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1 Introduction

SLPs (straight-line programs) are context-free grammars that produce a single
string. They can use nonterminals to identify repetition and therefore be much
smaller than the string that they represent. For example, the SLP with A0 → ab
and Ai+1 → AiAi for 1 ≤ i < 10 is a succinct representation of the string (ab)1024.
Compression algorithms try to find a succinct representation for a given input
string. Some of them produce SLPs directly, while the output of others can be
efficiently translated into SLPs [9]. Since SLPs can compress exponentially, i.e.
an SLP of size n might produce a string of size Θ(2n), answering a query about
the represented string by uncompressing the SLP has exponential runtime. It is
however often possible to implement algorithms that do better. A simple example
is to print the character at a given position, which can be easily done in time
O(h) where h is the height of the syntax tree of the SLP. Another example is
navigating on the string of an SLP: We can start at the first position, go to the
next position, go to the previous position or print the character at the current
position. Each of these operations takes constant time if we allow linear time
preprocessing. This was shown in [12], which extended a result from [8]. The
authors use the Word RAM model, i.e. operations on integers whose number of
bits is logarithmic in the length of the input (the SLP) require constant time,
which is also the model we assume throughout the paper.

SLPs have been extended to TSLPs (tree straight-line programs) which allow
to compress trees (see [11] for a survey). Instead of strings, a TSLP can store
trees and tree contexts, i.e. trees with a single hole x. For example, a very tall tree
a(· · · a(︸ ︷︷ ︸
2n times

b) · · · ) can be compressed by first applying the tree context a(x) 2n times

to itself, which requires n productions, and then replacing x with b. Navigation
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has been extended to TSLPs in [12], where a navigation step can go to a specific
child, to the parent node, or print the character at the current node. Each of
these operations requires constant time after linear time preprocessing. Another
operation has also been introduced in [12]: After navigating to two (different)
nodes in the tree, we can ask if the subtrees at these nodes are equal. This
problem appears in several contexts, see for example [5]. Adding the ability to do
subtree equality checks however comes at a cost: First, the preprocessing time is
now polynomial instead of linear, but the data structure that is precomputed still
has linear size. Second, navigation steps now need to keep track of how deep into
the tree they went, which requires integers whose number of bits is logarithmic
in the tree size. We still refer to this as being constant time, which was also done
in [12] and [2]. Grammar-compressed multigraphs are another data structure for
which constant time traversal was implemented [13].

A shortcoming of TSLPs is that they can only compress vertically but not
horizontally. This is a limiting factor because a lot of tree-like documents (i.e.
Wikipedia articles) tend to be very wide but not very tall. A workaround is
to transform a tree into its fcns (first-child next-sibling) encoding. This is
basically a head-tail representation of a tree, e.g. a tree a(bcd) is represented as
a(b(⊥, c(⊥, d(⊥,⊥))),⊥), where ⊥means that there is no first child or next sibling.
This way, TSLP compression can work better because horizontal repetition is
turned into vertical repetition. However, it can be tricky to design algorithms
that try to answer queries on the original tree using only the TSLP for the tree’s
fcns encoding. For example, it is mentioned in [12] that using the fcns we can
support in constant time the navigation operations of going to the first child or to
the next sibling. But how we can go to the parent or to the last child (if it is at all
possible) in constant time is unclear. A better way to deal with arbitrarily wide
trees is to compress them more directly. An FSLP (forest straight-line program),
introduced in [7], is basically an extension of a TSLP: It can compress vertically
using tree contexts like a TSLP can, but it can also compress horizontally. For
example, the tree a(c1024 · · · a(c1024(b)) · · · ), which is a slight variation of the
previous example, has a very direct succinct representation: We can compress
c1024 and thus also the contexts a(c1024x).

In this work, we first introduce FSLP navigation without subtree equality
checks, which only requires linear preprocessing time. The allowed operations
are: go to the first/last child, the next/previous sibling or to the parent node,
or print the current character. Then, we add an extension that allows subtree
equality checks but requires polynomial preprocessing time, while still producing
a structure of linear size. In both cases, we achieve the same results as the ones
previously shown for TSLPs in [12]. While implementing our data structures
and algorithms, we use SLP navigation as a black box instead of extending its
structure like it was done in [12].

Another formalism for forest compression that is very similar to FSLPs are
Top Dags [1]. However, the most basic trees that can be represented with Top
Dags are of the form a(b) and the most basic contexts are a(b(x)). This leads
to cases where the smallest Top Dag is by a factor of the alphabet size larger
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than the smallest FSLP [7]. Since it is also possible to transform Top Dags into
equivalent FSLPs in linear time [7], and we allow linear time preprocessing, all
the results of this paper basically extend to Top Dags.

2 Preliminaries

For a string w = a1 . . . an ∈ Θn with n ≥ 0 over some alphabet Θ we write
w[i] = ai for 1 ≤ i ≤ n, w[i : j] = ai . . . aj for 1 ≤ i ≤ j ≤ n, w[: i] = w[1 : i] and
w[i :] = w[i : n]. In [7] the authors unified the view of several SLP-like structures,
which we are also going to use in this work. What was formerly called SLP is now
called SSLP (string straight-line program) which frees up the name SLP to be
used for something else: An SLP can compress any expression by giving names
to common subexpressions. This unifies the view of SSLPs, TSLPs, FSLPs and
Top Dags.

