Exercise 2

Task 1. If $|x\rangle$ is a unit vector and $\left\{\left|x_{1}\right\rangle, \ldots,\left|x_{d}\right\rangle\right\}$ an orthonormal base then $|x\rangle=\sum_{i=1}^{d} \alpha_{i}\left|x_{i}\right\rangle$ for unique $\alpha_{1}, \ldots, \alpha_{d} \in \mathbb{C}$ with $\sum_{i=1}^{d}\left|\alpha_{i}\right|^{2}=1$.

Lösung. We can express $|x\rangle$ in terms of the orthonormal base $\left\{\left|x_{1}\right\rangle, \ldots,\left|x_{d}\right\rangle\right\}$, then

$$
|x\rangle=\Sigma_{i}^{d} \alpha_{i}\left|x_{i}\right\rangle
$$

Let's take the inner product of both sides with each basis vector $\left|x_{j}\right\rangle$ for $j=1, \ldots, d$.

$$
\begin{aligned}
\left\langle x_{j} \mid x\right\rangle= & \left\langle x_{j}\right|\left(\Sigma_{i}^{d} \alpha_{i}\left|x_{i}\right\rangle\right) \\
& =\Sigma_{i}^{d} \alpha_{i}\left\langle x_{j} \mid x_{i}\right\rangle
\end{aligned}
$$

As the basis is orthonormal, then $\left\langle x_{j} \mid x_{i}\right\rangle=0$ for $i \neq j$ and

$$
\begin{array}{r}
\left\langle x_{j} \mid x\right\rangle=\alpha_{j} \\
\Longrightarrow\left|\alpha_{j}\right|^{2}=\left|\left\langle x_{j} \mid x\right\rangle\right|^{2}
\end{array}
$$

Remember that $\left|\left\langle x_{j} \mid x\right\rangle\right|^{2}$ represents the probability of measuring $|x\rangle$ in the state $\left|x_{j}\right\rangle$. As $|x\rangle$ is the unit vector, then the sum of these probabilities over all the base states must be 1 .

$$
\Longrightarrow \Sigma_{j}^{d}\left|\alpha_{j}\right|^{2}=1
$$

Task 2. Let f be a linear mapping and let $\left\{\left|x_{1}\right\rangle, \ldots,\left|x_{d}\right\rangle\right\}$ and $\left\{\left|y_{1}\right\rangle, \ldots\left|y_{d}\right\rangle\right\}$ be two bases of \mathbb{C}^{d}. Let A (resp., B) be the matrix for f in the basis $\left\{\left|x_{1}\right\rangle, . .,\left|x_{d}\right\rangle\right\}$ (resp., $\left\{\left|y_{1}\right\rangle, \ldots\left|y_{d}\right\rangle\right\}$).
Then, there is an invertible matrix $C \in \mathbb{C}^{d \times d}$ such that $B=C^{-1} A C$.
Find the matrix C explicitly.
Lösung. Each vector $\left|y_{i}\right\rangle$ can be expressed as a linear combination of the $\left|x_{j}\right\rangle$ basis vectors:

$$
\left|y_{i}\right\rangle=\sum_{j=1}^{d} c_{j i}\left|x_{j}\right\rangle
$$

where $c_{j i}$ are the components of the vector $\left|y_{i}\right\rangle$ in the $\left|x_{j}\right\rangle$ basis.

The matrix C is constructed such that its columns are the coordinates of the $\left|x_{i}\right\rangle$ vectors expressed in the $\left\{\left|y_{j}\right\rangle\right\}$ basis:

$$
C=\left[\begin{array}{cccc}
c_{11} & c_{12} & \cdots & c_{1 d} \\
c_{21} & c_{22} & \cdots & c_{2 d} \\
\vdots & \vdots & \ddots & \vdots \\
c_{d 1} & c_{d 2} & \cdots & c_{d d}
\end{array}\right]
$$

