Exercise 5

Task 1

Let $(\mathbb{Z},+, \cdot)$ be a structure, where

- \mathbb{Z} denotes the universe of the structure,
- + denotes a binary function symbol interpreted as the addition of integers, and
- • denotes a binary function symbol interpreted as the multiplication of integers.

Show that $\operatorname{Th}(\mathbb{Z},+, \cdot)$ is undecidable.
Hint: Apply Lagrange's four-square theorem:
Theorem 1 (Lagrange's four-square theorem)
Every natural number can be represented as the sum of four integer squares, that is, for every $x \in \mathbb{N}$, there are integers $x_{1}, x_{2}, x_{3}, x_{4} \in \mathbb{Z}$, such that $x=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}$.

Solution:

Note that Lagrange's four-square theorem does not hold for negative integers. Let F be a formula such that $(\mathbb{N},+, \cdot)$ is suitable for F. We transform F into a formula F^{\prime}, such that $(\mathbb{Z},+, \cdot)$ is suitable for F^{\prime}, and such that $F \in \operatorname{Th}(\mathbb{N},+, \cdot)$ if and only if $F^{\prime} \in \operatorname{Th}(\mathbb{Z},+, \cdot)$. We define

$$
\operatorname{natural}(x):=\exists y_{1} \exists y_{2} \exists y_{3} \exists y_{4}\left(x=y_{1} \cdot y_{1}+y_{2} \cdot y_{2}+y_{3} \cdot y_{3}+y_{4} \cdot y_{4}\right) \text {. }
$$

In order to obtain F^{\prime}, we replace every occurrence of a subformula $\exists x_{i} G$ by

$$
\exists x_{i}\left(G \wedge \operatorname{natural}\left(x_{i}\right)\right)
$$

and every occurrence of a subformula $\forall x_{i} G$ by

$$
\forall x_{i}\left(\text { natural }\left(x_{i}\right) \rightarrow G\right)
$$

This yields a formula F^{\prime}, such that $(\mathbb{Z},+, \cdot)$ is suitable for F^{\prime} and such that $F \in \operatorname{Th}(\mathbb{N},+, \cdot)$ if and only if $F^{\prime} \in \operatorname{Th}(\mathbb{Z},+, \cdot)$. By Gödel's Theorem, $\operatorname{Th}(\mathbb{N},+, \cdot)$ is undecidable. Thus, $\operatorname{Th}(\mathbb{Z},+, \cdot)$ is undecidable as well.

Task 2

Consider the structure ($\mathbb{N},+, \cdot, s, 0$). Use Gödel's β-function in order to formalize the following statements in predicate logic:
(a) $x^{y}=z$ (use free variables x, y and z),
(b) Fermat's Last Theorem,
(c) Collatz conjecture.

Solution:

We give the main ideas:
(a) We express $x^{y}=z$ as: There is a sequence $\left(a_{1}, \ldots, a_{y}, a_{y+1}\right)$ with $a_{1}=1, a_{i+1}=a_{i} \cdot x$ for $1 \leq i \leq y$ and $a_{y+1}=z$. This holds if there are $t, p \in \mathbb{N}$ with $\beta(t, p, 1)=1$, $\beta(t, p, i+1)=\beta(t, p, i) \cdot x$ for every $1 \leq i \leq y$ and $\beta(t, p, y+1)=z$.
(b) Fermat's Last Theorem states the following: For all natural numbers $a, b, c \geq 1$ and $n \geq 3$ we have $a^{n}+b^{n} \neq c^{n}$. We already know how to formalize $x^{y}=z$. From Exercise 2, Task 2, we know how to formalize the numbers 1 and 2 and the relations \geq and $>$ in $(\mathbb{N},+, \cdot, s, 0)$. We can thus formalize: If $a, b, c \geq 1$ and $n>2$ and $a^{n}=a^{\prime}, b^{n}=b^{\prime}$ and $c^{n}=c^{\prime}$, then $a^{\prime}+b^{\prime} \neq c^{\prime}$.
(c) Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be defined as $f(2 n)=n$ and $f(2 n+1)=3(2 n+1)+1$. Let C_{n} be the sequence $(n, f(n), f(f(n)), \ldots)$. We write $C_{n}[i]$ for the i th element of the sequence. The Collatz conjecture is the following question: Is there for every n an integer j, such that $C_{n}[j]=1$? The function f can be formalized by distinguishing between odd and even numbers and by defining the numbers 2 and 3 (Exercise 2, Task 2). Using the β-function, we can formalize the Collatz conjecture as follows: For every $n \in \mathbb{N}$ there are $t, p \in \mathbb{N}$, such that $\beta(t, p, 1)=n, \beta(t, p, i+1)=f(\beta(t, p, i))$ and there is $j \in \mathbb{N}$ such that $\beta(t, p, j)=1$.