2.1 Algebras and straight-line programs

An algebra A = (U , I) consists of a universe (the carrier set) U and a set of
operations I, where each f ∈ I is a partial function f : Uk → U for some
k ∈ N. Instead of allowing partial functions we could also have defined multi-
sorted algebras (see for example [4]), but we feel that at least in this paper
this would have unnecessarily complicated the notation. The expressions E
over A consist of terms over the elements from I, i.e. if f ∈ I and f is k-ary
then f(e1, . . . , ek) ∈ E for all e1, . . . , ek ∈ E . Evaluating an expression e ∈ E is
written as JeKA and is defined in the usual way. For example, consider U = N
and I = {+, 1}, where +: N2 → N and 1 ∈ N, with the usual meaning. The
expressions are E = {1,+(1, 1),+(+(1, 1), 1),+(1,+(1, 1)), . . . }, and, for example,
J+(+(1, 1), 1)KA = (1 + 1) + 1 = 3.

For a set of variables V we write EV for the set of expressions with variables
over A. A variable can occur anywhere where a nullary function symbol can
occur. For example, if X,Y ∈ V then +(+(1, X), Y ) ∈ EV .

A straight-line program (SLP for short) over A is a tuple G = (V, rhs), where
V is a finite set of variables and rhs : V → EV is the right-hand side mapping.
The relation {(A,B) ∈ V 2 | B appears in rhs(A)} must be acyclic. This way,
we can transform every expression from e ∈ EV into one from E by recursively
applying rhs. The result can then be evaluated in the algebra A, which we
denote with JeKG ∈ U . For example, if V = {X,Y } with rhs(X) = +(1, Y ) and
rhs(Y ) = +(1, 1), then J+(X,Y )KG = J+(+(1,+(1, 1)),+(1, 1))KA = 5. The size
of an expression is |f(e1, . . . , en)| = 1 + |e1| + · · · + |en|, where |A| = 1 for a
variable A, and the size of G is |G| =

∑
A∈V |rhs(A)|. The size of G in our

example is |G| = |+(1, Y )|+ |+(1, 1)| = 3 + 3 = 6.

2.2 String straight-line programs

A string straight-line program (SSLP for short) over some alphabet Θ is an
SLP over the algebra (Θ∗, {ε, ◦} ∪Θ), where ε evaluates to the empty string, ◦
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is string concatenation, and every symbol from Θ is a constant that evaluates
to itself. Instead of v ◦ w we often simply write vw. Consider the SSLP G =
({A,B,C}, rhs) over {a, b} with rhs(A) = BB, rhs(B) = CCb and rhs(C) = aa,
then JAKG = aaaabaaaab.

2.3 Forest straight-line programs

We fix an alphabet Σ for the rest of the paper that is used to label nodes in
forests. A forest is a list of trees t1 . . . tn (n ≥ 0), while a tree is of the form a(f)
where a ∈ Σ and f is a forest. Here, a is the root character and its children
are the roots of the forest f . The set of forests is denoted by F and the set of
trees by T . Forests with a hole are defined as follows: x is a forest with a hole,
and t1 . . . tn (n ≥ 1) is a forest with a hole if t1, . . . , ti−1, ti+1, . . . , tn are trees
and ti is a tree with a hole for some 1 ≤ i ≤ n. Here, x can be thought of as a
placeholder that appears exactly once in a forest with a hole. Trees with a hole
are of the form a(f), where a ∈ Σ and f is a forest with a hole. We write Fx for
the set of forests with a hole and Tx for the set of trees with a hole. The forest
algebra AF = (F ∪ Fx, IF ) has the following operations IF :

– JεKF = ε — the empty forest.
– JxKF = x — a single hole.
– JfgKF = JfKFJgKF — horizontal concatenation, only defined if JfKF /∈ Fx or

JgKF /∈ Fx.
– JaKF = a(x) — a single node with a hole.
– Jf〈g〉KF = JfKF [JgKF ] — substitution, only defined if JfKF ∈ Fx.

The notation f [g] means that x in f is replaced with g. The idea of forest algebras
goes back to [3].

An SLP F = (V, rhs) over AF is called a forest straight-line program or FSLP
for short. As a short-hand notation we write V0 = {A ∈ V | JAKF ∈ F} for the
variables that produce forests without a hole and V1 = {A ∈ V | JAKF ∈ Fx}
for the variables that produce forests with a hole. Normal form FSLPs were
introduced in [7], that restrict the rhs-forms that may be used. We are also going
to make use of this normal form, since it simplifies the upcoming constructions.
First, let V ⊥0 ⊆ V0 be defined as

V ⊥0 = {A ∈ V0 | rhs(A) = a〈C〉, a ∈ Σ, C ∈ V0}
∪ {A ∈ V0 | rhs(A) = B〈C〉, B ∈ V1, C ∈ V0}

For a normal form FSLP we require the following:

– rhs(A) for every A ∈ V1 is of the form a〈LxR〉, where a ∈ Σ, L,R ∈ V0, or
of the form B〈C〉, where B,C ∈ V1.

