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General information

On the web page

https://www.eti.uni-siegen.de/ti/lehre/sommer_2024/quantumct/index.html

you find all informations, in particular:

◮ most recent version of the slides,

◮ exercise sheets,

◮ literature recommendations.

Notice: The lecture slides may not be suitable for self studying (and may
at some point be incomplete)!

Markus Lohrey QCT Summer 2024 2 / 171

https://www.eti.uni-siegen.de/ti/lehre/sommer_2024/quantumct/index.html


Basic notations

A bit string is a sequence b1b2 · · · bn of bits b1, b2, . . . , bn ∈ {0, 1}.

The length of the bit string u = b1b2 · · · bn is |u| = n.

The set of all bit strings is denoted with {0, 1}∗; the set of all bit strings
of length n is denoted with {0, 1}n .

A language L is a subset of {0, 1}∗.

Complexity theory investigates the computational resources needed to
check, whether a given u ∈ {0, 1}∗ belongs to a certain language L.

Often we are actually interested in sets of other finite objects (e.g.
numbers, matrices, finite graphs, etc.) instead of bit strings.

In such situations we assume that these objects are suitably encoded by bit
strings.
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Turing machines

Classical complexity theory is usually formalized using Turing machines.

A deterministic Turing machine is a tuple M = (Q, Γ, q0, qY , qN , δ), where

◮ Q is the finite set of (control) states,

◮ Γ is the finite tape alphabet with 0, 1,� ∈ Γ,

◮ � is the blank symbol,

◮ 0 and 1 are the input symbols,

◮ q0 ∈ Q is the initial state,

◮ qY ∈ Q is the accepting state,

◮ qN ∈ Q is the rejecting state, and

◮ δ : (Q \ {qY , qN})× Γ → Q × Γ×{−1, 0, 1} is the transition function.

We only consider deterministic Turing machines in this lecture and will
mostly omit “deterministic” in the following.
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Intuition of Turing machines

◮ The Turing machine works on an 2-sided infinite tape of cells that
contain tape symbols from Γ.

◮ Only finitely many cells contain a tape symbol from Γ \ {�}.
◮ There is a read-write head that scans at each time instant a certain

cell of the tape.

◮ Moreover, at each time instant the machine is in a certain control
state q ∈ Q.

. . . � � a1 a2 a3 a4 a5 a6 a7 a8 � � . . .

q
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Intuition of Turing machines

For an input string u = a1a2 · · · an with ai ∈ {0, 1} the machine is started
in the following configuration, called the initial configuration for u:

. . . � � a1 a2 a3 a4 a5 · · · an � � . . .

q0

The machine moves on according to the transition function δ:

If the current control state is q ∈ Q, the currently scanned tape cell
contains the symbol a ∈ Γ, and δ(q, a) = (p, b, d), then the machine
executes the following steps:

◮ Replace the symbol a in the current cell by b.

◮ Change into control state p.

◮ If d = −1/d = 1 move the read-write head one cell to the left/right
(no movement if d = 0).
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Intuition of Turing machines

Example: Assume that δ(q, a4) = (p, b,−1) and δ(p, a3) = (r , c , 1):

. . . � � a1 a2 a3 a4 a5 a6 a7 a8 � � . . .

q

The machine stops when it reaches the accepting state qY or the rejecting
state qN .

The language L(M) accepted by the machine M consists of all strings
u ∈ {0, 1}∗ such that M finally reaches the accepting state qY when
started in the initial configuration for u.
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Intuition of Turing machines

Example: Assume that δ(q, a4) = (p, b,−1) and δ(p, a3) = (r , c , 1):

. . . � � a1 a2 c b a5 a6 a7 a8 � � . . .

r

The machine stops when it reaches the accepting state qY or the rejecting
state qN .

The language L(M) accepted by the machine M consists of all strings
u ∈ {0, 1}∗ such that M finally reaches the accepting state qY when
started in the initial configuration for u.

Markus Lohrey QCT Summer 2024 7 / 171



The class P

A (deterministic) polynomial time machine (PTM for short) is a Turing
machine M for which there is a polynomial p(n) such that:

For every input string u ∈ {0, 1}n the machine M stops after at most p(n)
computation steps.

The class P (deterministic polynomial time) is the class of all languages
L(M) such that M is a deterministic polynomial time machine.

Traditionally P is identified with the class of those languages that can be
decided in an efficient way.

In the definition of P one can replace the Turing machine model by more
practical models of computations (e.g. register machines).
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The class P

Example: An important problem in P is the circuit value problem:

◮ Input: a boolean circuit C .

◮ Question: Does C evaluate to 1?

Example of a boolean circuit:
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The class P

Example: An important problem in P is the circuit value problem:

◮ Input: a boolean circuit C .

◮ Question: Does C evaluate to 1?

Example of a boolean circuit:
∨1

∧1
∨1

∨1
∧0

∨1

∧0

1

¬1

0
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The class NP

In the following we need to consider PTMs that take two input strings
u, v ∈ {0, 1}∗.

For this, we assume some encoding 〈u, v〉 ∈ {0, 1}∗ of u and v into a
single bit string.

One possibility: if u = a1a2 · · · an then 〈u, v〉 = a10a20 · · · an−10an1v .

The class NP consists of all languages L, for which there is a PTM M and
a polynomial r(n) such that the following hold for every u ∈ {0, 1}n :
◮ If u ∈ L then there is v ∈ {0, 1}r(n) such that 〈u, v〉 ∈ L(M).

◮ If u /∈ L then 〈u, v〉 /∈ L(M) for every string v ∈ {0, 1}r(n) .

NP stands for non-deterministic polynomial time; it is usually defined by
non-deterministic polynomial time Turing machines.
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The class NP

The string v ∈ {0, 1}r(n) with 〈u, v〉 ∈ L(M) in case u ∈ L can be seen as
a proof for the fact that u ∈ L.

Intuitively, NP contains all languages L for which membership in L is
equivalent to the existence of an efficiently verifiable short proof.

Example: Consider boolean formulas such as for instance
F (x1, x2, x3, x4) = (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x4).

A boolean formula F is satisfiable if one can set the xi to truth values
(0 or 1) such that the formula evaluates to 1.

SAT is the set of all satisfiable boolean formulas.

SAT ∈ NP: the proof for a satisfiable formula F (x1, . . . , xn) is a bit string
a1a2 · · · an ∈ {0, 1}n such that F (a1, . . . , an) is true.
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The class BPP

The class BPP consists of all languages L for which there is a PTM M

and a polynomial r(n) such that the following hold for every u ∈ {0, 1}n :
◮ If u ∈ L then 〈u, v〉 ∈ L(M) for ≥ 2

3 · 2r(n) many v ∈ {0, 1}r(n) .
◮ If u /∈ L then 〈u, v〉 ∈ L(M) for ≤ 1

3 · 2r(n) many v ∈ {0, 1}r(n) .

BPP stands for bounded-error probabilistic polynomial time.

The string v ∈ {0, 1}r(n) is also called the random string.

Intuition: If one randomly sets the bits in v ∈ {0, 1}r(n) then with
probability ≥ 2/3 the machine M correctly tells us whether u ∈ L.

Many researchers view BPP as the class of those languages that can be
decided in an efficient way.
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The class BPP

Error reduction:

◮ Run the machines M k times with independently chosen random
strings v1, . . . , vk ∈ {0, 1}r(n) .

◮ At the end the input u is accepted if 〈u, vi 〉 ∈ L(M) for at least k/2
many i ∈ [1, k].

◮ Exercise: Show that the error probability of this new algorithm is
2−Θ(k).

Hint: use the Chernoff bound.
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The class BPP

Example: A famous problem in BPP that is not known to be P is
polynomial identity testing (PIT):

◮ Input: an arithmetic circuit C .

◮ Question: Does C evaluate to the zero polynomial?

An arithmetic circuit: +

× +

+
×

+

×
x2

×

x1−1
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The class PSPACE

A polynomial space machine is a Turing machine M for which there is a
polynomial p(n) such that:

For every input string u ∈ {0, 1}n the read-write head never moves more
than p(n) cells to the left or right of its initial position.

The class PSPACE (polynomial space) is the class of all languages L(M)
such that M is a polynomial space machine.

Example: QSAT (quantified satisfiability) is the set of all true quantified
boolean formulas.

An example of such a formula is ∀x1∃x2 : (x1 ∧ x2) ∨ (¬x1 ∧ ¬x2).
QSAT belongs to PSPACE.
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Part of the classical complexity world

P NPBP
P

PSPACE
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Computing functions with Turing machines

One may also use a Turing machine to M in order to compute an in
general partially defined function fM : {0, 1}∗ → {0, 1}∗:

fM(a1a2 · · · an) = b1b2 · · · bm iff M reaches from the initial configuration

. . . � � a1 a2 a3 a4 a5 · · · an � � . . .

q0

after a finite number of computations steps the configuration

. . . � � b1 b2 b3 b4 b5 · · · bm � � . . .

qY
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Karp reductions and completeness

A Karp polynomial time reduction from a language K ⊆ {0, 1}∗ to a
language L ⊆ {0, 1}∗ is a totally defined function f : {0, 1}∗ → {0, 1}∗
such that:

◮ f = fM for a PTM M (f can be computed in polynomial time),

◮ ∀u ∈ {0, 1}∗ : u ∈ K if and only if f (u) ∈ L.

We write K ≤ L if there is a Karp polynomial time reduction from K to L.

Let C be a complexity class (e.g., NP or PSPACE).

We say that a language L ⊆ {0, 1}∗ is C-complete if the following holds:

◮ L ∈ C

◮ ∀K ∈ C : K ≤ L
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Karp reductions and completeness

C-complete languages should be seen as the most difficult languages in C.

Examples:

◮ SAT is NP-complete.

◮ QSAT is PSPACE-complete.

Remarks:

◮ All non-trivial languages in P are P-complete.

To get interesting P-complete problems, one has to replace Karp
polynomial time reductions by Karp logspace reductions.

Then the circuit value problem is P-complete.

◮ It is open whether BPP has complete problems!
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Circuits instead of Turing machines

PTMs can be (almost) replaced by boolean circuits.

Let us consider a Boolean circuit C (x1, . . . , xn) with n input gates labelled
with the variables x1, . . . , xn.

Such a circuit naturally computes a Boolean function fC : {0, 1}n → {0, 1}.

Example:
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Circuits instead of Turing machines

PTMs can be (almost) replaced by boolean circuits.

Let us consider a Boolean circuit C (x1, . . . , xn) with n input gates labelled
with the variables x1, . . . , xn.

Such a circuit naturally computes a Boolean function fC : {0, 1}n → {0, 1}.

Example: ∨1

∧1
∨1

∨1
∧0

∨1

∧0

x21

¬1

x10
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Circuits instead of Turing machines

Theorem 1

For every PTM M there is a PTM N that computes from the input string
1n (n 1-bits) a description of a Boolean circuit Cn(x1, . . . , xn) such that:

∀u = a1a2 · · · an ∈ {0, 1}n : u ∈ L(M) ⇐⇒ fCn
(a1, a2, . . . , an) = 1.

Intuitively: The machine N builds for a given input length n the hardware
needed to simulate the machine M.

Remarks:

◮ The family of circuits (Cn)n≥0 from the above theorem is a called a
P-uniform circuit family.

◮ The resources needed to compute the function n 7→ Cn are actually
much smaller than polynomial time.

Logarithmic space (on a deterministic Turing machine) suffices.
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Promise problems

It was mentioned that it is not known whether the class BPP has
complete problems (slide 19).

To get complete problems for BPP, we have to consider promise problems.

A promise problem is a pair (L0, L1) such that L0, L1 ∈ {0, 1}∗ and
L0 ∩ L1 = ∅.

The class promiseBPP consists of all promise problems (L0, L1) for which
there is a PTM M and a polynomial r(n) such that the following hold for
every u ∈ {0, 1}n :
◮ If u ∈ L1 then 〈u, v〉 ∈ L(M) for at least 2

3 · 2r(n) many v ∈ {0, 1}r(n) .
◮ If u ∈ L0 then 〈u, v〉 ∈ L(M) for at most 1

3 · 2r(n) many v ∈ {0, 1}r(n) .
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Promise problems

A Karp polynomial time reduction f from the promise problem (K0,K1) to
the promise problem (L0, L1) is a totally defined f : {0, 1}∗ → {0, 1}∗ such
that:

◮ f = fM for a PTM M (f can be computed in polynomial time),

◮ ∀u ∈ K0 : f (u) ∈ L0.

◮ ∀u ∈ K1 : f (u) ∈ L1.

The following promise problem (L0, L1) is then complete for promiseBPP:

◮ L0 is the set of all binary encodings of boolean circuits C (x1, . . . , xn)
with fC (a1, a2, . . . , an) = 0 for ≥ 2

3 · 2n many a1a2 · · · an ∈ {0, 1}n .

◮ L1 is the set of all binary encodings of boolean circuits C (x1, . . . , xn)
with fC (a1, a2, . . . , an) = 1 for ≥ 2

3 · 2n many a1a2 · · · an ∈ {0, 1}n .
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Complex number

We assume familiarity with the complex numbers C.

Two ways of describing complex numbers:

◮ x + iy for x , y ∈ R (and i satisfying i2 = −1)

◮ r · e iϕ for r ∈ R≥0 and ϕ ∈ [0, 2π)

If x + iy = z = r · e iϕ then we have

◮ r =
√

x2 + y2 =: |z | and ϕ = arctan(y/x)

(ϕ = π/2 if x = 0 and y > 0 and ϕ = 3π/2 if x = 0 and y < 0)

◮ x = r cosϕ = ℜ(z) and y = r sinϕ = ℑ(z)

The complex conjugate of z = x + iy is z∗ = x − iy .

Note z · z∗ = x2 + y2 = |z |2.
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Complex vector spaces
Quantum computing uses finite dimensional vector spaces over C.

We use Dirac’s bra-ket notation:

◮ Column vectors are denoted with |x〉.
◮ Row vectors are denoted with 〈y |.

Moreover, for a ket-vector

|x〉 =




α1

α2
...
αd


 ∈ C

d

its conjugated transposed bra-vector is

〈x | = (α∗
1, α

∗
2, . . . , α

∗
d ).
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Inner product and norm

The inner product of

|x〉 =




α1

α2
...
αd


 and |y〉 =




β1
β2
...
βd




is the complex number 〈x |y 〉 =
d∑

i=1

α∗
i βi .

This is a special case of a matrix product (row times column).

The norm of |x〉 is ‖|x〉‖ =
√

〈x |x〉 =
√∑d

i=1 |αi |2 ∈ R≥0.

A unit vector is a vector |x〉 with ‖x‖ = 1.

For better readability we write ‖x‖ for ‖|x〉‖ in the following.
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Inner product and norm

The vector space C
d together with the inner product 〈·|·〉 is a so-called

(finite dimensional) Hilbert space.

In general, a Hilbert space may have infinite dimension, but we will only
consider finite dimensional Hilbert spaces.