where the i-th column of C is made of the coefficients $\left[c_{1 i}, c_{2 i}, \ldots, c_{d i}\right]^{T}$, which are the coordinates of $\left|x_{i}\right\rangle$ in the $\left\{\left|y_{j}\right\rangle\right\}$ basis. The coefficients $c_{i j}$ can be obtained by taking inner products between the vectors $\left|y_{i}\right\rangle$ and $\left|x_{j}\right\rangle$:

$$
\begin{gathered}
\left.c_{i j}=\left\langle y_{i}\right|| | x_{j}\right\rangle \\
C=\left(\begin{array}{cccc}
\left.\left\langle y_{1}\right|| | x_{1}\right\rangle & \left.\left\langle y_{1}\right|| | x_{2}\right\rangle & \cdots & \left.\left\langle y_{1}\right|| | x_{d}\right\rangle \\
\left.\left\langle y_{2}\right|| | x_{1}\right\rangle & \left.\left\langle y_{2}\right|| | x_{2}\right\rangle & \cdots & \left.\left\langle y_{2}\right|| | x_{d}\right\rangle \\
\vdots & \vdots & \ddots & \vdots \\
\left.\left\langle y_{d}\right|| | x_{1}\right\rangle & \left.\left\langle y_{d}\right|| | x_{2}\right\rangle & \cdots & \left.\left\langle y_{d}\right|| | x_{d}\right\rangle
\end{array}\right)
\end{gathered}
$$

Task 3. The trace of a matrix $\operatorname{tr}(A)$ is defined as the sum of the diagonal entries:

$$
\operatorname{tr}(A)=\sum_{i=1}^{d} A_{i, i}
$$

then, prove the following important properties:

- $\operatorname{tr}(A+B)=\operatorname{tr}(A)+\operatorname{tr}(B)$
- $\operatorname{tr}(\alpha A)=\alpha \cdot \operatorname{tr}(A)$
- $\operatorname{tr}(A B)=\operatorname{tr}(B A)$

Lösung.

$$
\begin{aligned}
\operatorname{tr}(A+B) & =\operatorname{tr}\left(A_{i j}+B_{i j}\right) \text { for } i, j=1, . ., n \\
& =\left(a_{11}+b_{11}\right)+\left(a_{22}+b_{22}\right)+\ldots+\left(a_{n n}+b_{n n}\right) \\
& =\left(a_{11}+\ldots+a_{n n}\right)+\left(b_{11}+\ldots+b_{n n}\right) \\
& =\operatorname{tr}(A)+\operatorname{tr}(B)
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{tr}(\alpha A)= & \operatorname{tr}\left(\alpha A_{i, j}\right) \text { for } i, j=1, \ldots, d \\
& =\Sigma_{i}^{d}\left(\alpha A_{i, i}\right)=\alpha \Sigma_{i}^{d}\left(A_{i, i}\right) \\
& =\alpha \operatorname{tr}(A)
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{tr}(A B)= & \operatorname{tr}\left(\sum_{k}^{d} A_{i, k} B_{k, j}\right) \text { for } i, j=1, \ldots, d \\
= & \left(a_{1,1} b_{1,1}+\ldots+a_{1, n} b_{n, 1}\right)+\left(a_{2,1} b_{1,2}+\ldots+a_{2, n} b_{n, 2}\right) \\
& +\ldots+\left(a_{n, 1} b_{1, n}+\ldots+a_{n, n} b_{n, n}\right) \\
= & \left(b_{1,1} a_{1,1}+\ldots+b_{n, 1} a_{1, n}\right)+\left(b_{1,2} a_{2,1}+\ldots+b_{n, 2} a_{2, n}\right) \\
& +\ldots+\left(b_{1, n} a_{n, 1}+\ldots+b_{n, n} a_{n, n}\right) \\
= & \left(b_{1,1} a_{1,1}+b_{1,2} a_{2,1}+\ldots+b_{1, n} a_{n, 1}\right. \\
& +\ldots+\left(b_{n, 1} a_{1, n}+b_{n, 2} a_{2, n}+\ldots+b_{n n} a_{n n)}\right. \\
= & \operatorname{tr}\left(\sum_{k}^{d} B_{i, k} A_{k, j}\right) \text { for } i, j=1, \ldots, d \\
= & \operatorname{tr}(B A)
\end{aligned}
$$

