
Advanced Logic

Markus Lohrey

Universität Siegen

Summer 2023

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 1 / 194

General comments

Informations concerning the lecture can be found at

https://www.eti.uni-siegen.de/ti/lehre/sommer_2023/advancedlogic/advancedlogic.html

◮ current version of the slides

◮ links to the videos

◮ exercise sheets

Literature:

◮ Schöning: Logik für Informatiker, Spektrum Akademischer Verlag
2013
(English Edition: Logic for Computer Scientists, Birkhäuser 2008)

◮ Ebbinghaus, Flum, Thomas: Einführung in the mathematische Logik,
Spektrum Akademischer Verlag
(English Edition: Mathematical Logic, Springer 1994)

The tutorials will be organized by Louisa Seelbach.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 2 / 194

https://www.eti.uni-siegen.de/ti/lehre/sommer_2023/advancedlogic/advancedlogic.html

Recapitulation from the lecture GTI

Definition (recursively enumerable)

A language L ⊆ Σ∗ is recursively enumerable, if there is an algorithm with
the following properties:

For x ∈ Σ∗ we have:

◮ If x ∈ L, then the algorithm terminates with input x .

◮ If x 6∈ L, then the algorithm does not terminate with input x .

German term: semi-entscheidbar.

Lemma
A language L ⊆ Σ∗ is recursively enumerable if and only if there is a
computable total function f : N→ Σ∗ with L = {f (i) | i ∈ N}.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 3 / 194

Recapitulation from the lecture GTI

Definition (decidable and undecidable)

A language L ⊆ Σ∗ is decidable, if there is an algorithm with the following
properties: for all x ∈ Σ∗ we have:

◮ If x ∈ L, then the algorithm terminates on input x with output “Yes”.

◮ If x /∈ L, then the algorithm terminates on input x with output “No”.

A language L ⊆ Σ∗ is undecidable, if L is not decidable.

Theorem
A language L ⊆ Σ∗ is decidable if and only if L and Σ∗ \ L are both
recursively enumerable.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 4 / 194

Recapitulation from the lecture Logik I
We assume the following notions/definitions from Logik I

◮ formulas of predicate logic (Formel der Prädikatenlogik)

Example: G = ∀x∃y(P(x , f (y)) ∧ ¬Q(g(z , x)))

◮ sentence = formulas without free variable (Aussagen)

Example: F = ∀x∃y(P(x , y) ∧ ¬P(f (x), x))
◮ structure (Struktur) A = (UA, IA), where UA is the universe of the

structure and IA is the interpretation function (we write f A = IA(f)).

Example: UA = N, f A(n) = n2, PA = {(n,m) | n < m}.
◮ Structure A is suitable (passend) for a formula F .

Example: A is suitable for F , but not suitable for G .

◮ A |= F : F evaluates to 1 (= true) in the structure A.
Whenever we write A |= F , we implicitly assume that A is suitable
for F .

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 5 / 194

Recapitulation from the lecture Logik I

A formula F of predicate logic is:

◮ satisfiable, if there is a structure A such that A |= F

(F is true in the structure A).
◮ valid, if A |= F holds for every structure A.

Corollary of Gilmore’s theorem

The set of all unsatisfiable formulas of predicate logic is recursively
enumerable.

Corollary

The set of all valid formulas of predicate logic is recursively enumerable.

Proof: F is valid if and only if ¬F is unsatisfiable.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 6 / 194

Undecidability in predicate logic

We want to prove the following important result:

Church’s theorem
The set of valid formulas of predicate logic is undecidable.

Corollary

The set of satisfiable formulas of predicate logic is not recursively
enumerable.

Proof: The set of unsatisfiable formulas of predicate logic is recursively
enumerable.

If the set of satisfiable formulas of predicate logic would be recursively
enumerable, then it would be decidable.

Hence, also the set of unsatisfiable (and hence the set of valid) formulas
would be decidable.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 7 / 194

Register machines

We prove Church’s theorem by a reduction from the halting problem for
register machine programs.

Let R1,R2, . . . be (names for) registers.

Intuition: Every register stores a natural number.

A register machine program (RMP for short) P is a sequence of
instructions A1;A2; . . . ;Al , where Al is the STOP instruction, and for all
1 ≤ i ≤ l − 1 the instruction Ai is of one of the following types:

◮ Rj := Rj + 1 for some 1 ≤ j ≤ l

◮ Rj := Rj − 1 for some 1 ≤ j ≤ l

◮ IF Rj = 0 THEN k1 ELSE k2 for some 1 ≤ j , k1, k2 ≤ l .

Note: We assume that only the registers R1, . . . ,Rl are used in an RMP
with l instructions. This is no restriction.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 8 / 194

Register machines

A configuration of P is a tuple (i , n1, . . . , nl) ∈ Nl+1 with 1 ≤ i ≤ l .

Intuition: i is the number of the instruction that is executed next and nj is
the current content of register Rj .

For configurations (i , n1, . . . , nl) and (i ′, n′1, . . . , n
′
l) we write

(i , n1, . . . , nl)→P (i ′, n′1, . . . , n
′
l)

if and only if 1 ≤ i ≤ l − 1 and one of the following cases holds:

◮ Ai = (Rj := Rj + 1) for some 1 ≤ j ≤ l , i ′ = i + 1, n′j = nj + 1,
n′k = nk for k 6= j .

◮ Ai = (Rj := Rj − 1) for some 1 ≤ j ≤ l , i ′ = i + 1, nj = n′j = 0 or
(nj > 0, n′j = nj − 1), and n′k = nk for k 6= j .

◮ Ai = (IF Rj = 0 THEN k1 ELSE k2) for some 1 ≤ j , k1, k2 ≤ l ,
n′k = nk for all 1 ≤ k ≤ l , i ′ = k1 if nj = 0, i ′ = k2 if nj > 0.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 9 / 194

Register machines

Example: The following RMP P simulates R1 := R1 + R2:

1: IF R2 = 0 THEN 5 ELSE 2;
2: R1 := R1 + 1;
3: R2 := R2 − 1;
4: IF R1 = 0 THEN 1 ELSE 1;
5: STOP

More precisely: For all numbers n1, n2 we have

(1, n1, n2, 0, 0, 0) →∗
P (5, n1 + n2, 0, 0, 0, 0).

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 10 / 194

Register machines

The configuration is (1, 0, . . . , 0) (all registers contain 0, first instruction is
executed) is also called starting configuration.

We define

HALT = {P | P = A1;A2; . . . ;Al is a RMP with l instructions,

(1, 0, . . . , 0)→∗
P (l , n1, . . . , nl) for n1, . . . , nl ≥ 0}.

Register machine programs exactly correspond to GOTO-programs from
the GTI lecture.

In GTI we proved that Turing machines and GOTO-programs can simulate
each other.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 11 / 194

Register machines

Since the halting problem for Turing machines starting with the empty
tape (does a given Turing machine finally terminate when it is started with
a tape where every cell contains the blank symbol?) is undecidable, we get:

Theorem (undecidability of the halting problem for RMPs)

The set HALT is undecidable.

Remark: HALT is recursively enumerable: Simulate a given RMP on the
starting configuration (1, 0, . . . , 0) and stop, if the RMP reaches the
STOP-instruction.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 12 / 194

Proof of Church’s theorem

We prove Church’s theorem by constructing from a given RMP P a
formula FP such that:

FP is valid ⇐⇒ P ∈ HALT

Let P = A1;A2; . . . ;Al be an RMP.

We fix the following symbols:

◮ <: binary predicate symbol

◮ c : constant

◮ f , g : unary function symbols

◮ R : (l + 2)-ary predicate symbol

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 13 / 194

Proof of Church’s theorem
We define a structure AP by case distinction:

Case 1: P 6∈ HALT:
◮ Universe UAP

= N

◮ <AP= {(n,m) | n < m} (the standard order on N)
◮ cAP = 0
◮ f AP (n) = n + 1, gAP (n + 1) = n, gAP (0) = 0
◮ RAP = {(s, i , n1, . . . , nl) | (1, 0, . . . , 0)→s

P (i , n1, . . . , nl)}
Case 2: P ∈ HALT:

Let t such that (1, 0, . . . , 0)→t
P (l , n1, . . . , nl) and e = max{t, l}.

◮ Universe UAP
= {0, 1, . . . , e}

◮ <AP= {(n,m) | n < m} (the standard order on {0, 1, . . . , e})
◮ cAP = 0
◮ f AP (n) = n + 1 for 0 ≤ n ≤ e − 1 and f AP (e) = e.
◮ gAP (n + 1) = n for 0 ≤ n ≤ e − 1 and gAP (0) = 0.
◮ RAP = {(s, i , n1, . . . , nl) | 0 ≤ s ≤ t, (1, 0, . . . , 0)→s

P (i , n1, . . . , nl)}
Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 14 / 194

Proof of Church’s theorem

In the following we write m for the term f m(c) = f (f (· · · f
︸ ︷︷ ︸

m many

(c) · · ·)).

We define a sentence GP (in which <, c , f , g and R are used) with the
following properties:

(A) AP |= GP

(B) For every model A of GP the following holds:

If (1, 0, . . . , 0)→s
P (i , n1, . . . , nl), then:

A |= R(s, i , n1, . . . , nl) ∧
s−1∧

q=0

q < q + 1.

We define GP = G0 ∧ R(0, 1, 0, . . . , 0) ∧ G1 ∧ · · · ∧ Gl−1.

The sentences G0,G1, . . . ,Gl−1 are defined as follows.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 15 / 194

Proof of Church’s theorem
G0 expresses that

◮ < is a strict linear order with smallest element c ,

◮ x ≤ f (x) and g(x) ≤ x for all x ,

◮ for every x , which is not the largest element with respect to <, f (x)
is the direct successor of x , and

◮ for every x with x 6= c , g(x) is the direct predecessor of x .

∀x , y , z (¬x < x) ∧ (x = y ∨ x < y ∨ y < x) ∧ ((x < y ∧ y < z)→ x < z)

∧ (x = c ∨ c < x)

∧ (x = f (x) ∨ x < f (x))

∧ (x = g(x) ∨ g(x) < x)

∧
(
∃u(x < u)→ (x < f (x) ∧ ∀u(x < u → (u = f (x) ∨ f (x) < u)))

)

∧
(
∃u(u < x)→ (g(x) < x ∧ ∀u(u < x → (u = g(x) ∨ u < g(x))))

)

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 16 / 194

Proof of Church’s theorem

Remark: For every model A of G0 we have:

◮ A |= g(c) = c

◮ A |= ∀x (∃u(x < u)→ g(f (x)) = x)

A |= g(c) = c : We have g(c) = c ∨ c < g(c) and c = g(c) ∨ g(c) < c .

Hence, if g(c) 6= c then we would obtain c < g(c) ∧ g(c) < c and hence
c < c , which is a contradiction.

A |= ∀x (∃u(x < u)→ g(f (x)) = x): Assume that ∃u(x < u).

We get x < f (x) ∧ ∀u(x < u → (u = f (x) ∨ f (x) < u)).

Thus, g(f (x)) < f (x) ∧ ∀u(u < f (x)→ (u = g(f (x)) ∨ u < g(f (x)))).

Since x < f (x) we obtain x = g(f (x)) ∨ x < g(f (x)).

But x < g(f (x)) < f (x) is not possible (f (x) = direct successor of x).

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 17 / 194

Proof of Church’s theorem

Typical models of G0:

c < < < · · ·g
f f f

ggg

c < < < · · · <g
f f f

ggg

f

f
g

In particular: AP is a model of G0.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 18 / 194

Proof of Church’s theorem

Gi for 1 ≤ i ≤ l − 1 describes the effect of instruction Ai .

Case 1: Ai = (Rj := Rj + 1). Define

Gi = ∀x∀x1 · · · ∀xl
(

R(x , i , x1, . . . , xl)→

(x < f (x) ∧ R(f (x), i + 1, x1, . . . , xj−1, f (xj), xj+1, . . . , xl))

)

Case 2: Ai = (Rj := Rj − 1). Define

Gi = ∀x∀x1 · · · ∀xl
(

R(x , i , x1, . . . , xl)→

(x < f (x) ∧ R(f (x), i + 1, x1, . . . , xj−1, g(xj), xj+1, . . . , xl))

)

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 19 / 194

Proof of Church’s theorem

Case 3: Ai = (IF Rj = 0 THEN k1 ELSE k2) for a 1 ≤ j , k1, k2 ≤ l .
Define

Gi = ∀x∀x1 · · · ∀xl
(

R(x , i , x1, . . . , xl) →
(
x < f (x) ∧

((xj = c ∧ R(f (x), k1, x1, . . . , xl)) ∨

(xj > c ∧ R(f (x), k2, x1, . . . , xl)))
)
)

Statement (A) follows directly from the definition of AP and GP :

◮ AP is a model of G0 (slide 18).

◮ Since (1, 0, . . . , 0)→0
P (1, 0, . . . , 0) we have (0, 1, 0, . . . , 0) ∈ RAP .

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 20 / 194

Proof of Church’s theorem

◮ To see that AP is a model of Gi (1 ≤ i ≤ l − 1), assume that for
instance Ai = (Rj := Rj + 1).

Then for all s, n1, . . . nl ∈ UAP
with (1, 0, . . . , 0)→s

P (i , n1, . . . , nl),
i.e., (s, i , n1, . . . , nl) ∈ RAP , we have:

◮ s + 1, i + 1, nj + 1 ∈ UAP
,

◮ (1, 0, . . . , 0)→s+1
P (i + 1, n1, . . . , nj−1, nj + 1, nj+1, . . . , nl) and thus

(s + 1, i + 1, n1, . . . , nj−1, nj + 1, nj+1, . . . , nl) ∈ RAP .

Statement (B) is shown by induction on s.

Induction base: s = 0. Let (1, 0, . . . , 0)→0
P (i , n1, . . . , nl), i.e., i = 1 and

n1 = n2 = · · · = nl = 0.

A |= GP implies A |= R(0, 1, 0, . . . , 0), i.e., A |= R(s, i , n1, . . . , nl).

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 21 / 194

Proof of Church’s theorem
Induction step: Let s > 0 and assume that statement (B) holds for s − 1.

Let (1, 0, . . . , 0)→s
P (i , n1, . . . , nl).

There are j ≤ l − 1,m1, . . . ,ml with

(1, 0, . . . , 0)→s−1
P (j ,m1, . . . ,ml)→P (i , n1, . . . , nl)

The induction hypothesis implies

A |= R(s − 1, j ,m1, . . . ,ml) ∧
s−2∧

q=0

q < q + 1.

We continue with a case distinction with respect to the instruction Aj . We
only consider the case that Aj is of the form Rk := Rk − 1.

We then have i = j + 1, n1 = m1, . . . , nk−1 = mk−1,
nk+1 = mk+1, . . . , nl = ml , (nk = mk = 0 or mk > 0 and nk = mk − 1).

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 22 / 194

Proof of Church’s theorem

Because of A |= Gj we have:

A |= ∀y , y1, . . . , yl
(

R(y , j , y1, . . . , yl) →

(
y < f (y) ∧ R(f (y), j + 1, y1, . . . , yk−1, g(yk), yk+1, . . . , yl)

)
)

Since A |= R(s − 1, j ,m1, . . . ,ml), we get

A |= s − 1 < f (s − 1) ∧
R(f (s − 1), j + 1,m1, . . . ,mk−1, g(mk),mk+1, . . . ,ml)

i.e., A |= s − 1 < s ∧ R(s, i , n1, . . . , nk−1, g(mk), nk+1, . . . , nl).

Because of A |= s − 1 < s, we have

A |=
s−1∧

q=0

q < q + 1. (1)

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 23 / 194

Proof of Church’s theorem

Moreover, A |= G0 implies A |= g(mk) = nk :

◮ If nk = mk = 0 then mk = nk = c .

Since every model of G0 satisfies g(c) = c (slide 17) we get
A |= g(mk) = nk .

◮ If mk > 0 and nk = mk − 1 then mk = f (nk).

Since every model of G0 satisfies ∀x (∃u(x < u)→ g(f (x)) = x)
(slide 17) and A |= nk < nk + 1 = mk by (1), we get

A |= g(mk) = g(f (nk)) = nk .

Therefore we have A |= R(s, i , n1, . . . , nl).

This shows (A) and (B).

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 24 / 194

Proof of Church’s theorem

Proof of Church’s theorem:

Define FP = (GP → ∃x∃x1 · · · ∃xlR(x , l , x1, . . . , xl)).
Claim: FP is valid ⇐⇒ P ∈ HALT.

If FP is valid, then AP |= FP .

(A) yields AP |= ∃x∃x1 · · · ∃xlR(x , l , x1, . . . , xl).
Hence, there are s, n1, . . . , nl ≥ 0 with (s, l , n1, . . . , nl) ∈ RAP .

We obtain P ∈ HALT.

Now assume that P ∈ HALT.

Assume that (1, 0, . . . , 0)→s
P (l , n1, . . . , nl).

Let A be a structure with A |= GP .

(B) implies A |= R(s, l , n1, . . . , nl).

Hence, FP is valid.
Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 25 / 194

Trachtenbrot’s theorem

A formula F is finitely satisfiable if F has a model with a finite universe.
If such a model does not exist then F is called finitely unsatisfiable.

Lemma
The set of finitely satisfiable formulas of predicate logic is recursively
enumerable.

Proof:

Let A1,A2,A3, . . . be a systematic enumeration of all finite structures
(we assume that the interpretation function IAi

is only defined on those
predicate and function symbols that appear in F).

The following algorithm terminates if and only if F is finitely satisfiable:

i := 1;
while true do

if Ai |= F then STOP else i := i + 1
end
Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 26 / 194

Trachtenbrot’s theorem

A formula F is finitely valid if every finite structure is a model of F .

Example: The formula

∀x∀y(f (x) = f (y)→ x = y) ↔ ∀y∃x(f (x) = y)

is finitely valid but not valid.

Trachtenbrot’s theorem
The set of finitely satisfiable formulas is undecidable.

Corollary

The set of finitely unsatisfiable formulas and the set of finitely valid
formulas are not recursively enumerable.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 27 / 194

Trachtenbrot’s theorem

Proof of Trachtenbrot’s theorem:

We use the construction from the proof of Church’s theorem.

Claim: GP is finitely satisfiable ⇐⇒ P ∈ HALT.

(1) Assume that P ∈ HALT.

Then AP is finite and AP |= GP by statement (A).

Hence, GP is finitely satisfiable.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 28 / 194

Trachtenbrot’s theorem

(2) Let GP be finitely satisfiable.

Let A be a finite structure with A |= GP .

Assume that P 6∈ HALT.

Hence, for every s ≥ 0 there exist i , n1, . . . , nl with
(1, 0, . . . , 0)→s

P (i , n1, . . . , nl).

Statement (B) implies that A |= q < q + 1 for all q ≥ 0.

Since <A is a strict linear order (because A |= G0), the set {A(i) | i ≥ 0}
must be infinite, which is a contradiction.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 29 / 194

(Un)decidable theories

Let A be a structure such that the domain of IA is finite and contains no
variables.

Let the domain of IA consist of f1, . . . , fn,R1, . . . ,Rm.

We identify A with the tuple (UA, f
A
1 , . . . , f An ,RA

1 , . . . ,RA
m) for which we

also write (UA, f1, . . . , fn,R1, . . . ,Rm).

Definition
The theory of A is the set of formulas

Th(A) = {F | F is a sentence and A |= F}.

We are interested in the question whether a given structure has a
decidable theory.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 30 / 194

(Un)decidable theories

Theorem
Let A be an arbitrary structure. Then, Th(A) is decidable if and only if

Th(A) is recursively enumerable.

Proof: Let Th(A) be recursively enumerable and let F be an arbitrary
sentence.

We either have F ∈ Th(A) or ¬F ∈ Th(A).
Therefore we can enumerate Th(A) until we either produce F or ¬F .
Exactly one of the formulas F or ¬F will be produced after a finite
number of steps.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 31 / 194

(Un)decidable theories

For the question whether a theory is decidable, we can restrict to so-called
relational structures.

A structure A = (A, f1, . . . , fn,R1, . . . ,Rm) is relational if n = 0.

For an arbitrary structure A = (A, f1, . . . , fn,R1, . . . ,Rm) we define

Arel = (A,P1, . . . ,Pn,R1, . . . ,Rm),

where Pi = {(a1, . . . , ak , a) ∈ Ak+1 | fi(a1, . . . , ak) = a}.

Lemma
Th(A) is decidable ⇐⇒ Th(Arel) is decidable.