Note that 〈·|·〉 satisfies the following laws, where α ∈ C:

◮ 〈x1 + x2|y〉 = 〈x1|y〉+ 〈x2|y〉 (here, we write 〈x1 + x2| for 〈x1|+ 〈x2|)
◮ 〈x |y1 + y2〉 = 〈x |y1〉+ 〈x |y2〉
◮ 〈αx |y 〉 = α∗ 〈x |y 〉
◮ 〈x |αy 〉 = α 〈x |y 〉
◮ 〈y |x〉 = 〈x |y 〉∗
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Cauchy-Schwarz

Cauchy–Schwarz inequality

For all |x〉 , |y〉 ∈ C
d we have

〈x |y 〉 · 〈y |x〉 = |〈x |y 〉|2 ≤ 〈x |x〉 · 〈y |y〉

with equality if and only if |x〉 and |y〉 are linearly dependent
(i.e., α |x〉+ β |y〉 = 0 where α, β ∈ C and α 6= 0 or β 6= 0).

By taking the square root on both sides of the Cauchy–Schwarz inequality,
one gets

|〈x |y 〉| ≤ ‖x‖ · ‖y‖ .
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Orthonormal base

A base of Cd is a set of (ket-)vectors {|x1〉 , . . . , |xd 〉} such that for every
|x〉 there exist unique α1, . . . , αd ∈ C with |x〉 = ∑d

i=1 αi |xi〉.

Note: every base of Cd consists of exactly d non-zero vectors (the
dimension of the vector space).

An orthonormal base of Cd is a base {|x1〉 , . . . , |xd 〉} such that

〈xi |xj〉 =
{
1 if i = j ,

0 if i 6= j .

For every |y〉 ∈ C
d we have |y〉 = ∑d

i=1 〈xi |y〉 · |xi〉

Exercise: If |x〉 is a unit vector and {|x1〉 , . . . , |xd 〉} an orthonormal base
then |x〉 = ∑d

i=1 αi |xi 〉 for unique α1, . . . , αd ∈ C with
∑d

i=1 |αi |2 = 1.
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Orthonormal base

A particular orthonormal base is the standard base consisting of vectors

|0〉 :=




1
0
...
0
0




, |1〉 :=




0
1
...
0
0




, . . . , |d − 1〉 :=




0
0
...
0
1




.

In quantum computing we will work in a vector space C
2n of dimension 2n

and the standard base {|u〉 : u ∈ {0, 1}n}.
Here, the bit strings in {0, 1}n are identified with the numbers
0, . . . , 2n − 1, e.g. 0 =̂ 00, 1 =̂ 01, 2 =̂ 10, 3 =̂ 11 for n = 2.

The base {|u〉 : u ∈ {0, 1}n} is also called the computational base; its
elements can be identified with the possible values of an n-bit register.
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Linear mappings

A mapping f : Cd → C
d is linear if for all |x〉 , |y〉 ∈ C

d and all α ∈ C:

◮ f (|x〉 + |y〉) = f |x〉+ f |y〉 (we write f |x〉 for f (|x〉))
◮ f (α |x〉) = αf |x〉

After fixing a base {|x1〉 , . . . , |xd 〉}, one can identify the linear mapping f

with the (d × d)-matrix A = (Ai ,j)1≤i ,j≤d , where

f |xj〉 =
d∑

i=1

Ai ,j |xi 〉 .

We then have: if |x〉 = ∑d
i=1 αi |xi〉 and f |x〉 = ∑d

i=1 βi |xi 〉 then

A ·



α1
...
αd


 =



β1
...
βd


 .

Note: If {|x1〉 , . . . , |xd 〉} is orthonormal then Ai ,j = 〈xi | f |xj〉.
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Changing the basis

Let f be linear mapping and let {|x1〉 , . . . , |xd 〉} and {|y1〉 , . . . , |yd 〉} be
two bases of Cd .

Let A (resp., B) be the matrix for f in the basis {|x1〉 , . . . , |xd 〉} (resp.,
{|y1〉 , . . . , |yd 〉}).

Then there is an invertible matrix C ∈ C
d×d such that B = C−1AC .

Exercise: Find the matrix C explicitly.

Two matrices A,B ∈ C
d×d are similar if there is an invertible matrix

C ∈ C
d×d such that B = C−1AC .
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Operations for matrices

Composition of linear mappings corresponds to matrix multiplication:

(AB)i ,j =

d∑

k=1

Ai ,kBk,j .

Recall: AB 6= BA in general!

Transposed matrix: (AT)i ,j = Aj ,i

Conjugated matrix: (A∗)i ,j = A∗
i ,j

Adjoint matrix: A† = (A∗)T = (AT)∗

We have: (A†)† = A, (A+ B)† = A† + B†, (AB)† = B†A† and
(A−1)† = (A†)−1 for A invertible.

The operators T, ∗, † can be defined also for rectangular matrices, in
particular for bra- or ket-vectors. Note that |x〉† = 〈x |.
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The outer product of vectors

For a ket-vector |x〉 and a bra-vector 〈y | (both of dimension d) we can
form their outer product |x〉〈y | ∈ C

d×d .

It is a special case of a rectangular matrix product.

More specifically: if

|x〉 =



a1
...
ad


 and 〈y | = (b1, . . . , bd )

then |x〉〈y | = (aibj)1≤i ,j≤d .

Note that for every matrix A = (Ai ,j)0≤i ,j≤d−1 we have A =
∑

i ,j Ai ,j |i〉〈j |
for the standard base |0〉 , . . . , |d − 1〉.
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Trace of a matrix

Trace of a matrix: tr(A) =
∑d

i=1 Ai ,i (sum of the diagonal entries)

Important facts of the trace:

◮ tr(A+ B) = tr(A) + tr(B)

◮ tr(αA) = α · tr(A)
◮ tr(AB) = tr(BA)

Exercise: Prove this.

Warning: tr(AB) 6= tr(A)tr(B) in general!

tr(AB) = tr(BA) implies tr(C−1AC ) = tr(A) for an invertible matrix C .

Consequence: If A and B are similar then tr(A) = tr(B).

Hence, the trace of a matrix is invariant under a basis change.
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Special matrices

A matrix A is

◮ normal if AA† = A†A,

◮ unitary if A† = A−1.

◮ Hermitian (or self-adjoint) if A = A†,

◮ positive semi-definite if A is Hermitian and 〈x |A |x〉 ≥ 0 for every |x〉.
◮ positive definite if A is Hermitian and 〈x |A |x〉 > 0 for every |x〉.
◮ a projector if A is Hermitian and A2 = A,

Note that Hermitian and unitary matrices are also normal.

If A and B describe the same linear function in two different orthonormal
bases then there is a unitary matrix U with B = U−1AU = U†AU.
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Projectors onto subspaces

Let S ≤ C
d be a subspace of Cd and let {|x1〉 , . . . , |xk〉} be an

orthonormal basis of S . The projector onto the subspace S is

ΠS =

k∑

i=1

|xi 〉〈xi | .

We have Π†
S = ΠS and

Π2
S =

( k∑

i=1

|xi〉〈xi |
)( k∑

j=1

|xj 〉〈xj |
)

=
∑

i ,j

|xi〉〈xi | |xj〉〈xj | =
∑

i ,j

|xi〉〈xi |xj〉〈xj |

=

k∑

i=1

|xi〉〈xi | = ΠS .
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Projectors onto subspaces

Moreover, for every |x〉 ∈ C
d we have

ΠS |x〉 =
k∑

i=1

|xi〉 〈xi |x〉 =
k∑

i=1

〈xi |x〉 |xi 〉 ∈ S

If |x〉 ∈ S then we can write |x〉 = ∑k
j=1 αj |xj〉 and we get

ΠS |x〉 =

( k∑

i=1

|xi 〉 〈xi |
)( k∑

j=1

αj |xj〉
)

=
∑

i ,j

αj |xi〉 〈xi |xj〉 =
k∑

j=1

αj |xj〉 = |x〉 .

Exercise: If Π is any projector (Π2 = Π) find a subspace S with Π = ΠS .
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The Pauli matrices

The matrices

X =

(
0 1
1 0

)
Y =

(
0 −i

i 0

)
Z =

(
1 0
0 −1

)

are the famous Pauli matrices.

They are unitary as well as Hermitian.

In particular, they satisfy: X 2 = Y 2 = Z 2 = Id2.
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Eigenvectors and eigenvalues

For a (d × d)-matrix A, a vector |x〉 ∈ C
d is called an eigenvector of A if

there is λ ∈ C with A |x〉 = λ |x〉.

λ is the eigenvalue of A for |x〉 and |x〉 is an eigenvector for λ.

Let λ be an eigenvalue of A. Then the set of all eigenvectors for λ form a
subspace of Cd : if A |x〉 = λ |x〉 and A |y〉 = λ |y〉 then:

A(|x〉+ |y〉) = λ(|x〉+ |y〉) and A(α |x〉) = λα |x〉

This subspace is called the eigenspace of λ and its dimension is the
geometric multiplicity of λ.

The eigenspaces for the different eigenvalues of A are linearly independent.

Similar matrices have the same eigenvalues with the same geometric
multiplicities (but the eigenvectors change).
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The spectral theorem

Theorem 2 (spectral theorem, see e.g. Nielsen Chuang, page 72 )

Let A ∈ C
d×d be a matrix. Then there is an orthonormal basis of Cd

consisting of eigenvectors of A if and only if A is normal.

Let A be a normal matrix and {|x1〉 , . . . |xd 〉} an orthonormal basis of
eigenvectors of A. Let λi be the eigenvalue for |xi〉. Then we have

A =

d∑

i=1

λi |xi〉〈xi | .

In the orthonormal basis {|x1〉 , . . . |xd 〉}, A becomes the diagonal matrix



λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λd
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The spectral theorem

The diagonal entries are the eigenvalues of A.

Every eigenvalue appears its geometric multiplicity many times.

The spectral theorem says that the following two conditions are equivalent:

◮ A is normal.

◮ There is a unitary matrix U such that U†AU is diagonal
(A is unitarily diagonizable).

For a general (not necessarily normal) matrix A ∈ C
d×d the following are

equivalent:

◮ A is similar to a diagonal matrix.

◮ C
d has a basis (not necessarily orthonormal) consisting of

eigenvectors of A.

◮ The sum of the geometric multiplicities of the eigenvalues of A is d .
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Eigenvalues of special matrices

Theorem 3

The following are equivalent for a matrix U:

◮ U is unitary.

◮ The set of columns of U form an orthonormal basis.

◮ All eigenvalues λ of U satisfy |λ| = 1 (i.e. λ = e iφ for some φ).

◮ U preserves the inner product. In formulas:

〈x |U† U |y〉 = 〈x |y 〉 (note that (U |y〉)† = |y〉† U† = 〈y |U†).

Theorem 4

The following are equivalent for a matrix H:

◮ H is Hermitian.

◮ All eigenvalues of H are real numbers.
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Eigenvectors and eigenvalues

Theorem 5

The following are equivalent for a matrix P :

◮ P is positive definite (positive semi-definite).

◮ All eigenvalues of P are real and > 0 (≥ 0).

Exercise: For every matrix A ∈ C
d×d the matrix A†A is positive

semi-definite.

Theorem 6

The following are equivalent for a matrix Π:

◮ Π is a projector

◮ All eigenvalues λ of Π are 0 or 1.
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Tensor product of vector spaces

Theorem 7

Let U and V be vector spaces. Then there is up to isomorphism of vector
spaces a unique vector space U ⊗ V with the following properties:

◮ There is a bilinear mapping f : U × V → U ⊗ V .

◮ For every bilinear mapping g : U × V → W , where W is a vector
space, there is a unique linear mapping h : U ⊗ V → W such that
g(|x〉 , |y〉) = h(f (|x〉 , |y〉)) for all |x〉 ∈ U and |y〉 ∈ V .

The vector space U ⊗ V is the tensor product of U and V .

In the following we write |x〉 ⊗ |y〉 for f (|x〉 , |y〉).

Assume moreover in the following that U ∼= C
d and U ∼= C

e are
finite-dimensional (the only interesting case).

How can we construct (a vector space isomorphic to) U ⊗ V ?
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Tensor product of vector spaces
Fix standard bases

◮ {|0〉 , . . . , |d − 1〉} for U and

◮ {|0〉 , . . . , |e − 1〉} for V .

Then C
d ⊗ C

e is the vector space with the standard

◮ {|i j〉 : 0 ≤ i ≤ d − 1, 0 ≤ i ≤ e − 1}
(in particular, Cd ⊗C

e ∼= C
de) and the corresponding mapping

f : Cd × C
e → C

d ⊗ C
e is uniquely defined by

f (|i〉 , |j〉) = |i〉 ⊗ |j〉 = |i j〉 .

Bilinearity of ⊗ then implies that for |x〉 = ∑d−1
i=0 αi |i〉 and

|y〉 = ∑e−1
j=0 αj |j〉 we have

|x〉 ⊗ |y〉 =
∑

i ,j

αiβj |i j〉 . (1)

Markus Lohrey QCT Summer 2024 46 / 171



Tensor product of vector spaces

Remark: ⊗ is not surjective (this will be shown on Slide 57).

If g : U → U and h : V → V are linear mappings then we can define a
linear mapping

g ⊗ h : U ⊗ V → U ⊗ V

as follows for all 0 ≤ i ≤ d − 1, 0 ≤ i ≤ e − 1:

(g ⊗ h)(|i j〉) = g(|i〉)⊗ h(|j〉)

If A (B) is the matrix for g (h) in the standard basis of Cd (Ce), then the
matrix for g ⊗ h in the standard basis of Cde is the Kronecker product of
A and B , often also called the tensor product of A and B .

We define the Kronecker product for rectangular matrices on the next slide.
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Tensor product of matrices

Let A = (ai ,j)1≤i≤k,1≤j≤ℓ be a (k × ℓ)-matrix and B = (bi ,j)1≤i≤m,1≤j≤n

be an (m × n)-matrix.

Their Kronecker product (or tensor product) A⊗ B is the following
(km × ℓn)-matrix:

A⊗ B =




a1,1B a1,2B . . . a1,ℓB

a2,1B a2,2B . . . a2,ℓB
...

....
...

...
ak,1B ak,2B . . . ak,ℓB




Note: If |x〉 ∈ C
d and |y〉 ∈ C

e then |x〉 ⊗ |y〉 ∈ C
de is as in (1).

If |i〉 and |j〉 are vectors from the standard bases (0 ≤ i ≤ k − 1 and
0 ≤ j ≤ ℓ− 1) then we also write |i j〉 for the tensor product |i〉 ⊗ |j〉.
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Tensor product of matrices

The tensor product satisfies the following laws:

◮ (A+ B)⊗ C = A⊗ C + B ⊗ C and A⊗ (B + C ) = A⊗ B + A⊗ C

◮ (αA)⊗ B = A⊗ (αB) = α(A ⊗ B).

