Übungsblatt 3

Aufgabe 1. Sind die folgenden Aussagen wahr oder falsch?

- (a) Zu jedem DFA M_1 mit n Zuständen existiert ein NFA M_2 mit höchstens n Zuständen so, dass $T(M_1) = T(M_2)$.
- (b) Zu jedem NFA M_1 mit n Zuständen existiert ein DFA M_2 mit maximal 2^n Zuständen so, dass $T(M_1) = T(M_2)$.
- (c) Für einen endlichen Automaten M_1 ist $T(M_1)$ stets endlich.

Aufgabe 2. Geben Sie zu der folgenden Sprache einen deterministischen, endlichen Automaten an:

 $L = \{w \in \{a, b, c\}^* \mid w \text{ enthält höchstens zwei verschiedene Buchstaben.}\}$

Finden Sie einen nichtdeterministischen, endlichen Automaten, der weniger Zustände benötigt?

Aufgabe 3. Gegeben seien folgende NFAs:

1. $M_1 = (\{1, 2, 3\}, \{a, b\}, \delta_1, \{1\}, \{3\})$, wobei δ_1 gegeben ist durch:

δ_1	a	b
1	{1,3}	{2}
2	{2}	$\{2,3\}$
3	Ø	{3}

2. $M_2 = (\{1, 2, 3\}, \{a, b\}, \delta_2, \{1, 2\}, \{2, 3\})$, wobei δ_2 gegeben ist durch:

δ_2	a	b
1	Ø	{2}
2	Ø	{1,3}
3	{1,3}	{1}

- (a) Zeichnen Sie das zu M_1 bzw. M_2 gehörige Automatendiagramm.
- (b) Geben Sie mit Hilfe der Potenzmengenkonstruktion einen zu M_1 bzw. M_2 äquivalenten DFA an. Es genügt jeweils, den vom Startzustand erreichbaren Teil anzugeben.

Aufgabe 4. Mimi steht im Treppenhaus des Hölderlingebäudes und läuft die Treppen hoch und runter. Jedes Mal, wenn sie eine Stufe hinaufsteigt, notiert sie sich ein \uparrow . Jedes Mal, wenn sie eine Stufe hinuntersteigt, notiert sie sich ein \downarrow . Geben Sie eine Grammatik an, die die Sprache aller Wörter über $\{\uparrow,\downarrow\}$ erzeugt, so dass Mimi am Ende wieder an der Anfangsposition steht. Sie dürfen dabei davon ausgehen, dass Mimi beliebig viele Stockwerke hinauf und hinab gehen kann.