Proof: For ⇐= we construct from a sentence F that contains the symbols
fi ,Rj a sentence F ′ that only contains the symbols Pi ,Rj and such that:

A |= F ⇐⇒ Arel |= F ′

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 32 / 194

(Un)decidable theories

Consider a subformula Ri(t1, . . . , tk) in F , where t1, . . . , tk are terms, and
replace it by

∃x1 · · · ∃xk (Ri (x1, . . . , xk) ∧
k∧

i=1

xi = ti).

for new variables x1, . . . , xk .

We now replace equations y = fj(s1, . . . , sl) with l ≥ 0 by

∃y1 · · · ∃yl (Pj (y1, . . . , yl , y) ∧
l∧

i=1

yi = si)

for new variables y1, . . . , yl until only equations of the form y = y ′ for
variables y , y ′ remain.

The direction =⇒ from the lemma is very easy (Excercise).

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 33 / 194

Undecidability of arithmetics

Theorem (Gödel 1931)

Th(N,+, ·) is undecidable.

Corollary

Th(N,+, ·) is not recursively enumerable.

For the proof we reduce the set HALT of terminating RMPs to Th(N,+, ·).

We follow the proof from the book of Ebbinghaus, Flum and Thomas.

In order make the proof less technical we consider Th(N,+, ·, s, 0) with
s(n) = n + 1.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 34 / 194

Undecidability of arithmetics

We then have: Th(N,+, ·, s, 0) decidable ⇐⇒ Th(N,+, ·) decidable:

◮ If Th(N,+, ·, s, 0) is decidable, then clearly Th(N,+, ·) is decidable.
◮ Assume that Th(N,+, ·) is decidable.

We transform a sentence F that contains +, ·, s, 0 into a sentence F ′

that only contains +, · and such that F ∈ Th(N,+, ·, s, 0) if and only
if F ′ ∈ Th(N,+, ·).
Step 1: Replace F by

∃x0 ∃x1 (x0 + x0 = x0 ∧ x1 · x1 = x1 ∧ x1 6= x0 ∧ F)

Step 2: Replace in the resulting sentence every occurrence of the
constant 0 by x0 and every term s(t) by t + x1.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 35 / 194

Undecidability of arithmetics

Now assume that P = A1;A2; · · · ;Al is an RMP which uses the registers
R1, . . . ,Rl .

We construct an arithmetic formula FP with the free variables x , x1, . . . , xl
such that for all 1 ≤ i ≤ l and all n1, . . . , nl ∈ N the following statements
are equivalent:

◮ (N,+, ·, s, 0)[x/i , x1/n1,...,xl/nl] |= FP

◮ (1, 0, . . . , 0)→∗
P (i , n1, . . . , nl)

This implies P ∈ HALT ⇐⇒ (N,+, ·, s, 0) |= ∃x1 · · · ∃xl FP [x/s l (0)].

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 36 / 194

Undecidability of arithmetics
Intuitively, FP expresses the following:

There exists t ≥ 0 and configurations C0,C1, . . . ,Ct with:

◮ C0 = (1, 0, . . . , 0)

◮ Ct = (x , x1, . . . , xl)

◮ Ci →P Ci+1 for all 0 ≤ i ≤ t − 1

We encode the (l + 1)-tuples C0,C1, . . . ,Ct by an (t + 1) · (l + 1)-tuple.
It remains to express the following, where k = l + 1:

There exist t ≥ 0 and a tuple
(y0, y1, . . . , yk−1, yk , yk+1, . . . , y2k−1, . . . , ytk , ytk+1, . . . , ytk+k−1) with:

◮ y0 = 1, y1 = 0, . . . , yk−1 = 0

◮ ytk = x , ytk+1 = x1, . . . , ytk+k−1 = xl

◮ (yik , . . . , yik+k−1)→P (y(i+1)k , . . . , y(i+1)+k−1) for all 0 ≤ i ≤ t − 1

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 37 / 194

Undecidability of arithmetics

If one tries to express this with an arithmetic formula, one encounters the
problem that one cannot quantify over arbitrary sequences of numbers in
predicate logic (∃y∃x1∃x2 · · · ∃xy is not allowed).

In order to simulate quantification of sequences of arbitrary length, we
need Gödel’s β-function.

Lemma
There is a function β : N3 → N with:

◮ For every sequence (a0, . . . , aq) over N there exist p, r ∈ N such that
β(p, r , i) = ai for all 0 ≤ i ≤ q.

◮ There is an arithmetic formula B with free variables v , x , y , z such
that for all p, r , i , a ∈ N we have:

(N,+, ·, s, 0)[v/p, x/r , y/i , z/a] |= B ⇐⇒ β(p, r , i) = a

One also says that β is arithmetically definable.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 38 / 194

Undecidability of arithmetics
Proof of the lemma:

Let (a0, . . . , aq) be an arbitrary sequence over N.

Let p be a prime number with p > q and p > ai for all i .

Furthermore, define

r = 0p0 + a0p
1 +1p2 + a1p

3 + · · ·+ ip2i + aip
2i+1 + · · ·+ qp2q + aqp

2q+1.

In other words: (0, a0, 1, a1, . . . , i , ai , . . . , q, aq) is the base-p expansion of
r (least significant digit on the left).

Note: since p is prime, we have the following for every x ∈ N:
There exists m ∈ N with x = p2m if and only if:

◮ x is a square (∃y : x = y2) and

◮ for all d ≥ 2 with d |x we have p|d .
Here, x |y stands for “x divides y” (∃z : x · z = y).

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 39 / 194

Undecidability of arithmetics

Claim 1: For all a ∈ N and all 0 ≤ i ≤ q we have: a = ai if and only if
there exist b0, b1, b2 ∈ N with:

(a) r = b0 + b1(i + ap + b2p
2)

(b) a < p

(c) b0 < b1

(d) b1 is a square and p|d holds for all d ≥ 2 with d |b1.
(equivalently: ∃m : b1 = p2m)

=⇒: If a = ai then we can choose b0, b1, b2 as follows:

b0 = 0p0 + a0p
1 + 1p2 + a1p

3 + · · ·+ (i − 1)p2i−2 + ai−1p
2i−1

b1 = p2i

b2 = (i + 1) + ai+1p + · · · + qp2(q−i−1) + aqp
2(q−i)−1

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 40 / 194

Undecidability of arithmetics

⇐=: Assume that (a)-(d) hold, i.e.,

r = b0 + b1(i + ap + b2p
2)

= b0 + ip2m + ap2m+1 + p2m+2b2.

where b0 < b1 = p2m, a < p and i < p.

Comparing this with

r = 0p0 + a0p
1 + 1p2 + a1p

3 + · · ·+ ip2i + aip
2i+1 + · · ·+ qp2q + aqp

2q+1

and using the uniqueness of the base-p expansion of numbers yields m = i

and a = ai .

This shows Claim 1.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 41 / 194

Undecidability of arithmetics

We can now define Gödel’s β-function:

For all p, r , i ∈ N we define β(p, r , i) as

(i) the smallest number a ∈ N such that there are b0, b1, b2 ∈ N with the
properties (a)–(d) from Slide 40, respectively

(ii) 0 if numbers a, b0, b1, b2 ∈ N with the properties (a)–(d) do not exist.

Remarks:

◮ The choice of 0 in (ii) is not important (any other number would be
also fine).

◮ Also the choice of the minimum for a in point (i) is not important.
It is only important that we select a unique number a having the
properties (a)–(d) (one could for instance take the largest number a
with these properties).

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 42 / 194

Undecidability of arithmetics

Claim 2: For every sequence (a0, . . . , aq) over N there exist p, r ∈ N such
that β(p, r , i) = ai holds for all 0 ≤ i ≤ q.

Let (a0, . . . , aq) be a sequence over N.

Define p and r as on Slide 39.

Take an arbitrary number 0 ≤ i ≤ q.

Due to Claim 1 (direction ⇒) there are a, b0, b1, b2 ∈ N such that (a)–(d)
hold (take a = ai for this).

By definition of the function β there are b0, b1, b2 ∈ N such that (a)–(d)
also hold with a = β(p, r , i).

By Claim 1 (direction ⇐) we must have β(p, r , i) = ai .

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 43 / 194

Undecidability of arithmetics

Claim 3: β is arithmetically definable.

All four properties (a)–(d) on Slide 40 are arithmetically definable.

For instance, property (d) can be expressed by the formula

∃x : b1 = x2 ∧ ∀x : ((∃y : s(s(x)) · y = b1)→ ∃z : (p · z = s(s(x))).

Here, s(s(x)) stands for the number d in property (d) (the two
applications of the successor function s ensure that s(s(x)) ≥ 2 holds).

With Claims 2 and 3, the proof of the lemma is complete.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 44 / 194

Undecidability of arithmetics

We can now conclude the undecidability proof for arithmetics.

We have to express the following statement (with free variables
x , x1, . . . , xl) by an arithmetic formula:

There is a number t and a tuple

(y0, y1, . . . , yk−1, yk , yk+1, . . . , y2k−1, . . . , ytk , ytk+1, . . . , ytk+k−1)

such that:

◮ y0 = 1, y1 = 0, . . . , yk−1 = 0

◮ ytk = x , ytk+1 = x1, . . . , ytk+k−1 = xl

◮ (yik , . . . , yik+k−1)→P (y(i+1)k , . . . , y(i+1)k+k−1) for all 0 ≤ i ≤ t − 1

Note: k = l + 1 is a constant that is determined by the RMP P .

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 45 / 194

Undecidability of arithmetics

This is equivalent to: there are t, p, r with:

◮ β(p, r , 0) = 1, β(p, r , 1) = 0, . . . , β(p, r , k − 1) = 0

◮ β(p, r , tk) = x , β(p, r , tk + 1) = x1, . . . , β(p, r , tk + k − 1) = xl

◮ for all 0 ≤ i ≤ t − 1 the following holds:

(

β(p, r , ik), . . . , β(p, r , ik + k − 1)

)

→P

(

β(p, r , (i + 1)k), . . . , β(p, r , (i + 1)k + k − 1)

)

It is straightforward to construct an arithmetic formula for

(y , y1, . . . , yl)→P (z , z1, . . . , zl)

as a disjunction over all instructions Ai of the RMP P (excercise).

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 46 / 194

Automatic structures

In this section we will introduce automatic structures.

Our main results concerning automatic structures are:

◮ Every automatic structure has a decidable theory.

◮ (N,+) is automatic.

◮ (Q,≤) is automatically presentable.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 47 / 194

Convolution of words

Let n ≥ 1, let Σ be a finite alphabet and let # 6∈ Σ be a dummy symbol.

Let Σ# = Σ ∪ {#} in the following.

For n ≥ 1 we consider the alphabet Σn
that contains all n-tuples over Σ#.

For words w1,w2 . . . ,wn ∈ Σ∗ we define the convolution

w1 ⊗ w2 ⊗ · · · ⊗ wn ∈
(
Σn
#

)∗

as follows:

◮ Let wi = ai ,1ai ,2 · · · ai ,ℓi , (thus, ℓi = |wi |).
◮ Let ℓ = max{ℓ1, . . . , ℓn}.
◮ For all 1 ≤ i ≤ n and ℓi < j ≤ ℓ let ai ,j = #.

◮ w1⊗w2⊗· · · ⊗wn := (a1,1, . . . , an,1)(a1,2, . . . , an,2) · · · (a1,ℓ, . . . , an,ℓ).

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 48 / 194

Convolution of words

Using the convolution, we encode an n-tuple (w1,w2 . . . ,wn) of words by
the single word w1 ⊗ w2 ⊗ · · · ⊗ wn.

Examples:

abba ⊗ babaaa = (a, b)(b, a)(b, b)(a, a)(#, a)(#, a)

abcd ⊗ bcdab ⊗ a = (a, b, a)(b, c ,#)(c , d ,#)(d , a,#)(#, b,#)

Note: The tuple (#,#, . . . ,#) does not appear in a convolution.

In particular: ε⊗ ε⊗ · · · ⊗ ε = ε (multiple convolution of the empty word
yields the empty word)

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 49 / 194

Synchronous multi-tape automata

A synchronous n-tape automaton A over the alphabet Σ is an arbitrary
finite automaton over the alphabet Σn

#.

Hence, A accepts a language L(A) ⊆
(
Σn
#

)∗
.

Note: for an automaton A we denote the accepted language with L(A)
whereas in the GTI lecture we used T (A).

The synchronous n-tape automaton accepts the n-ary relation

K (A) := {(w1, . . . ,wn) | w1, . . . ,wn ∈ Σ∗,w1 ⊗ · · · ⊗ wn ∈ L(A)}.

An n-ary relation R over Σ∗ is synchronously rational if there is a
synchronous n-tape automaton A with K (A) = R .

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 50 / 194

Synchronous multi-tape automata

Words in L(A) that do not belong to {w1 ⊗ · · · ⊗ wn | w1, . . . ,wn ∈ Σ∗}
have no influence on the relation K (A) (they are garbage in some sense).

On the other hand, from A one can easily construct a synchronous n-tape
automaton B with L(B) = L(A) ∩ {w1 ⊗ · · · ⊗ wn | w1, . . . ,wn ∈ Σ∗}.
Note: {w1 ⊗ · · · ⊗ wn | w1, . . . ,wn ∈ Σ∗} ⊆

(
Σn
#

)∗
is regular.

Illustration of a synchronous 2-tape automaton:

u

v

a0

b0

a1

b1

a2

b2

· · ·
· · ·

am−1

bm−1

am

bm

am+1

#

· · ·
· · ·

an

#

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 51 / 194

Synchronous multi-tape automata

Words in L(A) that do not belong to {w1 ⊗ · · · ⊗ wn | w1, . . . ,wn ∈ Σ∗}
have no influence on the relation K (A) (they are garbage in some sense).

On the other hand, from A one can easily construct a synchronous n-tape
automaton B with L(B) = L(A) ∩ {w1 ⊗ · · · ⊗ wn | w1, . . . ,wn ∈ Σ∗}.
Note: {w1 ⊗ · · · ⊗ wn | w1, . . . ,wn ∈ Σ∗} ⊆

(
Σn
#

)∗
is regular.

Illustration of a synchronous 2-tape automaton:

q0

u

v

a1

b1

a2

b2

· · ·
· · ·

am−1

bm−1

am

bm

am+1

#

· · ·
· · ·

an

#

a0

b0

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 51 / 194

Synchronous multi-tape automata

Words in L(A) that do not belong to {w1 ⊗ · · · ⊗ wn | w1, . . . ,wn ∈ Σ∗}
have no influence on the relation K (A) (they are garbage in some sense).

On the other hand, from A one can easily construct a synchronous n-tape
automaton B with L(B) = L(A) ∩ {w1 ⊗ · · · ⊗ wn | w1, . . . ,wn ∈ Σ∗}.
Note: {w1 ⊗ · · · ⊗ wn | w1, . . . ,wn ∈ Σ∗} ⊆

(
Σn
#

)∗
is regular.

Illustration of a synchronous 2-tape automaton:

q1

u

v

a0

b0

a2

b2

· · ·
· · ·

am−1

bm−1

am

bm

am+1

#

· · ·
· · ·

an

#

a1

b1

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 51 / 194

Synchronous multi-tape automata

Words in L(A) that do not belong to {w1 ⊗ · · · ⊗ wn | w1, . . . ,wn ∈ Σ∗}
have no influence on the relation K (A) (they are garbage in some sense).

On the other hand, from A one can easily construct a synchronous n-tape
automaton B with L(B) = L(A) ∩ {w1 ⊗ · · · ⊗ wn | w1, . . . ,wn ∈ Σ∗}.
Note: {w1 ⊗ · · · ⊗ wn | w1, . . . ,wn ∈ Σ∗} ⊆

(
Σn
#

)∗
is regular.

Illustration of a synchronous 2-tape automaton:

q2

u

v

a0

b0

a1

b1

· · ·
· · ·

am−1

bm−1

am

bm

am+1

#

· · ·
· · ·

an

#

a2

b2

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 51 / 194

Synchronous multi-tape automata

Words in L(A) that do not belong to {w1 ⊗ · · · ⊗ wn | w1, . . . ,wn ∈ Σ∗}
have no influence on the relation K (A) (they are garbage in some sense).

On the other hand, from A one can easily construct a synchronous n-tape
automaton B with L(B) = L(A) ∩ {w1 ⊗ · · · ⊗ wn | w1, . . . ,wn ∈ Σ∗}.
Note: {w1 ⊗ · · · ⊗ wn | w1, . . . ,wn ∈ Σ∗} ⊆

(
Σn
#

)∗
is regular.

Illustration of a synchronous 2-tape automaton:

qm

u

v

a0

b0

a1

b1

a2

b2

· · ·
· · ·

am−1

bm−1

am+1

#

· · ·
· · ·

an

#

am

bm

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 51 / 194

Synchronous multi-tape automata

Words in L(A) that do not belong to {w1 ⊗ · · · ⊗ wn | w1, . . . ,wn ∈ Σ∗}
have no influence on the relation K (A) (they are garbage in some sense).

On the other hand, from A one can easily construct a synchronous n-tape
automaton B with L(B) = L(A) ∩ {w1 ⊗ · · · ⊗ wn | w1, . . . ,wn ∈ Σ∗}.
Note: {w1 ⊗ · · · ⊗ wn | w1, . . . ,wn ∈ Σ∗} ⊆

(
Σn
#

)∗
is regular.

Illustration of a synchronous 2-tape automaton:

qm+1

u

v

a0

b0

a1

b1

a2

b2

· · ·
· · ·

am−1

bm−1

am

bm

· · ·
· · ·

an

#

am+1

#

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 51 / 194

Synchronous multi-tape automata

Words in L(A) that do not belong to {w1 ⊗ · · · ⊗ wn | w1, . . . ,wn ∈ Σ∗}
have no influence on the relation K (A) (they are garbage in some sense).

On the other hand, from A one can easily construct a synchronous n-tape
automaton B with L(B) = L(A) ∩ {w1 ⊗ · · · ⊗ wn | w1, . . . ,wn ∈ Σ∗}.
Note: {w1 ⊗ · · · ⊗ wn | w1, . . . ,wn ∈ Σ∗} ⊆

(
Σn
#

)∗
is regular.

Illustration of a synchronous 2-tape automaton:

qn

u

v

a0

b0

a1

b1

a2

b2

· · ·
· · ·

am−1

bm−1

am

bm

am+1

#

· · ·
· · ·

an

#

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 51 / 194

Synchronous multi-tape automata

Example: Let A be the following synchronous 2-tape automaton:

p q
(#, a), (#, b)

(a, a), (b, b) (#, a), (#, b)

We have K (A) = {(u, v) | u, v ∈ {a, b}∗,∃w ∈ {a, b}∗ : v = uw}
(the prefix relation).

On the other hand, the suffix relation {(u, v) | ∃w ∈ {a, b}∗ : v = wu} is
not synchronously rational.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 52 / 194

Automatic structures

Definition
A relational structure A = (A,R1, . . . ,Rm) (with Ri an ni -ary relation) is
automatic if there exist a finite alphabet Σ, a finite automaton B over the
alphabet Σ, and synchronous ni -tape automata Bi over the alphabet Σ
(1 ≤ i ≤ m) such that:

◮ L(B) = A

◮ K (Bi) = Ri for 1 ≤ i ≤ m

Definition
A structure A is automatically presentable if A is isomorphic to an
automatic structure.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 53 / 194

Automatic structures

Excursion: isomorphic structures

Let A = (A,R1, . . . ,Rm) and B = (B ,P1, . . . ,Pm) be relational structures,
where Ri and Pi are both ni -ary (for all 1 ≤ i ≤ m).

We say that A and B are isomorphic if there is a bijection h : A→ B such
that for all 1 ≤ i ≤ m and all tuples (a1, . . . , ani) ∈ Ani we have:

(a1, . . . , ani) ∈ Ri ⇐⇒ (h(a1), . . . , h(ani)) ∈ Pi .

Intuitively: B can be obtained from A by renaming the elements from the
universe of A.
If A and B are isomorph then Th(A) is decidable if and only if Th(B) is
decidable (predicate logic cannot refer to the names of elements in the
universe).

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 54 / 194

(N,+) is automatic

Theorem
(N,+) with + = {(a, b, c) | a+ b = c} is automatically presentable.

Proof: Let A be a finite automaton with L(A) = {0} ∪ {0, 1}∗1.
Then, the following function h : L(A)→ N is a bijection:

h(0) = 0

h(a0a1 · · · an−11) =
n−1∑

i=0

ai2
i + 2n

Let B+ be the synchronous 3-tape automaton from the next slide.

B+ “almost” recognizes the relation

{(u, v ,w) ∈ L(A)3 | h(u) + h(v) = h(w)}.