◮ (A⊗ B) · (C ⊗ D) = (A · C )⊗ (B · D), where

A is (k × ℓ), B is (m × n), C is (ℓ× p), D is (n × q).

◮ (A⊗ B)† = A† ⊗ B†.

A special case of the 3rd law is the following, where |x〉 , |x ′〉 ∈ C
k ,

|y〉 , |y ′〉 ∈ C
ℓ.

(〈x | ⊗ 〈y |)(|x ′〉 ⊗ |y ′〉) = 〈x |x ′〉 〈y |y ′〉

In particular |x〉 = |x ′〉 and |y〉 = |y ′〉 yields ‖|x〉 ⊗ |y〉‖ = ‖x‖ · ‖y‖.
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Tensor product of matrices

Note: in general we have A⊗ B 6= B ⊗ A

Exercise: Show the following:

A and B are





unitary
Hermitian
positive definite
projectors





=⇒ A⊗ B is





unitary
Hermitian
positive definite
a projector





For a rectangular matrix A and k ≥ 1 we define

A⊗k = A⊗ · · · ⊗ A︸ ︷︷ ︸
k many

.
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Principles of quantum computing: the state

Classical computing: at each time instant the system is in one of say d

states 0, 1, . . . d − 1.

Quantum computing: a (quantum) state is a unit vector |x〉 ∈ C
d :

|x〉 =
d−1∑

i=0

αi |i〉 ,

where αi ∈ C (the amplitude of |i〉) and ∑d−1
i=0 |αi |2 = 1.

Later, when we introduce quantum circuits, the standard basis

{|0〉 , . . . , |d − 1〉}
will be replaced by the computational basis

{|u〉 : u ∈ {0, 1}n}
of an n-qubit quantum register.
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Principles of quantum computing: the dynamics

Classical computing: the system evolves according to some (possibly
time-dependant) function f : {0, 1, . . . , d − 1} → {0, 1, . . . , d − 1} on
the set of states.

Quantum computing: systems evolve according to unitary
transformations.

If at time t the system is in state |x〉 ∈ C
d (a unit vector) then at time

t + 1 the system is in state U(t) |x〉 for some unitary matrix U(t) (that
may depend on time).

Note: U(t) |x〉 is again a unit vector since unitary matrices preserve the
norm.
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Principles of quantum computing: measurements
Classical computing: In principle, the observer of a classical system
knows at each time instant the current state s ∈ {0, 1, . . . , d − 1}.

Quantum computing: The current state |x〉 ∈ C
d is hidden for an

observer (in particular, one cannot determine the amplitudes).

All she/he can do is a measurement.

The simplest possible measurement in our setting would be a full
projective measurement in the standard base:

After measuring the current state |x〉 = ∑d−1
i=0 αi |i〉 the system collapses

to the basis states |i〉 (the new state of the system) with probability |αi |2.

Recall:
∑d−1

i=0 |αi |2 = 1.

The observer gets the knowledge to which basis state |i〉 the quantum
state collapses.
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Principles of quantum computing: measurements

More generally, a projective measurement is given by a collection of
projectors {Π1, . . . ,Πk} (Π2

i = Πi and Π†
i = Πi ) such that

◮ ΠiΠj = 0 (the zero matrix) for i 6= j and

◮
∑k

i=1Πi = Idd (the (d × d) identity matrix).

Applying this projective measurement to the state |x〉 results with
probability ‖Πi |x〉‖2 = 〈x |Πi |x〉 in the post-measurement state

Πi |x〉
‖Πi |x〉‖

.

This is a unit vector from the subspace Si = {Πi |x〉 : |x〉 ∈ C
d} onto

which Πi projects. The observer gets the knowledge of i .

The probabilities 〈x |Πi |x〉 sum to 1:

k∑

i=1

〈x |Πi |x〉 = 〈x |
( k∑

i=1

Πi

)
|x〉 = 〈x |x〉 = 1.
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Principles of quantum computing: measurements
Remarks:

◮ If i 6= j and |x〉 , |y〉 ∈ C
d then 〈x |Π†

i Πj |y〉 = 〈x |Πi Πj |y〉 = 0.
Thus, Si and Sj are orthogonal for i 6= j .

◮ C
d = S1 ⊕ S2 ⊕ · · · ⊕ Sk , since |x〉 = ∑k

i=1Πi |x〉 for all |x〉 ∈ C
d .

◮ In a full projective measurement in the standard base, the Si are the
vector spaces spanned by the basis vectors |i〉 (and we have k = d).

◮ A Hermitian matrix H yields a projective measurement as follows:

Let λ1, . . . , λk ∈ R be the different eigenvalues of H and let Si be the
eigenspace of λi .

Then {ΠS1 , . . . ,ΠSk} defines a projective measurement!

◮ There is an even more general notion of measurement in quantum
information theory: POVM – positive operator-valued measurement.

We won’t need it in this lecture.
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Principles of quantum computing: combining systems

Classical computing: If we have two systems with state spaces
S = {x1, . . . , xd} and T = {y1, . . . , ye}, then the two systems can
be viewed as a single system with state space S × T .

Quantum computing: Two quantum systems with standard bases

◮ {|0〉 , . . . , |d − 1〉} (yielding space C
d ) and

◮ {|0〉 , . . . , |e − 1〉} (yielding space C
e)

can be combined into a single system with standard base

◮ {|i j〉 : 0 ≤ i < d , 0 ≤ j < e} yielding space C
d ⊗ C

e ∼= C
de .

If the two systems are in states |x〉 = ∑d−1
i=0 αi |i〉 and |y〉 = ∑e−1

j=0 βj |j〉
then the combined system is in state

|x〉 ⊗ |y〉 =
∑

i ,j

αiβj |i〉 ⊗ |j〉 =
∑

i ,j

αiβj |i j〉 .
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Principles of quantum computing: combining systems

Important remark: Not every state of Cd ⊗ C
e can be written as |x〉 ⊗ |y〉

for states |x〉 ∈ C
d and |y〉 ∈ C

e .

A state |z〉 ∈ C
d ⊗C

e is called entangled if it is not of the form |x〉 ⊗ |y〉
for states |x〉 ∈ C

d and |y〉 ∈ C
e .

Example: The Bell state 1√
2
(|00〉+ |11〉) is entangled.

To see this, assume that

1√
2
(|00〉+ |11〉) = (α |0〉 + β |1〉)⊗ (γ |0〉+ δ |1〉)

= αγ |00〉+ αδ |01〉+ βγ |10〉+ βδ |11〉 .

This implies αγ = βδ = 1√
2
and αδ = βγ = 0, from which we get

αβγδ = 1
2 and αβγδ = 0, a contradiction.
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Principles of quantum computing: combining systems

If two systems evolve according to the unitary transformations U and V

then the combined system evolves according to the unitary U ⊗ V .

This makes sense, since (U ⊗ V )(|x〉 ⊗ |y〉) = U |x〉 ⊗ V |y〉.

Measuring the

◮ 1st system using {Π1, . . . ,Πk} and independently the

◮ 2nd system using {Φ1, . . . ,Φℓ}
is the same as measuring the combined system using

◮ {Πi ⊗ Φj : 1 ≤ i ≤ k , 1 ≤ j ≤ ℓ}.

This yields the intuitively correct probabilities!
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Principles of quantum computing: combining systems
Assume that |x〉 and |y〉 are the states of the two systems and measure
them independently from each other.

With πi = ‖Πi |x〉‖ and ρj = ‖Φj |y〉‖ we get

◮ Prob
[
post measurement state of system 1 = Πi |x〉

πi

]
= π2

i

◮ Prob
[
post measurement state of system 2 =

Φj |y〉
ρj

]
= ρ2j

Hence, with probability π2
i ρ

2
j the combined system is in state

Πi |x〉
πi

⊗ Φj |y〉
ρj

=
Πi |x〉 ⊗ Φj |y〉

πiρj
=

Πi |x〉 ⊗ Φj |y〉
‖Πi |x〉 ⊗ Φj |y〉‖

after the measurements.

With the combined measurement {Πi ⊗ Φj : 1 ≤ i ≤ k , 1 ≤ j ≤ ℓ} the
same result is obtained!
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Global phase and the density matrix

Consider quantum states |x〉 , |y〉 ∈ C
d (so 〈x |x〉 = 〈y |y〉 = 1) and assume

there is α ∈ C such that |x〉 = α |y〉.

We must have |α| = 1, i.e., α = e iφ for some φ ∈ [0, 2π).

α is called a global phase factor.

It has no physical meaning in the following sense: For every measurement
{Π1, . . . ,Πk} and every outcome j we have 〈x |Πj |x〉 = 〈y |Πj |y〉.

Hence, |x〉 and |y〉 cannot be distinguished by measurements.

Exercise: Show that: |x〉 = e iφ |y〉 for some φ ⇐⇒ |x〉〈x | = |y〉〈y |.

The matrix |x〉〈x | is called the density matrix of the quantum state |x〉.
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Mixed quantum states

Let |x〉 ∈ C
d be a quantum state and {Π1, . . . ,Πk} a measurement.

How should we describe the state resulting from the measurement (before
actually doing the measurement and the resulting collapse)?

It is the probability distribution on the states

|x1〉 :=
Π1 |x〉
‖Π1 |x〉‖

, . . . , |xk〉 :=
Πk |x〉
‖Πk |x〉‖

,

where |xi 〉 arises with probability pi := ‖Πi |x〉‖2 = 〈x |Πi |x〉.

A set {(p1, |x1〉), . . . , (pk , |xk〉)} is an ensemble of pure quantum states or
a mixed state if:

◮ (p1, . . . , pk) is a probability distribution, i.e., pi ∈ R≥0,
∑k

i=1 pi = 1,

◮ |x1〉 , . . . , |xk〉 are quantum states.
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Mixed quantum states

The quantum states we considered so far are also called pure states.

Unitary evolution and measurements can be easily defined for mixed states.

Let E = {(p1, |x1〉), . . . , (pk , |xk〉)} be a mixed state.

◮ The unitary transformation U transforms E into the mixed state
{(p1,U |x1〉), . . . , (pk ,U |xk〉)}.

◮ The measurement {Π1, . . . ,Πℓ} transforms E into the mixed state

{(
pj ‖Πi |xj〉‖2 ,

Πi |xj〉
‖Πi |xj〉‖

)
: 1 ≤ i ≤ ℓ, 1 ≤ j ≤ k

}
.

The probability for outcome i ∈ [1, ℓ] is
k∑

j=1

pj ‖Πi |xj〉‖2.
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Density matrices

As for pure states, two mixed states can be physically indistinguishable in
the sense that for every measurement they yields the same probability for
every outcome.

Example: {(0.7, |x〉), (0.3, |x〉)} and {(0.5, |x〉), (0.5, e iφ |x〉)} are
physically indistinguishable from {(1, |x〉)} (a pure state).

The mixed state {(p1, |x1〉), . . . , (pk , |xk〉)} can be described by its density
matrix

ρ =

k∑

i=1

pi |xi〉〈xi | . (2)

It turns out that mixed states with the same density matrix cannot be
distinguished by measurements.
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Density matrices

Lemma 8

A matrix ρ is a density matrix (i.e., ρ has the form (2) for a probability
distribution (p1, . . . , pk) and pure states |x1〉 , . . . , |xk〉) if and only if

◮ ρ is positive semi-definite and

◮ Tr(ρ) = 1.

Let ρ be a density matrix.

◮ A unitary U transforms the density matrix ρ into UρU†.

◮ The measurement {Π1, . . . ,Πk} transforms ρ into
k∑

i=1

Πi ρΠi .

Outcome i ∈ [1, k] occurs with probability Tr(Πiρ) and leads to the

collapsed density matrix
ΠiρΠi

Tr(Πiρ)
(note that Tr(Πiρ) = Tr(ΠiρΠi )).
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Quantum bits (qubits)

Unit vectors of the form α |0〉+ β |1〉 ∈ C
2 are the states of a single qubit.

Physically, one could realize a qubit by a quantum mechanical system with
two distinguished states (e.g. the spin of an electron can be ↑ and ↓).

An n-qubit quantum register is the combination of n qubits.

Its quantum states are unit vectors from the vector space

C
2 ⊗ C

2 ⊗ · · · ⊗ C
2

︸ ︷︷ ︸
n times

∼= C
2n .

with the computational basis {|u〉 : u ∈ {0, 1}n}.

Note: if u = a1a2 · · · an then |u〉 = |a1〉 ⊗ |a2〉 ⊗ · · · ⊗ |an〉.

In the following let us write Ud for the set of unitary (d × d)-matrices.
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Quantum circuits

A quantum circuit is the quantum analog of a classical Boolean circuit.

An n-qubit quantum circuit operates on the state space of an n-qubit
quantum register.

The circuit consists of a sequence of unitary matrices U1, . . . ,Um ∈ U2n .

Each unitary matrix Ui should be simple but also powerful enough in the
same sense as a single Boolean gate is simple.

It is common to restrict the Ui to unitary transformations that operate
locally on only one or two qubits (analogous to the boolean gates ¬, ∨
and ∧ that operate on one or two bits).
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1-qubit quantum gates

1-qubit quantum gates: Id2i−1 ⊗ A⊗ Id2n−i where A ∈ U2 and 1 ≤ i ≤ n.

Intuition: A operates on qubit i and does not touch the j-th qubit for
every j ∈ {1, . . . , n} \ {i}.

In pictures:
1

i − 1

i A

i + 1

n
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CNOT gate

It turns out that only one type of two-qubit quantum gates is needed:
CNOT-gate (controlled not-gates).

CNOTi ,j for 1 ≤ i , j ≤ n with i 6= j is the unique linear transformation that
operates on the computational basis as follows, where a1, . . . , an ∈ {0, 1}

CNOTi ,j(|a1 · · · an〉) = |a1 · · · aj−1(aj ⊕ ai)aj · · · an〉 ,

where ⊕ is the boolean XOR.

Intuition: Flip the j-th bit if the i -th bit is 1, otherwise do nothing.

Since CNOTi ,j permutes the computational basis, the columns (and rows)
of CNOTi ,j form again the computational basis.

Therefore CNOTi ,j is indeed unitary.
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CNOT gate

In pictures:
1

i

j

n

The matrix for CNOT1,2 is:




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




Markus Lohrey QCT Summer 2024 69 / 171



CNOT and classical copying
CNOT can be used to copy classical information: for all a ∈ {0, 1} we
have:

CNOT1,2 |a 0〉 = |a (0⊕ a)〉 = |a a〉

This does not contradict the following famous result of quantum
computing:

No-cloning theorem

There is no unitary transformation U on 2n qubits such that for every
n-qubit quantum state |x〉 ∈ C

2n we have

U(|x〉 ⊗ |0n〉) = |x〉 ⊗ |x〉 . (3)

The above comment on CNOT only implies that the identity (3) can be
achieved if we restrict to computational basis states |u〉 for u ∈ {0, 1}n .
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Proof of the no-cloning theorem

Assume there is a unitary transformation U of the form excluded in the
no-cloning theorem.

