Exercise 3

Task 1

Consider the table below. Fill in " \checkmark " or " \checkmark " in the cells, if the respective set of formulas of predicate logic is decidable/recursively enumerable. From which theorems do the respective results follow?

Set of formulas of predicate logic	decidable	recursively enumerable
Unsatisfiable		
Valid		
Satisfiable		
Finitely unsatisfiable		
Finitely valid		
Finitely satisfiable		

Task 2

Consider the following formulas of predicate logic. Which of these formulas are satisfiable? Which of these formulas are finitely satisfiable?

- (a) $(\exists x P(x) \land \forall x \neg P(x))$, where P is a unary predicate symbol
- (b) $(\forall y \exists x \ f(x) = y \land \exists u \exists v (f(u) = f(v) \land u \neq v))$, where f is a unary function symbol
- (c) $((\forall x \forall y R(x, y)) \rightarrow (\exists u \exists v R(u, v)))$, where R is a binary predicate symbol
- (d) $(\forall x \forall y (g(x) = g(y) \rightarrow x = y) \land \exists u \forall v \ g(v) \neq u)$, where g is a unary function symbol
- (e) $\forall x \forall y (R(x, y, f(x, y)) \land \neg R(f(x, y), x, y) \land \neg R(x, f(x, y), y))$, where R is a 3-ary predicate symbol and f is a binary function symbol
- (f) $(\forall x \neg R(x, x) \land \forall y \forall z((y \neq z) \rightarrow (R(y, z) \lor R(z, y))) \land \forall x \forall y \forall z((R(x, y) \land R(y, z)) \rightarrow R(x, z)) \land \forall u \exists v R(u, v))$, where R is a binary predicate symbol.

Task 3

True or false?

- (a) $\forall x \exists y (x = y \cdot y) \in \text{Th}(\mathbb{N}, +, \cdot)$
- (b) $\forall x \exists y (x = y + y) \in Th(\mathbb{R}, +, \cdot)$
- (c) $\exists x \forall y \, x < y \in \text{Th}(\mathbb{N}, <)$
- (d) $\forall x \exists y (P(y) \land (x < y) \land \exists z (P(z) \land (z = y + 2))) \in Th(\mathbb{N}, +, <, P, 2)$, where P is the set of prime numbers.