Task 4. If Π is any projector $\left(\Pi^{2}=\Pi\right)$ find a subspace S with $\Pi=\Pi_{S}$.
Lösung. We can define the subspace S for which Π acts as following:

$$
S=\operatorname{Im}(\Pi)
$$

Here, $\operatorname{Im}(\Pi)$ represents the image of Π, consisting of all vectors $|x\rangle$ in \mathbb{C}^{d} such that $|x\rangle=\Pi(|y\rangle)$ for some $|y\rangle \in \mathbb{C}^{d}$. This means every vector in S remains unchanged when it is projected by Π, i.e., $\Pi(|x\rangle)=|x\rangle$ for all $|x\rangle \in S$. Now we can define the projector Π_{S} onto the subspace S by:

$$
\Pi_{S}=\sum_{i=1}^{k}\left|x_{i}\right\rangle\left\langle x_{i}\right|
$$

where $\left\{\left|x_{1}\right\rangle, \ldots,\left|x_{k}\right\rangle\right\}$ is an orthonormal basis for S. This basis can be obtained from the image of Π (for example, by applying a method like the GramSchmidt process to the set of vectors $\Pi\left(e_{j}\right)$ for $j=1, \ldots, d$, where $\left\{e_{j}\right\}$ is the standard basis of $\left.\mathbb{C}^{d}\right)$. Since Π is a projector, it satisfies $\Pi^{2}=\Pi$. For the subspace S we defined as $\operatorname{Im}(\Pi)$, any vector $v \in S$ is such that $\Pi(v)=v$. Thus, Π_{S} constructed from a basis of S will also satisfy this property. For any vector $|w\rangle \in \mathbb{C}^{d}, \Pi(|w\rangle)$ lies in S. Hence, $\Pi_{S}(\Pi(|w\rangle))=\Pi(|w\rangle)$. Since Π and Π_{S} both act identically on vectors in S and effectively zero out components orthogonal to S, they must be the same operator.

Task 5. Calculate the eigenvalues of the Pauli matrices

$$
\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

$$
\begin{aligned}
\sigma_{y} & =\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \\
\sigma_{z} & =\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
\end{aligned}
$$

Lösung. We find the eigenvalues of a matrix A (when they exist) by solving the equation $\operatorname{det} A-\lambda I=0$ for λ :

- For σ_{x} we have

$$
\begin{aligned}
& \operatorname{det}\left(\sigma_{x}-\lambda I\right)=\operatorname{det}\left(\begin{array}{cc}
-\lambda & 1 \\
1 & -\lambda
\end{array}\right) \\
& \Longrightarrow \lambda^{2}-1=0 \\
& \Longrightarrow \lambda=1 \text { or } \lambda=-1
\end{aligned}
$$

- For σ_{y} we have

$$
\begin{aligned}
& \operatorname{det}\left(\sigma_{y}-\lambda I\right)=\operatorname{det}\left(\begin{array}{cc}
-\lambda & -i \\
i & -\lambda
\end{array}\right) \\
& \Longrightarrow \lambda^{2}-1=0 \\
& \Longrightarrow \lambda=1 \text { or } \lambda=-1
\end{aligned}
$$

- For σ_{z} we have

$$
\begin{aligned}
& \operatorname{det}\left(\sigma_{z}-\lambda I\right)=\operatorname{det}\left(\begin{array}{cc}
1-\lambda & 0 \\
0 & -1-\lambda
\end{array}\right) \\
& \Longrightarrow(1-\lambda)(-1-\lambda)=0 \\
& \Longrightarrow \lambda=1 \text { or } \lambda=-1
\end{aligned}
$$

Task 6. Prove that for every matrix $A \in \mathbb{C}^{d \times d}$ the matrix $A^{\dagger} A$ is positive semi-definite.