Take two differet quantum states |x〉 , |y〉 (on n qubits). We get:

〈x |y〉 = 〈x |y 〉 〈0n|0n〉
= (〈x | ⊗ 〈0n|)(|y〉 ⊗ |0n〉)
= (〈x | ⊗ 〈0n|)U†U(|y〉 ⊗ |0n〉)
= (〈x | ⊗ 〈x |)(|y〉 ⊗ |y〉)
= 〈x |y 〉 〈x |y〉

The equation a2 = a has only two solutions in C: 0 and 1.

Hence, we have 〈x |y〉 ∈ {0, 1}.
We get a contradiction if we choose x , y such that 0 6= 〈x |y〉 6= 1.
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CNOT and SWAP

CNOT can be used to swap two qubits, i.e., to compute a unitary
operation SWAP (on 2 qubits) such that for all a, b ∈ {0, 1}:

SWAP |ab〉 = |ba〉 .

We need 3 CNOT-gates for this:
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Controlled operations

CNOT is a particular controlled operation.

Let U ∈ U2 be unitary.

Ci ,j(U) for 1 ≤ i , j ≤ n with i 6= j is the unique unitary transformation that
operates on the computational basis as follows, where a1, . . . , an ∈ {0, 1}:

Ci ,j(U)(|a1 · · · an〉) = |a1 · · · aj−1〉 ⊗ Uai |aj〉 ⊗ |aj · · · an〉

In pictures:
1

i

j U

n
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Controlled operations

If the matrix for U in the computational basis is

(
a1 a2
a3 a4

)

then the matrix for C1,2(U) in the computational basis is




1 0 0 0
0 1 0 0
0 0 a1 a2
0 0 a3 a4


 .

Note that CNOTi ,j = Ci ,j(X ) where X is the Pauli-X gate.
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CNOT + 1-qubit quantum gates are universal

Theorem 9 (see Nielsen, Chuang, Section 4.5.2)

Every unitary transformation on n qubits can be composed from at most
O(n24n) 1-qubit quantum gates and CNOT-gates.

The bound O(n24n) cannot be significantly improved
(see Nielsen, Chuang, Section 4.5.4)!

There is still a problem with using arbitrary 1-qubit quantum gates:

There are uncountably many 1-qubit quantum gates and we cannot expect
to find a physical implementation of every 1-qubit quantum gate.

Our goal is to approximate arbitrary 1-qubit quantum gates with high
precision using a fixed finite set of 1-qubit quantum gates.
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Spectral norm

For a matrix A ∈ C
d×d we define its spectral norm

‖A‖ = max{‖A |x〉‖ : |x〉 ∈ C
d , ‖x‖ = 1}.

For A,B ∈ C
d×d we define their distance as d(A,B) = ‖A− B‖.

Some facts about the spectral norm, where A,B ∈ C
d×d , α ∈ C, and

U,V ∈ Ud :

◮ ‖A+ B‖ ≤ ‖A‖+ ‖B‖ (triangle inequality)

◮ ‖αA‖ = |α| · ‖A‖
◮ A = 0 if and only if ‖A‖ = 0

◮ ‖AB‖ ≤ ‖A‖ · ‖B‖ (submultiplicativity)

◮ ‖UAV ‖ = ‖A‖ (unitary invariance)
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Spectral norm

Proof of unitary invariance: Let U,V ∈ Ud .

The mapping |x〉 7→ V |x〉 induces a bijection on the set of unit vectors.

Hence, we have:

‖AV ‖ = max{‖A(V |x〉)‖ : |x〉 ∈ C
d , ‖x‖ = 1}

= max{‖A |y〉‖ : |y〉 ∈ C
d , ‖y‖ = 1}

= ‖A‖

Since ‖U |y〉‖ = ‖y‖ for all vectors |y〉, we have:

‖UA‖ = max{‖UA |x〉‖ : |x〉 ∈ C
d , ‖x‖ = 1}

= max{‖A |x〉‖ : |x〉 ∈ C
d , ‖x‖ = 1}

= ‖A‖
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Spectral norm and eigenvalues

Theorem 10

For every A ∈ C
d×d we have ‖A‖ =

√
ρ, where ρ be the largest eigenvalue

of A†A (a positive semi-definite matrix).

Proof: Since A†A is positive semi-definite, there is a unitary matrix U

such that

D := U†A†AU =




λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λd




where the λi are the (non-negative real) eigenvalues of A†A.
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Spectral norm and eigenvalues

We obtain the following, where w.l.o.g. λd = ρ is the largest eigenvalue of
the matrix A†A:

‖A‖2 = max{〈y |A†A |y〉 : |y〉 ∈ C
d , ‖y‖ = 1}

= max{〈x |U†A†AU |x〉 : |x〉 ∈ C
d , ‖x‖ = 1}

= max{〈x |D |x〉 : |x〉 ∈ C
d , ‖x‖ = 1}

= max

{
d∑

i=1

|αi |2λi : α1, . . . , αd ∈ C,
d∑

i=1

|αi |2 = 1

}

= max

{
d∑

i=1

piλi : 0 ≤ p1, . . . , pd ≤ 1,

d∑

i=1

pi = 1

}

= λd
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Spectral norm and eigenvalues

Corollary 11

‖U‖ = 1 for a unitary matrix U.

Corollary 12

‖H‖ = max{|λ| : λ is an eigenvalue of H} for a Hermitian matrix H.

Corollary 13

‖P‖ = max{λ : λ is an eigenvalue of P} for a positive-semi-definite P .

Markus Lohrey QCT Summer 2024 80 / 171



Spectral norm and tensor products

Lemma 14

‖A⊗ B‖ = ‖A‖ · ‖B‖ for every A ∈ C
d×d , B ∈ C

e×e .

Proof: We have (A ⊗ B)†(A⊗ B) = (A† ⊗ B†) · (A⊗ B) = A†A⊗ B†B .

The matrix A†A⊗ B†B is positive semi-definite
(since A†A and B†B are positive semi-definite).

Choose orthonormal bases

◮ |x1〉 , . . . , |xd 〉 of Cd consisting of eigenvectors of A†A and

◮ |y1〉 , . . . , |ye〉 of Ce consisting of eigenvectors of B†B and let

◮ λi be the eigenvalue of A†A for |xi 〉, where 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λd ,

◮ µi be the eigenvalue of B†B for |yi〉, where 0 ≤ µ1 ≤ µ2 ≤ · · · ≤ µe .
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Spectral norm and tensor products

Then {|xi 〉 ⊗ |yj〉 : 1 ≤ i ≤ d , 1 ≤ j ≤ e} is an orthonormal basis of
eigenvectors for A†A⊗ B†B .

The eigenvalue for |xi 〉 ⊗ |yj〉 is λiµj .

These must be all eigenvalues! There is no more space for further
eigenvalues.

Hence, the largest eigenvalue of (A⊗ B)†(A⊗ B) is

λd · µe = ‖A‖2 · ‖B‖2 .

We get ‖A⊗ B‖ =
√
λd · µe = ‖A‖ · ‖B‖.
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The Solovay-Kitaev Theorem
A subset S ⊆ Ud of d -dimensional unitary matrices is dense if for all
V ∈ Ud and ǫ > 0 there is product U = U1U2 · · ·Uk such that

◮ U1,U2, . . . ,Uk ∈ S and

◮ d(U,V ) ≤ ǫ.

S is inverse-closed if U−1 ∈ S for every U ∈ S .

Theorem 15 (Solovay 1995, Kitaev 1997)

Fix a dimension d and let S ⊆ Ud be finite, dense and inverse-closed.
Then for all V ∈ Ud and ǫ > 0 there is product U = U1U2 · · ·Uk with

◮ U1,U2, . . . ,Uk ∈ S ,

◮ d(U,V ) ≤ ǫ and

◮ k ≤ O(logc(1/ǫ)) for some constant c .
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The Solovay-Kitaev Theorem

Remarks:

◮ In the first proofs of the Solovay-Kitaev theorem, the constant c was
3 + δ, where δ > 0 can be chosen arbitrarily small.

◮ Recently, Greg Kuperberg gave a new proof showing that one can
take c = 1.44042 · · · + δ for δ > 0 arbitrarily small.

◮ Given a good approximation of V , one can compute the sequence
U1U2 · · ·Uk also efficiently.

We are mainly interested in the case d = 2 (unitary transformations on 1
qubit).

Fortunately, there is a finite and dense subset of U2.
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A universal gate set

Theorem 16 (see Nielsen and Chuang, Section 4.5.3)

The set consisting of

H =
1√
2

(
1 1
1 −1

)
and T =

(
1 0

0 e iπ/4

)

is a dense subset of U2.

H is called the Hadamard matrix (or the Hadamard gate), T is called the
π/8 gate.

Hence, by the Solovay-Kitaev Theorem every U ∈ U2 can be approximated
using H and T up to error ǫ > 0 using a sequence of length O(logc(1/ǫ)).
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Getting the Pauli matrices from H and T

Recall the Pauli matrices X , Y , Z from Slide 39.

◮ Z = T 4

◮ X = HZH = HT 4H

◮ iY = XZ = HT 4HT 4

In the last line, the factor i is a physically irrelevant global factor.
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Error approximation in quantum circuits

Assume we have an n-qubit quantum circuit U1,U2, . . . ,Um.

Every Ui is either a

◮ CNOT-gates or an

◮ arbitrary 1-qubit quantum gate Id2i−1 ⊗ A⊗ Id2n−i where A ∈ U2.

Assume we have approximated (using H and T ) every A in the 2nd point
by a unitary B ∈ U2 with d(A,B) ≤ ǫ (using Solovay-Kitaev).

By Lemma 14 we have:

d(Id2i−1 ⊗ A⊗ Id2n−i , Id2i−1 ⊗ B ⊗ Id2n−i )

= ‖Id2i−1 ⊗ A⊗ Id2n−i − Id2i−1 ⊗ B ⊗ Id2n−i‖
= ‖Id2i−1 ⊗ (A− B)⊗ Id2n−i‖
= ‖Id2i−1‖ · ‖A− B‖ · ‖Id2n−i‖
= ‖A− B‖ = d(A,B) ≤ ǫ.
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Error approximation in quantum circuits

Lemma 17

Let U1,V1, . . . ,Um,Vm ∈ Ud with d(Ui ,Vi ) ≤ ǫ for all 1 ≤ i ≤ m.

Then we have d(U1U2 · · ·Um,V1V2 · · ·Vm) ≤ mǫ.

Proof: Induction over m.

The case m = 1 is clear.

Assume now that m > 1.

Define A = U1U2 · · ·Um−1 and B = V1V2 · · ·Vm−1.

The induction hypothesis tells us that d(A,B) ≤ (m − 1)ǫ.

We obtain:
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Error approximation in quantum circuits

d(AUm,BVm) = ‖AUm − BVm‖

= ‖AUm − AVm + AVm − BVm‖

= ‖A(Um − Vm) + (A− B)Vm‖

≤ ‖A(Um − Vm)‖+ ‖(A− B)Vm‖

≤ ǫ+ (m − 1)ǫ = mǫ

These are good news: If we want to approximate the quantum circuit up
to precision δ, we have to approximate every 1-qubit quantum gate with
an error bounded by δ/m.

By the Solovay-Kitaev theorem, this can be achieved by replacing every
1-qubit quantum gate by a sequence of H-gates and T -gates of length
O(logc(m/δ)) = O((logm − log δ)c ).
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Measurements in quantum circuits

We will usually use a quantum circuit U1,U2, . . . ,Um working on n qubits
in the following way:

1. We prepare a quantum state |x〉 ∈ C
2n (usually, it is obtained from

some classical input string u ∈ {0, 1}∗).

2. We apply the quantum circuit (first U1, then U2, etc) and obtain the
quantum state |y〉 = Um · · ·U2U1 |x〉.

3. We extract classical information from |y〉 by doing a projective
measurement.

By the lemma on the next slide, a good approximation of the quantum
circuit yields a good approximation of the measurement probabilities.
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Measurements in quantum circuits

Lemma 18

Let |x〉 ∈ C
d be a quantum state (a unit vector), U,V ∈ Ud such that

d(U,V ) ≤ ǫ and Π a projector of dimension d .

Then we have: | 〈x |U†ΠU |x〉 − 〈x |V †ΠV |x〉 | ≤ 2ǫ.

Proof: With |y〉 = (U − V ) |x〉 we have

| 〈x |U†ΠU |x〉 − 〈x |V †ΠV |x〉 |
= | 〈x |U†ΠU |x〉 − 〈x |U†ΠV |x〉+ 〈x |U†ΠV |x〉 − 〈x |V †ΠV |x〉 |
= | 〈x |U†Π |y〉+ 〈y |ΠV |x〉 |
≤ | 〈x |U†Π |y〉 |+ | 〈y |ΠV |x〉 |
≤ ‖|y〉‖+ ‖|y〉‖ (here we apply Cauchy-Schwarz, see slide 28)

≤ 2d(U,V ) ≤ 2ǫ.
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Measurements in quantum circuits

Similar to the unitary operations in a quantum circuit we should also
restrict the allowed measurements at the end.

Most of the time, we measure only a single qubit, say the 1st of the n

qubits on which the quantum circuit works.

This means that the measurement is given by the projectors Π0, Π1, where

Π0 = |0〉〈0| ⊗ Id2n−1 and Π1 = |1〉〈1| ⊗ Id2n−1 .

Π0 (Π1) projects on the subspace spanned by all basis vectors |0y〉 (|1y 〉)
for y ∈ {0, 1}n−1.

Note that we have Π0Π1 = Π1Π0 = 0 and

Π0 + Π1 = |0〉〈0| ⊗ Id2n−1 + |1〉〈1| ⊗ Id2n−1

= (|0〉〈0|+ |1〉〈1|)⊗ Id2n−1 = Id2n .
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Measurements in quantum circuits

If the current quantum state is |x〉 ∈ C
2n then the probability of measuring

1 in the first qubit is

〈x |Π1 |x〉 = 〈x |
(
|1〉〈1| ⊗ Idn−1

)
|x〉 .

Assume that |x〉 = ∑
u∈{0,1}n αu |u〉 and write

|x〉 =
∑

v∈{0,1}n−1

(
α1v (|1〉 ⊗ |v〉) + α0v (|0〉 ⊗ |v〉)

)

= |1〉 ⊗


 ∑

v∈{0,1}n−1

α1v |v〉




︸ ︷︷ ︸
|x1〉

+ |0〉 ⊗


 ∑

v∈{0,1}n−1

α0v |v〉




︸ ︷︷ ︸
|x0〉

This yields 〈x |
(
|1〉〈1| ⊗ Id2n−1

)
|x〉 = 〈x1|x1〉 =

∑
v∈{0,1}n−1 |α1v |2.
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Measurements in quantum circuits

Measuring another qubit is done analogously.

The symbol for measuring the i -th qubit in a quantum circuit is:

i

In quantum algorithms, measurements are often performed in the middle
of a computation.

