Exercise 2

Task 1. If $|x\rangle$ is a unit vector and $\{|x_1\rangle, ..., |x_d\rangle\}$ an orthonormal base then $|x\rangle = \sum_{i=1}^{d} \alpha_i |x_i\rangle$ for unique $\alpha_1, ..., \alpha_d \in \mathbb{C}$ with $\sum_{i=1}^{d} |\alpha_i|^2 = 1$.

Lösung. We can express $|x\rangle$ in terms of the orthonormal base $\{|x_1\rangle, ..., |x_d\rangle\}$, then

$$|x\rangle = \sum_{i}^{d} \alpha_{i} |x_{i}\rangle$$

Let's take the inner product of both sides with each basis vector $|x_j\rangle$ for j = 1, ..., d.

$$\langle x_j | x \rangle = \langle x_j | \left(\sum_{i}^{d} \alpha_i | x_i \rangle \right) \\ = \sum_{i}^{d} \alpha_i \langle x_j | x_i \rangle$$

As the basis is orthonormal, then $\langle x_j | x_i \rangle = 0$ for $i \neq j$ and

$$\langle x_j | x \rangle = \alpha_j$$

 $\implies |\alpha_j|^2 = |\langle x_j | x \rangle|^2$

Remember that $|\langle x_j | x \rangle|^2$ represents the probability of measuring $|x\rangle$ in the state $|x_j\rangle$. As $|x\rangle$ is the unit vector, then the sum of these probabilities over all the base states must be 1.

$$\implies \Sigma_j^d |\alpha_j|^2 = 1$$

Task 2. Let f be a linear mapping and let $\{|x_1\rangle, ..., |x_d\rangle\}$ and $\{|y_1\rangle, ..., |y_d\rangle\}$ be two bases of \mathbb{C}^d . Let A (resp., B) be the matrix for f in the basis $\{|x_1\rangle, ..., |x_d\rangle\}$ (resp., $\{|y_1\rangle, ..., |y_d\rangle\}$).

Then, there is an invertible matrix $C \in \mathbb{C}^{d \times d}$ such that $B = C^{-1}AC$. Find the matrix C explicitly.

Lösung. Each vector $|y_i\rangle$ can be expressed as a linear combination of the $|x_j\rangle$ basis vectors:

$$|y_i\rangle = \sum_{j=1}^d c_{ji} |x_j\rangle$$

where c_{ji} are the components of the vector $|y_i\rangle$ in the $|x_j\rangle$ basis.

The matrix C is constructed such that its columns are the coordinates of the $|x_i\rangle$ vectors expressed in the $\{|y_j\rangle\}$ basis:

$$C = \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1d} \\ c_{21} & c_{22} & \cdots & c_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ c_{d1} & c_{d2} & \cdots & c_{dd} \end{bmatrix}$$

where the *i*-th column of *C* is made of the coefficients $[c_{1i}, c_{2i}, \ldots, c_{di}]^T$, which are the coordinates of $|x_i\rangle$ in the $\{|y_j\rangle\}$ basis. The coefficients c_{ij} can be obtained by taking inner products between the vectors $|y_i\rangle$ and $|x_j\rangle$:

$$c_{ij} = \langle y_i | \, | \, | x_j \rangle$$

$$C = \begin{pmatrix} \langle y_1 | | | x_1 \rangle & \langle y_1 | | | x_2 \rangle & \cdots & \langle y_1 | | | x_d \rangle \\ \langle y_2 | | | x_1 \rangle & \langle y_2 | | | x_2 \rangle & \cdots & \langle y_2 | | | x_d \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle y_d | | | x_1 \rangle & \langle y_d | | | x_2 \rangle & \cdots & \langle y_d | | | x_d \rangle \end{pmatrix}$$

Task 3. The trace of a matrix tr(A) is defined as the sum of the diagonal entries:

$$\operatorname{tr}(A) = \sum_{i=1}^{d} A_{i,i},$$

then, prove the following important properties:

- $\operatorname{tr}(A+B) = \operatorname{tr}(A) + \operatorname{tr}(B)$
- $\operatorname{tr}(\alpha A) = \alpha \cdot \operatorname{tr}(A)$
- $\operatorname{tr}(AB) = \operatorname{tr}(BA)$

•

Lösung.

