Exercise 11

Task 1

Let $\Sigma = \{a, b, c\}$. Find nondeterministic Büchi automata that accept the following ω -languages:

- (a) $L = \{ w \in \Sigma^{\omega} \mid w \text{ does not contain the word } bab \}$
- (b) $L = \{ w \in \Sigma^{\omega} \mid w \text{ contains at most two distinct characters} \}$
- (c) $L = \{ w \in \Sigma^{\omega} \mid \text{ every } c \text{ in } w \text{ is immediately followed by the character } b \}$
- (d) $L = \{ w \in \Sigma^{\omega} \mid \text{ there are at least two } c$'s between an a and the subsequent b in $w \}$
- (e) $L = \{ w \in \Sigma^{\omega} \mid w \text{ contains the words } aa \text{ or } bb \text{ infinitely often} \}$
- (f) $L = \{ w \in \Sigma^{\omega} \mid w \text{ contains } a \text{ infinitely often if and only if } w \text{ contains } b \text{ infinitely often} \}$
- (g) $L = \{ w \in \Sigma^{\omega} \mid w \text{ contains the word } aba \text{ only finitely often} \}$

Task 2

Formulate the following properties of the structure \mathcal{A} in \exists SO:

- (a) Perfect Matching: The directed graph $\mathcal{A} = (V, E)$ has a perfect matching, i.e., there is a subset $M \subseteq E$ such that every node is an end point of exactly one edge from M.
- (b) Hamilton Path: The directed graph $\mathcal{A} = (V, E)$ has a Hamilton path, i.e., there is an enumeration v_1, \ldots, v_n of V such that every node from V appears exactly once in v_1, \ldots, v_n and $(v_i, v_{i+1}) \in E$ for every $1 \le i \le n-1$
- (c) Graph Isomorphism: The structure $\mathcal{A} = (V, E, F)$ with E and F binary relations is such that the directed graphs (V, E) and (V, F) are isomorphic
- (d) Subgraph Isomorphism: The structure $\mathcal{A} = (V, E, F, U)$ with E and F as above and $U \subseteq V$ a unary relation is such that the graph $(U, F \cap (U \times U))$ (the subgraph of (V, F) induced by U) is isomorphic to some subgraph of (V, E).