The measured qubit is thereby transformed into a classical bit: it is either
0 or 1.

Classical bits are shown as double lines in quantum circuits:

i

The value of such a classical bit can determine which quantum gates are
performed after the measurement.
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The principle of deferred measurement

Example: In the following circuit, U is only performed on the 2nd qubit if
the result of measuring the 1st qubit is 1.

1

2 U

This is called a classical-controlled quantum gate.

Principle of deferred measurement

Measurements can always be moved to the end of the computation.
Classical-controlled quantum gates are then replaced by (quantum)-
controlled quantum gates.
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The principle of deferred measurement

Example:

1

2 U
=

1

2 U

This can be shown as follows:

Let |x〉 = α00 |00〉+ α01 |01〉+ α10 |10〉+ α11 |11〉 be the initial quantum
state.

Left circuit: Let p0 = |α00|2 + |α01|2 and p1 = |α10|2 + |α11|2.

The measurement yields the mixed state
{(

p0,
α00 |00〉+ α01 |01〉√

p0

)
,

(
p1,

α10 |10〉+ α11 |11〉√
p1

)}
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The principle of deferred measurement

The classical-controlled U-gate finally yields the mixed state

{(
p0,

α00 |00〉+ α01 |01〉√
p0

)
,

(
p1,

α10 |1〉 ⊗ U |0〉+ α11 |1〉 ⊗ U |1〉√
p1

)}

Right circuit: The controlled U gate yields the pure state

α00 |00〉+ α01 |01〉+ α10 |1〉 ⊗ U |0〉+ α11 |1〉 ⊗ U |1〉 .

The measurement finally yields the mixed state

{(
p0,

α00 |00〉+ α01 |01〉√
p0

)
,

(
p1,

α10 |1〉 ⊗ U |0〉+ α11 |1〉 ⊗ U |1〉√
p1

)}
.

Markus Lohrey QCT Summer 2024 97 / 171



Acceptance probability of a quantum circuit

For a quantum circuit Q = U1, . . . ,Um working on n quibts and a
quantum state |x〉 ∈ C

2n we define its acceptance probability:

Prob[Q accepts |x〉] = 〈x |U†
1 · · ·U†

mΠ1Um · · ·U1 |x〉 .

In other words:

◮ We first apply the quantum circuit and obtain |y〉 = Um · · ·U1 |x〉.
◮ We then measure the first qubit in |y〉.
◮ |x〉 is accepted if the 1st qubit is 1 in the postmeasurement state, i.e.,

the latter is |1〉 ⊗ |z〉 for some (n − 1)-qubit state |z〉.
This happens with probability 〈y |Π1 |y〉.

Often, we will also measure another qubit in |y〉 instead of the 1st one;
this makes no real difference.

If u ∈ {0, 1}n then we define: Prob[Q accepts u] = Prob[Q accepts |u〉].
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P-uniform families of quantum circuits

In the following we only consider quantum circuits that are composed of
CNOT-gates, H-gates and T-gates, and where the first qubit is measured
at the end (unless otherwise stated).

For a quantum circuit Q = U1,U2, . . . ,Um we define its size |Q| = m.

For a quantum state |x〉 we also write Q |x〉 for Um · · ·U2U1 |x〉 in the
following.

Consider a family (Qn)n≥0 of such quantum circuits, where every Qn works
on p(n) qubits for a polynomial p(n) ≥ n.

(Qn)n≥0 is called P-uniform if there is a PTM M that produces on input
1n (n 1-bits) a binary encoding of Qn.

Note: this implies that there exists a polynomial q(n) with |Qn| ≤ q(n).
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The class promiseBQP

The class promiseBQP consists of all promise problems (L0, L1) for which
there exists a P-uniform quantum circuit family (Qn)n≥0 and a polynomial
a(n) such that Qn works on n + a(n) qubits and for every u ∈ {0, 1}n the
following hold:

◮ If u ∈ L1 then Prob[Qn accepts u0a(n)] ≥ 2
3 .

◮ If u ∈ L0 then Prob[Qn accepts u0a(n)] ≤ 1
3 .

Remark:

◮ In the beginning, the first n qubits are set to the classical bits from
the input u ∈ {0, 1}n .

◮ The other a(n) qubits are called ancilla qubits and initialized to 0.

◮ Ancilla qubits are needed to make the whole computation reversible.

◮ In the following we will simply say BQP instead of promiseBQP;
it stands for bounded-error quantum polynomial time.
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BPP ⊆ BQP

BQP is usually identified with the class of all (promise) problems that can
be solved efficiently using a quantum computer.

In the following, we also refer implicitly for classical complexity classes
(like P, BPP or PSPACE) always to the corresponding promise classes.

Theorem 19

BPP ⊆ BQP

Proof: We first show that P ⊆ BQP.

By Theorem 1 (slide 21) it suffices to simulate a classical Boolean circuit
by a quantum circuit.
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BPP ⊆ BQP

What does it mean to simulate a Boolean circuit by a quantum circuit?

Boolean circuits are in general irreversible (i.e., one cannot reverse the
computation).

For instance the binary AND-function (a, b) 7→ a ∧ b is irreversible.

Quantum circuits are always reversible (if we omit the final measurement).

Solution: simulate the Boolean function f : {0, 1}n → {0, 1} by the
bijection f̃ : {0, 1}n+1 → {0, 1}n+1 with:

∀u ∈ {0, 1}n ∀a ∈ {0, 1} : f̃ (u a) = u (a ⊕ f (u)),

where ⊕ denotes the XOR (addition modulo two).
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BPP ⊆ BQP

In particular: f̃ (f̃ (w)) = w for all w ∈ {0, 1}n+1 and f̃ (u 0) = u f (u).

We say that a quantum circuit Q on (n + 1 + k) qubits computes the
boolean function f : {0, 1}n → {0, 1} if for all

∀u ∈ {0, 1}n ∀a ∈ {0, 1} : Q |u a 0k〉 = |u (f (u)⊕ a) 0k〉 .

Consider now a P-uniform boolean circuit family (Cn(x1, . . . , xn))n≥1.

Goal: compute fn := fCn
: {0, 1}n → {0, 1} by a quantum circuit Qn.

We can assume that Cn is built up from NAND-gates.

NAND stands for not-and and it works as follows:

NAND(0, 0) = NAND(0, 1) = NAND(1, 0) = 1, NAND(1, 1) = 0

Markus Lohrey QCT Summer 2024 103 / 171



BPP ⊆ BQP

NAND is universal; it can simulate AND, OR and NOT.

First consider the so-called Toffoli-gate, also called CCNOT:

∀a, b, c ∈ {0, 1} : CCNOT |a b c〉 = |a b (a ∧ b)⊕ c〉 .

Flip the 3rd qubit if the 1st and 2nd qubit are 1, otherwise do nothing.

We have CCNOT |a b 1〉 = |a bNAND(a, b)〉.
The ancilla 1-qubit can be obtained from an ancilla 0-qubit using a
Pauli-X .

Using SWAP, CCNOT and copying of classical bits (see Slide 70) we can
build for every n ≥ 1 a quantum circuit Q ′

n such that

∀u ∈ {0, 1}n : Q ′
n |u 0kn+1〉 7→ |u fn(u) gn(u)〉 ,

where gn(u) ∈ {0, 1}kn is garbage produced during the computation.
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BPP ⊆ BQP

We can get rid of the garbage gn(u) as follows
(we write k = kn, f = fn, g = gn below):

Add an additional qubit a (that will be an ancilla-0 qubit at the end):

Starting from a computational basis state |u 0 0k a〉 with u ∈ {0, 1}n and
a ∈ {0, 1}, our final quantum circuit Qn behaves as follows:

◮ Apply Q ′
n on the first n + 1 + k qubits to get |u f (u) g(u) a〉

◮ With a CNOT we get |u f (u) g(u) (f (u)⊕ a)〉

◮ Reversing the first step (apply (Q ′
n)

†) yields |u 0 0k (f (u)⊕ a)〉

This is called the compute-uncompute trick.

Note: If Q ′
n = U1,U2, . . . ,Um then (Q ′

n)
† = U

†
m, . . . ,U

†
2 ,U

†
1 .
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BPP ⊆ BQP

CCNOT can be obtained from H, T and CNOT as follows, where S = T 2

(note that T † = T−1 = T 7):

T

T † T † S

H T † T T † T H

(see Nielsen, Chuang, page 182).

This finally yields the desired quantum circuit Qn.

Qn is error-free: Applying Qn to the computational basis state |u 0k+2〉
results in the computational basis state |u 0k+1 fn(u)〉 and measuring the
last qubit gives the output bit fn(u) with probability 1.

Finally note that since the Boolean circuit family (Cn)n≥0 is P-uniform,
the same holds for the quantum circuit family (Qn)n≥0.
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BPP ⊆ BQP

This shows P ⊆ BQP.

It remains to show BPP ⊆ BQP. Let L ∈ BPP.

Recall: In BPP we have r(n) random bits available (where n is the length
of the input). These are randomly set to 0 or 1.

Let Cn be a Boolean circuit with n + r(n) inputs such that for all
u ∈ {0, 1}n we have (with fn = fCn

):

◮ If u ∈ L1 then fn(u, v) = 1 for ≥ 2
3 · 2r(n) many v ∈ {0, 1}r(n) .

◮ If u ∈ L0 then fn(u, v) = 1 for ≤ 1
3 · 2r(n) many v ∈ {0, 1}r(n) .
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BPP ⊆ BQP

In the quantum circuit Qn (for input length n) the r(n) random bits from
Cn are r(n) many additional ancilla qubits that are initially set to 0.

To these ancilla qubits we apply H⊗r(n) = H ⊗ H ⊗ · · · ⊗ H︸ ︷︷ ︸
r(n) many

.

Then we apply a quantum circuit that computes the Boolean function fn
(using k additional ancilla bits):

|u 0r(n) 0k〉 H⊗r(n)

−−−−→ 1

2r(n)/2
·

∑

v∈{0,1}r(n)
|u v 0k〉

quantum circuit for fn−−−−−−−−−−−−−→ 1

2r(n)/2
·

∑

v∈{0,1}r(n)
|u v 0k−1 fn(u, v)〉

Measuring now the last qubit yields the same acceptance probability as the
original boolean circuit.
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Error reduction for BQP

Theorem 20

The error probability 1/3 in the definition of BQP can be replaced by
2−r(n) where n = input length and r(n) is any polynomial.

Proof sketch: Assume we have a promise problem (L0, L1) ∈ BQP.

Let (Qn)n≥1 be the corresponding quantum circuit family with error
probability ≤ 1/3 and let Qn = U1,U2, . . . ,Up(n).

Fix an input u ∈ {0, 1}n of length n. We ignore ancilla qubits below.

Then we can write Qn |u〉 = |0〉 ⊗ |x0〉+ |1〉 ⊗ |x1〉 for |x0〉 , |x1〉 ∈ C
2n−1

(see slide 93) and we have:

◮ If u ∈ L1 then 〈x0|x0〉 ≤ 1/3 (and 〈x1|x1〉 = 1− 〈x0|x0〉 ≥ 2/3).

◮ If u ∈ L0 then 〈x1|x1〉 ≤ 1/3 (and 〈x0|x0〉 = 1− 〈x1|x1〉 ≥ 2/3).
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Error reduction for BQP

The idea of the proof is the same as for BPP: execute k = Θ(r(n))
independent copies of Qn on input u and make a majority vote.

Formally we define Q⊗k
n = U⊗k

1 ,U⊗k
2 , . . . ,U⊗k

p(n).

Note that |Q⊗k
n | = k · p(n).

Step 1: Produce from the classical input u the state |u〉⊗k using CNOT
gates (see slide 70).

Step 2: Apply Q⊗k
n . This results in the state

(
|0〉 ⊗ |x0〉+ |1〉 ⊗ |x1〉

)⊗k

or, after applying SWAP operations, (v [i ] is the i -th bit in the bit string v):

∑

v∈{0,1}k
|v〉 ⊗

k⊗

i=1

|xv [i ]〉 .
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Error reduction for BQP

W.l.o.g. we assume k = 2ℓ − 1 in the following.

Step 3: One could now measure the first k bits and make a majority vote
(i.e., accept iff at least k/2 of the measured bits are 1).

Alternatively one can also apply to the first k qubits plus ℓ many ancilla
qubits w the transformation |v〉 ⊗ |w〉 → |v〉 ⊗ |w ⊕ bin(|v |1)〉.

Here, |v |1 is the number of 1’s in v (a number in [0, 2ℓ − 1]) and
bin(|v |1) ∈ {0, 1}ℓ its binary representation.

Assuming w = 0ℓ in the beginning, we get the state

∑

v∈{0,1}k
|v〉 ⊗

k⊗

i=1

|xv [i ]〉 ⊗ |bin(|v |1)〉 .
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Error reduction for BQP

Step 4: We then measure the 1st qubit of |bin(|v |1)〉.

Note: the first bit of bin(|v |1) is 1 if and only if |v |1 ≥ k/2.

Therefore, the probability that in the post-measurement state the
measured qubit is 1 is

∑

v∈{0,1}k , |v |1≥k/2

k∏

i=1

〈xv [i ]|xv [i ]〉 . (4)

Assume u ∈ L0 (the case u ∈ L1 is analogous). Then (4) is the error
probability and we have 〈x1|x1〉 ≤ 1/3 and 〈x0|x0〉 ≥ 2/3.

The probability (4) can be obtained also by taking k independent Bernoulli
random variables Xi ∈ {0, 1} with Prob[Xi = 1] = 〈x1|x1〉 ≤ 1/3 for all i .

Then (4) = Prob[
∑k

i=1 Xi ≥ k/2] ≤ e−Θ(k) by the Chernoff bound.
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Error reduction for BQP

The ability to do error reduction is important for BQP.

Assume that we solve a problem with a P-uniform family (Qn)n≥0 of
quantum circuits using only d -qubit quantum gates for a constant d .

Let p(n) be the number of gates in Qn (a polynomial) and let 1/3 be the
error probability.

◮ Theorem 9 (slide 75) → quantum circuit of size O(p(n)) consisting of
CNOT and 1-qubit gates.

◮ Error reduction → error probability can be reduced to 1/6.

Thereby the number of gates only increases by a constant.

Solovay-Kitaev (slide 83) & Lemma 18 (slide 91) with ǫ = 1/12 →
quantum circuit with O(p(n) logc p(n)) = O(p(n) logc n) CNOT, H,
and T gates and error of 1/6 + 2/12 = 1/3.
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BQP-complete problems

There are promise problems that are BQP-complete with respect to Karp
polynomial time reductions, but their formulation is usually a bit technical.

Example: MI (matrix inversion) is the following problem
(see next slide for further definitions):

INPUT: a succinctly specified sparse Hermitian invertible matrix
A ∈ C

2n×2n with κ(A) ≤ poly(n).