We have for instance (00, 0000, 0000) ∈ K (B+).
Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 55 / 194

(N,+) is automatic

q1

q0

q2

q4

q3

q5

qf

(#, 1, 1)

(#, 0, 0)

(0,#, 0)

(1,#, 1)

(#, 0, 0), (#, 1, 1)

(1, 0, 1)
(0, 0, 0)
(0, 1, 1)

(0,#, 0), (1,#, 1)

(1, 1, 0)

(0, 0, 1)

(#, 0, 1)

(0,#, 1)

(#, 0, 1)

(0,#, 1)

(#, 1, 0)

(1,#, 0)

(#, 1, 0)

(1,#, 0)

(1, 0, 0)

(0, 1, 0)

(1, 1, 1)

(#,#, 1)

(#,#, 1)

(#,#, 1)

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 56 / 194

(N,+) is automatic

Let A+ be a synchronous 3-tape automaton with

L(A+) = L(B+) ∩ {u ⊗ v ⊗ w | u, v ,w ∈ L(A)}.

We then get K (A+) = {(u, v ,w) ∈ L(A)3 | h(u) + h(v) = h(w)}.

Intuition: The automaton from Slide 56 checks with the school method
for addition whether the number on tape 3 is the sum of the numbers on
tapes 1 and 2.

For this, the automaton stores the current carry in its state.

States q0, q1, q2 correspond to carry 0 whereas states q3, q4, q5 correspond
to carry 1.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 57 / 194

(N,+) is automatic

Three states are needed since the numbers on tapes 1 and 2 may have a
different bit lengths.

States q1, q4 (q2, q5) are needed for the situation where the number on
tape 1 (2) is shorter than the number on tape 2 (1).

State qf is a failure state.

One can slightly extend the theorem on Slide 55: For every p > 1 the
structure (N,+, |p) with

x |p y ⇐⇒ ∃n, k ∈ N : x = pn ∧ y = k · x

is automatically presentable.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 58 / 194

Linear orders

Our second example for an automatic structure is a linear order.

Recall (from the lecture DMI): a linear order is a structure (A,R), where
R is a binary relation with the following properties:

◮ ∀a ∈ A : (a, a) ∈ R (R is reflexive)

◮ ∀a, b ∈ A : (a, b) ∈ R ∧ (b, a) ∈ R → a = b (R is anti-symmetric)

◮ ∀a, b, c ∈ A : (a, b) ∈ R ∧ (b, c) ∈ R → (a, c) ∈ R (R is transitive)

◮ ∀a, b ∈ A : (a, b) ∈ R ∨ (b, a) ∈ R (R is linear)

Instead of R we denote the binary relation of a linear order always with ≤
(possibly with an index).

An element a ∈ A is a smallest (resp., largest) element of the linear order
(A,≤) if: ∀b ∈ A : a ≤ b (resp., ∀b ∈ A : b ≤ a).

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 59 / 194

Linear orders

Theorem
The linear order (Q,≤) (where ≤ is the standard order on Q) is
automatically presentable.

For the proof we use a famous theorem of Cantor.

It uses another property of linear orders (we write x < y for
x ≤ y ∧ x 6= y): A linear order (A,≤) is dense if:

∀x∀y(x < y → ∃z(x < z < y)).

Intuitively: between two different elements of A there is always a third
element.

Cantor’s theorem
Let (A,≤A) and (B ,≤B) be countable dense linear orders without a
smallest and largest element. Then (A,≤A) and (B ,≤B) are isomorphic.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 60 / 194

Cantor’s theorem
Proof of Cantor’s theorem:

We construct enumerations

a1, a2, a3, a4, . . . and b1, b2, b3, b4, . . .

with the following properties:

◮ ai 6= aj and bi 6= bj for i 6= j

◮ A = {ai | i ≥ 1} and B = {bi | i ≥ 1}
◮ ai < aj if and only if bi < bj for all i , j .

Then, f : A→ B with f (ai) = bi is an isomorphism.

Since A and B are countable and infinite, we can enumerate these sets:

A = {x1, x2, x3, . . .} and B = {y1, y2, y3, . . .}
The following “algorithm” constructs enumerations with the above
properties:
Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 61 / 194

Cantor’s theorem
LA := [x1, x2, x3, . . .]; LB := [y1, y2, y3, . . .]
for all i ≥ 1 do (a1, . . . ai−1, b1, . . . bi−1 are already defined)

if i is odd then

let x be the first element from LA
remove x from the list LA
let y be an element from LB with the following properties:
∀1 ≤ j ≤ i − 1 : aj < x ←→ bj < y (†)
remove y from the list LB
ai := x ; bi := y

else

let y be the first element from LB
remove y from the list LB
let x be an element from LA with the following properties:
∀1 ≤ j ≤ i − 1 : aj < x ←→ bj < y (‡)
remove x from the list LA
ai := x ; bi := y

endfor
Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 62 / 194

Cantor’s theorem

Remarks:

◮ The element y with the property (†) exists, since (B ,≤B) is dense
and neither has a smallest nor largest element.

This ensures that we find for x an element y that has the same
position relative to b1, . . . , bi−1 as x to a1, . . . , ai−1.

For the same reason, the element x with the property (‡) exists.
◮ Since the correspondence ai 7→ bi must be bijective, we have to pair

every element from the list LA with exactly one element from the list
LB . Thereby, we also have to ensure that every element from the list
LB is paired.

This will be enforced by the case distinction between i odd and i

even.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 63 / 194

Cantor’s theorem

Illustration of the proof of Cantor’s theorem:

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 64 / 194

Cantor’s theorem

Illustration of the proof of Cantor’s theorem:

LA := [x1, x2, x3, x4, x5, x6, x7, . . .]; LB := [y1, y2, y3, y4, y5, y6, y7, . . .]

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 64 / 194

Cantor’s theorem

Illustration of the proof of Cantor’s theorem:

LA := [x1, x2, x3, x4, x5, x6, x7, . . .]; LB := [y1, y2, y3, y4, y5, y6, y7, . . .]

x1

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 64 / 194

Cantor’s theorem

Illustration of the proof of Cantor’s theorem:

LA := [x1, x2, x3, x4, x5, x6, x7, . . .]; LB := [y1, y2, y3, y4, y5, y6, y7, . . .]

x1

y1

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 64 / 194

Cantor’s theorem

Illustration of the proof of Cantor’s theorem:

LA := [x1, x2, x3, x4, x5, x6, x7, . . .]; LB := [y1, y2, y3, y4, y5, y6, y7, . . .]

x1

y1y2

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 64 / 194

Cantor’s theorem

Illustration of the proof of Cantor’s theorem:

LA := [x1, x2, x3, x4, x5, x6, x7, . . .]; LB := [y1, y2, y3, y4, y5, y6, y7, . . .]

x1

y1y2

x6

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 64 / 194

Cantor’s theorem

Illustration of the proof of Cantor’s theorem:

LA := [x1, x2, x3, x4, x5, x6, x7, . . .]; LB := [y1, y2, y3, y4, y5, y6, y7, . . .]

x1

y1y2

x6 x2

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 64 / 194

Cantor’s theorem

Illustration of the proof of Cantor’s theorem:

LA := [x1, x2, x3, x4, x5, x6, x7, . . .]; LB := [y1, y2, y3, y4, y5, y6, y7, . . .]

x1

y1y2

x6 x2

y7

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 64 / 194

Cantor’s theorem

Illustration of the proof of Cantor’s theorem:

LA := [x1, x2, x3, x4, x5, x6, x7, . . .]; LB := [y1, y2, y3, y4, y5, y6, y7, . . .]

x1

y1y2

x6 x2

y7 y3

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 64 / 194

Cantor’s theorem

Illustration of the proof of Cantor’s theorem:

LA := [x1, x2, x3, x4, x5, x6, x7, . . .]; LB := [y1, y2, y3, y4, y5, y6, y7, . . .]

x1

y1y2

x6 x2

y7 y3

x7

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 64 / 194

Cantor’s theorem

Illustration of the proof of Cantor’s theorem:

LA := [x1, x2, x3, x4, x5, x6, x7, . . .]; LB := [y1, y2, y3, y4, y5, y6, y7, . . .]

x1

y1y2

x6 x2

y7 y3

x7x3

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 64 / 194

Cantor’s theorem

Illustration of the proof of Cantor’s theorem:

LA := [x1, x2, x3, x4, x5, x6, x7, . . .]; LB := [y1, y2, y3, y4, y5, y6, y7, . . .]

x1

y1y2

x6 x2

y7 y3

x7x3

y6

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 64 / 194

(Q,≤) is automatically presentable

Proof that (Q,≤) is automatic:

Due to Cantor’s theorem, it suffices to construct a countable dense
automatic linear order which neither has a smallest nor a largest element.

Let L = {0, 1}∗1.
Let ≤ be the lexicographic order on L. That means, for x , y ∈ L we have
x ≤ y if and only if one of the following cases holds:

◮ There exists u ∈ {0, 1}∗ with y = xu (x is a prefix of y)

◮ There exist z , u, v ∈ {0, 1}∗ with x = z0u and y = z1v .

Then (L,≤) is a linear order (easy to check).

◮ (L,≤) has no largest element:

Let x ∈ L be arbitrary. Then x < x1 ∈ L.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 65 / 194

(Q,≤) is automatically presentable

◮ (L,≤) has no smallest element:

Let x = u1 ∈ L be arbitrary. Then u01 < u1 = x

◮ (L,≤) is dense:
Let x , y ∈ L with x < y be arbitrary.

Case 1: x = u1, y = u1v1:

Then we have x = u1 < u10|v |+11 < u1v1 = y .

Case 2: x = u0v1, y = u1w :

Then we have x = u0v1 < u01|v |+2 < u1w = y .

◮ (L,≤) is automatic: easy excercise

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 66 / 194

Structures that are not automatically presentable

For the following structures one can show that they are not automatically
presentable:

◮ (R,+) (because every automatic structure is countable)

◮ every structure with an undecidable theory (see next slide).

Examples for this:

◮ (N,+, ·) (Gödel’s theorem)

◮ (Σ∗, ◦) (the free monoid over Σ) for |Σ| > 1 (Quine 1946)

◮ (N, ·) and (N, |)
◮ (Q,+) (Tsankov 2009)

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 67 / 194

Theory of an automatic structure

Our main result on automatic structures is:

Theorem (Khoussainov, Nerode 1994)
For every automatically presentable structure A, Th(A) is decidable.

Corollary (Presburger 1929)

Th(N,+) is decidable.

Corollary

Th(Q,≤) is decidable.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 68 / 194

Theory of an automatic structure

For the proof of the theorem of Khoussainov and Nerode we need some
facts on regular languages.

From GTI we know that the regular languages are closed under all boolean
operations (complement, union, intersection).

Moreover: From finite automata A and B over an input alphabet Γ one
can construct finite automata for the languages Γ∗ \ L(A), L(A) ∩ L(B)
and L(A) ∪ L(B).

We need two further closure properties for the regular languages.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 69 / 194

Theory of an automatic structure

A homomorphism is a function h : Γ∗ → Σ∗ such that:

◮ Γ and Σ are finite alphabets.

◮ h(ε) = ε (the empty word is mapped to the empty word)

◮ For all words u, v ∈ Γ∗ we have h(uv) = h(u)h(v).

In particular, for every word u = a1a2 · · · an (a1, . . . , an ∈ Γ):

h(a1a2 · · · an) = h(a1)h(a2) · · · h(an).

In order to specify a homomorphism h : Γ∗ → Σ∗, it suffices to specify all
words h(a) for a ∈ Γ.

Example: Let h : {a, b}∗ → {b, c}∗ be the homomorphism with
h(a) = bcc and h(b) = cbc .

Then we have h(abba) = bcc cbc cbc bcc .

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 70 / 194

Theory of an automatic structure

Lemma (closure regular languages under homomorphisms)

From a finite automaton A with input alphabet Γ and a homomorphism
h : Γ∗ → Σ∗ one can construct a finite automaton B with

L(B) = h(L(A)) = {h(w) | w ∈ L(A)}.

Proof: Every transition p
a−→ q in the automaton A with a ∈ Γ and

h(a) = b1b2 · · · bn (b1, . . . , bn ∈ Σ) is replaced by the sequence of
transitions

p
b1−−→ r1

b2−−→ r2 · · ·
bn−1−−−→ rn−1

bn−−→ q.

Here, r1, . . . , rn−1 are new states that do not appear in other transitions.

For all v ∈ Σ∗ we have:

v ∈ L(B) ⇐⇒ ∃w ∈ L(A) : v = h(w) ⇐⇒ v ∈ h(L(A)).

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 71 / 194

Theory of an automatic structure

But: What happens when if n = 0 and hence h(a) = ε holds?

Then we replace the transition p
a−→ q by the ε-transition p

ε−→ q.

ε-transitions do not increase the power of finite automata:

From a finite automaton with ε-transitions one can construct an
equivalent finite automaton without ε-transitions.

See e.g. slides 72 & 73 from the GTI lecture in summer semester 2020
(https://www.eti.uni-siegen.de/ti/lehre/ss20/gti/folien.pdf) or slides 31 & 32
from the Compiler Construction lecture in summer semester 2020
(https://www.eti.uni-siegen.de/ti/lehre/ss20/compilerbau/cb.pdf).

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 72 / 194

https://www.eti.uni-siegen.de/ti/lehre/ss20/gti/folien.pdf
https://www.eti.uni-siegen.de/ti/lehre/ss20/compilerbau/cb.pdf

Theory of an automatic structure

Lemma (closure regular languages under inverse homomorphisms)

From a finite automaton B over the input alphabet Σ and a
homomorphism h : Γ∗ → Σ∗ one can construct a finite automaton A with

L(A) = h−1(L(B)) = {w ∈ Γ∗ | h(w) ∈ L(B)}.

Proof: The automaton A has the same set of states and the same
initial/final states as B .

In the automaton A there is a transition p
a−→ q if and only if in the

automaton B one can go with the word h(a) ∈ Σ∗ from state p to state q.

For all w ∈ Γ∗ we have:

w ∈ L(A) ⇐⇒ h(w) ∈ L(B) ⇐⇒ w ∈ h−1(L(B)).

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 73 / 194

Theory of an automatic structure

Now we come to the

Proof of the theorem of Khoussainov and Nerode:

Let A = (L,R1, . . . ,Rm) be an automatic structure with L ⊆ Σ∗.

Goal: For every formula F which contains only free variables from the set
{x1, . . . , xn} (not all variables x1, . . . , xn have to be free in F) we construct
by induction on the structure of F a synchronous n-tape automaton BF

such that

K (BF) = {(w1, . . . ,wn) ∈ Ln | A[x1/w1]···[xn/wn] |= F}.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 74 / 194

Theory of an automatic structure

Case 1: F = Ri(xi1 , . . . , xik), where 1 ≤ i1, . . . , ik ≤ n:

Define the homomorphism f :
(
Σn
#

)∗ →
(
Σk
#

)∗
as follows, where

a1, . . . , an ∈ Σ#:

f (a1, . . . , an) =

{

ε if ai1 = · · · = aik = #

(ai1 , . . . , aik) otherwise

Note: f (w1 ⊗ · · · ⊗ wn) = wi1 ⊗ · · · ⊗ wik for all w1, . . . ,wn ∈ Σ∗.

Let Bi be the synchronous k-tape automaton for Ri .

From Bi we construct, using the lemma from slide 73, an n-tape
automaton BF with

L(BF) = f −1(L(Bi)) ∩ {w1 ⊗ · · · ⊗ wn | w1, . . . ,wn ∈ L}.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 75 / 194

Theory of an automatic structure

We have for all w1, . . . ,wn ∈ Σ∗:

(w1, . . . ,wn) ∈ K (BF)

⇐⇒ w1 ⊗ · · · ⊗ wn ∈ L(BF)

⇐⇒ (w1, . . . ,wn) ∈ Ln and w1 ⊗ · · · ⊗ wn ∈ f −1(L(Bi))

⇐⇒ (w1, . . . ,wn) ∈ Ln and f (w1 ⊗ · · · ⊗ wn) ∈ L(Bi)

⇐⇒ (w1, . . . ,wn) ∈ Ln and wi1 ⊗ · · · ⊗ wik ∈ L(Bi)

⇐⇒ (w1, . . . ,wn) ∈ Ln and (wi1 , . . . ,wik) ∈ K (Bi)

⇐⇒ (w1, . . . ,wn) ∈ Ln and (wi1 , . . . ,wik) ∈ RA
i

⇐⇒ (w1, . . . ,wn) ∈ Ln and A[x1/w1]···[xn/wn] |= Ri (xi1, . . . , xik)

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 76 / 194

Theory of an automatic structure

Case 2: F = (xi = xj), where 1 ≤ i , j ≤ n:

Analogously to Case 1, since {(v , v) | v ∈ L} is synchronously rational.

Case 3: F = ¬G :

By induction hypothesis there exists an n-tape automaton BG for G .

We construct BF such that:

L(BF) = {w1 ⊗ · · · ⊗ wn | w1, . . . ,wn ∈ L} \ L(BG)

Case 4: F = G ∨ H, where F contains only free variables from x1, . . . , xn:

By the induction hypothesis there exist n-tape automata BG and BH for G
and H, respectively.

We construct BF such that L(BF) = L(BG) ∪ L(BH).

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 77 / 194

Theory of an automatic structure

Case 5: F = ∃xn+1 : G (x1, . . . , xn, xn+1):

By the induction hypothesis there exists an (n+1)-tape automaton BG for
G .

Define the homomorphism f :
(
Σn+1
#

)∗ →
(
Σn
#

)∗
as follows, where

a1, . . . , an, an+1 ∈ Σ#:

f (a1, . . . , an, an+1) =

{

ε if a1 = · · · = an = #

(a1, . . . , an) otherwise

Note: f (w1 ⊗ · · · ⊗wn ⊗wn+1) = w1 ⊗ · · · ⊗wn for all w1, . . . ,wn+1 ∈ Σ∗.

We then construct for BF an n-tape automaton with L(BF) = f (L(BG))

By the lemma from slide 71 we can construct such an automaton BF .

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 78 / 194

Theory of an automatic structure

We have for all w1, . . . ,wn ∈ Σ∗:

(w1, . . . ,wn) ∈ K (BF)

⇐⇒ w1 ⊗ · · · ⊗ wn ∈ L(BF)

⇐⇒ w1 ⊗ · · · ⊗ wn ∈ f (L(BG))

⇐⇒ ∃wn+1 : w1 ⊗ · · · ⊗ wn ⊗ wn+1 ∈ L(BG)

⇐⇒ ∃wn+1 : (w1, . . . ,wn,wn+1) ∈ K (BG)

⇐⇒ ∃wn+1 : (w1, . . . ,wn,wn+1) ∈ Ln+1 and A[x1/w1]···[xn+1/wn+1] |= G

⇐⇒ (w1, . . . ,wn) ∈ Ln and ∃wn+1 ∈ L : A[x1/w1]···[xn+1/wn+1] |= G

⇐⇒ (w1, . . . ,wn) ∈ Ln and A[x1/w1]···[xn/wn] |= F

This completes the construction of BF .

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 79 / 194

Theory of an automatic structure

Assume now that F is a sentence (no free variables) and set n = 1 in our
goal on slide 74.

We then have:

L(BF) =

{

Σ∗ if A |= F

∅ if A 6|= F

Therefore, it suffices to construct the automaton BF and check whether it
accepts a non-empty language (see lecture GTI).

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 80 / 194

Theory of an automatic structure
Remarks on the complexity: Our algorithm for checking F ∈ Th(A) is
not very efficient.

Reason: For every negation ¬ we construct an automaton for the
complement of the language of a previously constructed automaton.
This increases the automaton size exponentially (power set construction)!

The running time of our algorithm is roughly f|F |(O(1)), where f0(n) = n

and fi+1(n) = 2fi (n) for i ≥ 0 and |F | = length of the formula F .

This is not avoidable:

Let T2 = ({0, 1}∗,S0,S1,≤) (the infinite binary tree) where:

◮ S0 = {(w ,w0) | w ∈ {0, 1}∗}
◮ S1 = {(w ,w1) | w ∈ {0, 1}∗}
◮ ≤ = {(w ,wu) | w , u ∈ {0, 1}∗}

Note: T2 is an automatic structure.
Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 81 / 194

Theory of an automatic structure

Meyer 1974

There do not exist an i ∈ N and an algorithm that correctly decides
Th(T2) and whose running time is bounded by fi(n) (for an input formula
of length n).

One also says: there is no elementary algorithm for Th(T2).

But for many particular automatic structures one can come up with an
elementary algorithm for the theory, for instance:

Oppen 1978

There is an algorithm that decides Th(N,+) in time 22
2O(n)

.