$$tr(A + B) = tr(A_{ij} + B_{ij}) \text{ for } i, j = 1, ..., n$$

= $(a_{11} + b_{11}) + (a_{22} + b_{22}) + ... + (a_{nn} + b_{nn})$
= $(a_{11} + ... + a_{nn}) + (b_{11} + ... + b_{nn})$
= $tr(A) + tr(B)$

$$tr(\alpha A) = tr(\alpha A_{i,j}) \text{ for } i, j = 1, ..., d$$
$$= \sum_{i}^{d} (\alpha A_{i,i}) = \alpha \sum_{i}^{d} (A_{i,i})$$
$$= \alpha tr(A)$$

$$\operatorname{tr}(AB) = \operatorname{tr}\left(\Sigma_{k}^{d}A_{i,k}B_{k,j}\right) \text{ for } i, j = 1, ..., d$$

$$= (a_{1,1}b_{1,1} + ... + a_{1,n}b_{n,1}) + (a_{2,1}b_{1,2} + ... + a_{2,n}b_{n,2})$$

$$+ ... + (a_{n,1}b_{1,n} + ... + a_{n,n}b_{n,n})$$

$$= (b_{1,1}a_{1,1} + ... + b_{n,1}a_{1,n}) + (b_{1,2}a_{2,1} + ... + b_{n,2}a_{2,n})$$

$$+ ... + (b_{1,n}a_{n,1} + ... + b_{n,n}a_{n,n})$$

$$= (b_{1,1}a_{1,1} + b_{1,2}a_{2,1} + ... + b_{1,n}a_{n,1}$$

$$+ ... + (b_{n,1}a_{1,n} + b_{n,2}a_{2,n} + ... + b_{nn}a_{nn})$$

$$= \operatorname{tr}\left(\Sigma_{k}^{d}B_{i,k}A_{k,j}\right) \text{ for } i, j = 1, ..., d$$

$$= \operatorname{tr}(BA)$$

Task 4. If Π is any projector ($\Pi^2 = \Pi$) find a subspace S with $\Pi = \Pi_S$.

Lösung. We can define the subspace S for which Π acts as following:

 $S = \operatorname{Im}(\Pi)$

Here, Im(Π) represents the image of Π , consisting of all vectors $|x\rangle$ in \mathbb{C}^d such that $|x\rangle = \Pi(|y\rangle)$ for some $|y\rangle \in \mathbb{C}^d$. This means every vector in S remains unchanged when it is projected by Π , i.e., $\Pi(|x\rangle) = |x\rangle$ for all $|x\rangle \in S$. Now we can define the projector Π_S onto the subspace S by:

$$\Pi_S = \sum_{i=1}^k |x_i\rangle \langle x_i|$$

where $\{|x_1\rangle, \ldots, |x_k\rangle\}$ is an orthonormal basis for S. This basis can be obtained from the image of Π (for example, by applying a method like the Gram-Schmidt process to the set of vectors $\Pi(e_j)$ for $j = 1, \ldots, d$, where $\{e_j\}$ is the standard basis of \mathbb{C}^d). Since Π is a projector, it satisfies $\Pi^2 = \Pi$. For the subspace S we defined as $\operatorname{Im}(\Pi)$, any vector $v \in S$ is such that $\Pi(v) = v$. Thus, Π_S constructed from a basis of S will also satisfy this property. For any vector $|w\rangle \in \mathbb{C}^d$, $\Pi(|w\rangle)$ lies in S. Hence, $\Pi_S(\Pi(|w\rangle)) = \Pi(|w\rangle)$. Since Π and Π_S both act identically on vectors in S and effectively zero out components orthogonal to S, they must be the same operator.

Task 5. Calculate the eigenvalues of the Pauli matrices

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$
$$\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Lösung. We find the eigenvalues of a matrix A (when they exist) by solving the equation det $A - \lambda I = 0$ for λ :

• For σ_x we have

$$\det (\sigma_x - \lambda I) = \det \begin{pmatrix} -\lambda & 1\\ 1 & -\lambda \end{pmatrix}$$
$$\implies \lambda^2 - 1 = 0$$
$$\implies \lambda = 1 \text{ or } \lambda = -1$$

• For σ_y we have

$$\det (\sigma_y - \lambda I) = \det \begin{pmatrix} -\lambda & -i \\ i & -\lambda \end{pmatrix}$$
$$\implies \lambda^2 - 1 = 0$$
$$\implies \lambda = 1 \text{ or } \lambda = -1$$

• For σ_z we have

$$\det (\sigma_z - \lambda I) = \det \begin{pmatrix} 1 - \lambda & 0 \\ 0 & -1 - \lambda \end{pmatrix}$$
$$\implies (1 - \lambda)(-1 - \lambda) = 0$$
$$\implies \lambda = 1 \text{ or } \lambda = -1$$

Task 6. Prove that for every matrix $A \in \mathbb{C}^{d \times d}$ the matrix $A^{\dagger}A$ is positive semi-definite.