OUTPUT: Let |x〉 be a unit vector such that |x〉 = α · A−1 |0n〉 for a
normalization factor α ∈ C. Then the output is

◮ 1 if 〈x |Π1 |x〉 ≥ 2/3,

◮ 0 if 〈x |Π1 |x〉 ≤ 1/3.
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BQP-complete problems

◮ Sparse means that A has at most c entries in every row, where c is
some fixed constant (it should be not too small in order to get
BQP-hardness).

◮ Succinctly specified means that A is given by a Boolean circuit that
computes from the binary encoding of a row index i ∈ [0, 2n − 1] the
at most c entries in row i and their positions.

◮ κ(A) is the condition number of the Hermitian matrix A:

κ(A) =
λmax

λmin

with λmin (λmax) the smallest (largest) eigenvalue of A.

Membership of MI in BQP is a direct consequence of the famous
HHL-algorithm (Harrow, Hassidim, Lloyd).

This paper contains also the idea for BQP-hardness.
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BQP-complete problems

Other BQP-complete problems deal for instance with

◮ matrix powering,

◮ computing an additive approximation of the Jones polynomial of a
knot at a root of unity.
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The class MA

MA stands for Merlin-Arthur (we should call it promiseMA, but we omit
the promise) and is defined as follows:

A promise problem (L0, L1) belongs to MA if there is a PTM M and
polynomials p(n), r(n) such that for every u ∈ {0, 1}n :
◮ If u ∈ L1 then ∃v ∈ {0, 1}p(n) : 〈u, v ,w〉 ∈ L(M) for ≥ 2

3 · 2r(n) many

w ∈ {0, 1}r(n)

◮ If u ∈ L0 then ∀v ∈ {0, 1}p(n) : 〈u, v ,w〉 ∈ L(M) for ≤ 1
3 · 2r(n) many

w ∈ {0, 1}r(n) .

MA can be seen as a randomized version of NP (inparticular NP ⊆ MA):

◮ Merlin proposes to Arthur a “proof” v for u ∈ L1.

◮ Arthur can verify in polynomial with high probability whether it is
really a proof.
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The class QMA

We now define a quantum analog of the class NP (actually a quantum
analog of MA).

A promise problem (L0, L1) belongs to QMA if there are polynomials
p(n), a(n) and a P-uniform quantum circuit family (Qn)n≥0 working
on n+ a(n) + p(n) qubits such that for every u ∈ {0, 1}n :

◮ If u ∈ L1 then there is a quantum state |x〉 ∈ C
2p(n) :

Prob[Qn accepts |u 0a(n)〉 ⊗ |x〉] ≥ 2

3
. (5)

◮ If u ∈ L0 then for every quantum state |x〉 ∈ C
2p(n) :

Prob[Qn accepts |u 0a(n)〉 ⊗ |x〉] ≤ 1

3
. (6)
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The class QMA and its relatives

Remarks:

◮ the “quantum proof” |x〉 is an arbitrary p(n)-qubit quantum state
and not necessarily a computational basis state.

◮ If one requires that |x〉 is a computational basis state |v〉 with
v ∈ {0, 1}p(n) then one obtains the class QCMA.

◮ MA ⊆ QCMA: basically the same proof as for BPP ⊆ BQP.

◮ QCMA ⊆ QMA: almost obvious, one only has to show that if (6)
holds for all classical proofs |x〉 = |v〉 with v ∈ {0, 1}p(n) then (6)
holds for all quantum proofs |x〉 (Exercise).

◮ BQP ⊆ QCMA: the quantum proof can be ignored.
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Error reduction for QMA

Similar to BQP we would like to reduce the error 1/3 in our definition of
QMA to 2−r(n) for a polynomial r(n).

There are two ways to do this:

◮ error reduction by parallel repetition: Similarly to error reduction for
BQP one runs k = Θ(r(n)) copies of the proof verification quantum
circuit.

If |x〉 is the proof in (136), then one can choose the proof |x〉⊗k .

Note: In (6) one has to consider all kp(n)-qubit quantum states |y〉
and not only quantum states of the form |x〉⊗k (but one can argue
that this is not a problem).

◮ witness-preserving error reduction: avoids duplicating the proof.
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Witness-preserving error reduction for QMA
Fix a quantum circuit family (Qn)n≥0 as on slide 118 and an input
u ∈ {0, 1}n .
In the following, it is useful to rewrite the acceptance probability
Prob[Qn accepts |u 0a(n)〉 ⊗ |x〉] for a quantum proof |x〉.
We use the following short-hand notations:

◮ ũ = u 0a(n) for u ∈ {0, 1}n .
◮ An = Q

†
nΠ1Qn.

◮ Pu =
(
〈ũ| ⊗ Id2p(n)

)
· An ·

(
|ũ〉 ⊗ Id2p(n)

)

Lemma 21

For every p(n)-qubit quantum state |x〉 we have

Prob[Qn accepts |ũ〉 ⊗ |x〉] = Tr(Pu |x〉〈x |) = 〈x |Pu |x〉 .
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Witness-preserving error reduction for QMA

Proof: In the following, we write Id for Id2p(n) .

Prob[Qn accepts |ũ〉 ⊗ |x〉]
= (〈ũ| ⊗ 〈x |) · An · (|ũ〉 ⊗ |x〉)
= (Id1 ⊗ 〈x |) · (〈ũ| ⊗ Id) · An · (|ũ〉 ⊗ Id) · (Id1 ⊗ |x〉)
= 〈x |Pu |x〉
= Tr(〈x |Pu |x〉)
= Tr(Pu |x〉〈x |)

where the last equality follows from the fact that Tr(AB) = Tr(BA) for all
rectangular matrices (for which the products AB and BA are defined).
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Error reduction for QMA

Lemma 22

Pu is positive semi-definite (and hence Hermitian).

Proof: We show that all eigenvalues of Pu are in [0, 1]R.

Let λ be an eigenvalue of Pu and let |x〉 an eigenvector of norm 1 for λ.

We then have

λ = 〈x |Pu |x〉 = Tr(Pu |x〉〈x |) = Prob[Qn accepts |ũ〉⊗|x〉] ∈ [0, 1]R.

By Lemma 21, a quantum proof |x〉 maximizes the acceptance probability
of the input u iff it maximizes the value 〈x |Pu |x〉 = Tr(Pu |x〉〈x |).
This is related to the largest eigenvalue of Pu .

For a Hermitian matrix H (all its eigenvalues are real) let λmax(H) be its
largest eigenvalue and λmin(H) be its smallest eigenvalue.
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Interlude: maximal eigenvalues of Hermitian matrices

Lemma 23
For every Hermitian matrix H ∈ C

d×d we have

λmax(H) = max{〈x |H |x〉 : |x〉 ∈ C
d , 〈x |x〉 = 1}.

Proof: Let {|y1〉 , . . . , |yd 〉} be an orthonormal basis of eigenvectors of H
and let λi ∈ R be the eigenvalue corresponding to |yi 〉.

Let |x〉 =
d∑

i=1

αi |yi 〉 be an arbitrary unit vector, where
d∑

i=1

|αi |2 = 1.

We obtain 〈x |H |x〉 =
d∑

i=1

|αi |2λi ≤
d∑

i=1

|αi |2λmax(H) = λmax(H).

On the other hand, if |y〉 is a unit eigenvector for the eigenvalue λmax(H)
then 〈y |H |y〉 = λmax(H).

Markus Lohrey QCT Summer 2024 124 / 171



Error reduction for QMA
Remarks:

◮ An analogous argument shows that

λmin(H) = min{〈x |H |x〉 : |x〉 ∈ C
d , 〈x |x〉 = 1}. (7)

◮ Implicitly, we have shown that the maximum of the set

{〈x |H |x〉 : |x〉 ∈ C
d , 〈x |x〉 = 1} ⊆ R

exists. This can be also shown using the compactness of this set.

Our new quantum circuit will use two different measurements:

◮ {Π0,Π1}
◮ {Θ0,Θ1} where Θ1 := |ũ〉 〈ũ| ⊗ Id and Θ0 = Id2n+a(n)+p(n) −Θ1.

Consider the algorithm on the next slide, where k is sufficiently large.
Markus Lohrey QCT Summer 2024 125 / 171



Witness-preserving error reduction for QMA

The initial quantum state is |ũ〉 ⊗ |x〉.
1. i := 1; a0 := 1;

2. while i ≤ k − 1 do

3. apply Qn to the current quantum state;

4. measure with respect to {Π0,Π1};
5. if the outcome is a ∈ {0, 1} then ai := a;

6. i := i + 1;

7. apply Q
†
n to the current quantum state;

8. measure with respect to {Θ0,Θ1};
9. if the outcome is a ∈ {0, 1} then ai := a;

10. i := i + 1;

11. endwhile

12. accept if and only if the number of i with ai = ai+1 is at least k/2.
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Witness-preserving error reduction for QMA

Lemma 24

If |x〉 is a unit eigenvector of Pu and λ = Tr(Pu |x〉〈x |) ∈ [0, 1]R is the
corresponding eigenvalue, then Prob[ai = ai+1] = λ for all 0 ≤ i < k .

Proof: First assume λ = 1 and consider the 1st iteration of the while-loop:

◮ Qn(|ũ〉 ⊗ |x〉) is in the subspace im(Π1) onto which Π1 projects.

◮ Hence, with probability 1 we have a1 = 1 and the state after line 4 is
Π1Qn(|ũ〉 ⊗ |x〉) = Qn(|ũ〉 ⊗ |x〉).

◮ Hence, with probability 1 the state after line 7 is |ũ〉 ⊗ |x〉, which
belongs to the subspace im(Θ1) onto which Θ1 projects.

◮ Hence, with probability 1 we have a2 = 1 and the state at the end of
the first iteration is |ũ〉 ⊗ |x〉.

We obtain a0 = a1 = · · · = ak = 1 with probability 1.
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Witness-preserving error reduction for QMA
If λ = 0, then Qn(|ũ〉 ⊗ |x〉) belongs to im(Π0) and we can argue
analogously in this case.

We obtain 1 = a0 6= a1 6= a2 6= · · · 6= ak with probability 1.

Assume that 0 < λ < 1 in the following.

With Γ := Θ1 Q
†
n Π1 Qn we have

Γ(|ũ〉 ⊗ |x〉) = Θ1 Q
†
n Π1 Qn (|ũ〉 ⊗ |x〉)

= (|ũ〉〈ũ| ⊗ Id)Q†
n Π1 Qn (|ũ〉 ⊗ |x〉)

= (|ũ〉 ⊗ Id) (〈ũ| ⊗ Id)Q†
n Π1 Qn (|ũ〉 ⊗ |x〉)

= (|ũ〉 ⊗ Id) (〈ũ| ⊗ Id)Q†
n Π1 Qn (|ũ〉 ⊗ Id) |x〉

= (|ũ〉 ⊗ Id)Pu |x〉
= (|ũ〉 ⊗ Id)λ |x〉
= λ(|ũ〉 ⊗ |x〉).
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Witness-preserving error reduction for QMA

Let us define the two quantum states

|y1〉 = |ũ〉 ⊗ |x〉 and |y0〉 =
Θ0Q

†
n Π1 Qn |y1〉∥∥∥Θ0Q
†
n Π1 Qn |y1〉

∥∥∥
.

Since |y1〉 ∈ im(Θ1) and |y0〉 ∈ im(Θ0), we have 〈y0|y1〉 = 0.

Moreover, we have

λ = ‖Π1Qn |y1〉‖2

=
∥∥∥Q†

nΠ1Qn |y1〉
∥∥∥
2

=
∥∥∥Θ0Q

†
nΠ1Qn |y1〉

∥∥∥
2
+

∥∥∥Θ1Q
†
nΠ1Qn |y1〉

∥∥∥
2

=
∥∥∥Θ0Q

†
nΠ1Qn |y1〉

∥∥∥
2
+ ‖Γ |y1〉‖2

=
∥∥∥Θ0Q

†
nΠ1Qn |y1〉

∥∥∥
2
+ λ2.
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Witness-preserving error reduction for QMA

Therefore, we have
∥∥∥Θ0Q

†
nΠ1Qn |y1〉

∥∥∥
2
= λ− λ2 = λ(1− λ) and

|y0〉 =
Θ0Q

†
n Π1 Qn |y1〉√
λ
√
1− λ

.

The state |y1〉 is the initial state and after the first execution of line 3 we
obtain the state

Qn |y1〉 = Π0Qn |y1〉+ Π1Qn |y1〉 .

In line 4, the state collapses to

|z1〉 :=
Π1Qn |y1〉
‖Π1Qn |y1〉‖

=
Π1Qn |y1〉√

λ
with probability λ and to

|z0〉 :=
Π0Qn |y1〉
‖Π0Qn |y1〉‖

=
Π0Qn |y1〉√

1− λ
with probability 1− λ
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Witness-preserving error reduction for QMA

Note that |z1〉 ∈ im(Π1), |z0〉 ∈ im(Π0) and therefore 〈z0|z1〉 = 0.

We have:

Qn |y1〉 = Π0Qn |y1〉+ Π1Qn |y1〉 =
√
λ |z1〉+

√
1− λ |z0〉 ,

Qn |y0〉 =
Qn Θ0Q

†
n Π1 Qn |y1〉√

λ
√
1− λ

=
Qn Q

†
n Π1 Qn |y1〉√
λ
√
1− λ

− Qn Θ1Q
†
n Π1 Qn |y1〉√

λ
√
1− λ

=
Π1 Qn |y1〉√
λ
√
1− λ

− Qn Γ |y1〉√
λ
√
1− λ

=

√
λ |z1〉√

λ
√
1− λ

− λ(
√
λ |z1〉+

√
1− λ |z0〉)√

λ
√
1− λ

= −
√
λ |z0〉+

√
1− λ |z1〉 .

Markus Lohrey QCT Summer 2024 131 / 171



Witness-preserving error reduction for QMA

After line 4 the state is either |z0〉 or |z1〉.
Hence, after line 7 the state is either

Q†
n |z0〉 = Θ0Q

†
n |z0〉+Θ1Q

†
n |z0〉 or

Q†
n |z1〉 = Θ0Q

†
n |z1〉+Θ1Q

†
n |z1〉 .