Oppen’s algorithm uses the technique of quantifier elimination, which we
will apply in the next section for another structure.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 82 / 194

Decidability of real arithmetic

We want to prove the following famous theorem of Alfred Tarski:

Satz (Tarski 1948)

Th(R,+, ·) is decidable.

Note: (R,+, ·) is not an automatic structure, since R is uncountable.

The proof of Tarski’s theorem is quite long.

First, we extend the structure (R,+, ·) to (R,+, ·, <, 0, 1,−1).
Note: If Th(R,+, ·, <, 0, 1,−1) is decidable then also Th(R,+, ·) is
decidable.

In fact, also the reverse implication can be shown but this is not important
for us.

We will show that Th(R,+, ·, <, 0, 1,−1) is decidable.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 83 / 194

Decidability of real arithmetic

In the following, we will simply write R for (R,+, ·, <, 0, 1,−1).
For our decidability proof we will apply the method of quantifier
elimination:

Let F be a formula with the free variables y0, . . . , yn.

We construct a quantifier-free formula F ′ (that means, neither ∃ nor ∀
occurs in F ′) with the free variables y0, . . . , yn such that

∀a0, . . . , an ∈ R : R[y0/a0,...,yn/an] |= F ⇐⇒ R[y0/a0,...,yn/an] |= F ′

We do this by induction over the structure of the formula F .

Since ∀xG ≡ ¬∃x¬G , the only difficult case is where F has the form
F = ∃x G .

By induction, we can assume that G is already quantifier-free.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 84 / 194

Decidability of real arithmetic

Example: Let F = ∃x : y = x · x .

The formula F expressed that y is a square.

A real number is a square if and only if it is not negative.

Hence, for every real number a ∈ R we have:

R[y/a] |= ∃x : y = x · x ⇐⇒ R[y/a] |= (y = 0 ∨ 0 < y)

Thus, F ′ = (y = 0 ∨ 0 < y) is the desired quantifier-free formula.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 85 / 194

Decidability of real arithmetic

Assume for a moment that we have already proved the quantifier
elimination property.

Let F be a sentence (formula without free variables).

We want to check whether R |= F holds.

We apply quantifier elimination to F and construct a quantifier-free
sentence F ′ such that:

R |= F ⇐⇒ R |= F ′.

Since F ′ is quantifier-free, we can easily check whether R |= F ′ holds:

◮ F ′ is a boolean combination of formulas a = b and a < b.

◮ Here, a and b are terms that are constructed from the constants
0, 1,−1 using the operations · and +.

◮ We can evaluate these terms a and b in R and then check whether
a = b, resp. a < b, holds.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 86 / 194

Decidability of real arithmetic

Back to quantifier elimination for F = ∃xG with G quantifier-free.

Let the free variables of G be x , y0, . . . , yn; then the free variables of F are
y0, . . . , yn.

For variables x1, . . . , xn let Z[x1, . . . , xn] denote the set of all polynomials
in the variables x1, . . . , xn with coefficients from Z.

Example: −3x41 x22 x3 + 7x1x
6
2 x

8
3 − 8x42 x3 + 12x1 − 17

Atomic subformulas of G are of the form s = t and s < t, where s and t

are terms that are constructed with + and · from variables (x , y0, . . . , yn)
and the constants −1, 0, 1.

Such terms s and t can be evaluated to polynomials from Z[x , y0, . . . , yn].

In the following, we assume that s, t ∈ Z[x , y0, . . . , yn].
Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 87 / 194

Decidability of real arithmetic

Finally, we can bring G into the following form:

G = s(x , y0, . . . , yn) = 0 ∧
m∧

i=1

ti (x , y0, . . . , yn) > 0, (2)

where s, t1, . . . , tm ∈ Z[x , y0, . . . , yn].

First we eliminate all negations in G using the following equivalences:

◮ s1 = s2 ⇐⇒ s1 − s2 = 0

◮ s1 < s2 ⇐⇒ s2 − s1 > 0

◮ ¬(s = 0) ⇐⇒ (s > 0 ∨−s > 0)

◮ ¬(s > 0) ⇐⇒ (s = 0 ∨−s > 0)

Then we bring G into disjunctive normal form (thereby we do not
introduce new negations).

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 88 / 194

Decidability of real arithmetic

Conjunctions of the form
∧k

i=1 si = 0 can be replaced by a single equation
using the following equivalence:

k∧

i=1

si = 0 ⇐⇒
k∑

i=1

s2i = 0

Then we pull out the outermost disjunction using the following
equivalence:

∃x
(

k∨

i=1

Gi

)
≡

k∨

i=1

∃x Gi

Every formula ∃x Gi has the desired form (2), and it suffices to apply
quantifier elimination for each formula ∃x Gi .

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 89 / 194

Decidability of real arithmetic

We finally make a simple syntactic simplification.

Every polynomial s, t1, . . . , tm ∈ Z[x , y0, . . . , yn] in (2) can be uniquely
written as a sum

d∑

i=0

pi · xai

with 0 ≤ a0 < a1 < · · · < ad and p0, . . . , pd ∈ Z[y0, . . . , yn].

Example:

7− 4y0y
2
1 y

4
3 + x2 + y51 y3x + 6y0y

2
1 y

4
3 − 2y20 y1y

3
3 x + 17y30 x

2

= (7− 4y0y
2
1 y

4
3 + 6y0y

2
1 y

4
3) + (y51 y3 − 2y20 y1y

3
3) · x + (17y30 + 1) · x2

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 90 / 194

Decidability of real arithmetic

We can now replace every coefficient polynomial pi by a new coefficient
variable zi , which appears in the formula only once.

After transforming the resulting formula into a quantifier-free formula,
we can replace each of the new coefficient variables zi by the original
polynomial pi .

Example: a possible formula F = ∃x G that one might obtain in this way
is

∃x : z0 + z1x
2 + z2x

3 = 0 ∧ z3x + z4x
2 > 0 ∧ z5 + z6x

3 > 0.

In the following, let z0, . . . , zn be all coefficient variables in the formula G .

Recall that we want to construct a quantifier-free formula F ′ with:

∀a0, . . . , an ∈ R : R[z0/a0,...,zn/an] |= F ⇐⇒ R[z0/a0,...,zn/an] |= F ′

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 91 / 194

Decidability of real arithmetic

We show that it suffices to assume that F ′ satisfies the above equivalence
only for all a0, . . . , an ∈ R \ {0}.
For a subset I ⊆ {0, . . . , n} let GI be the formula that is obtained from G

by replacing for every i ∈ I the variable zi (and hence the term zix
a) by

the constant 0.

Example: For our formula

G = (z0 + z1x
2 + z2x

3 = 0 ∧ z3x + z4x
2 > 0 ∧ z5 + z6x

3 > 0)

and I = {1, 3, 5} we get

GI = (z0 + z2x
3 = 0 ∧ z4x

2 > 0 ∧ z6x
3 > 0).

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 92 / 194

Decidability of real arithmetic
We then replace the formula ∃x G by the formula

∧

I⊆{0,...,n}

(
∧

i∈I

zi = 0 ∧
∧

i 6∈I

zi 6= 0 → ∃x GI

)

.

Here, the outer conjunction runs over all subsets I ⊆ {0, . . . , n}.
Assume we have constructed for every formula FI := ∃x GI a
quantifier-free formula F ′

I with:

∀a0, . . . , an ∈ R \ {0} : R[z0/a0,...,zn/an] |= FI ⇐⇒ R[z0/a0,...,zn/an] |= F ′
I .

Then, for all a0, . . . , an ∈ R the following statements are equivalent:

◮ R[z0/a0,...,zn/an] |= ∃x G
◮ R[z0/a0,...,zn/an] |=

∧

I⊆{0,...,n}

(∧

i∈I

zi = 0 ∧
∧

i 6∈I

zi 6= 0 → ∃x GI

)

◮ R[z0/a0,...,zn/an] |=
∧

I⊆{0,...,n}

(∧

i∈I

zi = 0 ∧
∧

i 6∈I

zi 6= 0 → F ′
I

)

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 93 / 194

Decidability of real arithmetic

Remaining goal: For a formula F = ∃x : s = 0 ∧∧m
i=1 ti > 0 we have to

construct a quantifier-free formula F ′ such that:

∀a0, . . . , an ∈ R \ {0} : R[z0/a0,...,zn/an] |= F ⇐⇒ R[z0/a0,...,zn/an] |= F ′.

Here, s, t1, . . . , tm are polynomials in the variables x , and the coefficients
are parameters z0, . . . , zn that only take values 6= 0. Every parameter zi
appears in F only once.

Moreover, we can assume that:

◮ ti 6= 0 for all 1 ≤ i ≤ m and

◮ s = 0 or x appears in s.

For this note that:

◮ If e.g. t1 = 0 (the zero polynomial), then F is always wrong (we can
therefore output the quantifier-free formula 0 = 1).

◮ If s 6= 0 and x does not appear in s, then, again, F is always wrong.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 94 / 194

Decidability of real arithmetic

We distinguish three cases:

◮ Case 1: x appears in s and m = 1.

◮ Case 2: x appears in s and m > 1

◮ Case 3: s = 0.

Case 1: G = (s = 0 ∧ t > 0), where x appears in the polynomial s.

Notation: For k ≥ 0 let (#x : G) = k be a new formula with the
following semantics:

For all a0, . . . , an ∈ R \ {0}: R[z0/a0,...,zn/an] |= (#x : G) = k if and only if

|{a ∈ R | R[x/a,z0/a0,...,zn/an] |= G}| = k .

Strictly speaking, we extend here predicate logic by a new construct (the
so-called counting quantifier #).

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 95 / 194

Decidability of real arithmetic

Intuition: (#x : G) = k expresses that exactly k many x have the
property G (i.e., s = 0 ∧ t > 0).

Note: if d ≥ 1 is the x-degree of s (the largest number a such that xa

appears in s), then ∃x G is equivalent in R to

(#x : G) = 1 ∨ (#x : G) = 2 ∨ · · · ∨ (#x : G) = d ,

because a polynomial p(x) of degree d has at most d roots.

New goal: Find a quantifier-free formula which is equivalent to
(#x : G) = k in R.

For this we need some tools: polynomial division, Euclid’s algorithm,
Sturm sequences, formal derivates.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 96 / 194

Decidability of real arithmetic

For a = (a1, . . . , an) ∈ (R \ {0})n let Var(a) = |{i < n | aiai+1 < 0}|.
(number of sign flips).

For a ∈ Rn let Var(a) = Var(b), where b results from a by removing all
zeros.

Example: Var(0, 2, 4, 0,−3, 0, 0, 2, 5) = Var(2, 4,−3, 2, 5) = 2.
(the red commas mark the sign flips)

For f = (f1, . . . , fn) ∈ (R[x])n (an n-tuple of polynomials in the variables
x) and a ∈ R let

Vara(f) = Var(f1(a), . . . , fn(a)).

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 97 / 194

Decidability of real arithmetic

Recall from DMI: polynomial division with remainder

For polynomials f , g ∈ R[x] with g 6= 0 there exist unique polynomials
q, r ∈ R[x] with

◮ deg(r) < deg(g) or r = 0 and

◮ f = q · g + r .

By replacing the remainder polynomial r by −r , we obtain f = q · g − r .

Note: If deg(g) = 0, i.e., g ∈ R \ {0}, then r = 0 holds.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 98 / 194

Decidability of real arithmetic

Example: We divide (x5 + x) by (2x2 + 1):

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 99 / 194

Decidability of real arithmetic

Example: We divide (x5 + x) by (2x2 + 1):

(x5 + x) : (2x2 + 1) =
1

2
x3

−(x5 + 1

2
x3)

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 99 / 194

Decidability of real arithmetic

Example: We divide (x5 + x) by (2x2 + 1):

(x5 + x) : (2x2 + 1) =
1

2
x3

−(x5 + 1

2
x3)

(−1

2
x3 + x)

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 99 / 194

Decidability of real arithmetic

Example: We divide (x5 + x) by (2x2 + 1):

(x5 + x) : (2x2 + 1) =
1

2
x3 − 1

4
x

−(x5 + 1

2
x3)

(−1

2
x3 + x)

− (−1

2
x3 − 1

4
x)

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 99 / 194

Decidability of real arithmetic

Example: We divide (x5 + x) by (2x2 + 1):

(x5 + x) : (2x2 + 1) =
1

2
x3 − 1

4
x

−(x5 + 1

2
x3)

(−1

2
x3 + x)

− (−1

2
x3 − 1

4
x)

5

4
x (remainder)

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 99 / 194

Decidability of real arithmetic

Example: We divide (x5 + x) by (2x2 + 1):

(x5 + x) : (2x2 + 1) =
1

2
x3 − 1

4
x

−(x5 + 1

2
x3)

(−1

2
x3 + x)

− (−1

2
x3 − 1

4
x)

5

4
x (remainder)

We get:

(x5+ x) = (2x2 +1) · (1
2
x3− 1

4
x)+

5

4
x = (2x2 +1) · (1

2
x3− 1

4
x)− (−5

4
x).

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 99 / 194

Decidability of real arithmetic

Euclid’s algorithm for polynomials:

Let f , g ∈ R[x] \ {0} be non-zero polynomials.

Define the polynomials h0(x), . . . , hn(x) ∈ R[x] \ {0} uniquely by:

h0(x) = f (x)

h1(x) = g(x)

h0(x) = q1(x)h1(x)− h2(x) deg(h2) < deg(h1)

h1(x) = q2(x)h2(x)− h3(x) deg(h3) < deg(h2)

...
...

hn−2(x) = qn−1(x)hn−1(x)− hn(x) deg(hn) < deg(hn−1)

hn−1(x) = qn(x)hn(x)

hi+2 = division remainder if we divide hi by hi+1.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 100 / 194

Decidability of real arithmetic

Remarks:

◮ Since deg(hi+1) < deg(hi) for all 1 ≤ i ≤ n, the division remainder
must be finally 0.

◮ hn(x) = gcd(f , g) (greatest common divisor of f and g)

◮ For all 0 ≤ i ≤ n, the polynom hn(x) divides hi (x).

We define [f , g] = (h0(x), h1(x), . . . , hn(x)) as the Sturm sequence of f
and g .

The reduced Sturm sequence of f and g is

(
h0(x)

hn(x)
,
h1(x)

hn(x)
, . . . ,

hn−1(x)

hn(x)
,
hn(x)

hn(x)

)

=

(
h0(x)

hn(x)
,
h1(x)

hn(x)
, . . . ,

hn−1(x)

hn(x)
, 1

)

.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 101 / 194

Decidability of real arithmetic

Example: We compute the Sturm sequence [x5 + x , x2 + 2].

Successive polynomial division yields:

x5 + x = (x2 + 2) · (x3 − 2x) + 5x = (x2 + 2) · (x3 − 2x) − (−5x)

x2 + 2 = (−5x) · (−1

5
x) + 2 = (−5x) · (−1

5
x)− (−2)

−5x = (−2) · 5
2
x

We therefore obtain

[x5 + x , x2 + 2] = (x5 + x , x2 + 2,−5x ,−2).

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 102 / 194

Decidability of real arithmetic

For a polynomial f (x) ∈ R[x] we denote with f ′ the formal derivative of
the polynomial f .

It is computed using the well-known rules for derivates.

Let f , g ∈ R[x], a ∈ R:

◮ a′ = 0

◮ (a · f)′ = a · f ′

◮ (f + g)′ = f ′ + g ′

◮ (xn)′ = n · xn−1 for n ≥ 1

Also the product rule holds: (f · g)′ = f ′ · g + f · g ′.

Example: For f (x) = 4x3 − 2x2 + 5x − 3 we have f ′ = 12x2 − 4x + 5.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 103 / 194

Decidability of real arithmetic

Let f ∈ R[x] be a polynomial with f 6= 0.

A real number a ∈ R is a root of f (i.e. f (a) = 0) if and only if (x − a)
divides f (i.e. f = (x − a) · g for some polynomial g).

Proof: If f = (x − a) · g , then f (a) = (a − a) · g(a) = 0.

Now assume that f (a) = 0.

Polynomial division of f by x − a: f = (x − a) · q + r with
deg(r) < deg(x − a) = 1, i.e., r ∈ R.

Because of 0 = f (a) = (a − a) · q(a) + r = r we get f = (x − a) · q.
This observation yields:

Lemma
Let f , g ∈ R[x] \ {0}. If gcd(f , g) = 1, then f and g have no common
root.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 104 / 194

Decidability of real arithmetic

A root a of a polynomial f is a multiple root of f , if (x − a)2 divides f .

The following lemmas can be shown as simple exercises:

Lemma
A root a of f is a multiple root of f if and only if f ′(a) = 0.

Lemma
If gcd(f , f ′) = 1, then the polynomial f has no multiple root.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 105 / 194

Decidability of real arithmetic

For a quantifier-free formula H with the only free variable x and a, b ∈ R

with a < b let

(#x : H)ba = |{c ∈ (a, b) | R[x/c] |= H}|.

Here, (a, b) = {c ∈ R | a < c < b} is the open interval between a and b.

Hence, (#x : H)ba is the number of real values c ∈ (a, b) for which H

holds.

Example: (#x : x2 − 2 = 0)2−2 = 2, because there are two real roots of

the polynomial x2 − 2 (−
√
2 and

√
2) and both belong to (−2, 2).

Moreover, (#x : x2 − 2 = 0 ∧ x > 0)2−2 = 1.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 106 / 194

Decidability of real arithmetic

We now come to the central theorem for our further considerations:

Theorem of Sturm and Tarski
Let f , g ∈ R[x] \ {0}, f ′ 6= 0, gcd(f , g) = gcd(f , f ′) = 1, a, b ∈ R, a < b,
f (a) 6= 0 6= f (b). Then the following identity holds:

(#x : f (x) = 0 ∧ g(x) > 0)ba − (#x : f (x) = 0 ∧ g(x) < 0)ba =

Vara([f , f
′g])− Varb([f , f

′g]).

For the proof of the theorem of Sturm and Tarski we need two lemmas
(Lemma A and Lemma B).

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 107 / 194

Decidability of real arithmetic

Lemma A
Let f , g ∈ R[x] \ {0}, a, b ∈ R, a < b, and ∀c ∈ [a, b] : f (c) 6= 0.
We have Vara([f , g]) = Varb([f , g]).

Proof of Lemma A: Let

[f , g] = S = (h0, h1, . . . , hs)

and let
S̃ = (h̃0, h̃1, . . . , h̃s)

be the reduced Sturm sequence, i.e., h̃s = 1 and h̃i =
hi
hs
.

Let N = {c ∈ [a, b] | ∃0 ≤ i ≤ s : h̃i(c) = 0}.
The set N is finite (a polynomial 6= 0 has only finitely many roots).

Let [a′, b′] ⊆ [a, b] be an interval with |N ∩ [a′, b′]| ≤ 1.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 108 / 194

Decidability of real arithmetic
It suffices to show: Vara′(S) = Varb′(S).

Then we write [a, b] as

[a, b] = [a0, a1] ∪ [a1, a2] ∪ [a2, a3] ∪ · · · ∪ [ak−1, ak]

with a0 = a, ak = b and |N ∩ [ai , ai+1]| ≤ 1 for all 0 ≤ i ≤ k − 1.

We obtain Varai (S) = Varai+1
(S) for all 0 ≤ i ≤ k − 1 and hence

Vara(S) = Vara0(S) = Varak (S) = Varb(S).

So, let us show that Vara′(S) = Varb′(S) if |N ∩ [a′, b′]| ≤ 1.

Since f (a′) 6= 0 6= f (b′) (because ∀c ∈ [a, b] : f (c) 6= 0) and
hs = gcd(f , g) divides f , we have hs(a

′) 6= 0 6= hs(b
′).

This implies Vara′(S) = Vara′(S̃) and Varb′(S̃) = Varb′(S).

We show that Vara′(S̃) = Varb′(S̃).
Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 109 / 194

Decidability of real arithmetic

Case 1: No h̃i has a root in [a′, b′].

Since every polynomial h̃i is continuous and, by the intermediate value
theorem, h̃i ([a

′, b′]) contains all values between h̃i (a
′) and h̃i (b

′), we must
have

h̃i(a
′) · h̃i(b′) > 0

for all 0 ≤ i ≤ s (h̃i does not change its sign on [a′, b′]).

We obtain Vara′(S̃) = Varb′(S̃).

Case 2: At least one h̃i has a root c ∈ [a′, b′].

By the choice of [a′, b′] we have N ∩ [a′, b′] = {c}.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 110 / 194

Decidability of real arithmetic
Since h̃s = 1 and, by the assumption from the lemma, f = h0 has no root
in [a, b] (then, also h̃0 has no root in [a, b]), we must have 1 ≤ i ≤ s − 1.

We have h̃i−1(c) = qi(c)h̃i (c)− h̃i+1(c) = −h̃i+1(c).

