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Exercise 7

Task 1
Which of the following statements are correct? Give reasons for your answer.

(a) (N,≤) is automatically presentable.

(b) Let M ⊆ N (unary relation), then (N,M) is automatically presentable.

Solution:

(a) This statement is correct: Let f : N → {a}∗ be defined by f(i) = ai. Let ({a}∗,≤a)
with ai ≤a aj if and only if i ≤ j. Then (N,≤) and ({a}∗,≤a) are isomorphic and
f is the corresponding isomorphism, as i ≤ j if and only if f(i) = ai ≤ aj = f(j).
Furthermore, f is bijective. Moreover, ({a}∗,≤a) is automatic, as
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is a finite automaton for {a}∗ and
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(a, a) (#, a)
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is a 2-tape automaton for ≤a.

(b) This statement is correct: If M or N \M is finite, then let ({a}∗, P ) with P = {ai |
i ∈ M} and f(i) = ai. We find that ({a}∗, P ) and (N,M) are isomorphic and f is
the corresponding isomorphism. The automaton that accepts {a}∗ is shown in part
(a). If M is finite, then P is finite and thus accepted by a finite automaton as finite
languages are always regular (recall that P is a unary relation and a 1-tape automaton
is a

”
standard“ finite automaton).

If N \M is finite, then the complement of P is finite and hence regular. As regular
languages are closed under taking the complement, we find that P is regular and thus
there is a finite automaton which accepts P . Thus, ({a}∗, P ) is automatic in this case.
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If both M and N \ M are infinite, then let M = {a0, a1, a2, . . . } and let N \ M =
{b1, b2, . . . } (note that both M and N \M are countable as subsets of N). We define
({a}∗ ∪ {b}∗, P ) by P = {a}∗ and f : N→ {a}∗ ∪ {b}∗ by

f(i) =

{
aj if i ∈M,aj = i,

bj if i /∈M, bj = i.

Then f is an isomorphism, as f is bijective and f(i) ∈ P holds if and only if i ∈ M .
Furthermore, we find that ({a}∗ ∪ {b}∗, P ) is automatic, as
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is an automaton for {a}∗ ∪ {b}∗ and P = {a}∗ is accepted by the finite automaton in
part (a).

Task 2
Are any two countable linear orders without a smallest and a largest element isomorphic?

Solution:
We find that (Z,≤) and (Q,≤) are countable linear orders without a smallest and a largest
element, but they are not isomorphic: For example, we find that (Q,≤) is dense, but (Z,≤)
is not dense. In order to show a contradiction, assume that there is a bijection h : Z→ Q,
such that

a ≤ b ⇐⇒ h(a) ≤ h(b)

holds for all a, b ∈ Z. Fix two elements a, b ∈ Z such that a + 1 = b. As Q is dense, there
is an element q ∈ Q, such that h(a) < q < h(b). As h is a bijection, we have q = h(c) for
an element c ∈ Z. However, we either have c < a or b < c, as a + 1 = b. This yields a
contradiction.

Task 3
Let Σ = {a, b}. Show that

(a) the lexicographic order ≤lex defined by

u ≤lex v ⇐⇒ u is a prefix of v or

there are x, y, z ∈ Σ∗ such that u = xay and v = xbz,

(b) the length-lexicographic order ≤llex defined by

u ≤llex v ⇐⇒ |u| < |v| or (|u| = |v| and u ≤lex v).

2



are linear orders.

Solution:
We have to show that the orders are reflexive, anti-symmetric, transitive and linear.

(a) The lexicographic order is a linear order:

reflexive: We have u ≤lex u for every u ∈ Σ∗, as u is a prefix of itself.

anti-symmetric: Let u ≤lex v and v ≤lex u for u, v ∈ Σ∗. Then u must be a prefix of
v and v must be a prefix of u. It follows that u = v.

transitive: Let u ≤lex v and v ≤lex w for u, v, w ∈ Σ∗. Several cases are possible:

(i) u is a prefix of v and v is a prefix of w

(ii) u is a prefix of v and v = xay, w = xbz for x, y, z ∈ Σ∗

(iii) u = xay, v = xbz for x, y, z ∈ Σ∗ and v is a prefix of w

(iv) u = xay, v = xbz for x, y, z ∈ Σ∗ and v = paq, v = pbr for p, q, r ∈ Σ∗

In case (i), we find that u thus must be a prefix of w and hence u ≤lex w.
In case (ii), as u is a prefix of v, it follows that u is a prefix of xay. If u is even a prefix
of x, it follows that u is a prefix of w = xbz and hence u ≤lex w. Otherwise, u is of the
form xay′ for some y′ ∈ Σ∗ and hence, u ≤lex w.
In case (iii), as v is a prefix of w, we find that w = xbzz′ for some z′ ∈ Σ∗. In particular,
we have u = xay and v = xbzz′, so u ≤lex w.
In case (iv), as v = xbz and v = paq, we either have that xb is a prefix of p or pa is
a prefix of x. If pa is a prefix of x, we find that u is of the form u = pasy for some
s ∈ Σ∗. Hence, u ≤lex w. The other case that xb is a prefix of p is symmetric.

linear: For all u, v ∈ Σ∗ it holds that u ≤lex v or v ≤lex u.

(b) The length-lexicographic order is a linear order:

reflexive: We have |u| = |u| and u ≤lex u for every u ∈ Σ∗.

anti-symmetric: Let u ≤llex v and v ≤llex u for u, v ∈ Σ∗. Then it must hold that
|u| = |v| and u ≤lex v and v ≤lex u. As in part (a), it follows that u = v.

transitive: Let u ≤llex v and v ≤llex w for u, v, w ∈ Σ∗. Again, several cases are
possible:

(i) |u| < |v| and |v| < |w|
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(ii) |u| = |v|, u ≤lex v and |v| < |w|
(iii) |u| < |v| and |v| = |w|, v ≤lex w

(iv) |u| = |v|, u ≤lex v and |v| = |w|, v ≤lex w.

In cases (i), (ii) and (iii), it follows immediately that |u| < |w| and hence u ≤llex v.
In case (iv), we have u ≤lex v and v ≤lex w, so the statement follows from part (a).

linear: For all u, v ∈ Σ∗ it holds that u ≤llex v or v ≤llex u.
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