Exercise 3

Task 1

Consider the table below. Fill in " \checkmark " or " \boldsymbol{X} " in the cells, if the respective set of formulas of predicate logic is decidable/recursively enumerable. From which theorems do the respective results follow?

Set of formulas of predicate logic	decidable	recursively enumerable
Unsatisfiable		
Valid		
Satisfiable		
Finitely unsatisfiable		
Finitely valid		
Finitely satisfiable		

Solution:

	decidable	recursively enumerable
Unsatisfiable	\boldsymbol{x}	\checkmark (Corollary of Gilmore's Theorem, slide 6)
Valid	\boldsymbol{x} (Church's Theorem)	\checkmark (Corollary slide 6, follows from Gilmore's Theorem)
Satisfiable	\boldsymbol{x}	\boldsymbol{x} (Corollary of Church's Theorem, slide 7)
Finitely unsatisfiable	\boldsymbol{x}	\boldsymbol{x} (Corollary slide 26)
Finitely valid	\boldsymbol{x}	\boldsymbol{x} (Corollary slide 26)
Finitely satisfiable	\boldsymbol{X} (Trachtenbrot's Theorem)	\checkmark (Lemma slide 26)

The marks " \boldsymbol{X} " for decidability of the set of satisfiable formulas, the set of finitely unsatisfiable formulas and the set of finitely valid formulas follow from the fact that a set that is not recursively enumerable cannot be decidable. The mark " \boldsymbol{X} " for decidability of the set of unsatisfiable formulas follows from the fact that its complement (the set of satisfiable formulas) is not decidable.

Task 2

Consider the following formulas of predicate logic. Which of these formulas are satisfiable? Which of these formulas are finitely satisfiable?
(a) $(\exists x P(x) \wedge \forall x \neg P(x))$, where P is a unary predicate symbol
(b) $(\forall y \exists x f(x)=y \wedge \exists u \exists v(f(u)=f(v) \wedge u \neq v))$, where f is a unary function symbol
(c) $((\forall x \forall y R(x, y)) \rightarrow(\exists u \exists v R(u, v)))$, where R is a binary predicate symbol
(d) $(\forall x \forall y(g(x)=g(y) \rightarrow x=y) \wedge \exists u \forall v g(v) \neq u)$, where g is a unary function symbol
(e) $\forall x \forall y(R(x, y, f(x, y)) \wedge \neg R(f(x, y), x, y) \wedge \neg R(x, f(x, y), y))$, where R is a 3-ary predicate symbol and f is a binary function symbol
(f) $(\forall x \neg R(x, x) \wedge \forall y \forall z((y \neq z) \rightarrow(R(y, z) \vee R(z, y))) \wedge \forall x \forall y \forall z((R(x, y) \wedge R(y, z)) \rightarrow$ $R(x, z)) \wedge \forall u \exists v R(u, v))$, where R is a binary predicate symbol.

Solution:

(a) This formula is logically equivalent to $(\exists x P(x) \wedge \neg \exists x P(x))$. Hence, this formula is unsatisfiable.
(b) This formula is satisfiable, but not finitely satisfiable: The formula states that the function f is surjective, but not injective. On finite sets, surjectivity and injectivity are equivalent. Thus, there is no model with finite universe for this formula. The formula is satisfiable, a model $\mathcal{A}=\left(U_{\mathcal{A}}, I_{\mathcal{A}}\right)$ for the formula with infinite universe is for example given by $U_{\mathcal{A}}=\mathbb{N}, f^{\mathcal{A}}(x)=\lfloor x / 2\rfloor$.
(c) This formula is satisfiable and finitely satisfiable. For example, let $\mathcal{A}=\left(U_{\mathcal{A}}, I_{\mathcal{A}}\right)$ with $U_{\mathcal{A}}=\{0\}$ and $R^{\mathcal{A}}=\{(0,0)\}$, then \mathcal{A} is a model for the formula (with finite universe). The formula is even valid.
(d) This formula is satisfiable, but not finitely satisfiable. The formula states that the function f is injective, but not surjective. Hence, as in task (b), as surjectivity and injectivity on finite sets are equivalent, this formula is not finitely satisfiable. The formula is satisfiable. Take, for example, $\mathcal{A}=\left(U_{\mathcal{A}}, I_{\mathcal{A}}\right)$ with $U_{\mathcal{A}}=\mathbb{R}, f^{\mathcal{A}}(x)=e^{x}$ as a model.
(e) This formula is satisfiable and finitely satisfiable, it is possible to find a model with finite universe for this formula.
(f) This formula is satisfiable, but not finitely satisfiable. The formula states that the relation R is not reflexive, total and transitive and that for each element u there exists another element v that is "greater" than u with respect to this relation. This is only possible on infinite sets.

Task 3

True or false?
(a) $\forall x \exists y(x=y \cdot y) \in \operatorname{Th}(\mathbb{N},+, \cdot)$
(b) $\forall x \exists y(x=y+y) \in \operatorname{Th}(\mathbb{R},+, \cdot)$
(c) $\exists x \forall y x<y \in \operatorname{Th}(\mathbb{N},<)$
(d) $\forall x \exists y(P(y) \wedge(x<y) \wedge \exists z(P(z) \wedge(z=y+2))) \in \operatorname{Th}(\mathbb{N},+,<, P, 2)$, where P is the set of prime numbers.

Solution:

(a) False (for example, there is no natural number y such that $y \cdot y=5$)
(b) True
(c) False (as $0<0$ does not hold)
(d) This is the twin prime conjecture, which is still open.

