Exercise 8

Task 1

Check whether $(\mathbb{N}, \leq) \models \exists x \forall y(x \leq y)$ holds by applying the technique from the proof of the Theorem of Khoussainov and Nerode.

Solution:

In the solution of exercise sheet 7 , task 1 , we showed that (\mathbb{N}, \leq) is isomorphic to the following automatic structure: $\left(\{a\}^{*}, \leq_{a}\right)$, where $a^{i} \leq_{a} a^{j}$ if and only if $i \leq j$. In particular,

is a 2-tape automaton for \leq_{a}.
As a first step, we transform the formula $\exists x \forall y\left(x \leq_{a} y\right)$ into an equivalent formula which does not contain a \forall-quantifier: A \forall-quantifier can be expressed using a negation of an \exists-quantifier. We find

$$
\exists x \forall y\left(x \leq_{a} y\right) \equiv \exists x \neg \exists y \neg\left(x \leq_{a} y\right)
$$

Now let $F=\exists x \neg \exists y \neg\left(x \leq_{a} y\right)$. We start with the (atomic) subformula $F_{1}=x \leq_{a} y$, which is treated in case 1 (slide 75) in the proof of the Theorem of Khoussainov und Nerode. This means that we construct a synchronous 2-tape automaton $B_{F_{1}}$, such that

$$
K\left(B_{F_{1}}\right)=\left\{\left(w_{1}, w_{2}\right) \in\{a\}^{*} \times\{a\}^{*} \mid w_{1} \leq_{a} w_{2}\right\} .
$$

In this concrete example, we can take the 2-tape automaton from above, which accepts precisely this relation. Note that all variables of F are free variables in F_{1}, and we assume that they are ordered according to their occurrence in F_{1} - thus, the homomorphism from case 1 on slide 75 is the identity mapping.

Next, we consider the subformula $F_{2}=\neg F_{1}=\neg\left(x \leq_{a} y\right)$: This corresponds to case 3 (slide 77) from the proof of the Theorem of Khoussainov and Nerode. We thus need a 2 -tape automaton $B_{F_{2}}$, such that

$$
L\left(B_{F_{2}}\right)=\left\{w_{1} \otimes w_{2} \mid w_{1}, w_{2} \in\{a\}^{*}\right\} \backslash L\left(B_{F_{1}}\right),
$$

respectively,

$$
K\left(B_{F_{2}}\right)=\left\{\left(a^{n}, a^{m}\right) \mid n>m\right\} .
$$

The following automaton satisfies this property:

Next, we consider the subformula $F_{3}=\exists y F_{2}=\exists y \neg\left(x \leq_{a} y\right)$. This corresponds to case 5 (slide 78). Let f be the homomorphism defined by $f\left(w_{1} \otimes w_{2}\right)=w_{1}$ (slide 78). We are looking for an automaton $B_{F_{3}}$, such that

$$
L\left(B_{F_{3}}\right)=f\left(L\left(B_{F_{2}}\right)\right) .
$$

This means that we simply ignore the second component:

This non-deterministic automaton accepts the same language as the following deterministic automaton:

Next, we consider the subformula $F_{4}=\neg F_{3}=\neg \exists y \neg\left(x \leq_{a} y\right)$, which again corresponds to case 3 (slide 77). It is easy to see that the complement of $L\left(B_{F_{3}}\right)$ only contains the empty word ε. Hence, $B_{F_{4}}$ is the following automaton (which is obtained by switching accept and non-accept states in the above deterministic automaton):

The formula F is of the form $F=\exists x F_{4}$ (as on slide 80). We have $\left(\{a\}^{*}, \leq_{a}\right) \models F$ if and only if $L\left(B_{F_{4}}\right) \neq \emptyset$. As $L\left(B_{F_{4}}\right)=\{\varepsilon\}$, we find that $F \in \operatorname{Th}(\mathbb{N}, \leq)$.