If h̃i+1(c) = 0 = h̃i (c) would hold, then h̃j(c) = 0 for all j ≥ i (since
h̃j+2(c) = qj+1(c)h̃j+1(c)− h̃j(c)), which contradicts h̃s = 1.

Therefore, we have h̃i+1(c) 6= 0 and hence

h̃i−1(c)h̃i+1(c) = −(h̃i+1(c))
2 < 0,

i.e., h̃i−1(c) and h̃i+1(c) have different signs.

Since h̃i−1 and h̃i+1 have no root in [a′, b′] (c would have been the only
possibility), the intermediate value theorem implies

h̃i−1(a
′)h̃i+1(a

′) < 0 und h̃i−1(b
′)h̃i+1(b

′) < 0.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 111 / 194

Decidability of real arithmetic
We obtain:

Vara′(S̃) = Var(h̃0(a
′), . . . , h̃i−1(a

′), h̃i (a
′), h̃i+1(a

′), . . . , h̃s(a
′))

= Var(h̃0(a
′), . . . , h̃i−1(a

′), h̃i+1(a
′), . . . , h̃s(a

′))

Varb′(S̃) = Var(h̃0(b
′), . . . , h̃i−1(b

′), h̃i (b
′), h̃i+1(b

′), . . . , h̃s(b
′))

= Var(h̃0(b
′), . . . , h̃i−1(b

′), h̃i+1(b
′), . . . , h̃s(b

′))

In this way we can eliminate for every j with h̃j(c) = 0 the entries h̃j(a
′)

and h̃j(b
′).

We therefore obtain

Vara′(S̃) = Var(g0(a
′), . . . , gt(a

′))

Varb′(S̃) = Var(g0(b
′), . . . , gt(b

′))

where the polynomials g0, . . . , gt have no root in [a′, b′].

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 112 / 194

Decidability of real arithmetic
Hence, gi (a

′) 6= 0 and gi (b
′) 6= 0 have the same sign for all 0 ≤ i ≤ t,

which implies

Vara′(S̃) = Var(g0(a
′), . . . , gt(a

′))

= Var(g0(b
′), . . . , gt(b

′))

= Varb′(S̃).

Lemma B
Let f , g ∈ R[x] \ {0}, f ′ 6= 0, gcd(f , g) = gcd(f , f ′) = 1, a, b, c ∈ R,
a < c < b, f (c) = 0, ∀d ∈ [a, b] \ {c} : f (d) 6= 0. We have

Vara([f , f
′g])− Varb([f , f

′g]) =

{

1 if g(c) > 0

−1 if g(c) < 0

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 113 / 194

Decidability of real arithmetic
Proof of Lemma B:

Since gcd(f , g) = gcd(f , f ′) = 1, f and g have no common root, and f

has no multiple root (Slides 104 and 105).

In particular, we have g(c) 6= 0 and there is a polynomial h(x) with
f (x) = (x − c) · h(x) and h(c) 6= 0.

We obtain f f ′ g = f · (h+ (x − c)h′) · g = (x − c) · (h2g + (x − c) h h′ g)
︸ ︷︷ ︸

u(x)

.

Let [f , f ′g] = (f , f ′g , h2, . . . , hs) with s ≥ 1.

Assume that g(c) > 0 (the case g(c) < 0 can be analyzed analogously).

We have u(c) = (h(c))2g(c) > 0 and f ′(c)g(c) 6= 0.

Since u(x) is continuous and a < c < b, there are a′ < b′ with
a ≤ a′ < c < b′ ≤ b and ∀x ∈ [a′, b′] : u(x) > 0 and f ′(x)g(x) 6= 0.

With f f ′ g = (x − c) ·u(x) we get f (a′)f ′(a′)g(a′) < 0 < f (b′)f ′(b′)g(b′).
Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 114 / 194

Decidability of real arithmetic
If s ≥ 2 (in which case h2 exists) we obtain:

Vara([f , f
′g])

Lemma A
= Vara′([f , f

′g])

= 1 + Vara′([f
′g , h2])

Lemma A
= 1 + Varb′([f

′g , h2])

= 1 + Varb′([f , f
′g])

Lemma A
= 1 + Varb([f , f

′g])

If s = 1 (i.e., [f , f ′g] = (f , f ′g)) we get

Vara([f , f
′g])

Lemma A
= Vara′([f , f

′g])

= 1

= 1 + Varb′([f , f
′g])

Lemma A
= 1 + Varb([f , f

′g])

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 115 / 194

Decidability of real arithmetic

Proof of the theorem of Tarski and Sturm:

Assume that f , g ∈ R[x] \ {0}, f ′ 6= 0, gcd(f , g) = gcd(f , f ′) = 1,
a, b ∈ R, a < b, f (a) 6= 0 6= f (b).

Let N = {c ∈ (a, b) | f (c) = 0} (a finite set).

If N = ∅ we obtain with Lemma A:

(#x : f (x) = 0 ∧ g(x) > 0)ba − (#x : f (x) = 0 ∧ g(x) < 0)ba = 0 =

Vara([f , f
′g])− Varb([f , f

′g]).

Now assume that N = {c1, c2, . . . , cn} with n ≥ 1.

Choose points a = a0 < c1 < a1 < c2 < a2 < · · · < an−1 < cn < an = b.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 116 / 194

Decidability of real arithmetic

With Lemma B we obtain for all 1 ≤ i ≤ n:

Varai−1
([f , f ′g]) − Varai ([f , f

′g]) =

{

1 if g(ci) > 0

−1 if g(ci) < 0

Summing over all i yields:

Vara([f , f
′g])− Varb([f , f

′g]) =

(#x : f (x) = 0 ∧ g(x) > 0)ba − (#x : f (x) = 0 ∧ g(x) < 0)ba

This concludes the proof of the theorem of Tarski and Sturm.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 117 / 194

Decidability of real arithmetic

Corollary of the theorem of Tarski and Sturm

Let f , g ∈ R[x] \ {0}, f ′ 6= 0, gcd(f , g) = gcd(f , f ′) = 1, a, b ∈ R, a < b,
f (a) 6= 0 6= f (b). We then have

#x(f (x) = 0 ∧ g(x) > 0)ba

=
1

2
(Vara([f , f

′g])− Varb([f , f
′g]) + Vara([f , f

′])− Varb([f , f
′])).

Proof: The theorem of of Tarski and Sturm yields

(#x : f (x) = 0 ∧ g(x) > 0)ba − (#x : f (x) = 0 ∧ g(x) < 0)ba

= Vara([f , f
′g])− Varb([f , f

′g]).

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 118 / 194

Decidability of real arithmetic

as well as (since f and g have no common root due to gcd(f , g) = 1)

(#x : f (x) = 0 ∧ g(x) > 0)ba + (#x : f (x) = 0 ∧ g(x) < 0)ba

= (#x : f (x) = 0)ba =

= (#x : f (x) = 0 ∧ 1 > 0)ba − (#x : f (x) = 0 ∧ 1 < 0)ba

= Vara([f , f
′])− Varb([f , f

′]).

Adding both equalities gives:

2 · (#x : f (x) = 0 ∧ g(x) > 0)ba

= Vara([f , f
′g])− Varb([f , f

′g]) + Vara([f , f
′])− Varb([f , f

′])

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 119 / 194

Decidability of real arithmetic

We also need Cauchy’s bound for the roots of a polynomial:

Lemma (Cauchy’s bound)

Let f (x) = amx
m + · · ·+ a1x + a0 ∈ R[x], am 6= 0. All real roots of the

polynomial f belong to the interval (−c , c) with

c = 1 +
max{|a0|, . . . , |am−1|}

|am|
.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 120 / 194

Decidability of real arithmetic

Proof of the Cauchy bound:

Assume that we have already proved the Cauchy bound for the case
am = 1.

Then we get the general statement as follows:

Let α be a root of f (x) = amx
m + am−1x

m−1+ · · ·+ a1x + a0 with am 6= 0.

Then α is also a root of the polynomial xm + am−1

am
xm−1 + · · ·+ a1

am
x + a0

am
.

The Cauchy bound for the case am = 1 yields

|α| < 1 + max{
∣
∣
ai

am

∣
∣ | 0 ≤ i ≤ m − 1} = 1 +

max{|ai | | 0 ≤ i ≤ m − 1}
|am|

.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 121 / 194

Decidability of real arithmetic

It remains to prove the Cauchy bound for a polynomial

f (x) = xm + am−1x
m−1 + · · ·+ a1x + a0.

Let h = max{|ai | | 0 ≤ i ≤ m − 1}.

Assume that f (α) = αm + am−1α
m−1 + · · ·+ a1α+ a0 = 0, i.e.,

αm = −am−1α
m−1 − · · · − a1α− a0. (3)

We show that |α| < 1 + h.

If |α| ≤ 1, we have |α| < 1 + h (if h = 0 then we have αm = 0, i.e.,
α = 0).

Now assume that |α| > 1.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 122 / 194

Decidability of real arithmetic

Using (3) and the laws |a + b| ≤ |a|+ |b|, |a · b| = |a| · |b| for all a, b ∈ R,
we get

|α|m ≤ |am−1| · |α|m−1 + · · ·+ |a1| · |α|+ |a0|
≤ h · (|α|m−1 + · · ·+ |α|+ 1)

= h · |α|
m − 1

|α| − 1
.

Since |α| > 1, we obtain:

|α| − 1 ≤ h · |α|
m − 1

|α|m < h

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 123 / 194

Decidability of real arithmetic

We now come back to Case 1 (see Slide 95):

Recall: We want to find a quantifier-free arithmetic formula for
(#x : s = 0 ∧ t > 0) = k , where

s = z0 + z1x + · · ·+ zmx
m

t = zm+1 + zm+2x + · · ·+ znx
n−m−1

and 1 ≤ m < n (if m = n then t = 0 and (#x : s = 0 ∧ t > 0) = 0).

The desired quantifier-free formula has the free variables z0, . . . , zn.
Moreover we can restrict to the case that all zi only take values 6= 0.

Let y and z be two new variables.

By Cauchy’s bound it suffices to find for (#x : s = 0 ∧ t > 0)zy = k (see
Slide 106) a quantifier-free formula with free variables y , z , z0, . . . , zm.
Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 124 / 194

Decidability of real arithmetic

In this formula we can replace the interval borders y and z by

−|zm|+max{|z0|, . . . , |zm−1|}
|zm|

, resp.
|zm|+max{|z0|, . . . , |zm−1|}

|zm|
.

Applications of | · | and max can be eliminated by case distinctions (similar
to Slide 92).

Examples:

|zi |+ y = z becomes (zi ≥ 0→ zi + y = z ∧ zi < 0→ y = z + zi).
max{zi , zj} = x becomes (zi ≥ zj → x = zi ∧ zi < zj → x = zj).

Applications of ·
|zm|

(in case zm 6= 0) can be eliminated by multiplication
with sufficiently large powers of zm.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 125 / 194

Decidability of real arithmetic

Using the corollary of the Sturm-Tarski theorem from Slide 118 we
construct a quantifier-free formula for

(#x : s = 0 ∧ t > 0)zy = k

with free variables y , z , z0, . . . , zn.

But: Are all the assumptions for f = s and g = t from Slide 118 satisfied?

◮ s 6= 0 and s ′ 6= 0, since m ≥ 1 on Slide 124 and all zi are 6= 0.

◮ t 6= 0, since all zi are 6= 0 and the case m < n on Slide 124.

◮ gcd(s, t) = gcd(s, s ′) = 1: does not hold for all zi 6= 0!

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 126 / 194

Decidability of real arithmetic

How do we ensure the assumption gcd(s, t) = gcd(s, s ′) = 1?

We have:

◮ (#x : s = 0 ∧ t > 0)zy = (#x : s/gcd(s, t) = 0 ∧ t > 0)zy :

By replacing s by s/gcd(s, t) we eliminate for s only common roots of
s and t (for which t > 0 does not hold).

◮ (#x : s = 0 ∧ t > 0)zy = (#x : s/gcd(s, s ′) = 0 ∧ t > 0)zy :

s and s/gcd(s, s ′) have the same roots (only the multiplicity of the
roots of s is reduced to one when dividing by gcd(s, s ′)).

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 127 / 194

Decidability of real arithmetic

In this way we can reduce the degree of s until finally
gcd(s, t) = gcd(s, s ′) = 1 holds.

The gcd-computations have to be done symbolically, since the coefficients
of s and t are parameters zi 6= 0.

Example: m = 2, n = 4, i.e.,

s(x) = z0 + z1x + z2x
2 and t(x) = z3 + z4x

We first compute symbolically

gcd(s, t) = gcd(z0 + z1x + z2x
2, z3 + z4x).

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 128 / 194

Decidability of real arithmetic

In order to make the computation more convenient, we multiply s with
z24 6= 0.

We have (#x : s = 0 ∧ t > 0)zy = (#x : z24 · s = 0 ∧ t > 0)zy .

Division with remainder:

(z2z
2
4x

2 + z1z
2
4x + z0z

2
4) : (z4x + z3) = z2z4x + (z1z4 − z2z3)

−(z2z24x2 + z2z4z3x)

((z1z
2
4 − z2z4z3)x + z0z

2
4)

−((z1z24 − z2z4z3)x + (z1z4z3 − z2z
2
3))

z0z
2
4 − z1z4z3 + z2z

2
3 (remainder)

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 129 / 194

Decidability of real arithmetic

Therefore:

◮ If z0z
2
4 − z1z4z3 + z2z

2
3 6= 0, then gcd(z24 s, t) = gcd(s, t) = 1.

◮ If z0z
2
4 − z1z4z3 + z2z

2
3 = 0, then gcd(z24 s, t) = t = (z4x + z3) und

z24 s

t
= z2z4x + (z1z4 − z2z3).

Moreover:

(#x : s = 0 ∧ t > 0)zy = (#x : z2z4x + z1z4 − z2z3 = 0 ∧ t > 0)zy

At this point we do not necessarily have
gcd(z2z4x + z1z4 − z2z3, t) = 1, but the x-degree of
z2z4x + z1z4 − z2z3 is smaller than the x-degree of s.

We therefore can continue in the same way.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 130 / 194

Decidability of real arithmetic

In our concrete situation this is quite easy:

The only root of z2z4 · x + z1z4 − z2z3 is z2z3−z1z4
z2z4

.

The only root of t = z4 · x + z3 is − z3
z4
.

Hence, if z2z3−z1z4
z2z4

6= − z3
z4

(i.e., z1z4 6= 2z2z3) then

gcd(z2z4x + z1z4 − z2z3, t) = 1.

On the other hand, if z1z4 = 2z2z3 then (#x : s = 0 ∧ t > 0)zy = 0.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 131 / 194

Decidability of real arithmetic

To sum up, for s(x) = z0 + z1x + z2x
2 and t(x) = z3 + z4x we have:

◮ If z0z
2
4 − z1z4z3 + z2z

2
3 6= 0 then gcd(s, t) = 1.

◮ If z0z
2
4 − z1z4z3 + z2z

2
3 = 0 and z1z4 6= 2z2z3 then

(#x : s = 0 ∧ t > 0)zy = (#x : z2z4x + z1z4 − z2z3 = 0 ∧ t > 0)zy

and gcd(z2z4x + z1z4 − z2z3, t) = 1.

◮ If z0z
2
4 − z1z4z3 + z2z

2
3 = 0 and z1z4 = 2z2z3 then

(#x : s = 0 ∧ t > 0)zy = 0.

In the same way we can ensure the assumption gcd(s, s ′) = 1.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 132 / 194

Decidability of real arithmetic

Under the assumptions gcd(s, t) = gcd(s, s ′) = 1 and s(y) 6= 0 6= s(z),
(#x : s = 0 ∧ t > 0)zy = k is equivalent to

Vary ([s, s
′t])− Varz([s, s

′t]) + Vary ([s, s
′])− Varz([s, s

′]) = 2k

This can be expressed as a boolean combination of statements of the form
Vary ([s, s

′t]) = i1, Varz([s, s
′t]) = i2, Vary ([s, s

′]) = i3, Varz([s, s
′]) = i4.

Finally, a statement Vary ([s, s
′t]) = i (analogously for the other

polynomials) can be expressed by a quantifier-free formula.

For this we execute the Euclidean algorithm symbolically for s and s ′t and
thereby compute symbolically the Sturm sequence [s, s ′t] and then replace
the variable of the polynomials in the Sturm sequence by y .

This concludes case 1. We continue with case 2 from Slide 95.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 133 / 194

Decidability of real arithmetic

Case 2: G = (s = 0 ∧
m∧

i=1

ti > 0), m ≥ 1, and x appears in s.

Induction over m:

Induction base: m = 1. See case 1.

Induction step: let m ≥ 2.

Let G ′ = (s = 0 ∧∧m−2
i=1 ti > 0). We have:

#x(G ′ ∧ tm−1 > 0 ∧ tm > 0) +

#x(G ′ ∧ tm−1 > 0 ∧ tm < 0) = #x(G ′ ∧ tm−1t
2
m > 0) (4)

#x(G ′ ∧ tm−1 > 0 ∧ tm > 0) +

#x(G ′ ∧ tm−1 < 0 ∧ tm > 0) = #x(G ′ ∧ t2m−1tm > 0) (5)

#x(G ′ ∧ tm−1 > 0 ∧ tm < 0) +

#x(G ′ ∧ tm−1 < 0 ∧ tm > 0) = #x(G ′ ∧ tm−1tm < 0) (6)

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 134 / 194

Decidability of real arithmetic

(4) + (5) - (6) yields:

2 ·#x G = 2 ·#x · (G ′ ∧ tm−1 > 0 ∧ tm > 0)

= #x(G ′ ∧ tm−1t
2
m > 0) +

#x(G ′ ∧ t2m−1tm > 0) −
#x(G ′ ∧ −tm−1tm > 0)

Case 3 from Slide 95: s = 0, i.e., G =
∧m

i=1 ti > 0 with ti 6= 0.

Let t = t1t2 · · · tm.
Claim: ∃x G is equivalent in R to

∃x0∀x ≤ x0 : G ∨ ∃x0∀x ≥ x0 : G ∨ ∃x (t ′(x) = 0 ∧ G). (7)

The implication (7) ⇒ ∃x G is clear.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 135 / 194

Decidability of real arithmetic
Now assume that R |= ∃x G .

We obtain

R |= ∃x0∀x ≤ x0 : G ∨ ∃x0∀x ≥ x0 : G ∨
∃x1 ∃x ∃x2 (x1 < x < x2 ∧ ¬G [x/x1] ∧ G ∧ ¬G [x/x2]).

Assume that

R |= ∃x1 ∃x ∃x2 (x1 < x < x2 ∧ ¬G [x/x1] ∧ G ∧ ¬G [x/x2])

Then there are x1, x , x2 ∈ R and i , j ∈ {1, . . . ,m} with
◮ x1 < x < x2,

◮ ti(x1) ≤ 0,

◮ tj(x2) ≤ 0,

◮ tk(x) > 0 for alle 1 ≤ k ≤ m

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 136 / 194

Decidability of real arithmetic

Then there are also x ′1, x
′
2 ∈ R with x ′1 < x < x ′2 and ti(x

′
1) = tj(x

′
2) = 0.

We get t(x ′1) = t(x ′2) = 0.

Since t has only finitely many roots, we can choose for x ′1 (x ′2) the greatest
(smallest) root of t, which is smaller (greater) than x .

We get x ′1 < x < x ′2, t(x
′
1) = 0 = t(x ′2) and tk(y) > 0 for all y ∈ (x ′1, x

′
2)

and 1 ≤ k ≤ m.

We obtain t(y) > 0 for all y ∈ (x ′1, x
′
2).

By Rolle’s theorem (https://de.wikipedia.org/wiki/Satz_von_Rolle)
there exists an x with t ′(x) = 0 and ti(x) > 0 for all 1 ≤ i ≤ m, i.e.,

R |= ∃x0∀x ≤ x0 : G ∨ ∃x0∀x ≥ x0 : G ∨ ∃x (t ′(x) = 0 ∧ G).

This shows the claim.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 137 / 194

https://de.wikipedia.org/wiki/Satz_von_Rolle

Decidability of real arithmetic

It now suffices to find a quantifier-free formula for

∃x0∀x ≤ x0 : G ∨ ∃x0∀x ≥ x0 : G ∨ ∃x (t ′(x) = 0 ∧ G).

For the formulas ∃x0∀x ≤ x0 G and ∃x0∀x ≥ x0 G one can easily find
quantifier-free formulas.

