Exercise 1

Task 1

Find a model for each of the following formulas of predicate logic, and structures in which the formulas evaluate to false.
(a) $\exists x \forall y(f(f(y))=x)$
(b) $\exists x \exists y(P(x, y) \wedge \neg P(y, x))$
(c) $\forall x(f(g(f(x))) \neq g(f(g(x))))$
(d) $R(x) \wedge Q(y) \wedge \forall x(\neg R(x) \vee \neg Q(x))$

Solution:

(a) Model: $\mathcal{A}=\left(\mathbb{N}, I_{\mathcal{A}}\right)$, with $f^{\mathcal{A}}(x)=1$ (for every $\left.x \in \mathbb{N}\right)$. The formula evaluates to true in the structure \mathcal{A} : There exists an element $x \in \mathbb{N}$ (which is $x=1$), such that $f^{\mathcal{A}}\left(f^{\mathcal{A}}(y)\right)=x$ for every $y \in \mathbb{N}$. Another model: $\mathcal{A}^{\prime}=\left(\{1\}, I_{\mathcal{A}^{\prime}}\right)$, with $f^{\mathcal{A}^{\prime}}(1)=1$.

A structure in which the formula evaluates to false: $\mathcal{B}=\left(\mathbb{N}, I_{\mathcal{B}}\right)$, with $f^{\mathcal{B}}(x)=x$. The formula evaluates to false in the structure \mathcal{B} : There is no element $x \in \mathbb{N}$, such that for every $y \in \mathbb{N}$, we have $f^{\mathcal{B}}\left(f^{\mathcal{B}}(y)\right)=x$. Another example: $\mathcal{B}^{\prime}=\left(\{0,1\}, I_{\mathcal{B}^{\prime}}\right)$, with $f^{\mathcal{B}^{\prime}}(x)=1-x$.
(b) Model: $\mathcal{A}=\left(\mathbb{N}, I_{\mathcal{A}}\right)$, with $P^{\mathcal{A}}=\{(x, y) \in \mathbb{N} \times \mathbb{N} \mid x<y\}$. The formula evaluates to true in the structure \mathcal{A} : There are elements $x, y \in \mathbb{N}$ (for example $x=1, y=2$) which satisfy $x<y$ (and thus, $(x, y) \in P^{\mathcal{A}}$), but which do not satisfy $y<x$ (such that $\left.(y, x) \notin P^{\mathcal{A}}\right)$. Another example: $\mathcal{A}^{\prime}=\left(\{0,1\}, I_{\mathcal{A}^{\prime}}\right)$, with $P^{\mathcal{A}^{\prime}}=\{(1,0),(0,0)\}$.

A structure in which the formula evaluates to false: $\mathcal{B}=\left(\mathbb{N}, I_{\mathcal{B}}\right)$, with $P^{\mathcal{B}}=\emptyset$. The formula evaluates to false in the structure \mathcal{B}, as the relation $P^{\mathcal{B}}$ is empty: Hence there is no pair (x, y) with $(x, y) \in P^{\mathcal{B}}$. Another example: $\mathcal{B}^{\prime}=\left(\{1\}, I_{\mathcal{B}^{\prime}}\right)$, with $P^{\mathcal{B}^{\prime}}=\{(1,1)\}$.
(c) Model: $\mathcal{A}=\left(\mathbb{N}, I_{\mathcal{A}}\right)$ with $f^{\mathcal{A}}(x)=1$ and $g^{\mathcal{A}}(x)=2$ for every $x \in \mathbb{N}$. The formula \mathcal{A} evaluates to true in the structure, as $f^{\mathcal{A}}\left(g^{\mathcal{A}}\left(f^{\mathcal{A}}(x)\right)\right)=1$ for every $x \in \mathbb{N}$ and $g^{\mathcal{A}}\left(f^{\mathcal{A}}\left(g^{\mathcal{A}}(x)\right)\right)=2$ for every $x \in \mathbb{N}$. Another example: $\mathcal{A}^{\prime}=\left(\mathbb{Z}, I_{\mathcal{A}^{\prime}}\right)$ with $f^{\mathcal{A}^{\prime}}(x)=x-1$ and $g^{\mathcal{A}^{\prime}}(x)=x+1$.

