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Exercise 2

Task 1. If |z) is a unit vector and {|z;), ..., |z4)} an orthonormal base then

lz) = B¢ a; |z;) for unique ay, ..., ay € C with X3¢ |a;]? = 1.

Losung. We can express |z) in terms of the orthonormal base {|z,) , ..., |z4) },
then
|2) = B |z)

Let’s take the inner product of both sides with each basis vector |z;) for
j=1,..4d.

(zj]z) = (2| (B |1;))
= Sfay (zj|z;)

As the basis is orthonormal, then (z;|z;) = 0 for 7 # j and

(zj]) = o
= oy* = [{zj]z)

Remember that | (z;|z) |? represents the probability of measuring |z) in the

state |z;). As |z) is the unit vector, then the sum of these probabilities over
all the base states must be 1.

— ZJ‘]d|O./J|2 =1

Task 2. Let f be a linear mapping and let {|21) , .., |24)} and {|w1) , ... |ya) } be
two bases of C%. Let A (resp., B) be the matrix for f in the basis {|z;) , .., |74) }

(resp., {|lv1),---|va)} ).
Then, there is an invertible matrix C' € C%*? such that B = C~1AC.

Find the matrix C explicitly.

Losung. Each vector |y;) can be expressed as a linear combination of the
|z;) basis vectors:

d
i) = i lzy)
j=1

where ¢;; are the components of the vector |y;) in the |z;) basis.



The matrix C is constructed such that its columns are the coordinates of the
|z;) vectors expressed in the {|y;)} basis:

i1 Ci2 - Cid
C = Co1 C2 -+ C24
Cd1 Cdq2 '+ Cdd
where the i-th column of C is made of the coefficients [ci;, cos, .- -, cai] T,

which are the coordinates of |z;) in the {]y;)} basis. The coefficients ¢;; can
be obtained by taking inner products between the vectors |y;) and |z;):

cij = (Wil | |z;)

il o) (ol [ a2) (] | |za)
o (12| \ |71) (el ! |72) | (2] \ |za)
(yal [lz1) (yal [lz2) -+ (yal [ za)

Task 3. The trace of a matrix tr(A) is defined as the sum of the diagonal
entries:

tr(A) = B4 A,

then, prove the following important properties:

o tr(A+ B) =tr(A)+tr(B)

o tr(ad) = a-tr(A)

e tr(AB) =tr(BA)
Loésung. °

tr(A+ B) =tr(A; + By) for i, j =1,..,n
= (@11 + b1y) + (a2 + b22) + ... + (@nn + by

= (a1 + ... + apn) + (b11 + ... + by
= tr(A) + tr(B)

tr(ad) =tr(ad,; ;) for i,y =1,...,d
= atr(A)
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tr(AB) =tr (Sf A; 1 By;) fori,j=1,...d

=(a110110+ ...+ a1,bn1) + (21012 + ... + 42,005 2)
+ oot (anibig + oo+ Gnnbpn)

=(bi1aig+ ...+ bpaa1,) + (b1gaos + ... + bn2asy)
+ oo+ (bipans+ .+ bpnann)

=(b11a11+ biotes + ... + b1 pan
+ oo+ (bnparn + buoas, + ...+ Drn Q)

=tr (S Bi s Ar;) fori,j=1,...d

=tr(BA)

Task 4. If IT is any projector (IT? = II) find a subspace S with IT = II.

