Exercise 11

Task 1

Let $\Sigma=\{a, b, c\}$. Find nondeterministic Büchi automata that accept the following ω languages:
(a) $L_{a}=\left\{w \in \Sigma^{\omega} \mid w\right.$ does not contain the word bab\}
(b) $L_{b}=\left\{w \in \Sigma^{\omega} \mid w\right.$ contains at most two distinct characters $\}$
(c) $L_{c}=\left\{w \in \Sigma^{\omega} \mid\right.$ every c in w is immediately followed by the character $\left.b\right\}$
(d) $L_{d}=\left\{w \in \Sigma^{\omega} \mid\right.$ there are at least two c^{\prime} 's between an a and the subsequent b in $\left.w\right\}$
(e) $L_{e}=\left\{w \in \Sigma^{\omega} \mid w\right.$ contains the words $a a$ or $b b$ infinitely often $\}$
(f) $L_{f}=\left\{w \in \Sigma^{\omega} \mid w\right.$ contains a infinitely often if and only if w contains b infinitely often $\}$
(g) $L_{g}=\left\{w \in \Sigma^{\omega} \mid w\right.$ contains the word $a b a$ only finitely often $\}$

Solution:

(a) Büchi automaton for L_{a} :

(b) Büchi automaton for L_{b} :

(c) Büchi automaton for L_{c} :

(d) Büchi automaton for L_{d} :

(e) Büchi automaton for L_{e} :

(f) Büchi automaton for L_{f} :

(g) Büchi automaton for L_{g} :

Task 2
Formulate the following properties of the structure \mathcal{A} in $\exists \mathrm{SO}$:
(a) Perfect Matching: The directed graph $\mathcal{A}=(V, E)$ has a perfect matching, i.e., there is a subset $M \subseteq E$ such that every node is an end point of exactly one edge from M.
(b) Hamilton Path: The directed graph $\mathcal{A}=(V, E)$ has a Hamilton path, i.e., there is an enumeration v_{1}, \ldots, v_{n} of V such that every node from V appears exactly once in v_{1}, \ldots, v_{n} and $\left(v_{i}, v_{i+1}\right) \in E$ for every $1 \leq i \leq n-1$
(c) Graph Isomorphism: The structure $\mathcal{A}=(V, E, F)$ with E and F binary relations is such that the directed graphs (V, E) and (V, F) are isomorphic
(d) Subgraph Isomorphism: The structure $\mathcal{A}=(V, E, F, U)$ with E and F as above and $U \subseteq V$ a unary relation is such that the graph $(U, F \cap(U \times U)$) (the subgraph of (V, F) induced by U) is isomorphic to some subgraph of (V, E).

Solution:(a) The following \exists SO-sentence states that M is a subset of E, every vertex x is an endpoint of at least one edge in M and if there is an edge from x to y (or y to x) in M, then there is no edge from x to any other vertex $z \neq y$.

$$
\begin{aligned}
\exists M: & \forall x, y: M(x, y) \rightarrow E(x, y) \wedge \\
& \forall x \exists y:(M(x, y) \vee M(y, x)) \wedge \\
& \forall x, y:(M(x, y) \vee M(y, x)) \rightarrow \neg \exists z((z \neq y) \wedge(M(x, z) \vee M(z, x)))
\end{aligned}
$$

(b) The following \exists SO-sentence states that there exists a linear order on the vertex set such that whenever v is the direct successor of u then $(u, v) \in E$.

$$
\begin{aligned}
\exists \leq & \forall x: x \leq x \wedge \\
& \forall x, y, z:(x \leq y \wedge y \leq z) \rightarrow x \leq z \wedge \\
& \forall x, y:(x \leq y \wedge y \leq x) \rightarrow x=y \wedge \\
& \forall x, y:(x \leq y \vee y \leq x) \wedge \\
& \forall x, y:(x \leq y \wedge x \neq y \wedge \neg \exists z: z \neq x \wedge z \neq y \wedge x \leq z \wedge z \leq y) \rightarrow E(x, y)
\end{aligned}
$$

(c) The two graphs are isomorphic, if there is a bijective mapping $\varphi: V \rightarrow V$ such that $(u, v) \in E$ if and only if $(\varphi(u), \varphi(v)) \in F$. The mapping φ can be identified with a binary relation $S \subseteq V \times V$, such that $S(x, y)$ means $y=\varphi(x)$.

$$
\begin{aligned}
\exists S: & \forall x \exists y S(x, y) \wedge \\
& \forall x, y: S(x, y) \rightarrow \neg \exists z:(z \neq y \wedge S(x, z)) \wedge \\
& \forall x \exists y: S(y, x) \wedge \\
& \forall x, y, z:(S(y, x) \wedge S(z, x)) \rightarrow y=z \wedge \\
& \forall x, y, z, v:(S(x, z) \wedge S(y, v)) \rightarrow(E(x, y) \leftrightarrow F(z, v))
\end{aligned}
$$

The first two lines in the above formula state that S corresponds to a mapping (every $x \in V$ is mapped to exactly one value $\varphi(x) \in V)$. The next two lines state that the
mapping is bijective. The last line of the formula states that if x is mapped to z and y is mapped to v via the bijective mapping, then there is an edge from x to y if and only if there is an edge from z to u (in the corresponding edge sets E and F).
(d) If $(U, F \cap(U \times U))$ is isomorphic to a subgraph of (V, E), then there is a subset $W \subseteq V$ and a bijective mapping $\varphi: U \rightarrow W$, such that for every two nodes $x, y \in U$ we have $(x, y) \in F$ if and only if $(\varphi(x), \varphi(y)) \in E$. The bijective mapping φ is again represented by a binary relation S.

$$
\begin{aligned}
\exists W \exists S: & \forall x:(U(x) \rightarrow \exists y:(W(y) \wedge S(x, y))) \wedge \\
& \forall x, y:(U(x) \wedge W(y) \wedge S(x, y)) \rightarrow \neg \exists z:(z \neq y \wedge S(x, z)) \wedge \\
& \forall x:(W(x) \rightarrow \exists y:(U(y) \wedge S(y, x))) \wedge \\
& \forall x, y, z:(W(x) \wedge U(y) \wedge U(z) \wedge S(y, x) \wedge S(z, x)) \rightarrow y=z \wedge \\
& \forall x, y, z, v:(U(x) \wedge U(y) \wedge W(z) \wedge W(v) \wedge S(x, z) \wedge S(y, v)) \rightarrow(F(x, y) \leftrightarrow E(z, v))
\end{aligned}
$$