A structure in which the formula evaluates to false: $\mathcal{B}=\left(\mathbb{N}, I_{\mathcal{B}}\right)$, with $f^{\mathcal{B}}(x)=x$ and $g^{\mathcal{B}}(x)=x$ for every $x \in \mathbb{N}$. The formula evaluates to false in this structure \mathcal{B}, as $f^{\mathcal{B}}=g^{\mathcal{B}}$ and hence $f^{\mathcal{B}}\left(g^{\mathcal{B}}\left(f^{\mathcal{B}}(x)\right)\right)=g^{\mathcal{B}}\left(f^{\mathcal{B}}\left(g^{\mathcal{B}}(x)\right)\right.$) for every $x \in \mathbb{N}$. Another example: $\mathcal{B}^{\prime}=\left(\mathbb{R}, I_{\mathcal{B}^{\prime}}\right)$, wobei $f^{\mathcal{B}^{\prime}}(x)=x^{2}$ und $g^{\mathcal{B}^{\prime}}(x)=x^{3}$ (for $x=1$, we have $\left.f^{\mathcal{B}}\left(g^{\mathcal{B}}\left(f^{\mathcal{B}}(x)\right)\right)=g^{\mathcal{B}}\left(f^{\mathcal{B}}\left(g^{\mathcal{B}}(x)\right)\right)\right)$.
(d) Model: $\mathcal{A}=\left(\mathbb{N}, I_{\mathcal{A}}\right)$, with $x^{\mathcal{A}}=2, y^{\mathcal{A}}=3, R^{\mathcal{A}}=\{2 x \mid x \in \mathbb{N}\}$ und $Q^{\mathcal{A}}=\mathbb{N} \backslash R^{\mathcal{A}}$. The formula evaluates to true in the structure: $R^{\mathcal{A}}$ is the set of even numbers, $Q^{\mathcal{A}}$ is the set of odd numbers. We find that $x^{\mathcal{A}}=2$ is even and $y^{\mathcal{A}}=3$ is odd. Furthermore, every $x \in \mathbb{N}$ is not even or not odd. Another model: $\mathcal{A}^{\prime}=\left(\{0,1\}, I_{\mathcal{A}^{\prime}}\right)$ with $x^{\mathcal{A}^{\prime}}=0$, $y^{\mathcal{A}^{\prime}}=1, R^{\mathcal{A}^{\prime}}=\{0\}$ und $Q^{\mathcal{A}^{\prime}}=\{1\}$.

A structure in which the formula evaluates to false: $\mathcal{B}=\left(\mathbb{N}, I_{\mathcal{B}}\right)$, with $x^{\mathcal{B}}=y^{\mathcal{B}}=1$ und $R^{\mathcal{B}}=Q^{\mathcal{B}}=\mathbb{N}$. The formula evaluates to false in the structure, as for every $x \in \mathbb{N}, R^{\mathcal{B}}(x)$ and $Q^{\mathcal{B}}(x)$ evaluate to true. Another example: $\mathcal{B}^{\prime}=\left(\{0,1\}, I_{\mathcal{B}^{\prime}}\right)$, with $x^{\mathcal{B}^{\prime}}=y^{\mathcal{B}^{\prime}}=1$ and $R^{\mathcal{B}^{\prime}}=Q^{\mathcal{B}^{\prime}}=\{0\}$.

