Übungsblatt 1

Aufgabe 1. Wiederholen Sie NP-Vollständigkeit:

- 1. Welche zwei Dinge müssen Sie zeigen, wenn Sie nachweisen wollen, dass ein Problem **NP**-vollständig ist?
- 2. Nennen Sie 5 NP-vollständige Probleme.
- 3. Bonus: Was wissen Sie über **coNP**?

Aufgabe 2. Falls $\mathbf{P} \neq \mathbf{NP}$ gilt, impliziert der Satz von Ladner, dass es eine Sprache gibt, die weder \mathbf{NP} -vollständig, noch in \mathbf{P} ist. Wir bezeichnen die Komplexitätsklasse von solchen Sprachen als \mathbf{NPI} . Finden Sie durch (Internet-)Recherche 5 bekannte Probleme aus \mathbf{NP} , die unter der Annahme $\mathbf{P} \neq \mathbf{NP}$ eine gute Chance haben, aus der Klasse \mathbf{NPI} zu sein.