– rhs(A) for every A ∈ V0 is of the form ε, or of the form BC, where B,C ∈ V0,
or of the form a〈C〉, where a ∈ Σ and C ∈ V0, or of the form B〈C〉, where
B ∈ V1 and C ∈ V ⊥0 .
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Note that JAKF ∈ T for all A ∈ V ⊥0 and JBKF ∈ Tx for all B ∈ V1, i.e., only tree
contexts appear in a normal form FSLP instead of arbitrary forest contexts.

Lemma 1. An FSLP F = (V, rhs) can be transformed in linear time into an
FSLP F ′ that is in normal form such that JAKF = JAKF ′ for every A ∈ V0.

This was shown in [7]. Since we allow linear time preprocessing, we assume from
now on that every FSLP is in normal form.

Example 1. Suppose that a, b, c ∈ Σ and let n ∈ N. Let Fn = (V, rhs) with

V = {E,A`, Ar}∪{Ai, Bi | 0 ≤ i ≤ n}∪{Cki , Dk
i , G

k
i , H

k
i | k ∈ {`, r}, 0 ≤ i ≤ n},

and rhs(E) = ε, rhs(A`) = a〈E〉, rhs(Ar) = b〈E〉, rhs(A0) = A`Ar, rhs(B0) =
b〈ExE〉,

rhs(Ai+1) = AiAi for 0 ≤ i < n,

rhs(Bi+1) = Bi〈Bi〉 for 0 ≤ i < n,

rhs(C`i ) = c〈AixAr〉 for 0 ≤ i ≤ n,
rhs(Cri ) = c〈A`xAi〉 for 0 ≤ i ≤ n,
rhs(Dk

i ) = Bi〈Cki 〉 for k ∈ {`, r}, 0 ≤ i ≤ n,
rhs(Gki ) = Cki 〈Dk

i 〉 for k ∈ {`, r}, 0 ≤ i ≤ n,
rhs(Hk

i ) = Gki 〈Ak〉 for k ∈ {`, r}, 0 ≤ i ≤ n.

Fn is in normal form with V ⊥0 = {A`, Ar} ∪ {Hk
i | 0 ≤ i ≤ n, k ∈ {`, r}}. For

0 ≤ i ≤ n we have JAiKFn = (ab)2
i

and JBiKFn = b(· · · b(︸ ︷︷ ︸
2i

x) · · · ),

JH`
i KFn

= JG`i〈A`〉KFn
= JC`i 〈D`

i 〈A`〉〉KFn
= JC`i 〈B`i 〈C`i 〈A`〉〉〉KFn

= c((ab)2
i

b(· · · b(︸ ︷︷ ︸
2i

c((ab)2
i

ab) ) · · · )︸ ︷︷ ︸
2i

b) and

JHr
i KFn

= c(a b(· · · b(︸ ︷︷ ︸
2i

c(ab(ab)2
i

) ) · · · )︸ ︷︷ ︸
2i

(ab)2
i

).

Note that the trees JHk
nKFn , where k ∈ {`, r}, have both exponential width and

height in n. See Figure 1 for an illustration.

3 Navigation

The goal of this section is to prove the following theorem:

Theorem 1. Let F = (V, rhs) be an FSLP in normal form. We can in linear
time precompute some data structure of linear size in |F |, such that the following
operations work in constant time, where N (F ) is the set of node representations,
that we will define later:
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Fig. 1. The trees JH`
nKFn on the left and JHr

nKFn in the middle from Example 1, and
the tree tM from Example 4 on the right.

– r/ : V0 → N (F )∪{⊥}: Return the root of the first tree in the forest represented
by an input variable.

– ↙ : N (F )→ N (F ) ∪ {⊥}: Return the first child of the current node.
– → : N (F )→ N (F ) ∪ {⊥}: Return the right sibling of the current node.
– r. : V0 → N (F )∪{⊥}: Return the root of the last tree in the forest represented

by an input variable.
– ↘ : N (F )→ N (F ) ∪ {⊥}: Return the last child of the current node.
– ← : N (F )→ N (F ) ∪ {⊥}: Return the left sibling of the current node.
– ↑ : N (F )→ N (F ) ∪ {⊥}: Return the parent of the current node.
– z : N (F )→ Σ: Get the symbol at the current node.

The special value ⊥ is used to indicate that an operation may fail. For example,
going to the first child of a leaf node returns ⊥.

The implementation of these operations will make use of SSLP traversals,
that can already be done in constant time, which was proven in [12].

Lemma 2. Let G = (V, rhs) be an SSLP over some alphabet Θ. We can precom-
pute some data structure in linear time in |G|, such that the following operations
work in constant time, where N (G) is the set of positions:

– / : V → N (G)∪ {⊥}: Go to the first position in the string derived by a given
variable.

– . : V → N (G) ∪ {⊥}: Go to the last position in the string derived by a given
variable.

– z : N (G)→ Θ: Get the symbol at the current position.
– → : N (G)→ N (G) ∪ {⊥}: Go to the next position.
– ← : N (G)→ N (G) ∪ {⊥}: Go to the previous position.