Task 2

Let f denote a binary function symbol and let R be a unary predicate symbol. Consider the following structures:

- $\mathcal{A}_{1}=\left(\mathbb{N}, I_{\mathcal{A}_{1}}\right)$, with $f^{\mathcal{A}_{1}}(x, y)=x \cdot y, R^{\mathcal{A}_{1}}=\{n \in \mathbb{N} \mid n$ is prime $\}$
- $\mathcal{A}_{2}=\left(\mathbb{R}, I_{\mathcal{A}_{2}}\right)$, with $f^{\mathcal{A}_{2}}(x, y)=x-2 y, R^{\mathcal{A}_{2}}=\{x \in \mathbb{R} \mid x \leq 0\}$

Do the following formulas evaluate to true in these structures?
(a) $\forall x(R(x) \vee R(f(x, x)))$
(b) $\forall x \exists y R(f(x, y))$
(c) $\forall x \forall y(f(x, y)=f(y, x))$

Solution:

(a) The structure \mathcal{A}_{1} is not a model for this formula: The number $4 \in \mathbb{N}$ for example is not a prime and $f^{\mathcal{A}_{1}}(4,4)=4 \cdot 4=16$ is not a prime either. The structure \mathcal{A}_{2} is a model for this formula: We have $f^{\mathcal{A}_{2}}(x, x)=x-2 x=-x$, and for every real number x, we find that $x \leq 0$ or $-x \leq 0$, such that $x \in R^{\mathcal{A}_{2}}$ or $f^{\mathcal{A}_{2}}(x, x) \in R^{\mathcal{A}_{2}}$.
(b) The structure \mathcal{A}_{1} is not a model for this formula: For example for $x=4$ there is no $y \in \mathbb{N}$, such that $x \cdot y$ is a prime. The structure \mathcal{A}_{2} is a model for this formula: For every $x \in \mathbb{R}$ there is $y \in \mathbb{R}$ such that $x-2 y \leq 0$.
(c) The structure \mathcal{A}_{1} is a model for this formula, as multiplication of natural numbers is commutative, that is, $x \cdot y=y \cdot x$ for every $x, y \in \mathbb{N}$. The structure \mathcal{A}_{2} is not a model for this formula: For example for $x=1$ and $y=2$, we find that $x-2 y=-3 \neq 0=y-2 x$.

Task 3

Let $L \subseteq \Sigma^{*}$ be a formal language over the alphabet Σ. Answer the following questions:
(a) How is the complement of L defined?
(b) When do we call a language L decidable, and how is the characteristic function χ_{L} of L defined?
(c) When do we call a language L recursively enumerable, and how is the semi-characteristic function χ_{L}^{\prime} of L defined?

Solution:

(a) The complement of $L \subseteq \Sigma^{*}$ is defined as $\bar{L}=\Sigma^{*} \backslash L$. In other words, the complement of L contains all words $w \in \Sigma^{*}$, which are not contained in L.
(b) The characteristic function χ_{L} of a formal language L is defined as follows:

$$
\chi_{L}(w)= \begin{cases}1 & w \in L \\ 0 & w \notin L\end{cases}
$$

A language L is called decidable if there is an algorithm (a Turing machine, ...) with the following properties: For every $w \in \Sigma^{*}$, we have that

- if $w \in L$, the algorithm terminates on input w with output 1 ,
- if $w \notin L$, the algorithm terminates on input w with output 0 .

In other words, a language L is decidable, if its characteristic function χ_{L} is computable.
(c) The semi-characteristic function χ_{L}^{\prime} of L is defined as follows:

$$
\chi_{L}^{\prime}(w)= \begin{cases}1 & w \in L \\ \text { undefined } & w \notin L\end{cases}
$$

A language L is called recursively enumerable, if there is an algorithm (a Turing machine,...) with the following properties: For every $w \in \Sigma^{*}$, we have that

- if $w \in L$, the algorithm terminates on input w,
- if $w \notin L$, the algorithm does not terminate on input w.

In other words, a language L is recursively enumerable, if its semi- characteristic function χ_{L}^{\prime} is computable.
The following statements hold:

- A language L is recursively enumerable, if and only if there is a computable total function $f: \mathbb{N} \rightarrow \Sigma^{*}$ with $L=\{f(i) \mid i \in \mathbb{N}\}$
- A language L is decidable if and only if L and \bar{L} are recursively enumerable.

