Exercise 11

Task 1

Let $\Sigma = \{a, b, c\}$. Find nondeterministic Büchi automata that accept the following ω -languages:

- (a) $L_a = \{ w \in \Sigma^{\omega} \mid w \text{ does not contain the word } bab \}$
- (b) $L_b = \{ w \in \Sigma^{\omega} \mid w \text{ contains at most two distinct characters} \}$
- (c) $L_c = \{ w \in \Sigma^{\omega} \mid \text{ every } c \text{ in } w \text{ is immediately followed by the character } b \}$
- (d) $L_d = \{ w \in \Sigma^\omega \mid \text{ there are at least two c's between an a and the subsequent b in w} \}$
- (e) $L_e = \{ w \in \Sigma^{\omega} \mid w \text{ contains the words } aa \text{ or } bb \text{ infinitely often} \}$
- (f) $L_f = \{ w \in \Sigma^\omega \mid w \text{ contains } a \text{ infinitely often if and only if } w \text{ contains } b \text{ infinitely often} \}$
- (g) $L_g = \{ w \in \Sigma^{\omega} \mid w \text{ contains the word } aba \text{ only finitely often} \}$

Solution:

(a) Büchi automaton for L_a :

(b) Büchi automaton for L_b :

(c) Büchi automaton for L_c :

(d) Büchi automaton for L_d :

(e) Büchi automaton for L_e :

(f) Büchi automaton for L_f :

(g) Büchi automaton for L_g :

Task 2 Formulate the following properties of the structure $\mathcal A$ in $\exists \mathrm{SO} \colon$

- (a) Perfect Matching: The directed graph $\mathcal{A} = (V, E)$ has a perfect matching, i.e., there is a subset $M \subseteq E$ such that every node is an end point of exactly one edge from M.
- (b) Hamilton Path: The directed graph $\mathcal{A} = (V, E)$ has a Hamilton path, i.e., there is an enumeration v_1, \ldots, v_n of V such that every node from V appears exactly once in v_1, \ldots, v_n and $(v_i, v_{i+1}) \in E$ for every $1 \le i \le n-1$
- (c) Graph Isomorphism: The structure $\mathcal{A} = (V, E, F)$ with E and F binary relations is such that the directed graphs (V, E) and (V, F) are isomorphic
- (d) Subgraph Isomorphism: The structure $\mathcal{A} = (V, E, F, U)$ with E and F as above and $U \subseteq V$ a unary relation is such that the graph $(U, F \cap (U \times U))$ (the subgraph of (V, F) induced by U) is isomorphic to some subgraph of (V, E).
- **Solution:**(a) The following \exists SO-sentence states that M is a subset of E, every vertex x is an endpoint of at least one edge in M and if there is an edge from x to y (or y to x) in M, then there is no edge from x to any other vertex $z \neq y$.

$$\exists M : \forall x, y : M(x, y) \to E(x, y) \land \forall x \exists y : (M(x, y) \lor M(y, x)) \land \forall x, y : (M(x, y) \lor M(y, x)) \to \neg \exists z ((z \neq y) \land (M(x, z) \lor M(z, x)))$$

(b) The following $\exists SO$ -sentence states that there exists a linear order on the vertex set such that whenever v is the direct successor of u then $(u, v) \in E$.

```
\exists \leq: \forall x: x \leq x \land \\ \forall x, y, z: (x \leq y \land y \leq z) \rightarrow x \leq z \land \\ \forall x, y: (x \leq y \land y \leq x) \rightarrow x = y \land \\ \forall x, y: (x \leq y \lor y \leq x) \land \\ \forall x, y: (x \leq y \land x \neq y \land \neg \exists z: z \neq x \land z \neq y \land x \leq z \land z \leq y) \rightarrow E(x, y)
```

(c) The two graphs are isomorphic, if there is a bijective mapping $\varphi \colon V \to V$ such that $(u,v) \in E$ if and only if $(\varphi(u),\varphi(v)) \in F$. The mapping φ can be identified with a binary relation $S \subseteq V \times V$, such that S(x,y) means $y = \varphi(x)$.

$$\exists S : \forall x \exists y S(x, y) \land \\ \forall x, y : S(x, y) \rightarrow \neg \exists z : (z \neq y \land S(x, z)) \land \\ \forall x \exists y : S(y, x) \land \\ \forall x, y, z : (S(y, x) \land S(z, x)) \rightarrow y = z \land \\ \forall x, y, z, v : (S(x, z) \land S(y, v)) \rightarrow (E(x, y) \leftrightarrow F(z, v))$$

The first two lines in the above formula state that S corresponds to a mapping (every $x \in V$ is mapped to exactly one value $\varphi(x) \in V$). The next two lines state that the

mapping is bijective. The last line of the formula states that if x is mapped to z and y is mapped to v via the bijective mapping, then there is an edge from x to y if and only if there is an edge from z to u (in the corresponding edge sets E and F).

(d) If $(U, F \cap (U \times U))$ is isomorphic to a subgraph of (V, E), then there is a subset $W \subseteq V$ and a bijective mapping $\varphi \colon U \to W$, such that for every two nodes $x, y \in U$ we have $(x, y) \in F$ if and only if $(\varphi(x), \varphi(y)) \in E$. The bijective mapping φ is again represented by a binary relation S.

```
\exists W \exists S : \forall x : (U(x) \to \exists y : (W(y) \land S(x,y))) \land \\ \forall x, y : (U(x) \land W(y) \land S(x,y)) \to \neg \exists z : (z \neq y \land S(x,z)) \land \\ \forall x : (W(x) \to \exists y : (U(y) \land S(y,x))) \land \\ \forall x, y, z : (W(x) \land U(y) \land U(z) \land S(y,x) \land S(z,x)) \to y = z \land \\ \forall x, y, z, v : (U(x) \land U(y) \land W(z) \land W(v) \land S(x,z) \land S(y,v)) \to (F(x,y) \leftrightarrow E(z,v))
```