Each element γ ∈ N (G) represents a position in the string JAKG for a certain
variable A ∈ V . We denote this variable A by Sγ .
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Like in [12], we first define the spine SSLP F� = (V�, rhs�) over Σ� by

Σ� = {a〈LxR〉 | rhs(A) = a〈LxR〉, A ∈ V }
∪ {a〈C〉 | rhs(A) = a〈C〉, A ∈ V },

V� = V1 ∪ V ⊥0 ,

rhs�(A) =


BC if rhs(A) = B〈C〉, A ∈ V1,
a〈LxR〉 if rhs(A) = a〈LxR〉,
a〈C〉 if rhs(A) = a〈C〉,
rhs(B) if rhs(A) = B〈C〉, A ∈ V ⊥0 .

The idea of the spine SSLP is that its symbols Σ� are exactly the rhs-expressions
of F where symbols from Σ occur. Navigating to one of the symbols in JAKF�

for A ∈ V ⊥0 is essentially the same as navigating to a specific node in JAKF .
If rhs(A) = a〈C〉 this string only consists of a single symbol a〈C〉. If instead
rhs(A) = B〈C〉, the word JAKF� is of the form a1〈L1xR1〉 . . . am〈LmxRm〉. Nav-
igating such a word left or right corresponds to navigating up or down in the
tree JAKF , while following the x position. Standing on the symbol ai〈LixRi〉
means that the current node is labelled with ai. When we walk past the last
element, am〈LmxRm〉, we have to continue to navigate in JCKF . Let us thus
define the vertical navigation structure as V(F ) = N (F�)+, which enables us
to chain multiple navigations in F� together. We can then define the following
navigation steps, which we will later use to implement the actual navigation.

– 4 : V ⊥0 → V(F ): Go to the root node,
– ↑ : V(F )→ V(F ) ∪ {⊥}: Go to the parent node.
– ↓ : V(F )→ V(F ) ∪ {⊥}: Go to the child node at the x position.
– z : V(F )→ Σ�: Get the current symbol.

Implementing these is straight-forward: We set 4(A) = /(A) for A ∈ V ⊥0 . Let
v ∈ N (F�)∗ and γ ∈ N (F�). We set z(vγ) = z(γ). The other two operations are
defined as follows:

↑(vγ) =


v←(γ) if ←(γ) 6= ⊥,
v if ←(γ) = ⊥ and v 6= ε,

⊥ if ←(γ) = ⊥ and v = ε,

↓(vγ) =


v→(γ) if →(γ) 6= ⊥,
vγ /(C) if →(γ) = ⊥ and rhs(Sγ) = B〈C〉,
⊥ if →(γ) = ⊥ and rhs(Sγ) = a〈C〉.

Defining the operations on V(F ) in isolation not only makes the definition of the
actual navigation easier, but it also provides the benefit that we only have to
change these when we add the ability to do subtree equality checks, while the
definition of the actual navigation will stay the same.

What is left to do is to add the ability to do horizontal navigations as well.
Horizontal navigations can happen on any of the L and R in a〈LxR〉 as well
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as C in a〈C〉. For this, we define another auxiliary SSLP, called the rib SSLP
F� = (V�, rhs�) over Σ� by Σ� = {A | A ∈ V ⊥0 }, V� = V0 and

rhs�(A) =


ε if rhs(A) = ε,

BC if rhs(A) = BC,

A if A ∈ V ⊥0 .

We make a copy of all A ∈ V0 which we simply call A. This is because we actually
want an SSLP navigation on Σ� to end in a symbol from V ⊥0 . Without making
the copy, we would not be able to assign an rhs value to such a symbol. Note
that for each A ∈ V0 we have JAKF�

= A1 . . . An, where Ai ∈ V ⊥0 . Thus JAiKF is
the ith tree in the forest JAKF , i.e. JAKF = JA1KF · · · JAnKF ∈ T n.

Example 2. Using Fn from Example 1, we have

Σ� = {b〈ExE〉, a〈E〉, b〈E〉} ∪ {c〈AixAr〉, c〈A`xAi〉 | 0 ≤ i ≤ n},
Σ� = {A`, Ar} ∪ {Hk

i | 0 ≤ i ≤ n, k ∈ {`, r}} and for example

JH`
i KF� = c〈AixAr〉(b〈ExE〉)2

i

c〈AixAr〉 for 0 ≤ i ≤ n and

JAiKF�
= (A`Ar)2

i

for 0 ≤ i ≤ n.

For horizontal navigations, we have to remember if we started in an L or R in
a〈LxR〉 or in C in a〈C〉, which we record as `, r and m, respectively. Therefore,
the horizontal navigation structure is H(F ) = {`,m, r} × N (F�). The idea for
the whole navigation is then to interleave navigations on F� with navigations on
F�, so we define N (F ) = (H(F )× V(F ))+.

We first introduce a short-hand notation to create a navigation on F� followed
by a navigation on F�. Let /d : V0 → (H(F )×V(F ))∪{⊥} for every d ∈ {`,m, r}
be defined by

/d(A) =

{
((d, /(A)),4(D)) if /(A) 6= ⊥ and z(/(A)) = D,

⊥ if /(A) = ⊥.

