Exercise 6

Task 1

Compute the following convolutions of words:
(a) ababab $\otimes a a a b b b a a a$,
(b) $a \otimes b a b a b \otimes b a b \otimes a a a a a a$,
(c) $w_{1} \otimes w_{2} \otimes \cdots \otimes w_{n}$ for $n \geq 1$, where $w_{k}=(a b)^{k}$,
(d) $(a b a \otimes b a b a) \otimes(b a b \otimes a b a b)$.

Task 2
Let $\Sigma=\{a, b\}$. We consider the following relations on Σ^{*} :
(a) Equality $=$, that is,

$$
u=v \Longleftrightarrow u \text { is equal to } v
$$

(b) the lexicographic order $\leq_{\text {lex }}$ defined by

$$
\begin{aligned}
u \leq_{\operatorname{lex}} v \Longleftrightarrow & u \text { is a prefix of } v \text { or } \\
& \text { there are } x, y, z \in \Sigma^{*} \text { such that } u=x a y \text { and } v=x b z,
\end{aligned}
$$

(c) the length-lexicographic order $\leq_{\text {llex }}$ is defined by

$$
u \leq_{1 \operatorname{lex}} v \Longleftrightarrow|u|<|v| \text { or }\left(|u|=|v| \text { and } u \leq_{\operatorname{lex}} v\right) .
$$

Show that the relations are synchronously rational.

Task 3

Let $\Sigma=\{a, b\}$ and let $n \geq 1$. Show that the language

$$
\left\{w_{1} \otimes \cdots \otimes w_{n} \mid w_{1}, \ldots, w_{n} \in \Sigma^{*}\right\} \subseteq\left(\Sigma_{\#}^{n}\right)^{*}
$$

is regular by constructing a finite automaton for this language.