Task 2

Prove or disprove the following statement: If $\left(\mathbb{N}, R_{1}\right)$ and $\left(\mathbb{N}, R_{2}\right)$ are automatically presentable, then (\mathbb{N}, R_{1}, R_{2}) is automatically presentable.

Solution:

The statement is not correct: By exercise sheet 7 , task 1 , we know that (\mathbb{N}, \leq) and (\mathbb{N}, M) are automatically presentable, where $M \subseteq \mathbb{N}$ is a unary relation. However, we show that (\mathbb{N}, \leq, M) is not necessarily automatically presentable: We can define every natural number $n \in \mathbb{N}$ using $\leq(\operatorname{and}=)$: Let a and b be free variables. Define $a<b$ by $a \leq b \wedge \neg(a=b)$. We define the following formulas:

$$
\begin{aligned}
s(a, b) & =\neg \exists z(a<z \wedge z<b) \wedge(a<b), \\
0(a) & =\neg \exists z z<a .
\end{aligned}
$$

The formula $s(a, b)$ states that there is no natural number which is greater than a and smaller than b (that is, b is the immediate successor of a). The formula $0(a)$ defines the natural number 0 , as there is no natural number, which is smaller than 0 . Furthermore, we define $s^{0}(a)=0(a)$ and for every $i \in \mathbb{N}$ let

$$
s^{i+1}(a)=\exists x_{i}\left(s^{i}\left(x_{i}\right) \wedge s\left(x_{i}, a\right)\right) .
$$

Then $s^{n}(a)$ states that the free variable a is the natural number n. Let M be an undecidable subset of \mathbb{N}. If the structure (\mathbb{N}, \leq, M) were automatically presentable, then $\operatorname{Th}(\mathbb{N}, \leq, M)$ would be decidable by the Theorem of Khoussainov/Nerode. Then we could check if $n \in M$, by checking if $\forall x\left(s^{n}(x) \rightarrow M(x)\right) \in \operatorname{Th}(\mathbb{N}, \leq, M)$. As M is undecidable, we obtain a contradiction. Thus, (\mathbb{N}, \leq, M) cannot be automatically presentable.

Task 3

Tarski's Theorem states that $\operatorname{Th}(\mathbb{R},+, \cdot)$ is decidable. Show that $\operatorname{Th}(\mathbb{C},+, \cdot)$ is decidable as well.

Solution:

By Tarski's Theorem, we know that $\operatorname{Th}(\mathbb{R},+, \cdot)$ is decidable: Let F be a formula, such that $(\mathbb{C},+, \cdot)$ is suitable for F. We transform F into a formula F^{\prime}, such that $(\mathbb{R},+, \cdot)$ is suitable for F^{\prime} and such that $F \in \operatorname{Th}(\mathbb{C},+, \cdot)$ if and only if $F^{\prime} \in \operatorname{Th}(\mathbb{R},+, \cdot)$.
The main idea is that each complex number is uniquely representable by two real numbers, its real part and its imaginary part. Thus, we replace each variable x in F by two new variables x_{1}, x_{2} in F^{\prime}, such that x_{1} represents the real part of x and x_{2} represents the imaginary part of x. Furthermore, we transform subformulas of the form $\exists x G$ into $\exists x_{1} \exists x_{2} G$ and subformulas of the form $\forall x G$ into $\forall x_{1} \forall x_{2} G$. It remains to transform $x+y=z$ into

$$
\left(x_{1}+y_{1}=z_{1}\right) \wedge\left(x_{2}+y_{2}=z_{2}\right)
$$

and $x \cdot y=z$ into

$$
\left(x_{1} y_{1}-x_{2} y_{2}=z_{1}\right) \wedge\left(x_{2} y_{1}+x_{1} y_{2}=z_{2}\right)
$$

(as $\operatorname{Th}\left((\mathbb{C},+, \cdot)_{\text {rel }}\right)$ is decidable if and only if $\operatorname{Th}(\mathbb{C},+, \cdot)$ is decidable $)$.