We are now going to implement the operations from Theorem 1. Suppose that the
current state is w((d, h), v) ∈ N (F ), where w ∈ (H(F )× V(F ))∗, (d, h) ∈ H(F ),
so d ∈ {`,m, r} and h ∈ N (F�), and v ∈ V(F ). To query the current symbol,
we define z(w((d, h), v)) = a if z(v) = a〈LxR〉 or z(v) = a〈C〉. To implement
↙, we have to consider the following cases: If we are on a symbol of the form
z(v) = a〈LxR〉 we can either have JLKF 6= ε or JLKF = ε. In the first case we
go to the first symbol of JLKF�

and record `. This symbol is of the form A,
where A ∈ V ⊥0 , so we have to go to the root node of JAKF . We therefore append
/`(L) = ((`, /(L)),4(A)). In case JLKF = ε we reach the x of a〈LxR〉, which
means that we have to move the current navigation on V(F ) down one position,
i.e. we replace v with ↓(v). If we are on a symbol of the form a〈C〉 we can again
have that JCKF = ε, in which case there is nowhere to go. If JCKF 6= ε we go to
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the first symbol A of JCKF�
, record m and again start a navigation to the root

of JAKF� , so we append /m(C) = ((m, /(C)),4(A)). Altogether, the function is

↙(w((d, h), v)) =


w((d, h), v) /`(L) if z(v) = a〈LxR〉 and /`(L) 6= ⊥,
w((d, h), ↓(v)) if z(v) = a〈LxR〉 and /`(L) = ⊥,
w((d, h), v) /m(C) if z(v) = a〈C〉 and /m(C) 6= ⊥,
⊥ if z(v) = a〈C〉 and /m(C) = ⊥,

The function ↘ is symmetric and is therefore omitted. Going to the left or
right neighbor is more involved. Since going to the right neighbor is basically
a mirrored version of going to the left neighbor, we will focus on the former.
We start by trying to move the current navigation on V(F ) one position up, i.e.
replace v with ↑(v), because we need to know what is to the right of the current
node. If moving up succeeds, the current symbol is of the form a〈LxR〉, which
means that we were standing on the x position and thus the next tree we have
to go to is the first tree of JRKF if JRKF 6= ε. We then go to the first symbol A
of JRKF�

, record r, and go to the root node of JAKF , which means we append
/r(R) = ((r, /(R)),4(A)). If JRKF = ε, there is nowhere to go. If moving up
does not succeed, it means that v points to the root node. We are therefore on
an Ai of the previous horizontal navigation h, which is of the form A1 . . . An. If
i < n, then we move this navigation one to the right and go to the root node
of JAi+1KF , so we replace ((d, h), v) with ((d,→(h)),4(Ai+1)). If i = n, then we
have to look at the current symbol of the last navigation from w. In case w = ε,
there is nowhere to go. Now suppose w ends in v′ ∈ V(F ). Suppose that the
current symbol of v′ is of the form z(v′) = a〈LxR〉 and d = `. This means that
we left the navigation on L to the right and end up on x, so we have to move the
vertical navigation one position down, i.e. we replace v′ with ↓(v′). In case d = r,
we left the navigation on R to the right, so there is nowhere to go. If the current
symbol is instead of the form z(v′) = a〈C〉 there is also nowhere to go, since we
were on the last tree of JCKF . Altogether, we have the function

→(w((d, h), v)) =



w((d, h), u) /r(R) if ↑(v) = u, z(u) = a〈LxR〉
and /r(R) 6= ⊥,

⊥ if ↑(v) = u, z(u) = a〈LxR〉
and /r(R) = ⊥,

w((d, h′),4(D)) if ↑(v) = ⊥, →(h) = h′ 6= ⊥
and z(h′) = D,

w′((d′, h′), ↓(v′)) if ↑(v) = ⊥, →(h) = ⊥,
w = w′((d′, h′), v′),

w′ ∈ (H(F )× V(F ))∗, (d′, h′) ∈ H(F ),

v′ ∈ V(F ) and d = `,

⊥ if ↑(v) = ⊥, →(h) = ⊥, w = ε

or d 6= `.
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Going to the parent node is straight-forward. We try to replace v with ↑(v). If
this is not possible, we remove (d, h) and v, if w 6= ε. If w = ε, then there is
nowhere to go. Formally, this is

↑(w(((d, h), v)) =


w((d, h), ↑(v)) if ↑(v) 6= ⊥,
w if ↑(v) = ⊥ and w 6= ε,

⊥ if ↑(v) = ⊥ and w = ε,

For starting a navigation in S ∈ V0, we go to the first tree of JSKF and record m
in case JSKF 6= ε. This navigation ends on a symbol A, and we go to the root node
of JAKF . Thus we start with r/(S) = /m(S) = ((m, /(S)),4(A)). If JSKF = ε
there is nowhere to go, so r/(S) = ⊥. Going to the last tree is symmetric.

Example 3. Consider Fn from Example 1. We have

r/(H
`
n) = ((m, /(H`

n)),4(H`
n))

and since z(4(H`
n)) = c〈AnxAr〉, we obtain z(r/(H

`
n)) = c. Now consider applying

↙ to this node: Since z(/(An)) = A`, we have

↙(r/(H
`
n)) = ((m, /(H`

n)),4(H`
n))((`, /(An)),4(A`)).