To see this, note that for a polynomial anx
n + · · ·+ a1x + a0 with an 6= 0

we have
∃x0∀x ≤ x0 (anx

n + · · ·+ a1x + a0 > 0)

if and only if one of the following cases holds:

◮ n is even and an > 0,

◮ n is odd and an < 0.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 138 / 194

Decidability of real arithmetic

The formula ∃x (t ′(x) = 0 ∧ G) can be made quantifier-free using case 1,
respectively case 2, if x appears in t ′(x).

If x does not appear in t ′(x), then the x-degree of t(x) = t1(x) · · · tm(x) is
at most 1.

This means that x appears in at most one of the polynomials ti , without
loss of generality assume that x appears in t1.

Moreover, the x-degree of t1(x) is at most one.

If ti = zi for 1 ≤ i ≤ m, then ∃x∧m
i=1 ti > 0 is equivalent to

∧m
i=1 zi > 0.

If t1 = z1 · x + z0 and ti = zi for 2 ≤ i ≤ m, then ∃x ∧m
i=1 ti > 0 is

equivalent to
∧m

i=2 ti > 0

This concludes our proof of Tarski’s theorem.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 139 / 194

Decidability of real arithmetic
Tarski’s theorem implies that there is no arithmetical formula F (x) with a
single free variable x such that for all r ∈ R:

(R,+, ·)[x/r] |= F (x) ⇔ r ∈ N

If there would exist such a formula F (x), then together with Gödel’s
theorem (Th(N,+, ·) is undecidable) the undecidability of Th(R,+, ·)
would follow.

Surprisingly, Julia Robinsion found in 1949 such a formula for Q instead of
R:

Theorem (Robinson 1949)

There exists an arithmetical formula F (x) with a single free variable x

such that for all rational numbers r ∈ Q:

(Q,+, ·)[x/r] |= F (x) ⇔ r ∈ N

Consequence: Th(Q,+, ·) is undecidable.
Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 140 / 194

Monadic second order logic

Monadic second order logic (MSO for short) is an extension of predicate
logic (which is also denoted as first order logic), where quantification over
subsets of the universe is allowed.

For this we fix two set of variables:

◮ first order variables: Var0 = {x1, x2, x3, . . .}
◮ second order variables: Var1 = {X1,X2,X3, . . .}

We have Var0 ∩ Var1 = ∅.
Variables from Var0 are denoted with x , y , z , x ′, x0, . . ., whereas variables
from Var1 are denoted with X ,Y ,Z ,X ′,X0,

As in predicate logic (see Logik I) we have predicate symboles Pk
i (k-ary)

and function symbols f ki (k-ary).

Terms are defined as in predicate logic using function symbols and
variables from Var0.
Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 141 / 194

Monadic second order logic

The set MSO of all MSO-formulas is the smallest set with:

◮ if t1, t2 are terms and X ∈ Var1, then (t1 = t2), (t1 ∈ X) ∈ MSO;

◮ if t1, t2, . . . , tk are terms and P is a k-ary predicate symbol, then
P(t1, . . . , tk) ∈ MSO;

◮ if F ,G ∈ MSO, then ¬F , F ∧ G , F ∨ G ∈ MSO.

◮ if F ∈ MSO and x ∈ Var0,X ∈ Var1, then
∃xF , ∃XF , ∀xF , ∀XF ∈ MSO.

The set free(F) ⊆ Var0 ∪ Var1 of all free variables of F ∈ MSO is defined
as in predicate logic.

For F ∈ MSO we also write F (x1, . . . , xn,X1, . . . ,Xm) in order to express
free(F) = {x1, . . . , xn,X1, . . . ,Xm}.
A formula F ∈ MSO with free(F) = ∅ is called an MSO-sentence.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 142 / 194

Monadic second order logic

A structure is now a pair A = (UA, IA), where UA is a non-empty set (the
universe) and IA is a partially defined mapping, which assigns

◮ to every k–ary predicate symbol P from the domain of IA a k–ary
relation IA(P) ⊆ Uk

A,

◮ to every k–ary function symbol f from the domain of IA a k–ary
function IA(f) : U

k
A → UA,

◮ to every variable x ∈ Var0 from the domain of IA an element
IA(x) ∈ UA, and

◮ to every variable X ∈ Var1 from the domain of IA a subset
IA(X) ⊆ UA.

A structure A is suitable for a formula F ∈ MSO, if IA is defined for every
predicate symbol, function symbol and free variable that appears in F .

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 143 / 194

Monadic second order logic
Let A be suitable for F . We write A |= F if one of the following cases
holds (the evaluation A(t) ∈ UA of a term t is defined as in predicate
logic):

◮ F = (t1 = t2) and A(t1) = A(t2)
◮ F = (t ∈ X) and A(t) ∈ IA(X)

◮ F = P(t1, . . . , tk) and (A(t1), . . . ,A(tk)) ∈ IA(P)

◮ F = ¬G and A |= G does not hold.

◮ F = G ∧ H and (A |= G and A |= H)

◮ F = G ∨ H and (A |= G or A |= H)

◮ F = ∃x G and there exists a ∈ UA with A[x/a] |= G

◮ F = ∀x G and for all a ∈ UA we have A[x/a] |= G

◮ F = ∃X G and there exists B ⊆ UA with A[X/B] |= G

◮ F = ∀X G and for all B ⊆ UA we have A[X/B] |= G .

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 144 / 194

Monadic second order logic

Conventions:

◮ In the following we identify a symbol P with its interpretation IA(P).

◮ A structure A = (UA, IA) with dom(IA) = {P1, . . . ,Pn, f1, . . . , fm} is
also written as (UA, IA(P1), . . . , IA(Pn), IA(f1), . . . , IA(fm)) or just
(UA,P1, . . . ,Pn, f1, . . . , fm).

◮ For an MSO-formula F = F (x1, . . . , xn,X1, . . . ,Xm) and
a1, . . . , an ∈ UA, A1, . . . ,Am ⊆ UA we also write
A |= F (a1, . . . , an,A1, . . . ,Am) for A[x1/a1,...,xn/an,X1/A1,...,Xm/Am] |= F .

The MSO-theory of a structure A is the set of all MSO-sentences F with
A |= F .

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 145 / 194

Monadic second order logic: Example

An example for a useful MSO-formula:

Let G = (V ,E) be a directed graph, which is the structure with universe
V and the binary relation E ⊆ V × V .

The following formula reach(x , y) expresses that in G there is a path from
vertex x to vertex y :

reach(x , y) = ∀X
(
(
x ∈ X ∧∀u∀v(E (u, v)∧u ∈ X → v ∈ X)

)
→ y ∈ X

)

Proof: We say that a subset U ⊆ V of vertices is closed under the edge
relation E if for every (u, v) ∈ E the following holds: if u ∈ U then v ∈ U.

The formula reach(x , y) says that every subset U ⊆ V that is closed under
the edge relation E and that contains x must also contain y .

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 146 / 194

Monadic second order logic: Example

This is indeed equivalent to the fact that there is a path from x to y , i.e.,
(x , y) ∈ E ∗:

◮ Assume that there is no such a path from x to y .

Let U = {v ∈ V | (x , v) ∈ E ∗} be the set of all vertices that can be
reached from x .

Then U is closed under the edge relation E and x ∈ U, y /∈ U.

◮ Assume that there is a path (u1, u2, . . . , un) from x to y , i.e., u1 = x ,
un = y and (ui , ui+1) ∈ E for all i ∈ {1, . . . , n − 1}.
Let U ⊆ V be set of vertices that is closed under E with x ∈ U.

Induction along i shows that ui ∈ U for all i ∈ {1, . . . , n}.
Hence, we have y = un ∈ U.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 147 / 194

MSO-definable languages

We want to use MSO-sentences in order to define (formal) languages.

For this, we first have to represent finite words by structures.

Let Σ be a finite alphabet.

A non-empty word w = a1a2 · · · an (n ≥ 1, ai ∈ Σ) is identified with the
structure

Aw = ({1, 2, . . . , n}, <, (Pa)a∈Σ),

such that:

◮ < is the ordinary order on {1, 2, . . . , n}
◮ Pa is the unary relation Pa = {i | 1 ≤ i ≤ n, ai = a}

(the set of all positions in the word w carrying the letter a)

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 148 / 194

MSO-definable languages

For the following example let the alphabet be Σ = {a, b}.

Example: For the word w = abbaa we have

Aw = ({1, 2, 3, 4, 5}, <, {1, 4, 5}
︸ ︷︷ ︸

Pa

, {2, 3}
︸ ︷︷ ︸

Pb

).

In the following we identify the structure Aw with the word w .

A language L ⊆ Σ+ of non-empty words is MSO-definable if there is an
MSO-sentence F with L = {w ∈ Σ+ | w |= F}.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 149 / 194

MSO-definable languages

Example 1: The MSO-sentence

∃x∃y∃z(∀u(x ≤ u ∧ u ≤ z) ∧ Pa(x) ∧ Pb(y) ∧ Pa(z))

defines the language aΣ∗bΣ∗a.

Here, x ≤ u is an abbreviation for x < u ∨ x = u.

Example 2: The MSO-sentence

∃X (∃x∃y(∀u(x ≤ u ∧ u ≤ y) ∧ x ∈ X ∧ ¬y ∈ X) ∧
∀x∀y(y = x + 1→ (x ∈ X ↔ y 6∈ X)))

defines the language {w ∈ {a, b}+ | |w | is even}.
Here, y = x + 1 is an abbreviation for the formula
x < y ∧ ∀z(x ≤ z ≤ y → (x = z ∨ y = z)).

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 150 / 194

Büchi’s theorem

Theorem (Büchi, Elgot 1958 and Trachtenbrot 1958)

A language L ⊆ Σ+ is MSO-definable if and only if L is regular.

Proof:

1. Let L ⊆ Σ+ be regular. We show that L is MSO-definable.

Let A = (Q,Σ, δ, q0,F) be a deterministic finite automaton (DFA) with
L(A) = L, where

◮ Q is the finite set of states,

◮ δ : Q × Σ→ Q is the transition mapping,

◮ q0 ∈ Q is the initial state, and

◮ F ⊆ Q is the set of final states.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 151 / 194

Büchi’s theorem

Without loss of generality assume that Q = {1, . . . , n}.
Then the following MSO-sentence defines the language L = L(A):

∃X1∃X2 · · · ∃Xn
∧

p 6=q

Xp ∩ Xq = ∅ ∧ ∀x
∨

q∈Q

x ∈ Xq ∧

∃x(∀y(x ≤ y) ∧
∨

a∈Σ

(Pa(x) ∧ x ∈ Xδ(q0,a))) ∧

∃x(∀y(y ≤ x) ∧
∨

q∈F

x ∈ Xq) ∧

∀x∀y(y = x + 1→
∨

q∈Q

∨

a∈Σ

(x ∈ Xq ∧ Pa(y) ∧ y ∈ Xδ(q,a)))

Here, Xp ∩ Xq = ∅ is an abbreviation for ¬∃x(x ∈ Xp ∧ x ∈ Xq).

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 152 / 194

Büchi’s theorem

Idea behind this formula: The existentially quantified set Xq is the set of
all positions in the word where the DFA A arrives in state q ∈ {1, . . . , n}.

◮

∧

p 6=q

Xp ∩ Xq = ∅ ∧ ∀x
∨

q∈Q

x ∈ Xq:

At every position, the DFA arrives in exactly one state.

◮ ∃x(∀y(x ≤ y) ∧
∨

a∈Σ

(Pa(x) ∧ x ∈ Xδ(q0,a))):

If position 1 of the word (x = 1 in the above formula) carries the
letter a, then the DFA arrives at position 1 in the state δ(q0, a)
(q0 is the initial state).

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 153 / 194

Büchi’s theorem

◮ ∃x(∀y(y ≤ x) ∧
∨

q∈F

x ∈ Xq):

At the last position of the word the DFA arrives in a final state.

◮ ∀x∀y(y = x + 1→
∨

q∈Q

∨

a∈Σ

(x ∈ Xq ∧ Pa(y) ∧ y ∈ Xδ(q,a))):

If x and y = x + 1 are two successive positions in the word, where
position y carries the letter a, and the DFA arrives at position x in
state q, then the DFA arrives at position y in state δ(q, a).

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 154 / 194

Büchi’s theorem

2. Let L ⊆ Σ+ be MSO-definable. We show that L is regular.

Let V ⊆ Var0 ∪ Var1 be a finite set of variables.

A non-empty word

w = (a1,V1)(a2,V2) · · · (ak ,Vk) ∈ (Σ× 2V)+

(k ≥ 1, ai ∈ Σ, Vk ⊆ V) is called valid if for every variable x ∈ V ∩ Var0
there is exactly one 1 ≤ i ≤ k with x ∈ Vi .

For a valid word w we define the mapping fw : V → {1, . . . , k} ∪ 2{1,...,k}

by

◮ fw (x) = i if x ∈ Vi ∩ Var0 and

◮ fw (X) = {i | X ∈ Vi} for X ∈ V ∩ Var1.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 155 / 194

Büchi’s theorem

We identify a valid word w = (a1,V1)(a2,V2) · · · (ak ,Vk) with the
structure Aw = ({1, . . . , k}, Iw) where
◮ Iw (x) = fw (x) for x ∈ V ∩ Var0,

◮ Iw (X) = fw (X) for X ∈ V ∩ Var1,

◮ and Iw is defined for the predicate symbols < and Pa (a ∈ Σ) in the
same way as in the structure Av for v = a1a2 · · · ak .

Hence, a valid word w defines an ordinary word a1a2 . . . ak and in addition
a valuation of the variables from V , where

◮ to every x ∈ V ∩ Var0 a position i ∈ {1, . . . , k} is assigned to and

◮ to every variable X ∈ V ∩ Var1 a set of positions is assigned to.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 156 / 194

Büchi’s theorem

For an MSO-formula F with the free variables free(F) let L(F) be the set
of all non-empty valid words w over the alphabet Σ× 2free(F) such that
w |= F .

Proof strategy: we construct for every formula F a finite automaton AF

for the language L(F) using induction over the structure of F . At the end,
we are only interested in the case free(F) = ∅.
First, one can construct for every finite set of variables V ⊆ Var0 ∪ Var1
an automaton AV which accepts exactly the valid words from (Σ× 2V)∗.

The automaton AV only has to check that every variable x ∈ V ∩ Var0
appears at exactly one position of the input word.

For this, AV stores in its state those variables from V ∩ Var0 that were
already seen.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 157 / 194

Büchi’s theorem
Now we come to the construction of the automaton AF :

Case 1: F = (x = y). Construct AF such that

L(AF) = (Σ× {∅})∗ (Σ × {x , y}) (Σ × {∅})∗.

Case 2: F = (x < y). Construct AF such that

L(AF) = (Σ× {∅})∗ (Σ× {x}) (Σ × {∅})∗ (Σ× {y}) (Σ × {∅})∗.

Case 3: F = Pa(x). Construct AF such that

L(AF) = (Σ× {∅})∗ (a, {x}) (Σ × {∅})∗.

Case 4: F = (x ∈ X). Construct AF such that

L(AF) = (Σ × {∅, {X}})∗ (Σ× {x ,X}) (Σ × {∅, {X}})∗.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 158 / 194

Büchi’s theorem

For the following cases we use the known closure properties for regular
languages (closure under boolean operations, homomorphisms and inverse
homomorphisms) that we also used in the proof of the theorem of
Khoussainov and Nerode (Slides 69–80).

Case 5: F = ¬G . Let V = free(G). Construct AF such that

L(AF) = L(AV) \ L(AG).

Case 6: F = G ∨ H.

Let VG = free(G), VH = free(H) and V = free(F) = VG ∪ VH .

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 159 / 194

Büchi’s theorem

Define homomorphisms g : (Σ× 2V)∗ → (Σ × 2VG)∗ and
h : (Σ× 2V)∗ → (Σ× 2VH)∗ by

g(a,S) = (a,S ∩ VG),

h(a,S) = (a,S ∩ VH).

Next, construct the automata A′
G and A′

H such that

L(A′
G) = L(AV) ∩ g−1(L(AG)),

L(A′
H) = L(AV) ∩ h−1(L(AH)).

The automaton AF is now constructed such that L(AF) = L(A′
G) ∪ L(A′

H).

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 160 / 194

Büchi’s theorem
Case 7: F = ∃x G .

Let V = free(G) and hence free(F) = V \ {x}.
Define the homomorphism f : (Σ× 2V)∗ → (Σ× 2V \{x})∗ by

f (a,S) = (a,S \ {x}).

Construct the automaton AF such that L(AF) = f (L(AG)).

Case 8: F = ∃X G .

Let V = free(G) and hence free(F) = V \ {X}.
Define the homomorphism f : (Σ× 2V)∗ → (Σ× 2V \{X})∗ by

f (a,S) = (a,S \ {X}).

Then, construct the automaton AF such that L(AF) = f (L(AG)).

This concludes the proof of Büchi’s theorem.
Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 161 / 194

Extensions of Büchi’s theorem and applications

Büchi extended his result from finite words to infinite words, also known as
ω-words.

An ω-word over the alphabet Σ is an infinite sequence w = a0a1a2a3 · · ·
with ai ∈ Σ for all i ≥ 0. It can be identified with the function w : N→ Σ
with w(i) = ai .

With Σω we denote the set of all ω-words over the alphabet Σ.

An ω-language is a subset of Σω.

We can identify the ω-word w = a0a1a2a3 · · · with the structure

Aw = (N, <, (Pa)a∈Σ),

where Pa = {i ∈ N | a = ai}.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 162 / 194

Büchi automata

Syntactically, a Büchi automaton is exactly the same thing is a
nondeterministic finite automaton.

Definition (nondeterministic Büchi automaton, NBA for short)

A nondeterministic Büchi automaton (over the alphabet Σ) is a tuple
B = (S ,Σ, δ, s0,F) such that:

◮ S is a finite set of states,

◮ Σ is a finite alphabet,

◮ δ ⊆ S × Σ× S is the transition relation,

◮ s0 is the initial state, and

◮ F ⊆ S is the set of final states.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 163 / 194

Büchi automata

Definition (runs and accepting runs)

Let B = (S ,Σ, δ, s0,F) be an NBA and w = (a1a2a3 · · ·) ∈ Σω.

A run of B on w is an ωword (s0s1s2 · · ·) ∈ Sω with (si , ai+1, si+1) ∈ δ for
all i ≥ 0.

This runs is an accepting run of B in w , if there are infinitely many i ≥ 0
with si ∈ F (or equivalently: there is a q ∈ F such that si = q for infinitely
many i).

Definition (language accepted by an NBA)

The ω-language accepted by the NBA B = (S ,Σ, δ, s0,F) is

L(B) = {w ∈ Σω | there is an accepting run of B on w}.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 164 / 194

Büchi automata and MSO

Let L ⊆ Σ∗ be an ω-language.

◮ L is MSO-definable if there exists an MSO-sentence F such that
L = {w ∈ Σω | Aw |= F}.

◮ L is ω-regular if there is an NBA B with L = L(B).

Theorem (Büchi 1960)

An ω-language L ⊆ Σω is MSO-definable if and only if L is ω-regular.

This result can be used to show:

Corollary

The MSO-theory of (N, <) is decidable.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 165 / 194

Tree automata and MSO

The results of Büchi can be extended to infinite trees.

A Σ-labelled (binary) ω-tree is a structure

T = ({0, 1}∗,S0,S1, (Pa)a∈Σ)

where

◮ S0 = {(w ,w0) | w ∈ {0, 1}∗}, S1 = {(w ,w1) | w ∈ {0, 1}∗}, and
◮ every Pa ⊆ {0, 1}∗ is a unary relation such (Pa)a∈Σ is a partition of
{0, 1}∗.

One can define a suitable automaton model for running on such trees,
which yields the class of ω-regular tree languages.

The class of ω-regular tree languages then coincides with the class of
MSO-definable ω-tree languages.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 166 / 194

More decidable MSO theories

A corollary is then the following famous (and very difficult) result:

Corollary (Rabin 1969)

The MSO-theory of the infinite binary tree T2 = ({0, 1}∗,S0,S1,≤)
(see slide 81) is decidable.

From this result one easily obtains:

Corollary

The MSO-theory of (Q,≤) is decidable.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 167 / 194

Motivation

Recall that

finite automata = (∃)MSO (on words and trees)

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 168 / 194

Motivation

Recall that

finite automata = (∃)MSO (on words and trees)

The basic message of the rest of the lecture:

NP = ∃SO (on structures over any relational signature)

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 168 / 194

Motivation

Recall that

finite automata = (∃)MSO (on words and trees)

The basic message of the rest of the lecture:

NP = ∃SO (on structures over any relational signature)

Instead of arbitrary structures, we will restrict to graphs; the generalization
to arbitrary relational structures is just a technicality.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 168 / 194

Graphs and their encodings

Conventions:

◮ Graphs will be always finite and directed.

