Exercise 7

Task 1

Which of the following statements are correct? Give reasons for your answer.
(a) (\mathbb{N}, \leq) is automatically presentable.
(b) Let $M \subseteq \mathbb{N}$ (unary relation), then (\mathbb{N}, M) is automatically presentable.

Task 2

Check whether $(\mathbb{N}, \leq) \models \exists x \forall y(x \leq y)$ holds by applying the technique from the proof of the Theorem of Khoussainov and Nerode.

Task 3

Are any two countable linear orders without a smallest and a largest element isomorphic?

Task 4

Show that
(a) the lexicographic order $\leq_{\text {lex }}$ defined by

$$
\begin{aligned}
u \leq_{\operatorname{lex}} v \Longleftrightarrow & u \text { is a prefix of } v \text { or } \\
& \text { there are } x, y, z \in \Sigma^{*} \text { such that } u=x a y \text { and } v=x b z,
\end{aligned}
$$

(b) the length-lexicographic order $\leq_{\text {llex }}$ defined by

$$
u \leq_{\operatorname{llex}} v \Longleftrightarrow|u|<|v| \text { or }\left(|u|=|v| \text { and } u \leq_{\operatorname{lex}} v\right) .
$$

are linear orders.