Losung. We can define the subspace S for which IT acts as following:
S = Im(II)

Here, Im(II) represents the image of II, consisting of all vectors |z) in C? such
that |z) = II(]y)) for some |y) € C¢. This means every vector in S remains
unchanged when it is projected by II, i.e., II(|z)) = |z) for all |z) € S. Now
we can define the projector I1g onto the subspace S by:

k
Mg =Y |a) (il
=1

where {|z1),...,|zx)} is an orthonormal basis for S. This basis can be obtai-
ned from the image of II (for example, by applying a method like the Gram-
Schmidt process to the set of vectors Il(e;) for j = 1,...,d, where {e;} is
the standard basis of C?). Since II is a projector, it satisfies I1?> = II. For the
subspace S we defined as Im(II), any vector v € S is such that II(v) = v.
Thus, I1g constructed from a basis of S will also satisfy this property. For any
vector |w) € C¢, TI(|w)) lies in S. Hence, ITg(II(|w))) = II(|w)). Since IT and
IIg both act identically on vectors in S and effectively zero out components
orthogonal to S, they must be the same operator.

Task 5. Calculate the eigenvalues of the Pauli matrices

(01
92 =11 0



0 —i
9=\ 0
(1 0
%= \o -1

Losung. We find the eigenvalues of a matrix A (when they exist) by solving
the equation det A — A\ = 0 for A:

e For o, we have

1 =\
— N -1=0
= A=1lor A= -1

det (o, — M) =det (‘A L )

e Lor o, we have
-\ —i
det(ay—)\]):det< ; _)\)
— AN -1=0
= A A=1lor\A=-1

e LFor o, we have
1—A 0
det(az—/\l):det( 0 _1_>\)
= (1-XN)(-1-X)=0
— A=lorA=-1

Task 6. Prove that for every matrix A € C%*? the matrix ATA is positive
semi-definite.
Lésung. We prove that ATA is Hermitian and (z| ATA |z) > 0 for every |z)

o (ATA) = Af(AN)
We used the property that (AB)" = BTA" and (A")" = A. This proves
that ATA is Hermitian.



e For any vector |z) in C?, consider the quadratic form (z| ATA |z):
(z] ATA|z) = ((x] AT)(A]z))

We can rewrite as:

(z] ATAz) = [|A]z) |”

Here, ||A|z) ||? denotes the squared norm of the vector A |z), which is
a non-negative real number. The squared norm is calculated as:

1A]2) I = (=] AT)(A]z))

Since ||(Az)]|? is always non-negative, and since ATA is Hermitian, A4
is positive semi-definite.

Task 7. Let A and B be unitary Hermitian positive definite projectors, then
A ® B is an unitary Hermitian positive definite projector.

Losung. 1.

e Unitarity of A ® B:

A matrix U is unitary if UTU = I, where UT denotes the conjugate
transpose of U and [ is the identity matrix. Since A and B are unitary,
we have ATA =1 and BfB = I. Now:

(A® B)'(A® B) = (A ® B"(A® B)

Using the properties of the conjugate transpose and the tensor product,
we have:

(AT@ BY(A® B)=(ATA)@ (B'B) =TI =1
Therefore, (A ® B)I(A® B) = 1.

e Hermitian property of A ® B:

A matrix M is Hermitian if MT = M, where MT denotes the conjugate
transpose of M. Since A and B are Hermitian, we have AT = A and
BT = B. Now, consider the conjugate transpose of A ® B:

(AB)=A"@B'=A® B
Therefore, (A ® B)! = A® B, proving that A ® B is Hermitian.
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e Positive definiteness of A ® B:

A matrix M is positive definite if it is Hermitian and all its eigenvalues
are strictly positive. Since A and B are Hermitian, their tensor product
A ® B is also Hermitian. Now, let’s consider the eigenvalues of A ® B.

The eigenvalues of A ® B are products of the eigenvalues of A and B.
Since A and B are positive definite projectors, their eigenvalues are all
either 0 or 1. Therefore, the eigenvalues of A ® B are also either 0 or
1, making A ® B positive definite.

e A® B is a projector:

A matrix P is called a projector if it satisfies P? = P. Since A and B
are projectors, they satisfy A2 = A and B? = B. Then:

(A® B)> = (A® B)(A® B)
Using the properties of the tensor product, we have:

(A®B)(A® B)y=AA®@BB=A® B*=A® B

Therefore, (A ® B)? = A® B, proving that A ® B is a projector.