Using z on this structure yields a, because z(4(A`)) = a〈E〉.

4 Navigation with Equality Checks

In this section we change our navigation structure, which we again call N (F ), to
include subtree equality checks.

Theorem 2. Using polynomial time preprocessing, we can precompute some
data structure of linear size in |F | such that in addition to the operations from
Theorem 1 the following operation, which checks if two subtrees rooted at the
given input nodes are equal:

eq: N (F )×N (F )→ {0, 1}.

We ensure that our FSLP is reduced which means that there are no A 6= A′ ∈ V
such that JAKF = JA′KF , which can be tested using a result from [7]. We give
a similar characterization of equal subtrees as the one found in [12]. Let us
write A� instead of JAKF� . We define V �

0 = {A ∈ V ⊥0 | rhs(A) = B〈C〉}.
For A ∈ V �

0 with rhs(A) = B〈C〉 let the i’th subtree be defined as A4(i) =
JB�[i]〈· · ·B�[`(A)]〈C〉 · · ·〉KF , where 1 ≤ i ≤ `(A) + 1 and `(A) = |B�|. Note
that A4(1) = JAKF and A4(`(A) + 1) = JCKF . Now let i ≥ 2 be the smallest
number such that there is a D ∈ V ⊥0 with A4(i) = JDKF . We call i the split
index of A, written as si(A), and D the split variable of A, written as sv(A). Since
A4(`(A) + 1) = JCKF and C ∈ V ⊥0 , the split index and split variable always
exist. The idea to implement the navigation that also supports subtree equality
checks is to always stay below the split index. When we reach the split index, we
simply continue to navigate in the split variable, which preserves subtree equality.
We now only have to characterize the equal subtrees below split indices.
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Lemma 3. Let t, t′ ∈ T , a, a′ ∈ Σ and L,L′, R,R′ ∈ V0, with

1. a〈LxR〉 6= a′〈L′xR′〉, and
2. Ja〈LxR〉KF [t] = Ja′〈L′xR′〉KF [t′].

Then there are D,D′ ∈ V ⊥0 with JDKF = t′ and JD′KF = t.

Proof. Since F is in normal form, there are variables

{L1, . . . , Ln, R1, . . . , Rm, L
′
1, . . . , L

′
n′ , R′1, . . . , R

′
m′} ⊆ V ⊥0

with JLKF = JL1 . . . LnKF , JRKF = JR1 . . . RmKF , JL′KF = JL′1 . . . L′n′KF and
JR′KF = JR′1 . . . R′m′KF . From Point 2 we obtain a = a′ and JLKF t JRKF =
JL′KF t′ JR′KF . From JLKF = JL′KF we would obtain t = t′ and JRKF = JR′KF
which is in contradiction to Point 1 because F is reduced. Hence we must
have JLKF 6= JL′KF which implies that JL1 . . . LnKF ∈ T n is a proper prefix of
JL′1 . . . L′n′KF ∈ T n

′
or vice versa. In the first case we have t = JL′n+1KF and

t′ = JRn′−nKF , in the second case t′ = JLn′+1KF and t = JR′n−n′KF .

Lemma 4. Let A,A′ ∈ V �
0 , 1 ≤ i < si(A) and 1 ≤ i′ < si(A′). We have

A4(i) = A′4(i′) if and only if

1. A�[i : si(A)− 2] = A′�[i′ : si(A′)− 2], and
2. JA�[si(A)− 1]〈sv(A)〉KF = JA′�[si(A′)− 1]〈sv(A′)〉KF .

Proof. It is easy to see that Points 1 and 2 imply A4(i) = A′4(i′). To prove the
opposite direction, we use induction on m = min{si(A)− i− 1, si(A′)− i′ − 1}.
Assume that A4(i) = A′4(i′). Let m = 0, which means that either i = si(A)− 1
or i′ = si(A′)− 1. We assume that i = si(A)− 1 and show that i′ = si(A′)− 1.
By definition of si and sv we have JA�[si(A) − 1]〈sv(A)〉KF = A4(i). Since
A′4(i′) = JA′�[i′]KF [A′4(i′ + 1)], we obtain

JA�[si(A)− 1]〈sv(A)〉KF = JA′�[i′]KF [A′4(i′ + 1)].

If A�[si(A)−1] = A′�[i′] we have Jsv(A)KF = A′4(i′+1). If A�[si(A)−1] 6= A′�[i′],

then we obtain from Lemma 3 that there is a D ∈ V ⊥0 with JDKF = A′4(i′+1). In
both cases, there is a variable that evaluates to A′4(i′ + 1), and since i′ < si(A′),
we must have that i′ + 1 = si(A′) and A′4(i′ + 1) = Jsv(A′)KF . Therefore, we
obtain that A�[i : si(A)− 2] = ε, A′�[i′ : si(A′)− 2] = ε and

JA�[si(A)− 1]〈sv(A)〉KF = JA′�[si(A′)− 1]〈sv(A′)〉KF .

