MCi
⊇ {Li, Ai−1, R1} from Theorem 2. Since

JAi−1KF = tpi and JR1KF <llex tpi <llex JLiKF for 2 ≤ i ≤ m, we must have
that R1 < Ai−1 < Li. For i = 1 we have a special case because R1 = A0, for
which we have JA0KF <llex JL1KF , so R1 = A0 < L1. Altogether, we obtain

sort<(w) = R2i−1

1 Ai−1Li.

Using Lemma 4, we introduce an SLP Gw = (Vw, Sw, ρw) with JGwK =
sort<(w). Finally, we set the new right-hand side of Ci to a(Sw).

For the right-hand sides ρ′(Di) = a(LixRi) for 1 ≤ i ≤ m we have

w = JLiRiKF� = LiR
2i−1

1 .

Let< be the total order onMDi
⊇ {R1, Li} from Theorem 2. Since JR1KF <llex

JLiKF for 1 ≤ i ≤ m, we must have that R1 < Li, and thus sort<(w) =

R2i−1

1 Li. Since F is in strong normal form, x always goes to the last position.
We introduce Gw = (Vw, Sw, ρw) with JGwK = sort<(w) and set the new
right-hand side of Di to a(Swx). This concludes our example.

As an immediate consequence of Theorem 2 we obtain our main result.

Theorem 3 For trees s, t we can test in polynomial time whether s and t are
equal modulo the identities in (ASSOC) and (COMM), if s and t are given
succinctly by one of the following formalisms: (i) FSLPs, (ii) top dags, (iii)
TSLPs for their fcns-encodings.

Proof By Proposition 1 and 3 it suffices to show Theorem 3 for the case that t1
and t2 are given by FSLPs F1 and F2, respectively. By Lemma 6 and Lemma 5
it suffices to compute in polynomial time FSLPs F ′1 and F ′2 for nfC(nfA(t1))
and nfC(nfA(t2)). This can be achieved using Lemma 3 and Theorem 2. ut

7 Future work

We have shown that simple algebraic manipulations (laws of associativity and
commutativity) can be carried out efficiently on grammar-compressed trees.
In the future, we plan to investigate other algebraic laws. We are optimistic
that our approach can be extended by idempotent symbols (meaning that
a(fttg) = a(ftg) for forests f, g and a tree t).

Another interesting open problem concerns context unification modulo
associative and commutative symbols. The decidability of (plain) context-
unification was a long standing open problem finally solved by Jeż [18], who
showed the existence of a polynomial space algorithm. Jeż’s algorithm uses his
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recompression technique for TSLPs. One might try to extend this technique
to FSLPs with the goal of proving decidability of context unification for terms
that also contain associative and commutative symbols. For first-order unifica-
tion and matching [13], context matching [13], and one-context unification [10]
there exist algorithms for TSLP-compressed trees that match the complexity
of their uncompressed counterparts. One might also try to extend these results
to the associative and commutative setting.
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