Lösung. We prove that $A^{\dagger}A$ is Hermitian and $\langle x | A^{\dagger}A | x \rangle \ge 0$ for every $|x\rangle$

• $(A^{\dagger}A)^{\dagger} = A^{\dagger}(A^{\dagger})^{\dagger}$ We used the property that $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$ and $(A^{\dagger})^{\dagger} = A$. This proves that $A^{\dagger}A$ is Hermitian. • For any vector $|x\rangle$ in \mathbb{C}^d , consider the quadratic form $\langle x|A^{\dagger}A|x\rangle$:

$$\langle x | A^{\dagger}A | x \rangle = (\langle x | A^{\dagger})(A | x \rangle)$$

We can rewrite as:

$$\langle x | A^{\dagger}A | x \rangle = \|A | x \rangle \|^{2}$$

Here, $||A||x\rangle ||^2$ denotes the squared norm of the vector $A|x\rangle$, which is a non-negative real number. The squared norm is calculated as:

$$||A||x\rangle||^2 = (\langle x|A^{\dagger})(A|x\rangle)$$

Since $||(Ax)||^2$ is always non-negative, and since $A^{\dagger}A$ is Hermitian, $A^{\dagger}A$ is positive semi-definite.

Task 7. Let A and B be unitary Hermitian positive definite projectors, then $A \otimes B$ is an unitary Hermitian positive definite projector.

Lösung. 1.

• Unitarity of $A \otimes B$:

A matrix U is unitary if $U^{\dagger}U = I$, where U^{\dagger} denotes the conjugate transpose of U and I is the identity matrix. Since A and B are unitary, we have $A^{\dagger}A = I$ and $B^{\dagger}B = I$. Now:

$$(A \otimes B)^{\dagger}(A \otimes B) = (A^{\dagger} \otimes B^{\dagger})(A \otimes B)$$

Using the properties of the conjugate transpose and the tensor product, we have:

$$(A^{\dagger} \otimes B^{\dagger})(A \otimes B) = (A^{\dagger}A) \otimes (B^{\dagger}B) = I \otimes I = I$$

Therefore, $(A \otimes B)^{\dagger}(A \otimes B) = I$.

• Hermitian property of $A \otimes B$:

A matrix M is Hermitian if $M^{\dagger} = M$, where M^{\dagger} denotes the conjugate transpose of M. Since A and B are Hermitian, we have $A^{\dagger} = A$ and $B^{\dagger} = B$. Now, consider the conjugate transpose of $A \otimes B$:

$$(A \otimes B)^{\dagger} = A^{\dagger} \otimes B^{\dagger} = A \otimes B$$

Therefore, $(A \otimes B)^{\dagger} = A \otimes B$, proving that $A \otimes B$ is Hermitian.

• Positive definiteness of $A \otimes B$:

A matrix M is positive definite if it is Hermitian and all its eigenvalues are strictly positive. Since A and B are Hermitian, their tensor product $A \otimes B$ is also Hermitian. Now, let's consider the eigenvalues of $A \otimes B$.

The eigenvalues of $A \otimes B$ are products of the eigenvalues of A and B. Since A and B are positive definite projectors, their eigenvalues are all either 0 or 1. Therefore, the eigenvalues of $A \otimes B$ are also either 0 or 1, making $A \otimes B$ positive definite.

• $A \otimes B$ is a projector:

A matrix P is called a projector if it satisfies $P^2 = P$. Since A and B are projectors, they satisfy $A^2 = A$ and $B^2 = B$. Then:

$$(A \otimes B)^2 = (A \otimes B)(A \otimes B)$$

Using the properties of the tensor product, we have:

$$(A \otimes B)(A \otimes B) = AA \otimes BB = A^2 \otimes B^2 = A \otimes B$$

Therefore, $(A \otimes B)^2 = A \otimes B$, proving that $A \otimes B$ is a projector.