◮ The set of nodes will be an initial segment of the natural numbers.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 169 / 194

Graphs and their encodings

Conventions:

◮ Graphs will be always finite and directed.

◮ The set of nodes will be an initial segment of the natural numbers.

Hence, a graph is a pair G = ({1, . . . , n},E) with
E ⊆ {1, . . . , n} × {1, . . . , n}.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 169 / 194

Graphs and their encodings

Conventions:

◮ Graphs will be always finite and directed.

◮ The set of nodes will be an initial segment of the natural numbers.

Hence, a graph is a pair G = ({1, . . . , n},E) with
E ⊆ {1, . . . , n} × {1, . . . , n}.
G can be represented by its adjacency matrix MG = (ai ,j)1≤i ,j≤n, where

ai ,j =

{

1 if (i , j) ∈ E

0 else

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 169 / 194

Graphs and their encodings

Conventions:

◮ Graphs will be always finite and directed.

◮ The set of nodes will be an initial segment of the natural numbers.

Hence, a graph is a pair G = ({1, . . . , n},E) with
E ⊆ {1, . . . , n} × {1, . . . , n}.
G can be represented by its adjacency matrix MG = (ai ,j)1≤i ,j≤n, where

ai ,j =

{

1 if (i , j) ∈ E

0 else

We can encode MG and hence G by the following bit string of length n2:

code(G) = a1,1a1,2 · · · a1,na2,1a2,2 · · · a2,n · · · an,1an,2 · · · an,n

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 169 / 194

Graph properties

A graph property is a set of graphs A that is closed under isomorphism:

G1 ∼= G2 ⇒ (G1 ∈ A ⇔ G2 ∈ A)

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 170 / 194

Graph properties

A graph property is a set of graphs A that is closed under isomorphism:

G1 ∼= G2 ⇒ (G1 ∈ A ⇔ G2 ∈ A)

We will present two formalism for specifying graph properties:

◮ (Existential) second-order logic

◮ (Nondeterministic polynomial time) Turing machines.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 170 / 194

Second-order logic over graphs
Let us fix countably infinite sets of variables Var0,Var1,Var2,

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 171 / 194

Second-order logic over graphs
Let us fix countably infinite sets of variables Var0,Var1,Var2,
◮ Var0 is the set of first-order variables x , y , z , x1, x2, . . ., ranging over

nodes of a graph.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 171 / 194

Second-order logic over graphs
Let us fix countably infinite sets of variables Var0,Var1,Var2,
◮ Var0 is the set of first-order variables x , y , z , x1, x2, . . ., ranging over

nodes of a graph.
◮ Vark for k ≥ 1 is the set of k-ary second-order variables

R ,P ,Q,R1,R2, . . ., ranging over k-ary relations on nodes.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 171 / 194

Second-order logic over graphs
Let us fix countably infinite sets of variables Var0,Var1,Var2,
◮ Var0 is the set of first-order variables x , y , z , x1, x2, . . ., ranging over

nodes of a graph.
◮ Vark for k ≥ 1 is the set of k-ary second-order variables

R ,P ,Q,R1,R2, . . ., ranging over k-ary relations on nodes.

The set of second-order formulas (SO-formulas) is inductively defined as
follows, where E denotes the edge relation of a graph:

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 171 / 194

Second-order logic over graphs
Let us fix countably infinite sets of variables Var0,Var1,Var2,
◮ Var0 is the set of first-order variables x , y , z , x1, x2, . . ., ranging over

nodes of a graph.
◮ Vark for k ≥ 1 is the set of k-ary second-order variables

R ,P ,Q,R1,R2, . . ., ranging over k-ary relations on nodes.

The set of second-order formulas (SO-formulas) is inductively defined as
follows, where E denotes the edge relation of a graph:
◮ For all x , y ∈ Var0, (x = y) and E (x , y) are SO-formulas.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 171 / 194

Second-order logic over graphs
Let us fix countably infinite sets of variables Var0,Var1,Var2,
◮ Var0 is the set of first-order variables x , y , z , x1, x2, . . ., ranging over

nodes of a graph.
◮ Vark for k ≥ 1 is the set of k-ary second-order variables

R ,P ,Q,R1,R2, . . ., ranging over k-ary relations on nodes.

The set of second-order formulas (SO-formulas) is inductively defined as
follows, where E denotes the edge relation of a graph:
◮ For all x , y ∈ Var0, (x = y) and E (x , y) are SO-formulas.
◮ For all R ∈ Vark and all x1, . . . , xk ∈ Var0, R(x1, . . . , xk) is an

SO-formula.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 171 / 194

Second-order logic over graphs
Let us fix countably infinite sets of variables Var0,Var1,Var2,
◮ Var0 is the set of first-order variables x , y , z , x1, x2, . . ., ranging over

nodes of a graph.
◮ Vark for k ≥ 1 is the set of k-ary second-order variables

R ,P ,Q,R1,R2, . . ., ranging over k-ary relations on nodes.

The set of second-order formulas (SO-formulas) is inductively defined as
follows, where E denotes the edge relation of a graph:
◮ For all x , y ∈ Var0, (x = y) and E (x , y) are SO-formulas.
◮ For all R ∈ Vark and all x1, . . . , xk ∈ Var0, R(x1, . . . , xk) is an

SO-formula.
◮ If F and G are SO-formulas, then also ¬F , F ∧ G , and F ∨ G are

SO-formulas.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 171 / 194

Second-order logic over graphs
Let us fix countably infinite sets of variables Var0,Var1,Var2,
◮ Var0 is the set of first-order variables x , y , z , x1, x2, . . ., ranging over

nodes of a graph.
◮ Vark for k ≥ 1 is the set of k-ary second-order variables

R ,P ,Q,R1,R2, . . ., ranging over k-ary relations on nodes.

The set of second-order formulas (SO-formulas) is inductively defined as
follows, where E denotes the edge relation of a graph:
◮ For all x , y ∈ Var0, (x = y) and E (x , y) are SO-formulas.
◮ For all R ∈ Vark and all x1, . . . , xk ∈ Var0, R(x1, . . . , xk) is an

SO-formula.
◮ If F and G are SO-formulas, then also ¬F , F ∧ G , and F ∨ G are

SO-formulas.
◮ If F is an SO-formula and x ∈ Var0 then also ∃x : F and ∀x : F are

SO-formulas.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 171 / 194

Second-order logic over graphs
Let us fix countably infinite sets of variables Var0,Var1,Var2,
◮ Var0 is the set of first-order variables x , y , z , x1, x2, . . ., ranging over

nodes of a graph.
◮ Vark for k ≥ 1 is the set of k-ary second-order variables

R ,P ,Q,R1,R2, . . ., ranging over k-ary relations on nodes.

The set of second-order formulas (SO-formulas) is inductively defined as
follows, where E denotes the edge relation of a graph:
◮ For all x , y ∈ Var0, (x = y) and E (x , y) are SO-formulas.
◮ For all R ∈ Vark and all x1, . . . , xk ∈ Var0, R(x1, . . . , xk) is an

SO-formula.
◮ If F and G are SO-formulas, then also ¬F , F ∧ G , and F ∨ G are

SO-formulas.
◮ If F is an SO-formula and x ∈ Var0 then also ∃x : F and ∀x : F are

SO-formulas.
◮ If F is an SO-formula and R ∈ Vark for some k ≥ 1 then also ∃R : F

and ∀R : F are SO-formulas.
Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 171 / 194

Second-order logic over graphs

An SO-sentence is an SO-formula without free (first-order or second-order)
variables.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 172 / 194

Second-order logic over graphs

An SO-sentence is an SO-formula without free (first-order or second-order)
variables.

A first-order formula (FO-formula) is an SO-formula without
quantifications over second-order variables.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 172 / 194

Second-order logic over graphs

An SO-sentence is an SO-formula without free (first-order or second-order)
variables.

A first-order formula (FO-formula) is an SO-formula without
quantifications over second-order variables.

An existential second-order formula (∃SO-formula) is an SO-formula of the
form

∃R1∃R2 · · · ∃Rk : F ,

where R1,R2 . . . ,Rk are second-order variables (of arbitrary arity) and F is
an FO-formula.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 172 / 194

Second-order logic over graphs

An SO-sentence is an SO-formula without free (first-order or second-order)
variables.

A first-order formula (FO-formula) is an SO-formula without
quantifications over second-order variables.

An existential second-order formula (∃SO-formula) is an SO-formula of the
form

∃R1∃R2 · · · ∃Rk : F ,

where R1,R2 . . . ,Rk are second-order variables (of arbitrary arity) and F is
an FO-formula.

For an SO-sentence F and a graph G we write G |= F if F is true in G.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 172 / 194

Second-order logic over graphs

An SO-sentence is an SO-formula without free (first-order or second-order)
variables.

A first-order formula (FO-formula) is an SO-formula without
quantifications over second-order variables.

An existential second-order formula (∃SO-formula) is an SO-formula of the
form

∃R1∃R2 · · · ∃Rk : F ,

where R1,R2 . . . ,Rk are second-order variables (of arbitrary arity) and F is
an FO-formula.

For an SO-sentence F and a graph G we write G |= F if F is true in G.
Note: {G | G |= F} is a graph property.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 172 / 194

Second-order logic over graphs

An SO-sentence is an SO-formula without free (first-order or second-order)
variables.

A first-order formula (FO-formula) is an SO-formula without
quantifications over second-order variables.

An existential second-order formula (∃SO-formula) is an SO-formula of the
form

∃R1∃R2 · · · ∃Rk : F ,

where R1,R2 . . . ,Rk are second-order variables (of arbitrary arity) and F is
an FO-formula.

For an SO-sentence F and a graph G we write G |= F if F is true in G.
Note: {G | G |= F} is a graph property.

Let L be any logic (e.g. FO, SO, ∃SO). A graph property A is L-definable
if there exists an L-sentence F such that A = {G | G |= F}.
Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 172 / 194

Examples

The following ∃SO-sentence states that a graph (with edge relation E)
can be colored with 3 colors:

∃C1 ∃C2 ∃C3 :
∧

1≤i<j≤3

¬∃x(Ci(x) ∧ Cj(x)) ∧

∀x
∨

1≤i≤3

Ci(x) ∧

∀x ∀y : E (x , y)→
∧

1≤i≤3

¬(Ci(x) ∧ Ci (y))

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 173 / 194

Examples

The following ∃SO-sentence states that a graph has an even number of
nodes:

∃ ≤ ∃S ∃A :

∀x , y , z : x ≤ x ∧ (x ≤ y ≤ x → x = y) ∧
(x ≤ y ≤ z → x ≤ z) ∧ (x ≤ y ∨ y ≤ x) ∧

∀x , y : S(x , y)↔ (x < y ∧ ¬∃z(x < z < y)) ∧
∀x : (∀y : x ≤ y)→ A(x) ∧
∀x : (∀y : y ≤ x)→ ¬A(x) ∧
∀x , y : S(x , y)→ (A(x)↔ ¬A(y))

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 174 / 194

Turing machines: Definition

A nondeterministic 1-tape Turing machine is a 6-tuple
M = (Q, Γ, δ, q0, qY , qN), where:

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 175 / 194

Turing machines: Definition

A nondeterministic 1-tape Turing machine is a 6-tuple
M = (Q, Γ, δ, q0, qY , qN), where:

◮ Q is the finite set of states,

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 175 / 194

Turing machines: Definition

A nondeterministic 1-tape Turing machine is a 6-tuple
M = (Q, Γ, δ, q0, qY , qN), where:

◮ Q is the finite set of states,

◮ q0 ∈ Q is the initial state,

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 175 / 194

Turing machines: Definition

A nondeterministic 1-tape Turing machine is a 6-tuple
M = (Q, Γ, δ, q0, qY , qN), where:

◮ Q is the finite set of states,

◮ q0 ∈ Q is the initial state,

◮ qY ∈ Q (resp., qN) is the accepting (resp., rejecting) state,

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 175 / 194

Turing machines: Definition

A nondeterministic 1-tape Turing machine is a 6-tuple
M = (Q, Γ, δ, q0, qY , qN), where:

◮ Q is the finite set of states,

◮ q0 ∈ Q is the initial state,

◮ qY ∈ Q (resp., qN) is the accepting (resp., rejecting) state,

◮ Γ is the finite tape alphabet with {0, 1,✷} ⊆ Γ,

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 175 / 194

Turing machines: Definition

A nondeterministic 1-tape Turing machine is a 6-tuple
M = (Q, Γ, δ, q0, qY , qN), where:

◮ Q is the finite set of states,

◮ q0 ∈ Q is the initial state,

◮ qY ∈ Q (resp., qN) is the accepting (resp., rejecting) state,

◮ Γ is the finite tape alphabet with {0, 1,✷} ⊆ Γ,

◮ δ : (Q \ {qY , qN})× Γ→ 2Q×Γ×{−1,0,1} \ {∅} is the transition
function.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 175 / 194

Turing machines: Definition

A nondeterministic 1-tape Turing machine is a 6-tuple
M = (Q, Γ, δ, q0, qY , qN), where:

◮ Q is the finite set of states,

◮ q0 ∈ Q is the initial state,

◮ qY ∈ Q (resp., qN) is the accepting (resp., rejecting) state,

◮ Γ is the finite tape alphabet with {0, 1,✷} ⊆ Γ,

◮ δ : (Q \ {qY , qN})× Γ→ 2Q×Γ×{−1,0,1} \ {∅} is the transition
function.

M is equipped with an infinite tape, whose cells are indexed with
1, 2, 3,

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 175 / 194

Turing machines: Definition

A nondeterministic 1-tape Turing machine is a 6-tuple
M = (Q, Γ, δ, q0, qY , qN), where:

◮ Q is the finite set of states,

◮ q0 ∈ Q is the initial state,

◮ qY ∈ Q (resp., qN) is the accepting (resp., rejecting) state,

◮ Γ is the finite tape alphabet with {0, 1,✷} ⊆ Γ,

◮ δ : (Q \ {qY , qN})× Γ→ 2Q×Γ×{−1,0,1} \ {∅} is the transition
function.

M is equipped with an infinite tape, whose cells are indexed with
1, 2, 3,

Every cell contains a symbol from Γ.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 175 / 194

Turing machines: Definition

A nondeterministic 1-tape Turing machine is a 6-tuple
M = (Q, Γ, δ, q0, qY , qN), where:

◮ Q is the finite set of states,

◮ q0 ∈ Q is the initial state,

◮ qY ∈ Q (resp., qN) is the accepting (resp., rejecting) state,

◮ Γ is the finite tape alphabet with {0, 1,✷} ⊆ Γ,

◮ δ : (Q \ {qY , qN})× Γ→ 2Q×Γ×{−1,0,1} \ {∅} is the transition
function.

M is equipped with an infinite tape, whose cells are indexed with
1, 2, 3,

Every cell contains a symbol from Γ.

✷ is the blank symbol, 0 and 1 are the input symbols.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 175 / 194

Turing machines: Definition

That (q, b, d) ∈ δ(p, a) means: If current state is p and the current tape
cell k ∈ N to which the head points contains symbol a, then M:

1. changes the symbol of cell k to b,

2. moves the tape head to cell k + d , and

3. enters state q.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 176 / 194

Turing machines: Definition

That (q, b, d) ∈ δ(p, a) means: If current state is p and the current tape
cell k ∈ N to which the head points contains symbol a, then M:

1. changes the symbol of cell k to b,

2. moves the tape head to cell k + d , and

3. enters state q.

If the transition function δ is required to be of type

δ : (Q \ {qY , qN})× Γ→ Q × Γ× {−1, 0, 1}

then M is a deterministic Turing machine.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 176 / 194

Turing machines: Configurations
Configurations of M can be represented by words u(q, a)v with u, v ∈ Γ∗,
q ∈ Q, and a ∈ Γ:

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 177 / 194

Turing machines: Configurations
Configurations of M can be represented by words u(q, a)v with u, v ∈ Γ∗,
q ∈ Q, and a ∈ Γ:

◮ If u = a1a2 · · · an and v = b1b2 · · · bm (n,m ≥ 0) then the current
tape content is

a1a2 · · · an a b1 · · · bm ✷✷✷ · · ·

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 177 / 194

Turing machines: Configurations
Configurations of M can be represented by words u(q, a)v with u, v ∈ Γ∗,
q ∈ Q, and a ∈ Γ:

◮ If u = a1a2 · · · an and v = b1b2 · · · bm (n,m ≥ 0) then the current
tape content is

a1a2 · · · an a b1 · · · bm ✷✷✷ · · ·

◮ The tape head points to cell n + 1 (which contains a).

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 177 / 194

Turing machines: Configurations
Configurations of M can be represented by words u(q, a)v with u, v ∈ Γ∗,
q ∈ Q, and a ∈ Γ:

◮ If u = a1a2 · · · an and v = b1b2 · · · bm (n,m ≥ 0) then the current
tape content is

a1a2 · · · an a b1 · · · bm ✷✷✷ · · ·

◮ The tape head points to cell n + 1 (which contains a).

◮ q is the current state.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 177 / 194

Turing machines: Configurations
Configurations of M can be represented by words u(q, a)v with u, v ∈ Γ∗,
q ∈ Q, and a ∈ Γ:

◮ If u = a1a2 · · · an and v = b1b2 · · · bm (n,m ≥ 0) then the current
tape content is

a1a2 · · · an a b1 · · · bm ✷✷✷ · · ·

◮ The tape head points to cell n + 1 (which contains a).

◮ q is the current state.

Note: u(q, a)v , u(q, a)v✷, u(q, a)v✷✷, . . . all represent the same
configuration of M.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 177 / 194

Turing machines: Configurations
Configurations of M can be represented by words u(q, a)v with u, v ∈ Γ∗,
q ∈ Q, and a ∈ Γ:

◮ If u = a1a2 · · · an and v = b1b2 · · · bm (n,m ≥ 0) then the current
tape content is

a1a2 · · · an a b1 · · · bm ✷✷✷ · · ·

◮ The tape head points to cell n + 1 (which contains a).

◮ q is the current state.

Note: u(q, a)v , u(q, a)v✷, u(q, a)v✷✷, . . . all represent the same
configuration of M.

The initial configuration for an input w = a1 · · · an ∈ {0, 1}∗ is:

init(w) =

{

(q0, a1)a2 · · · an if n ≥ 1

(q0,✷) if n = 0.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 177 / 194

Turing machines: Computations

For two configurations α and β we write α ⊢M β if M can transform α
into β.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 178 / 194

Turing machines: Computations

For two configurations α and β we write α ⊢M β if M can transform α
into β.

An M-computation of length t on input w is a sequence of configurations

init(w) ⊢M α1 ⊢M α2 ⊢M · · · ⊢M αt .

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 178 / 194

Turing machines: Computations

For two configurations α and β we write α ⊢M β if M can transform α
into β.

An M-computation of length t on input w is a sequence of configurations

init(w) ⊢M α1 ⊢M α2 ⊢M · · · ⊢M αt .

This computation is accepting if αt = u(qY , a)v .

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 178 / 194

Turing machines: Computations

For two configurations α and β we write α ⊢M β if M can transform α
into β.

An M-computation of length t on input w is a sequence of configurations

init(w) ⊢M α1 ⊢M α2 ⊢M · · · ⊢M αt .

This computation is accepting if αt = u(qY , a)v .

The input word w ∈ {0, 1}∗ is accepted by M if there exists an accepting
M-computation on input w .

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 178 / 194

Turing machines: Computations

For two configurations α and β we write α ⊢M β if M can transform α
into β.

An M-computation of length t on input w is a sequence of configurations

init(w) ⊢M α1 ⊢M α2 ⊢M · · · ⊢M αt .

This computation is accepting if αt = u(qY , a)v .

The input word w ∈ {0, 1}∗ is accepted by M if there exists an accepting
M-computation on input w .

Let f : N→ N be monotone. The machine M is f (n)-time bounded if
every M-computation on an input w with |w | = n has length at most f (n).

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 178 / 194

The classes P and NP

The class NP is the set of all languages L ⊆ {0, 1}∗ for which there exists
a nondeterministic Turing machine M with:

◮ M is p(n)-time bounded for some polynomial p(n).

◮ For every word w ∈ {0, 1}∗: w is accepted by M if and only if w ∈ L.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 179 / 194

The classes P and NP

The class NP is the set of all languages L ⊆ {0, 1}∗ for which there exists
a nondeterministic Turing machine M with:

◮ M is p(n)-time bounded for some polynomial p(n).

◮ For every word w ∈ {0, 1}∗: w is accepted by M if and only if w ∈ L.

The class P is the set of all languages L ⊆ {0, 1}∗ for which there exists a
deterministic Turing machine M with:

◮ M is p(n)-time bouned for some polynomial p(n).