The symmetric case, in which i′ = si(A′)− 1, uses the same arguments. Now let
m > 0, so i < si(A) − 1 and i′ < si(A′) − 1. Since A4(i) = A′4(i′) we obtain
that JA�[i]KF [A4(i + 1)] = JA′�[i′]KF [A′4(i′ + 1)]. If A�[i] 6= A′�[i′] we would

obtain from Lemma 3 that there are D,D′ ∈ V ⊥0 with JDKF = A′4(i′ + 1) and
JD′KF = A4(i + 1) which contradicts i < si(A) − 1 as well as i′ < si(A′) − 1.
Therefore, we must have A�[i] = A′�[i′]. From A4(i) = A′4(i′) and this fact
we can conclude that A4(i+ 1) = A′4(i′ + 1). Therefore by induction we have
A�[i+ 1 : si(A)− 2] = A′�[i′ + 1 : si(A′)− 2], as well as Point 2. Together with
A�[i] = A′�[i′] we also obtain Point 1.
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To use Lemma 4 for equality checks, we still have to argue that we can implement
some data structure of linear size that allows to perform these checks in constant
time. To check Point 2 of Lemma 4 we do the following: Let

∼ = {(A,A′) ∈ V �
0 ×V

�
0 | JA�[si(A)−1]〈sv(A)〉KF = JA′�[si(A′)−1]〈sv(A′)〉KF }.

This relation is an equivalence relation. We assign each equivalence class a natural
number and precompute a mapping that takes an element to its equivalence
class, represented as this number. This mapping requires linear space and we can
test if two elements belong to the same equivalence class in constant time. Let
A,A′ ∈ V �

0 , 1 ≤ i < si(A) and 1 ≤ i′ < si(A′). We only have to check Point 1 of
Lemma 4 if Point 2 is true, so suppose that (A,A′) ∈ ∼. We now have to test if
A�[i : si(A)−2] = A′�[i′ : si(A′)−2]. This can only be true if k := si(A)−2− i =
si(A′) − 2 − i′. Let suff(A,A′) be the length of the longest common suffix of
A�[: si(A)− 2] and A′�[: si(A′)− 2], which can be computed in polynomial time
using a result from [14]. We then have A�[i : si(A) − 2] = A′�[i′ : si(A′) − 2]
if and only if k ≤ suff(A,A′). Storing suff explicitly for all elements belonging
to the same equivalence class M ∈ V �

0 /∼ requires quadratic space. Instead, we
compute for each M a tree tM that has linear size in |M |, which we can use to
query suff in constant time. In this tree, the elements from M are the leaves
and the lowest common ancestor of two leaves A 6= A′ ∈ M is labelled with
suff(A,A′). Lowest common ancestor queries can be performed in constant time
after linear time preprocessing, using the result from [15].

The trees tM can be constructed as follows: We start with any A 6= A′ ∈M
and make A and A′ children of a node labelled with suff(A,A′). Now suppose
we have constructed a tree for some elements of M . To add a new A ∈M to the
tree, we take a leaf A′ where suff(A,A′) is maximal. We then find the closest
ancestor node a of A′ whose parent p is labelled with m ≤ suff(A,A′), or in case
this does not exist then a is the root node. If m = suff(A,A′) then A becomes
a new child of a. If m < suff(A,A′) then we add a new node between a and p,
label it with suff(A,A′) and add A as its second child. If a is the root node then
we add a new parent to a, label it with suff(A,A′) and add A as its second child.

It remains to argue why we can precompute si and sv in polynomial time,
which we can do as follows: For every A ∈ V �

0 and A′ 6= A ∈ V ⊥0 we test if
there is an 1 < i ≤ `(A) with A4(i) = JA′KF , which is done as follows: Since
|A4(1)| > · · · > |A4(`(A))| we can use binary search to test if there is an
1 < i ≤ `(A) such that |A4(i)| = |JA′KF |. For a given i computing |A4(i)| can
be done in polynomial time because we can compute an FSLP G with variable
X such that JXKG = A4(i). This is done by removing a prefix of A�, which
can be done by cutting the syntax tree of A. Also, given a variable X of an
FSLP G it is easy to compute |JXKG|. Furthermore, we can test if A4(i) = JA′KF
because given two variables X,Y of an FSLP G we can test in polynomial time
if JXKG = JY KG using a result from [7]. For a given A ∈ V �

0 we then take the
A′ ∈ V ⊥0 with the smallest i such that A4(i) = JA′KF and set sv(A) = A′ and
si(A) = i. If no such i exists then we set sv(A) = C, where rhs(A) = B〈C〉, and
si(A) = `(A) + 1.
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Example 4. Recall the definition of Fn from Example 1. Since JC`i 〈A`〉KFn
=

c((ab)2
i

xb)[a] = c(ax(ab)2
i

)[b] = JC`i 〈A`〉KFn
, we have H`

i4(2i+2) = Hr
i 4(2i+2)

for 0 ≤ i ≤ n. We also have H`
i�[j] = b〈ExE〉 = Hr

i �[j] for all 2 ≤ j ≤ 2i + 1.