We have:

Θ1Q
†
n |z1〉 =

Θ1Q
†
nΠ1Qn |y1〉√

λ
=

Γ |y1〉√
λ

=
λ |y1〉√

λ
=

√
λ |y1〉

Θ0Q
†
n |z1〉 =

Θ0Q
†
nΠ1Qn |y1〉√

λ
=

√
1− λ |y0〉
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Witness-preserving error reduction for QMA

Θ1Q
†
n |z0〉 =

Θ1Q
†
nΠ0Qn |y1〉√
1− λ

=
Θ1Q

†
nQn |y1〉√
1− λ

− Θ1Q
†
nΠ1Qn |y1〉√
1− λ

=
Θ1 |y1〉√
1− λ

− Γ |y1〉√
1− λ

=
|y1〉√
1− λ

− λ |y1〉√
1− λ

=
√
1− λ |y1〉

Θ0Q
†
n |z0〉 =

Θ0Q
†
nΠ0Qn |y1〉√
1− λ

=
Θ0Q

†
nQn |y1〉√
1− λ

− Θ0Q
†
nΠ1Qn |y1〉√
1− λ

= −
√
λ |y0〉
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Witness-preserving error reduction for QMA

Let’s sum up everything:

Qn |y0〉 = −
√
λ |z0〉+

√
1− λ |z1〉 (8)

Qn |y1〉 =
√
1− λ |z0〉+

√
λ |z1〉 (9)

Q†
n |z0〉 = −

√
λ |y0〉+

√
1− λ |y1〉 (10)

Q†
n |z1〉 =

√
1− λ |y0〉+

√
λ |y1〉 (11)

This shows that after the measurement in line 4 (resp., line 8) the
quantum state is either |z0〉 or |z1〉 (resp., either |y0〉 or |y1〉).
If the state is |z0〉 (resp., |y0〉) then the measurement outcome is 0 and if
the state is |z1〉 (resp., |y1〉) then the measurement outcome is 1.

The probability that the current measurement outcome is the same as in
the previous measurement is exactly λ.

We now come to main result:
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Witness-preserving error reduction for QMA

Theorem 25

Let (L0, L1) be a promise problem in QMA and let (Qn)n≥0 be a
P-uniform quantum circuit family as in the definition of QMA on
slide 118 (p(n) is the number of qubits of the quantum proof).

For every polynomial r(n) there is a P-uniform quantum circuit family
(Rn)n≥0, where Rn works on n + b(n) + p(n) qubits for a polynomial
b(n) such that for every u ∈ {0, 1}n :
◮ if u ∈ L1 then there is a quantum state |x〉 ∈ C

2p(n) :

Prob[Rn accepts |u 0b(n)〉 ⊗ |x〉] ≥ 1− 2−r(n).

◮ If u ∈ L0 then for every quantum state |x〉 ∈ C
2p(n) :

Prob[Rn accepts |u 0b(n)〉 ⊗ |x〉] ≤ 2−r(n).
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Witness-preserving error reduction for QMA

Proof: The quantum circuits Rn implements the algorithm on slide 126
with k = Θ(r(n)).

By the principle of deferred measurement this is possible.

Let u ∈ {0, 1}n be a classical input.

Case 1. u ∈ L1. Let |x〉 ∈ C
2p(n) be a quantum proof such that

Prob[Qn accepts |u 0a(n)〉 ⊗ |x〉] ≥ 2

3
.

By Lemma 21 and 23 we can assume that |x〉 is a unit eigenvector of Pu.

By Lemma 24, Prob[Rn accepts |u 0b(n)〉 ⊗ |x〉] = prob. for getting ≥ k/2
heads if you toss k times a coin that yields head with prob. ≥ 2/3.

By the Chernoff bound this probability is 1− e−Θ(k) ≥ 1− 2−r(n) if you
choose the constant factor in k = Θ(r(n)) large enough.
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Witness-preserving error reduction for QMA

Case 2. u ∈ L0.

Here, we must be careful: we have to consider all quantum proofs
|x〉 ∈ C

2p(n) and not only eigenvectors of Pu.

So, let |x〉 ∈ C
2p(n) be a quantum state.

Let |x1〉 , . . . , |x2p(n)〉 be an orthonormal basis of eigenvectors of Pu (exists
since Pu is positive semidefinite and hence normal) and let λi ≤ 1/3 be
the eigenvalue for |xi 〉.

We can write |x〉 as |x〉 =
2p(n)∑

i=1

αi |xi 〉.

For each i with λi > 0 we get states |y0,i〉, |y1,i 〉 = |ũ〉 ⊗ |xi〉, |z0,i 〉 and
|z1,i〉 such that the equations (8)–(11) hold with the index i added:
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Witness-preserving error reduction for QMA

Qn |y0,i 〉 = −
√

λi |z0,i〉+
√

1− λi |z1,i 〉 (12)

Qn |y1,i 〉 =
√

1− λi |z0,i 〉+
√

λi |z1,i〉 (13)

Q†
n |z0,i〉 = −

√
λi |y0,i〉+

√
1− λi |y1,i〉 (14)

Q†
n |z1,i〉 =

√
1− λi |y0,i 〉+

√
λi |y1,i 〉 (15)

We can extend these equations to all i by setting in case λi = 0:

|y0,i〉 = |z1,i〉 = 0, |z0,i 〉 = Qn |y1,i 〉

From the equations (12)–(15) one can deduce that for all i 6= j :

〈y0,i |y0,j〉 = 〈y1,i |y1,j〉 = 〈z0,i |z0,j〉 = 〈z1,i |z1,j〉 = 0.
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Witness-preserving error reduction for QMA

We can now argue as follows: Assume that we start the j-th iteration of
the algorithm (where we set a2j−1 and a2j) from slide 126 in a state

◮
∑2p(n)

i=1 βi |y0,i 〉 (and hence a2j−2 = 0) or

◮
∑2p(n)

i=1 βi |y1,i 〉 (and hence a2j−2 = 1).

Initially, the 2nd case holds with βi = αi for all i .

After applying Qn we obtain

1.
∑2p(n)

i=1 βiQn |y0,i〉 =
∑2p(n)

i=1 βi (−
√
λi |z0,i〉+

√
1− λi |z1,i〉) or

2.
∑2p(n)

i=1 βiQn |y1,i〉 =
∑2p(n)

i=1 βi (
√
1− λi |z0,i〉+

√
λi |z1,i〉).

Now consider the measurement in line 4.
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Witness-preserving error reduction for QMA

In the 1st case the quantum state is of the form

a
∑2p(n)

i=1 β′
i |z0,i〉 (a2j−1 = 0) with probability

∑2p(n)

i=1 |βi |2λi ≤ 1/3 and

b
∑2p(n)

i=1 β′
i |z1,i〉 (a2j−1 = 1) with probability

∑2p(n)

i=1 |βi |2(1− λi) ≥ 2/3.

Similarly, in the 2nd case the quantum state is of the form

c
∑2p(n)

i=1 β′
i |z0,i〉 with probability

∑2p(n)

i=1 |βi |2(1− λi ) ≥ 2/3 and

d
∑2p(n)

i=1 β′
i |z1,i〉 with probability

∑2p(n)

i=1 |βi |2λi ≤ 1/3.

It follows that Pr[a2j−2 6= a2j−1] ≥ 2/3.

Similarly, we obtain Pr[a2j−1 6= a2j ] ≥ 2/3.

We can now conclude in the same as in the case where |x〉 is an
eigenvector of Pu .
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QMA ⊆ PSPACE

Theorem 26

QMA ⊆ PSPACE

Proof: Fix a promise problem (L0, L1) ∈ QMA and an input u ∈ {0, 1}n .
Let (Qn)n≥0 be a P-uniform quantum circuit family as on slide 118 and
built up from CNOT-, H- and T -gates.

By Theorem 25, the probabilities 1/3 and 2/3 can be replaced by 2−p(n)−1

and 1− 2−p(n)−1 with p(n) = number of qubits in the quantum proof and
w.l.o.g. p(n) ≥ 1.

Important: the number of qubits p(n) in the quantum proof is not
increased in Theorem 25.

Let |x1〉 , . . . , |x2p(n)〉 be an orthonormal basis of C2p(n) consisting of
eigenvectors of the positive semidefinite matrix Pu; see slide 121.
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QMA ⊆ PSPACE

By Lemma 21 and Lemma 23 we have:

◮ if u ∈ L0 then ∀i : Tr(Pu |xi 〉〈xi |) ≤ 2−p(n)−1 and

◮ if u ∈ L1 then ∃i : Tr(Pu |xi 〉〈xi |) ≥ 1− 2−p(n)−1.

We obtain:

Tr(Pu) = Tr(Pu · Id2p(n))

= Tr

(
Pu

2p(n)∑

i=1

|xi〉〈xi |
)

=
2p(n)∑

i=1

Tr(Pu |xi 〉〈xi |)
{
≤ 2−p(n)−12p(n) = 1

2 if u ∈ L0

≥ 1− 2−p(n)−1 ≥ 3
4 if u ∈ L1.

Our new goal is to approximate Tr(Pu) ∈ R≥0 in PSPACE with a
precision that allows to distinguish between 1/2 and 3/4.

Markus Lohrey QCT Summer 2024 142 / 171



QMA ⊆ PSPACE

Recall that Pu =
(
〈ũ| ⊗ Id2p(n)

)
·Q†

n · Π1 · Qn ·
(
|ũ〉 ⊗ Id2p(n)

)
.

Moreover, Qn can be written as U1U2 · · ·Ut(n) for a polynomial t(n).
Every Ui is either a CNOT, H or T gate.

Let us write M0, . . . ,M2t(n)+2 for the sequence of matrices

(
〈ũ| ⊗ Id2p(n)

)
,U†

1,U
†
2 , . . . ,U

†
t(n)Π1,Ut(n), . . . ,U2,U1,

(
|ũ〉 ⊗ Id2p(n)

)
.

Let A = 2p(n), B = 2n+a(n)+p(n), and s = 2t(n) + 2.

We have M0 ∈ C
A×B , M1, . . . ,M2t(n)+1 ∈ C

B×B and M0 ∈ C
B×A.

We can compute Tr(M0M1 · · ·Ms) as follows:
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QMA ⊆ PSPACE

Tr(M0M1 · · ·Ms)

=
A−1∑

i0=0

〈i0|M0M1 · · ·Ms |i0〉

=

A−1∑

i0=0

〈i0|M0 · IdB ·M1 · IdB ·M2 · · · IdB ·Ms |i0〉

=

A−1∑

i0=0

〈i0|M0 ·
B−1∑

i1=0

|i1〉〈i1| ·M1 ·
B−1∑

i2=0

|i2〉〈i2| ·M2 · · ·
B−1∑

is=0

|is〉〈is | ·Ms |i0〉

=
A−1∑

i0=0

B−1∑

i1=0

B−1∑

i2=0

· · ·
B−1∑

is=0

〈i0|M0 |i1〉 〈i1|M1 |i2〉 〈i2|M2 · · · |is〉 〈is |Ms |i0〉

=

A−1∑

i0=0

B−1∑

i1=0

B−1∑

i2=0

· · ·
B−1∑

is=0

(M0)i0,i1(M1)i1,i2(M2)i2,i3 · · · (Ms)is ,i0 (16)
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QMA ⊆ PSPACE

Let |z |1 = |ℜ(z)|+ |ℑ(z)| be the L1-norm of a complex number z .

Our polynomial space algorithm works as follows:

1. T := 0

2. for all i0 ∈ [0,A − 1] do

3. for all i1, . . . , is ∈ [0,B − 1] do

4. compute approximation α of (M0)i0,i1(M1)i1,i2(M2)i2,i3 · · · (Ms)is ,i0

such that |α− (M0)i0,i1(M1)i1,i2(M2)i2,i3 · · · (Ms)is ,i0|1 ≤ 1
16ABs

5. T := T + α

6. end

7. end

8. if ℜ(T ) ≤ 9
16 then reject

9. if ℜ(T ) ≥ 11
16 then accept
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QMA ⊆ PSPACE

Let us first prove the correctness of the algorithm.

The sum in (16) consists of A · B s products.

For each of these products (M0)i0,i1(M1)i1,i2(M2)i2,i3 · · · (Ms)is ,i0 the
algorithm computes an approximation αi0,...,is such that

|αi0,...,is − (M0)i0,i1(M1)i1,i2(M2)i2,i3 · · · (Ms)is ,i0 |1 ≤
1

16AB s

Hence, the final value T (the sum over all αi0,...,is ) computed by the
algorithm satisfies

|Tr(M0M1 · · ·Ms)− T |1

=

∣∣∣∣∣∣

A−1∑

i0=0

B−1∑

i1=0

B−1∑

i2=0

· · ·
B−1∑

is=0

(M0)i0,i1(M1)i1,i2(M2)i2,i3 · · · (Ms)is ,i0 − T

∣∣∣∣∣∣
1

≤
A−1∑

i0=0

B−1∑

i1=0

B−1∑

i2=0

· · ·
B−1∑

is=0

|(M0)i0,i1(M1)i1,i2(M2)i2,i3 · · · (Ms)is ,i0 − αi0,...,is |1
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QMA ⊆ PSPACE

≤
A−1∑

i=0

B−1∑

i1=0

B−1∑

i2=0

· · ·
B−1∑

is=0

1

16AB s
=

1

16
.

Recall that we only have to distinguish the two cases Tr(M0 · · ·Ms) ≤ 1/2
(where the algorithm should reject) and Tr(M0 · · ·Ms) ≥ 3/4.

If Tr(M0 · · ·Ms) ≤ 1/2 then ℜ(T ) ≤ 1/2 + 1/16 = 9/16.

If Tr(M0 · · ·Ms) ≥ 3/4 then ℜ(T ) ≥ 3/4− 1/16 = 11/16.

Therefore, the algorithm gives the correct answer in lines 8 and 9 for all
inputs in L0 ∪ L1.
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QMA ⊆ PSPACE

It remains to show that the algorithm works in polynomial space.

Recall that A = 2p(n), B = 2n+a(n)+p(n) and s = 2t(n) + 2 for polynomials
p(n), a(n) and t(n).

Let r(n) = p(n) + (2t(n) + 2)(n + a(n) + p(n)) (a polynomial in n).

Then r(n) bits are needed for the program variables i0, . . . , is .

Consider now the product P := (M0)i0,i1(M1)i1,i2(M2)i2,i3 · · · (Ms)is ,i0

In order to get an 1
16ABs -approximation of P in the L1-norm, it suffices to

compute 1
32ABs -approximations of ℜ(P) and ℑ(P).

Note that
1

32AB s
= 2−r(n)−5.
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QMA ⊆ PSPACE

We only consider ℜ(P). The approximation for ℑ(P) can be computed in
the same way.

In order to get a 2−r(n)−5-approximation of ℜ(P), it suffices to compute
the first r(n) + 5 bits after the comma of ℜ(P).
From the indices i0, . . . , is one can symbolically compute in polynomial
time the matrix entries (M0)i0,i1 , (M1)i1,i2, (M2)i2,i3, . . . , (Ms)is ,i0.

Each of them is either 0, 1, e iπ/4 or ±1√
2
.

If a 0 appears then P = 0.

If no 0 appears, then one can compute 0 ≤ a, b ≤ s ≤ O(t(n)) in
polynomial time such that

P =
±1

2a/2
· ebπi/4
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QMA ⊆ PSPACE

Hence ℜ(P) can be symbolically computed in one of the forms

±1

2c
or

±
√
2

2c

where 0 ≤ c ≤ O(t(n)) can be computed in polynomial time.

In order to compute the first r(n) + 5 bits after the comma of ℜ(P), one
only needs to compute r(n) + 5 bits of

√
2 after the comma and then

make a right shift for c positions.

