Exercise 1

Task 1

Find a model for each of the following formulas of predicate logic, and structures in which the formulas evaluate to false.

- (a) $\exists x \forall y (f(f(y)) = x)$
- (b) $\exists x \exists y (P(x,y) \land \neg P(y,x))$
- (c) $\forall x (f(g(f(x))) \neq g(f(g(x))))$
- (d) $R(x) \wedge Q(y) \wedge \forall x (\neg R(x) \vee \neg Q(x))$

Solution:

(a) Model: $\mathcal{A} = (\mathbb{N}, I_{\mathcal{A}})$, with $f^{\mathcal{A}}(x) = 1$ (for every $x \in \mathbb{N}$). The formula evaluates to true in the structure \mathcal{A} : There exists an element $x \in \mathbb{N}$ (which is x = 1), such that $f^{\mathcal{A}}(f^{\mathcal{A}}(y)) = x$ for every $y \in \mathbb{N}$. Another model: $\mathcal{A}' = (\{1\}, I_{\mathcal{A}'})$, with $f^{\mathcal{A}'}(1) = 1$.

A structure in which the formula evaluates to false: $\mathcal{B} = (\mathbb{N}, I_{\mathcal{B}})$, with $f^{\mathcal{B}}(x) = x$. The formula evaluates to false in the structure \mathcal{B} : There is no element $x \in \mathbb{N}$, such that for every $y \in \mathbb{N}$, we have $f^{\mathcal{B}}(f^{\mathcal{B}}(y)) = x$. Another example: $\mathcal{B}' = (\{0, 1\}, I_{\mathcal{B}'})$, with $f^{\mathcal{B}'}(x) = 1 - x$.

(b) Model: $\mathcal{A} = (\mathbb{N}, I_{\mathcal{A}})$, with $P^{\mathcal{A}} = \{(x, y) \in \mathbb{N} \times \mathbb{N} \mid x < y\}$. The formula evaluates to true in the structure \mathcal{A} : There are elements $x, y \in \mathbb{N}$ (for example x = 1, y = 2) which satisfy x < y (and thus, $(x, y) \in P^{\mathcal{A}}$), but which do not satisfy y < x (such that $(y, x) \notin P^{\mathcal{A}}$). Another example: $\mathcal{A}' = (\{0, 1\}, I_{\mathcal{A}'})$, with $P^{\mathcal{A}'} = \{(1, 0), (0, 0)\}$.

A structure in which the formula evaluates to false: $\mathcal{B} = (\mathbb{N}, I_{\mathcal{B}})$, with $P^{\mathcal{B}} = \emptyset$. The formula evaluates to false in the structure \mathcal{B} , as the relation $P^{\mathcal{B}}$ is empty: Hence there is no pair (x, y) with $(x, y) \in P^{\mathcal{B}}$. Another example: $\mathcal{B}' = (\{1\}, I_{\mathcal{B}'})$, with $P^{\mathcal{B}'} = \{(1, 1)\}$.

(c) Model: $\mathcal{A} = (\mathbb{N}, I_{\mathcal{A}})$ with $f^{\mathcal{A}}(x) = 1$ and $g^{\mathcal{A}}(x) = 2$ for every $x \in \mathbb{N}$. The formula \mathcal{A} evaluates to true in the structure, as $f^{\mathcal{A}}(g^{\mathcal{A}}(f^{\mathcal{A}}(x))) = 1$ for every $x \in \mathbb{N}$ and $g^{\mathcal{A}}(f^{\mathcal{A}}(g^{\mathcal{A}}(x))) = 2$ for every $x \in \mathbb{N}$. Another example: $\mathcal{A}' = (\mathbb{Z}, I_{\mathcal{A}'})$ with $f^{\mathcal{A}'}(x) = x - 1$ and $g^{\mathcal{A}'}(x) = x + 1$.

A structure in which the formula evaluates to false: $\mathcal{B} = (\mathbb{N}, I_{\mathcal{B}})$, with $f^{\mathcal{B}}(x) = x$ and $g^{\mathcal{B}}(x) = x$ for every $x \in \mathbb{N}$. The formula evaluates to false in this structure \mathcal{B} , as $f^{\mathcal{B}} = g^{\mathcal{B}}$ and hence $f^{\mathcal{B}}(g^{\mathcal{B}}(f^{\mathcal{B}}(x))) = g^{\mathcal{B}}(f^{\mathcal{B}}(g^{\mathcal{B}}(x)))$ for every $x \in \mathbb{N}$. Another example: $\mathcal{B}' = (\mathbb{R}, I_{\mathcal{B}'})$, wobei $f^{\mathcal{B}'}(x) = x^2$ und $g^{\mathcal{B}'}(x) = x^3$ (for x = 1, we have $f^{\mathcal{B}}(g^{\mathcal{B}}(f^{\mathcal{B}}(x))) = g^{\mathcal{B}}(f^{\mathcal{B}}(g^{\mathcal{B}}(x)))$).