This implies that H`
i4(j) = Hr

i 4(j) for all 2 ≤ j ≤ 2i + 1. Therefore, si(H`
i ) =

si(Hr
i ) = 2i + 3 and sv(Hk

i ) = Ak for all 0 ≤ i ≤ n and k ∈ {`, r}. Since

JH`
i�[si(H`

i )− 1]〈sv(H`
i )〉KFn

= JHr
i �[si(Hr

i )− 1]〈sv(Hr
i )〉KFn

we have H`
i ∼ Hr

i for all 0 ≤ i ≤ n, thus V ⊥0 /∼ = {{H`
i , H

r
i } | 0 ≤ i ≤ n}, and

suff(H`
i , H

r
i ) = 2i.

Let us change the definition of rhs(Dk
i ) from rhs(Dk

i ) = Bi〈Cki 〉 to rhs(Dk
i ) =

Bi〈Ck0 〉. We then have for 0 ≤ i ≤ n that

JH`
i KFn = c((ab)2

i

b(· · · b(︸ ︷︷ ︸
2i

c(abab) ) · · · )︸ ︷︷ ︸
2i

b) and

JHr
i KFn

= c(a b(· · · b(︸ ︷︷ ︸
2i

c(abab) ) · · · )︸ ︷︷ ︸
2i

(ab)2
i

).

Since JCr0〈Ar〉KFn
= c(axab)[b] = c(abxb)[a] = JC`0〈A`〉KFn

, we have

H`
i4(2i + 2) = Hr

i 4(2i + 2) = H`
j4(2j + 2) = Hr

j4(2j + 2)

for all 0 ≤ i, j ≤ n. Thus Hk
i 4(2i+2−m) = Hk′

j 4(2j+2−m) for all k, k′ ∈ {`, r},
1 ≤ i, j ≤ 2n and 0 ≤ m ≤ max{2i, 2j}. Therefore, V ⊥0 /∼ = {M} consists of the
single equivalence class M = {Hk

i | 0 ≤ i ≤ n, k ∈ {`, r}}. See Figure 1 for the
tree tM .

We now explain how we have to change our vertical navigation structure V(F )
and the operations on it to support the subtree equality check eq. We change
the V(F )-part of our navigation structure to V(F ) = (N (F�)× N)+, where we
use the N component to count how many ↓ steps we made. The operations 4, ↑
and z are straight-forward to implement. Let v ∈ (N (F�)×N)∗, γ ∈ N (F�) and
i ∈ N. We set z(v(γ, i)) = z(γ) and 4(A) = (/(A), 1) for A ∈ V ⊥0 and

↑(v(γ, i)) =


v(←(γ), i− 1) if ←(γ) 6= ⊥,
v if ←(γ) = ⊥ and v 6= ε,

⊥ if ←(γ) = ⊥ and v = ε,

For the implementation of ↓, let v(γ, i) ∈ V(F ) be the current state, where
v ∈ (N (F�) × N)∗, γ ∈ N (F�) and i ∈ N. Suppose the navigation γ started
in /(A). This means that we are currently on A�[i] and want to navigate to
A�[i+ 1]. If A /∈ V �

0 , so rhs(A) is of the form a〈C〉, there is nowhere to go. Now
let A ∈ V �

0 . In case si(A) > i+ 1, we can stay on A�, so we replace γ with →(γ)
and i with i+ 1. In case si(A) = i+ 1, we have to continue to navigate in sv(A)�,
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since A4(i+ 1) = Jsv(A)KF . Therefore, we append (/(sv(A)), 1). Formally, we
have

↓(v(γ, i)) =


v(→(γ), i+ 1) if Sγ ∈ V �

0 and si(Sγ) > i+ 1,

v(γ, i)4(sv(Sγ)) if Sγ ∈ V �
0 and si(Sγ) = i+ 1,

⊥ if Sγ /∈ V �
0 .

With the new definition of N (F ), the subtree equality check eq can easily
be implemented. Suppose the rightmost elements from N (F ) are v(γ, i) and
v′(γ′, i′), where γ started with /(A) and γ′ with /(A′) for A,A′ ∈ V ⊥0 . In
case rhs(A) = a〈C〉, so A ∈ V ⊥0 \ V �

0 , then A4(i) = A′4(i′) if and only if
rhs(A′) = a〈C〉. Now let A,A′ ∈ V �

0 , in which case we use Lemma 4 to test
whether A4(i) = A′4(i′).

5 Discussion

We first implemented a data structure that can be precomputed in linear time
with which we can do navigation steps in constant time. Later we added the
ability to do subtree equality checks, again by precomputing a data structure
of linear size. However, the precomputation time required is polynomial in this
case. It would be interesting to show a lower bound for the exponent. Since the
preprocessing requires equality checks for which the best known algorithm is
quadratic (see [10]), it would be surprising if this exponent was lower than 2.
Implementing all the algorithms of this work would also be interesting. In [6] it
was shown that using linear time we can transform an FSLP into an equivalent
one such that the height h(F ) of its syntax tree is logarithmic in |F |. If we
can show that h(F ) does not increase when using Lemma 1, and that the size
|X| of elements X ∈ N (F ) is bounded by h(F ), then we would obtain that
|X| ∈ O(log |F |).
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