Computing polynomially many bits of an algebraic number like
√
2 is know

to be possible in polynomial time; see e.g. this paper

Finally, notice that since every α computed in line 4 of the algorithm has
bit length r(n) + 5, the bit length of the program variable T is bounded by
2r(n) + 5 (again a polynomial).
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QMA ⊆ PP

One can improve the upper bound for QMA from PSPACE to PP.

A promise problem (L0, L1) belongs to PP if there is a PTM M and a
polynomial r(n) such that the following hold for every u ∈ {0, 1}n :
◮ If u ∈ L1 then 〈u, v〉 ∈ L(M) for ≥ 1

2 · 2r(n) many v ∈ {0, 1}r(n) .
◮ If u ∈ L0 then 〈u, v〉 ∈ L(M) for < 1

2 · 2r(n) many v ∈ {0, 1}r(n) .

Then one has QMA ⊆ PP ⊆ PSPACE.
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The local Hamiltonian problem

The dynamics of the state |Ψ(t)〉 of a quantum system is determined by
Schrödinger’s equation:

i
d |Ψ(t)〉

dt
= H |Ψ(t)〉 .

Here, H is a Hermitian operator, called the Hamiltonian of the quantum
system.

Solution: |Ψ(t)〉 = e−iHt |Ψ(0)〉. Here, the exponential e iHt is a unitary
operator.

The eigenvalues (they are real numbers) of H are the energy levels of the
quantum system.

The smallest eigenvalue λmin(H) is the ground energy of the system; its
eigenvectors are the ground states.
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The local Hamiltonian problem

Assume we have a quantum system consisting of n qubits. Let k ≤ n.

A Hermitian operator H ∈ C
2n×2n is a k-qubit Hamiltonian if it acts only

on k of the n qubits.

More formally: there are i1, . . . , ik ∈ {1, . . . , n} with i1 < i2 < · · · < ik and

a Hermitian matrix L ∈ C
2k×2k such that for all u, v ∈ {0, 1}n :

Hu,v =

{
Lu[i1]···u[ik ],v [i1]···v [ik ] if u[j] = v [j] for all j /∈ {i1, . . . , ik}
0 else

If {i1, . . . , ik} = {i + 1, . . . , i + k} then H = Id⊗i
2 ⊗ L⊗ Id

⊗(n−i−k)
2 .

A k-local Hamiltonian is a sum H = H1 + H2 + · · ·+ Hm, where every Hi

is a k-qubit Hamiltonian.
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The local Hamiltonian problem

Many real Hamiltonian are k-local for small values of k .

Example: The Hamiltonian for the Ising model for a chain of length N is

H = −
N−1∑

i=1

Id
⊗(i−1)
2 ⊗ X ⊗ X ⊗ Id

⊗(N−i−1)
2 +

N∑

i=1

Id
⊗(i−1)
2 ⊗ Z ⊗ Id

⊗(N−i)
2

for the Pauli-X and Pauli-Z matrices.

The k-local Hamiltonian problem:

◮ Input: A k-local Hamiltonian H that is given as a sum of k-qubit
Hamiltonians and two natural numbers a > b in unary notation
(a is given by a string of length a and similarly for b).

◮ Output: YES if λmin(H) ≤ 1/a and NO if λmin(H) ≥ 1/b.
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The local Hamiltonian problem

Theorem 27 (Kempe, Kitaev, Regev 2006)

The 2-local Hamiltonian problem is QMA-complete.

Remarks:

◮ Kitaev proved in 1999 that the 5-local Hamiltonian problem is
QMA-complete; we will only proof this result.

◮ Aharonov, Gottesman, Irani and Kempe proved QMA-completeness
for local Hamiltonians with a 1-dimensional structure (similar to the
Ising model).

◮ The 2-local Hamiltonian problem is in P.

◮ Theorem 27 is often called the quantum analog of the Cook-Levin
theorem.
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The local Hamiltonian problem

The Cook-Levin theorem states that 3SAT is NP-complete, where 3SAT
asks whether a given 3CNF-formula

k∧

i=1

(yi ,1 ∨ yi ,2 ∨ yi ,3)

is satisfiable. Every yi ,j is a boolean variable or a negated boolean variable:

The analogy is the following:

2-local Hamiltonian 3SAT

∑N
i=1

∧N
i=1

2-qubit Hamiltonian clause yi ,1 ∧ yi ,2 ∧ yi ,3

qubits classical bits
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The local Hamiltonian problem is in QMA

We now show that the k-local Hamiltonian problem belongs to QMA for
every constant k .

Consider a k-local Hamiltonian H = H1 + H2 + · · · + Hm acting on n

qubits, where every Hi is a k-qubit Hamiltonian that is defined via a
Hermitian matrix Li ∈ C

2k×2k .

We restrict to the case where all eigenvalues of all Li are between 0 and 1.

For every 1 ≤ i ≤ m define

H ′
i = Li ⊗ Id⊗(n−k).

Then there exists a sequence of SWAP-operations Si (a unitary matrix)
such that Hi = S−1

i H ′
iSi .
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The local Hamiltonian problem is in QMA

Every Li can be written in its spectral decomposition (see slide 41):

Li =

2k∑

j=1

αi ,j |yi ,j〉〈yi ,j | ,

where the |yi ,j〉 are pairwise orthogonal unit eigenvectors of Li and the
αi ,j ∈ [0, 1]R (1 ≤ j ≤ 2k) are the corresponding eigenvalues of Li .

Let |x〉 be an arbitrary quantum state on n qubits.

For every 1 ≤ i ≤ m there are quantum states |zi ,j〉 on n − k qubits and
complex numbers βi ,j such

Si |x〉 =
2k∑

j=1

βi ,j |yi ,j〉 ⊗ |zi ,j〉 .
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The local Hamiltonian problem is in QMA

Since 〈x |x〉 = 1 and the |yi ,j〉 (1 ≤ j ≤ 2k) are orthonormal, we have

2k∑

j=1

|βi ,j |2 = 1.

We now add an additional ancilla qubit that is initially set to 0 and define
for every 1 ≤ i ≤ m the following unitary operation Ui on n+ 1 qubits:

Ui : |yi ,j〉 ⊗ |z〉 ⊗ |0〉 7→ |yi ,j〉 ⊗ |z〉 ⊗ (
√
αi ,j |0〉+

√
1− αi ,j |1〉).

where |z〉 is an arbitrary quantum state on n − k qubits.

Ui rotates the last qubit where the angle of the rotation depends on the
first k qubits.
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The local Hamiltonian problem is in QMA

We then have

Ui(Si ⊗ Id2)(|x〉 ⊗ |0〉)

= Ui

2k∑

j=1

βi ,j |yi ,j〉 ⊗ |zi ,j〉 ⊗ |0〉

=

2k∑

j=1

βi ,j |yi ,j〉 ⊗ |zi ,j〉 ⊗ (
√
αi ,j |0〉+

√
1− αi ,j |1〉).

Let Pi ,x be the probability of getting outcome 1 when measuring the last
qubit in Ui(Si ⊗ Id2)(|x〉 ⊗ |0〉). We get

Pi ,x =

2k∑

j=1

|βi ,j |2(1− αi ,j) = 1−
2k∑

j=1

|βi ,j |2αi ,j .
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The local Hamiltonian problem is in QMA
Note that

〈x |H |x〉 =

m∑

i=1

〈x | S†
i H

′
iSi |x〉

=
m∑

i=1

2k∑

j=1

2k∑

ℓ=1

|βi ,j |2(〈yi ,j | ⊗ 〈zi ,j |)H ′
i (|yi ,ℓ〉 ⊗ |zi ,ℓ〉)

=

m∑

i=1

2k∑

j=1

2k∑

ℓ=1

|βi ,j |2 〈yi ,j | Li |yi ,ℓ〉 〈zi ,j |zi ,ℓ〉

=

m∑

i=1

2k∑

j=1

2k∑

ℓ=1

|βi ,j |2αi ,ℓ 〈yi ,j |yi ,ℓ〉 〈zi ,j |zi ,ℓ〉

=
m∑

i=1

2k∑

j=1

|βi ,j |2αi ,j .
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The local Hamiltonian problem is in QMA

We obtain

1

m

m∑

i=1

Pi ,x = 1− 1

m

m∑

i=1

2k∑

j=1

|βi ,j |2αi ,j = 1− 1

m
〈x |H |x〉 .

Consider now the following “quantum circuit”, where |x〉 is an n-qubit
quantum proof.

1. Randomly choose a number i ∈ {1, 2, . . . ,m}.
2. Apply to |x〉 ⊗ |0〉 the unitary transformation Ui(Si ⊗ Id2).

3. Measure the last qubit.

By the above calculation, the measurement produces outcome 1 with
probability 1− 〈x |H |x〉 /m.
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The local Hamiltonian problem is in QMA

Note:

◮ The probabilistic choice in the 1st step can be simulated by applying
Hadamard gates to log2 m additional ancilla qubits that are initially
set to |0〉.

◮ Si is a sequence of SWAP-gates and Ui is a unitary operation acting
on k + 1 (a constant) qubits.

Assume now that we want to distinguish the cases λmin(H) ≤ 1/a and
λmin(H) ≥ 1/b for a > b given in unary notation.

Case 1: λmin(H) ≤ 1/a.

By (7) there is a quantum proof |x〉 such that 〈x |H |x〉 ≤ 1/a.

Hence, our quantum circuit accepts with probability
1− 〈x |H |x〉 /m ≥ 1− 1/ma.
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The local Hamiltonian problem is in QMA

Case 2: λmin(H) ≥ 1/b.

By (7), for every quantum proof |x〉 we have 〈x |H |x〉 ≥ 1/b.

Hence, our quantum circuit accepts for every quantum proof |x〉 with
probability 1− 〈x |H |x〉 /m ≤ 1− 1/mb.

The gap between the two acceptance probabilities from Cases 1 and 2 is
1
m
( 1
b
− 1

a
), which is large enough.

For the proof of the QMA-hardness see the paper by Dorit Aharonov and
Tomer Naveh.
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Quantum Fourier transformation (QFT)

The d -dimensional QFT is the quantum transformation defined by

∀a ∈ {0, . . . , a − 1} : |a〉 7→ 1√
d

d−1∑

b=0

ωab · |b〉

where ω = e2πi/d is a primitive root of unity of order d .

It satisfies ωd = 1 and ωk 6= 1 for 1 ≤ k ≤ d − 1.

The corresponding (d × d)-matrix is the matrix of the discrete Fourier
transformation:

DFTd =
1√
d




1 1 1 · · · 1
1 ω1 ω2 · · · ωd−1

1 ω2 ω4 · · · ω2(d−1)

...
...

...
...

1 ωd−1 ω2(d−1) · · · ω(d−1)2
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Quantum Fourier transformation (QFT)

Lemma 28

DFTd is unitary.

This will follow as a corollary soon.

Assume in the following that d = 2n and identify the basis state |a〉
(0 ≤ a ≤ 2n − 1) with the n-bit binary representation |a1a2 · · · an〉 of a.

In other words: a =
∑n

j=1 aj2
n−j .

In the following, we make use of the rational numbers

0.ajaj+1 · · · an =
aj

2
+

aj+1

4
+ · · ·+ an

2n−j+1
=

a

2j
.
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Quantum Fourier transformation (QFT)

Lemma 29

DFT2n maps the computational basis state |a〉 = |a1a2 · · · an〉
(0 ≤ a ≤ 2n − 1) to

1

2n/2

1⊗

j=n

(
|0〉+ e2πi(0.ajaj+1···an) |1〉

)
(17)

Proof: We have

DFT2n |a〉 =
1√
2n

d−1∑

b=0

ωab · |b〉

=
1

2n/2

1∑

b1=0

· · ·
1∑

bn=0

exp(2πi a

n∑

j=1

bj2
n−j/2n) |b1b2 · · · bn〉
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Quantum Fourier transformation (QFT)

=
1

2n/2

1∑

b1=0

· · ·
1∑

bn=0

exp(2πi a
n∑

j=1

bj2
−j ) |b1b2 · · · bn〉

=
1

2n/2

1∑

b1=0

· · ·
1∑

bn=0

( n∏

j=1

exp(2πi a bj2
−j)

)
|b1〉 ⊗ |b2〉 ⊗ · · · |bn〉

=
1

2n/2

1∑

b1=0

· · ·
1∑

bn=0

n⊗

j=1

exp(2πi a bj2
−j ) |bj〉

=
1

2n/2

n⊗

j=1

1∑

bj=0

exp(2πi a bj2
−j ) |bj〉

=
1

2n/2

n⊗

j=1

(|0〉+ exp(2πi a 2−j) |1〉) (∗)
= (17)

For (∗) note that exp(2πi a1 · · · ak−1.ak · · · an) = exp(2πi 0.ak · · · an).
Markus Lohrey QCT Summer 2024 168 / 171



Quantum Fourier transformation (QFT)

Using Lemma 29 we can obtain a quantum circuit for DFT2n .

Define the 1-qubit quantum gate

Rk =

(
1 0

0 e2πi/2
k

)

We will use the controlled 2-qubit gates Ci ,j(Rk), see slide 74.

Then we obtain the following quantum circuit for DFT2n (here for n = 4):

|0〉 + e2πi0.a1a2a3a4 |1〉

|0〉 + e2πi0.a2a3a4 |1〉

|0〉 + e2πi0.a3a4 |1〉

|0〉 + e2πi0.a4 |1〉

|a1〉 H R2 R3 R4

|a2〉 H R2 R3

|a3〉 H R2

|a4〉 H

At the end one has to do SWAP-operations in order to exchange the
qubits i and n + 1− i for 1 ≤ i ≤ n.
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Quantum Fourier transformation (QFT)

To see the correctness of the above circuit, notice that:

◮ the first H-gate transforms |a1a2a3a4〉 to

1

21/2
(|0〉+ e2πi 0.a1 |1〉)⊗ |a2a2a3〉 (18)

Note that e2πi 0.a1 = 1 if a1 = 0 and e2πi0.a1 = eπi = −1 if a1 = 1.

◮ The first controlled-R2 gate transforms (18) into

1

21/2
(|0〉 + e2πi 0.0a2 · e2πi 0.a1 |1〉)⊗ |a2a2a3〉

=
1

21/2
(|0〉 + e2πi 0.a1a2 |1〉)⊗ |a2a2a3〉

◮ We can continue similarly with the other gates.
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Quantum Fourier transformation (QFT)

The number of gates for DFT2n is
∑n

i=1 i = n(n + 1)/2 = Θ(n2).

An a classical computer, the best algorithm for computing DFTN |x〉 for a
given vector |x〉 is the fast Fourier transformation (FFT); see my lecture
Algorithms II.

Its running time is Θ(N logN), and hence Θ(2n · n) for N = 2n.

This sounds like QFT is exponentially faster than FFT!

But there are two problems with QFT:

◮ We cannot prepare an arbitrary quantum state |x〉
◮ We cannot obtain the amplitudes of the quantum state DFT2n |x〉.
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