Exercise 3

Task 1

Consider the table below. Fill in " \checkmark " or " \boldsymbol{X} " in the cells, if the respective set of formulas of predicate logic is decidable/recursively enumerable. From which theorems do the respective results follow?

Set of formulas of predicate logic	decidable	recursively enumerable
Unsatisfiable		
Valid		
Satisfiable		
Finitely unsatisfiable		
Finitely valid		
Finitely satisfiable		

Task 2

Consider the following formulas of predicate logic. Which of these formulas are satisfiable? Which of these formulas are finitely satisfiable?
(a) $(\exists x P(x) \wedge \forall x \neg P(x))$, where P is a unary predicate symbol
(b) $(\forall y \exists x f(x)=y \wedge \exists u \exists v(f(u)=f(v) \wedge u \neq v)$), where f is a unary function symbol
(c) $((\forall x \forall y R(x, y)) \rightarrow(\exists u \exists v R(u, v)))$, where R is a binary predicate symbol
(d) $(\forall x \forall y(g(x)=g(y) \rightarrow x=y) \wedge \exists u \forall v g(v) \neq u)$, where g is a unary function symbol
(e) $\forall x \forall y(R(x, y, f(x, y)) \wedge \neg R(f(x, y), x, y) \wedge \neg R(x, f(x, y), y))$, where R is a 3-ary predicate symbol and f is a binary function symbol
(f) $(\forall x \neg R(x, x) \wedge \forall y \forall z((y \neq z) \rightarrow(R(y, z) \vee R(z, y))) \wedge \forall x \forall y \forall z((R(x, y) \wedge R(y, z)) \rightarrow$ $R(x, z)) \wedge \forall u \exists v R(u, v))$, where R is a binary predicate symbol.

Task 3

True or false?
(a) $\forall x \exists y(x=y \cdot y) \in \operatorname{Th}(\mathbb{N},+, \cdot)$
(b) $\forall x \exists y(x=y+y) \in \operatorname{Th}(\mathbb{R},+, \cdot)$
(c) $\exists x \forall y x<y \in \operatorname{Th}(\mathbb{N},<)$
(d) $\forall x \exists y(P(y) \wedge(x<y) \wedge \exists z(P(z) \wedge(z=y+2))) \in \operatorname{Th}(\mathbb{N},+,<, P, 2)$, where P is the set of prime numbers.

