Exercise 12

Task 1

Let $\mathcal{G}=(V, E)$ be a graph, where V is the set of vertices and $E \subseteq V \times V$ is the set of edges. We consider \mathcal{G} as a structure with universe V and binary relation E. Formulate the following statements as MSO-formulas:
(a) The graph is strongly connected.
(b) The graph is bipartite (= the underlying undirected graph is bipartite).
(c) The graph is a tree with a root.

Task 2

Find MSO-formulas for the following regular languages:
(a) $L_{1}=L\left((a \mid b)^{*} a\right)$
(b) $L_{2}=\left\{w \in \Sigma^{+} \mid w\right.$ begins and ends with $\left.b\right\}$
(c) $L_{3}=L\left(b(a \mid b)^{*} b\right)$

Task 3

Which regular languages over $\Sigma=\{a, b, c\}$ correspond to the following MSO formulas?
(a) $\forall x \forall y\left(P_{a}(x) \wedge P_{b}(y) \wedge(x<y) \wedge\left(\forall z(x<z<y) \rightarrow \neg P_{b}(z)\right)\right)$
$\rightarrow\left(\exists x_{1} \exists x_{2}\left(x<x_{1}<x_{2}<y\right) \wedge P_{c}\left(x_{1}\right) \wedge P_{c}\left(x_{2}\right)\right)$
(b) $\exists X(\exists x \exists y(\forall u(x \leq u \leq y) \wedge x \in X \wedge y \in X) \wedge$
$\forall x \forall y(y=x+1 \rightarrow(x \in X \leftrightarrow \neg(y \in X))))$