◮ For every word w ∈ {0, 1}∗: w is accepted by M if and only if w ∈ L.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 179 / 194

The classes P and NP

The class NP is the set of all languages L ⊆ {0, 1}∗ for which there exists
a nondeterministic Turing machine M with:

◮ M is p(n)-time bounded for some polynomial p(n).

◮ For every word w ∈ {0, 1}∗: w is accepted by M if and only if w ∈ L.

The class P is the set of all languages L ⊆ {0, 1}∗ for which there exists a
deterministic Turing machine M with:

◮ M is p(n)-time bouned for some polynomial p(n).

◮ For every word w ∈ {0, 1}∗: w is accepted by M if and only if w ∈ L.

Clearly, P ⊆ NP. Whether P = NP holds, is the most important open
question in TCS (and one of the most important open problems in
Mathematics).

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 179 / 194

Accepting graph properties by Turing machines

We say that a Turing machine M accepts a graph property if the following
holds:

◮ If w ∈ {0, 1}∗ and |w | is not a square, then w is not accepted by M.

◮ If G1 and G2 are isomorphic graphs then code(G1) is accepted by M if
and only if code(G2) is accepted by M.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 180 / 194

Fagin’s Theorem

Theorem (Ronald Fagin, 1974)

Let A be a graph property. Then A ∈ NP if and only if A is ∃SO-definable.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 181 / 194

Fagin’s Theorem

Theorem (Ronald Fagin, 1974)

Let A be a graph property. Then A ∈ NP if and only if A is ∃SO-definable.

Proof:

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 181 / 194

Fagin’s Theorem

Theorem (Ronald Fagin, 1974)

Let A be a graph property. Then A ∈ NP if and only if A is ∃SO-definable.

Proof:

(1) Assume that A = {G | G |= F}, where F is an ∃SO-sentence.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 181 / 194

Fagin’s Theorem

Theorem (Ronald Fagin, 1974)

Let A be a graph property. Then A ∈ NP if and only if A is ∃SO-definable.

Proof:

(1) Assume that A = {G | G |= F}, where F is an ∃SO-sentence.
Let F = ∃R1∃R2 · · · ∃RkQ1x1 · · ·Qℓxℓ : G where Ri is a ki -ary second order
variable, xi is a first-order variable, Qi ∈ {∀,∃} and G is quantifier-free.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 181 / 194

Fagin’s Theorem

Theorem (Ronald Fagin, 1974)

Let A be a graph property. Then A ∈ NP if and only if A is ∃SO-definable.

Proof:

(1) Assume that A = {G | G |= F}, where F is an ∃SO-sentence.
Let F = ∃R1∃R2 · · · ∃RkQ1x1 · · ·Qℓxℓ : G where Ri is a ki -ary second order
variable, xi is a first-order variable, Qi ∈ {∀,∃} and G is quantifier-free.

For a graph G = (V ,E) with |V | = n, a nondeterministic Turing machine
can guess in time

∑k
i=1 n

ki relations Ri of arity ki (1 ≤ i ≤ k).

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 181 / 194

Fagin’s Theorem

Theorem (Ronald Fagin, 1974)

Let A be a graph property. Then A ∈ NP if and only if A is ∃SO-definable.

Proof:

(1) Assume that A = {G | G |= F}, where F is an ∃SO-sentence.
Let F = ∃R1∃R2 · · · ∃RkQ1x1 · · ·Qℓxℓ : G where Ri is a ki -ary second order
variable, xi is a first-order variable, Qi ∈ {∀,∃} and G is quantifier-free.

For a graph G = (V ,E) with |V | = n, a nondeterministic Turing machine
can guess in time

∑k
i=1 n

ki relations Ri of arity ki (1 ≤ i ≤ k).

Then, Q1x1 · · ·Qℓxℓ : G can be checked in time nℓ · poly(|G |, n).

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 181 / 194

Fagin’s Theorem: From NP to ∃SO

(2) Assume that A belongs to NP.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 182 / 194

Fagin’s Theorem: From NP to ∃SO

(2) Assume that A belongs to NP.

Let M = (Q, Γ, δ, q0, qY , qN) be a nondeterministic p(n)-time bounded
Turing machine that accepts A, where p(n) is a polynomial.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 182 / 194

Fagin’s Theorem: From NP to ∃SO

(2) Assume that A belongs to NP.

Let M = (Q, Γ, δ, q0, qY , qN) be a nondeterministic p(n)-time bounded
Turing machine that accepts A, where p(n) is a polynomial.

W.l.o.g. we can assume that for all (q, a) ∈ (Q \ {qY , qN})× Γ we have
|δ(q, a)| = 2.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 182 / 194

Fagin’s Theorem: From NP to ∃SO

(2) Assume that A belongs to NP.

Let M = (Q, Γ, δ, q0, qY , qN) be a nondeterministic p(n)-time bounded
Turing machine that accepts A, where p(n) is a polynomial.

W.l.o.g. we can assume that for all (q, a) ∈ (Q \ {qY , qN})× Γ we have
|δ(q, a)| = 2. Let

δ(q, a) = {(ρ0(q, a), α0(q, a), δ0(q, a)),

(ρ1(q, a), α1(q, a), δ1(q, a))}.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 182 / 194

Fagin’s Theorem: From NP to ∃SO

(2) Assume that A belongs to NP.

Let M = (Q, Γ, δ, q0, qY , qN) be a nondeterministic p(n)-time bounded
Turing machine that accepts A, where p(n) is a polynomial.

W.l.o.g. we can assume that for all (q, a) ∈ (Q \ {qY , qN})× Γ we have
|δ(q, a)| = 2. Let

δ(q, a) = {(ρ0(q, a), α0(q, a), δ0(q, a)),

(ρ1(q, a), α1(q, a), δ1(q, a))}.

For technical reasons, we set for all a ∈ Γ and i ∈ {0, 1}:

ρi (qY , a) = qY , αi (qY , a) = a, δi (qY , a) = 0

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 182 / 194

Fagin’s Theorem: From NP to ∃SO

It suffices to come up with an ∃SO-sentence F such that:

∃c > 0 ∀n ≥ c ∀ graphs G with n nodes :

G |= F ⇔ M accepts code(G)

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 183 / 194

Fagin’s Theorem: From NP to ∃SO

It suffices to come up with an ∃SO-sentence F such that:

∃c > 0 ∀n ≥ c ∀ graphs G with n nodes :

G |= F ⇔ M accepts code(G)

There are constants c , k > 0 such that ∀n ≥ c : p(n2) ≤ nk − 1.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 183 / 194

Fagin’s Theorem: From NP to ∃SO

It suffices to come up with an ∃SO-sentence F such that:

∃c > 0 ∀n ≥ c ∀ graphs G with n nodes :

G |= F ⇔ M accepts code(G)

There are constants c , k > 0 such that ∀n ≥ c : p(n2) ≤ nk − 1.

Note: p(n2) bounds the running time of M on an input code(G) for a
graph G = (V ,E) with n = |V | nodes.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 183 / 194

Fagin’s Theorem: From NP to ∃SO

It suffices to come up with an ∃SO-sentence F such that:

∃c > 0 ∀n ≥ c ∀ graphs G with n nodes :

G |= F ⇔ M accepts code(G)

There are constants c , k > 0 such that ∀n ≥ c : p(n2) ≤ nk − 1.

Note: p(n2) bounds the running time of M on an input code(G) for a
graph G = (V ,E) with n = |V | nodes.
Let G = (V ,E) be a graph with n = |V | ≥ c nodes.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 183 / 194

Fagin’s Theorem: From NP to ∃SO

It suffices to come up with an ∃SO-sentence F such that:

∃c > 0 ∀n ≥ c ∀ graphs G with n nodes :

G |= F ⇔ M accepts code(G)

There are constants c , k > 0 such that ∀n ≥ c : p(n2) ≤ nk − 1.

Note: p(n2) bounds the running time of M on an input code(G) for a
graph G = (V ,E) with n = |V | nodes.
Let G = (V ,E) be a graph with n = |V | ≥ c nodes.

Let w = a1a2 · · · an2 = code(G).

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 183 / 194

Fagin’s Theorem: From NP to ∃SO

It suffices to come up with an ∃SO-sentence F such that:

∃c > 0 ∀n ≥ c ∀ graphs G with n nodes :

G |= F ⇔ M accepts code(G)

There are constants c , k > 0 such that ∀n ≥ c : p(n2) ≤ nk − 1.

Note: p(n2) bounds the running time of M on an input code(G) for a
graph G = (V ,E) with n = |V | nodes.
Let G = (V ,E) be a graph with n = |V | ≥ c nodes.

Let w = a1a2 · · · an2 = code(G).
Hence, every M-computation for input w has length at most nk − 1.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 183 / 194

Fagin’s Theorem: From NP to ∃SO

An accepting M computation

init(w) = γ0 ⊢M γ1 ⊢M γ2 ⊢M · · · ⊢M γm

(m ≤ nk − 1) on input w can be represented by an (nk × nk)-matrix with
entries from Γ ∪ (Q × Γ):

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 184 / 194

Fagin’s Theorem: From NP to ∃SO

An accepting M computation

init(w) = γ0 ⊢M γ1 ⊢M γ2 ⊢M · · · ⊢M γm

(m ≤ nk − 1) on input w can be represented by an (nk × nk)-matrix with
entries from Γ ∪ (Q × Γ):

◮ For 1 ≤ i ≤ m + 1, the i -th row represents the configuration γi−1.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 184 / 194

Fagin’s Theorem: From NP to ∃SO

An accepting M computation

init(w) = γ0 ⊢M γ1 ⊢M γ2 ⊢M · · · ⊢M γm

(m ≤ nk − 1) on input w can be represented by an (nk × nk)-matrix with
entries from Γ ∪ (Q × Γ):

◮ For 1 ≤ i ≤ m + 1, the i -th row represents the configuration γi−1.

◮ For m + 1 < i ≤ nk , the i -th row represents the configuration γm.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 184 / 194

Fagin’s Theorem: From NP to ∃SO

An accepting M computation

init(w) = γ0 ⊢M γ1 ⊢M γ2 ⊢M · · · ⊢M γm

(m ≤ nk − 1) on input w can be represented by an (nk × nk)-matrix with
entries from Γ ∪ (Q × Γ):

◮ For 1 ≤ i ≤ m + 1, the i -th row represents the configuration γi−1.

◮ For m + 1 < i ≤ nk , the i -th row represents the configuration γm.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 184 / 194

Fagin’s Theorem: From NP to ∃SO

An accepting M computation

init(w) = γ0 ⊢M γ1 ⊢M γ2 ⊢M · · · ⊢M γm

(m ≤ nk − 1) on input w can be represented by an (nk × nk)-matrix with
entries from Γ ∪ (Q × Γ):

◮ For 1 ≤ i ≤ m + 1, the i -th row represents the configuration γi−1.

◮ For m + 1 < i ≤ nk , the i -th row represents the configuration γm.

Our ∃SO-sentence F will express the existence of such a matrix.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 184 / 194

Fagin’s Theorem: From NP to ∃SO
Our ∃SO-sentence F will have the form

∃ ≤ ∃(Si)1≤i≤k ∃(Tx)x∈Q∪Γ ∃C0 ∃C1 ∃z0 ∃z1 :
5∧

i=1

Fi ∧
k∧

i=1

Gi

for first-order formulas F1, . . . ,F5, G1, . . . ,Gk .

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 185 / 194

Fagin’s Theorem: From NP to ∃SO
Our ∃SO-sentence F will have the form

∃ ≤ ∃(Si)1≤i≤k ∃(Tx)x∈Q∪Γ ∃C0 ∃C1 ∃z0 ∃z1 :
5∧

i=1

Fi ∧
k∧

i=1

Gi

for first-order formulas F1, . . . ,F5, G1, . . . ,Gk .

Formula G1 expresses that (i) ≤ is a linear order on the node set V , (ii) S1
is the associated successor relation, (iii) z0 (resp., z1) is the first (resp.,
last) element of ≤:

∀x , y , z : x ≤ x ∧ (x ≤ y ≤ x → x = y) ∧
(x ≤ y ≤ z → x ≤ z) ∧ (x ≤ y ∨ y ≤ x) ∧

∀x , y : S1(x , y)↔ (x < y ∧ ¬∃z(x < z < y)) ∧
∀y : z0 ≤ y ≤ z1

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 185 / 194

Fagin’s Theorem: From NP to ∃SO

Formula Gi (2 ≤ i ≤ k) expresses that Si is a successor relation on i -tuples
of nodes:

∀x1, . . . , xi , y1, . . . , yi : Si(x1, . . . , xi , y1, . . . , yi)↔
(
(
S1(x1, y1) ∧

i∧

j=2

xj = yj
)
∨

(
x1 = z1 ∧ y1 = z0 ∧ Si−1(x2, . . . , xi , y2, . . . , yi)

)
)

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 186 / 194

Fagin’s Theorem: From NP to ∃SO

Two abbreviations:

◮ first(x1, . . . , xk) =
k∧

i=1

xi = z0

◮ last(x1, . . . , xk) =
k∧

i=1

xi = z1

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 187 / 194

Fagin’s Theorem: From NP to ∃SO

The second-order variables C0 and C1 are k-ary.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 188 / 194

Fagin’s Theorem: From NP to ∃SO

The second-order variables C0 and C1 are k-ary.

F1 expresses that at every “time instance” t = (t1, . . . , tk) either C0 or C1

holds:

∀t :
(

C0(t) ∨ C1(t)

)

∧
(

¬C0(t) ∨ ¬C1(t)

)

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 188 / 194

Fagin’s Theorem: From NP to ∃SO

The second-order variables C0 and C1 are k-ary.

F1 expresses that at every “time instance” t = (t1, . . . , tk) either C0 or C1

holds:

∀t :
(

C0(t) ∨ C1(t)

)

∧
(

¬C0(t) ∨ ¬C1(t)

)

Intuition: If C0(t) (resp., C1(t)) then at time t the Turing machine takes
choice 0 (resp. 1).

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 188 / 194

Fagin’s Theorem: From NP to ∃SO

The second-order variables C0 and C1 are k-ary.

F1 expresses that at every “time instance” t = (t1, . . . , tk) either C0 or C1

holds:

∀t :
(

C0(t) ∨ C1(t)

)

∧
(

¬C0(t) ∨ ¬C1(t)

)

Intuition: If C0(t) (resp., C1(t)) then at time t the Turing machine takes
choice 0 (resp. 1).

Hence, the predicates C0 and C1 encode a certain computation path.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 188 / 194

Fagin’s Theorem: From NP to ∃SO
Every second-order variable Tx for x ∈ Γ ∪Q is 2k-ary.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 189 / 194

Fagin’s Theorem: From NP to ∃SO
Every second-order variable Tx for x ∈ Γ ∪Q is 2k-ary.

Formula F2 expresses that

◮ every time-position pair (t, p) is labelled (via Ta) with a unique tape
symbol a ∈ Γ, and

◮ that for every time t, there exists a unique position p such that the
time-position pair (t, p) is labelled (via Tq) with a unique state state
q ∈ Q.

∀t ∀p :
∨

a∈Γ

(

Ta(t, p) ∧
∧

b∈Γ\{a}

¬Tb(t, p)

)

∧

∀t ∃p :
∨

q∈Q

(

Tq(t, p) ∧
∧

q′∈Q\{q}

¬Tq′(t, p)

)

∧

∀p′ : p′ 6= p →
∧

q∈Q

¬Tq(t, p
′)

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 189 / 194

Fagin’s Theorem: From NP to ∃SO

Formula F3 expresses that the predicates Tx (x ∈ Q ∪ Γ) encode a valid
computation table of the Turing machine that corresponds to the
computation path encoded by C0 and C1.

∀p ∀t :
∧

(q,a)∈Q×Γ

∧

i∈{0,1}

(Ta(t, p) ∧ Tq(t, p) ∧ Ci (t) ∧ ¬last(t))→

(Tαi (q,a)(t + 1, p) ∧ Tρi (q,a)(t + 1, p + δi (q, a))∧
∀p′ : p 6= p′ →

∧

b∈Γ

: Tb(t, p
′)↔ Tb(t + 1, p′))

Here, t + 1 is the unique t
′ such that Sk(t, t

′) holds (similarly, for p ± 1).

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 190 / 194

Fagin’s Theorem: From NP to ∃SO

Formula F4 expresses that the first row of the computation table encoded
by the predicates Tx (x ∈ Q ∪ Γ) is the initial configuration for input
w = a1a2 · · · an2 .

∀t ∀p : (first(t) ∧ first(p))→ Tq0(t, p) ∧

∀t ∀p :

(

first(t) ∧
k∧

i=3

pi = z0

)

→
(
E (p1, p2)→ T1(t, p) ∧ ¬E (p1, p2)→ T0(t, p)

)
∧

∀t ∀p :

(

first(t) ∧ ¬
k∧

i=3

pi = z0

)

→ T✷(t, p)

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 191 / 194

Fagin’s Theorem: From NP to ∃SO

Formula F5 expresses that the accepting state qY appears in the
computation table:

∃t ∃p : TqY (t, p)

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 192 / 194

Fagin’s Theorem: From NP to ∃SO

Formula F5 expresses that the accepting state qY appears in the
computation table:

∃t ∃p : TqY (t, p)

This concludes the description of the ∃SO-sentence F .

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 192 / 194

Fagin’s Theorem: From NP to ∃SO

Formula F5 expresses that the accepting state qY appears in the
computation table:

∃t ∃p : TqY (t, p)

This concludes the description of the ∃SO-sentence F .

I hope, you are convinced that it works.

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 192 / 194

Descriptive Complexity
Fagin’s theorem was the first result in descriptive complexity theory. There
are many other characterizations:

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 193 / 194

Descriptive Complexity
Fagin’s theorem was the first result in descriptive complexity theory. There
are many other characterizations:

◮ FO = AC0

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 193 / 194

Descriptive Complexity
Fagin’s theorem was the first result in descriptive complexity theory. There
are many other characterizations:

◮ FO = AC0

◮ SO = PH (the polynomial time hierarchy).

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 193 / 194

Descriptive Complexity
Fagin’s theorem was the first result in descriptive complexity theory. There
are many other characterizations:

◮ FO = AC0

◮ SO = PH (the polynomial time hierarchy).

◮ SO-Horn = P on structures with a successor relation

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 193 / 194

Descriptive Complexity
Fagin’s theorem was the first result in descriptive complexity theory. There
are many other characterizations:

◮ FO = AC0

◮ SO = PH (the polynomial time hierarchy).

◮ SO-Horn = P on structures with a successor relation
SO-Horn is the set of all SO-formulas of the form

Q1R1 · · ·QnRn∀x
k∧

i=1

Di , (8)

where every Di is a disjunction of literals containing at most one
occurrence of a positive literal Rj(y).

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 193 / 194

Descriptive Complexity
Fagin’s theorem was the first result in descriptive complexity theory. There
are many other characterizations:

◮ FO = AC0

◮ SO = PH (the polynomial time hierarchy).

◮ SO-Horn = P on structures with a successor relation
SO-Horn is the set of all SO-formulas of the form

Q1R1 · · ·QnRn∀x
k∧

i=1

Di , (8)

where every Di is a disjunction of literals containing at most one
occurrence of a positive literal Rj(y).

◮ SO-Krom = NL on structures with a successor relation:

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 193 / 194

Descriptive Complexity
Fagin’s theorem was the first result in descriptive complexity theory. There
are many other characterizations:

◮ FO = AC0

◮ SO = PH (the polynomial time hierarchy).

◮ SO-Horn = P on structures with a successor relation
SO-Horn is the set of all SO-formulas of the form

Q1R1 · · ·QnRn∀x
k∧

i=1

Di , (8)

where every Di is a disjunction of literals containing at most one
occurrence of a positive literal Rj(y).

◮ SO-Krom = NL on structures with a successor relation:
SO-Krom is the set of all SO-formulas of the form (8), where every
Di is a disjunction of literals containing at most two literals of the
form (¬)Rj(y).

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 193 / 194

Descriptive Complexity

Why is it good to have logical characterizations of complexity classes?

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 194 / 194

Descriptive Complexity

Why is it good to have logical characterizations of complexity classes?

◮ Machine independent characterizations

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 194 / 194

Descriptive Complexity

Why is it good to have logical characterizations of complexity classes?

◮ Machine independent characterizations

◮ Independent of concrete encoding of input structures

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 194 / 194

Descriptive Complexity

Why is it good to have logical characterizations of complexity classes?

◮ Machine independent characterizations

◮ Independent of concrete encoding of input structures

Do these logical characterizations help solving the big open problems of
complexity theory?

Markus Lohrey (Universität Siegen) Advanced Logic Summer 2023 194 / 194