(d) Model: $\mathcal{A} = (\mathbb{N}, I_{\mathcal{A}})$, with $x^{\mathcal{A}} = 2$, $y^{\mathcal{A}} = 3$, $R^{\mathcal{A}} = \{2x \mid x \in \mathbb{N}\}$ und $Q^{\mathcal{A}} = \mathbb{N} \setminus R^{\mathcal{A}}$. The formula evaluates to true in the structure: $R^{\mathcal{A}}$ is the set of even numbers, $Q^{\mathcal{A}}$ is the set of odd numbers. We find that $x^{\mathcal{A}} = 2$ is even and $y^{\mathcal{A}} = 3$ is odd. Furthermore, every $x \in \mathbb{N}$ is not even or not odd. Another model: $\mathcal{A}' = (\{0,1\}, I_{\mathcal{A}'})$ with $x^{\mathcal{A}'} = 0$, $y^{\mathcal{A}'} = 1$, $R^{\mathcal{A}'} = \{0\}$ und $Q^{\mathcal{A}'} = \{1\}$.

A structure in which the formula evaluates to false: $\mathcal{B} = (\mathbb{N}, I_{\mathcal{B}})$, with $x^{\mathcal{B}} = y^{\mathcal{B}} = 1$ und $R^{\mathcal{B}} = Q^{\mathcal{B}} = \mathbb{N}$. The formula evaluates to false in the structure, as for every $x \in \mathbb{N}$, $R^{\mathcal{B}}(x)$ and $Q^{\mathcal{B}}(x)$ evaluate to true. Another example: $\mathcal{B}' = (\{0,1\}, I_{\mathcal{B}'})$, with $x^{\mathcal{B}'} = y^{\mathcal{B}'} = 1$ and $R^{\mathcal{B}'} = Q^{\mathcal{B}'} = \{0\}$.

Task 2

Let f denote a binary function symbol and let R be a unary predicate symbol. Consider the following structures:

- $\mathcal{A}_1 = (\mathbb{N}, I_{\mathcal{A}_1})$, with $f^{\mathcal{A}_1}(x, y) = x \cdot y$, $R^{\mathcal{A}_1} = \{n \in \mathbb{N} \mid n \text{ is prime}\}$
- $A_2 = (\mathbb{R}, I_{A_2})$, with $f^{A_2}(x, y) = x 2y$, $R^{A_2} = \{x \in \mathbb{R} \mid x \le 0\}$

Do the following formulas evaluate to true in these structures?

- (a) $\forall x (R(x) \lor R(f(x,x)))$
- (b) $\forall x \exists y R(f(x,y))$
- (c) $\forall x \forall y (f(x,y) = f(y,x))$

Solution:

- (a) The structure \mathcal{A}_1 is not a model for this formula: The number $4 \in \mathbb{N}$ for example is not a prime and $f^{\mathcal{A}_1}(4,4) = 4 \cdot 4 = 16$ is not a prime either. The structure \mathcal{A}_2 is a model for this formula: We have $f^{\mathcal{A}_2}(x,x) = x 2x = -x$, and for every real number x, we find that $x \leq 0$ or $-x \leq 0$, such that $x \in R^{\mathcal{A}_2}$ or $f^{\mathcal{A}_2}(x,x) \in R^{\mathcal{A}_2}$.
- (b) The structure \mathcal{A}_1 is not a model for this formula: For example for x=4 there is no $y\in\mathbb{N}$, such that $x\cdot y$ is a prime. The structure \mathcal{A}_2 is a model for this formula: For every $x\in\mathbb{R}$ there is $y\in\mathbb{R}$ such that $x-2y\leq 0$.
- (c) The structure A_1 is a model for this formula, as multiplication of natural numbers is commutative, that is, $x \cdot y = y \cdot x$ for every $x, y \in \mathbb{N}$. The structure A_2 is not a model for this formula: For example for x = 1 and y = 2, we find that $x 2y = -3 \neq 0 = y 2x$.

Task 3

Let $L \subseteq \Sigma^*$ be a formal language over the alphabet Σ . Answer the following questions:

- (a) How is the complement of L defined?
- (b) When do we call a language L decidable, and how is the characteristic function χ_L of L defined?
- (c) When do we call a language L recursively enumerable, and how is the semi-characteristic function χ'_L of L defined?

Solution:

- (a) The complement of $L \subseteq \Sigma^*$ is defined as $\bar{L} = \Sigma^* \setminus L$. In other words, the complement of L contains all words $w \in \Sigma^*$, which are not contained in L.
- (b) The characteristic function χ_L of a formal language L is defined as follows:

$$\chi_L(w) = \begin{cases} 1 & w \in L \\ 0 & w \notin L. \end{cases}$$

A language L is called decidable if there is an algorithm (a Turing machine, ...) with the following properties: For every $w \in \Sigma^*$, we have that

- if $w \in L$, the algorithm terminates on input w with output 1,
- if $w \notin L$, the algorithm terminates on input w with output 0.

In other words, a language L is decidable, if its characteristic function χ_L is computable.

(c) The semi-characteristic function χ'_L of L is defined as follows:

$$\chi'_L(w) = \begin{cases} 1 & w \in L \\ \text{undefined} & w \notin L. \end{cases}$$

A language L is called recursively enumerable, if there is an algorithm (a Turing machine,...) with the following properties: For every $w \in \Sigma^*$, we have that

- if $w \in L$, the algorithm terminates on input w,
- if $w \notin L$, the algorithm does not terminate on input w.

In other words, a language L is recursively enumerable, if its semi- characteristic function χ'_L is computable.

The following statements hold:

- A language L is recursively enumerable, if and only if there is a computable total function $f: \mathbb{N} \to \Sigma^*$ with $L = \{f(i) \mid i \in \mathbb{N}\}$
- A language L is decidable if and only if L and \bar{L} are recursively enumerable.