Lösung. We prove that $A^{\dagger} A$ is Hermitian and $\langle x| A^{\dagger} A|x\rangle \geq 0$ for every $|x\rangle$

- $\left(A^{\dagger} A\right)^{\dagger}=A^{\dagger}\left(A^{\dagger}\right)^{\dagger}$

We used the property that $(A B)^{\dagger}=B^{\dagger} A^{\dagger}$ and $\left(A^{\dagger}\right)^{\dagger}=A$. This proves that $A^{\dagger} A$ is Hermitian.

- For any vector $|x\rangle$ in \mathbb{C}^{d}, consider the quadratic form $\langle x| A^{\dagger} A|x\rangle$:

$$
\langle x| A^{\dagger} A|x\rangle=\left(\langle x| A^{\dagger}\right)(A|x\rangle)
$$

We can rewrite as:

$$
\langle x| A^{\dagger} A|x\rangle=\| A|x\rangle \|^{2}
$$

Here, $\| A|x\rangle \|^{2}$ denotes the squared norm of the vector $A|x\rangle$, which is a non-negative real number. The squared norm is calculated as:

$$
\| A|x\rangle \|^{2}=\left(\langle x| A^{\dagger}\right)(A|x\rangle)
$$

Since $\|(A x)\|^{2}$ is always non-negative, and since $A^{\dagger} A$ is Hermitian, $A^{\dagger} A$ is positive semi-definite.

Task 7. Let A and B be unitary Hermitian positive definite projectors, then $A \otimes B$ is an unitary Hermitian positive definite projector.

Lösung. 1.

- Unitarity of $A \otimes B$:

A matrix U is unitary if $U^{\dagger} U=I$, where U^{\dagger} denotes the conjugate transpose of U and I is the identity matrix. Since A and B are unitary, we have $A^{\dagger} A=I$ and $B^{\dagger} B=I$. Now:

$$
(A \otimes B)^{\dagger}(A \otimes B)=\left(A^{\dagger} \otimes B^{\dagger}\right)(A \otimes B)
$$

Using the properties of the conjugate transpose and the tensor product, we have:

$$
\left(A^{\dagger} \otimes B^{\dagger}\right)(A \otimes B)=\left(A^{\dagger} A\right) \otimes\left(B^{\dagger} B\right)=I \otimes I=I
$$

Therefore, $(A \otimes B)^{\dagger}(A \otimes B)=I$.

- Hermitian property of $A \otimes B$:

A matrix M is Hermitian if $M^{\dagger}=M$, where M^{\dagger} denotes the conjugate transpose of M. Since A and B are Hermitian, we have $A^{\dagger}=A$ and $B^{\dagger}=B$. Now, consider the conjugate transpose of $A \otimes B$:

$$
(A \otimes B)^{\dagger}=A^{\dagger} \otimes B^{\dagger}=A \otimes B
$$

Therefore, $(A \otimes B)^{\dagger}=A \otimes B$, proving that $A \otimes B$ is Hermitian.

- Positive definiteness of $A \otimes B$:

A matrix M is positive definite if it is Hermitian and all its eigenvalues are strictly positive. Since A and B are Hermitian, their tensor product $A \otimes B$ is also Hermitian. Now, let's consider the eigenvalues of $A \otimes B$. The eigenvalues of $A \otimes B$ are products of the eigenvalues of A and B. Since A and B are positive definite projectors, their eigenvalues are all either 0 or 1 . Therefore, the eigenvalues of $A \otimes B$ are also either 0 or 1 , making $A \otimes B$ positive definite.

- $A \otimes B$ is a projector:

A matrix P is called a projector if it satisfies $P^{2}=P$. Since A and B are projectors, they satisfy $A^{2}=A$ and $B^{2}=B$. Then:

$$
(A \otimes B)^{2}=(A \otimes B)(A \otimes B)
$$

Using the properties of the tensor product, we have:

$$
(A \otimes B)(A \otimes B)=A A \otimes B B=A^{2} \otimes B^{2}=A \otimes B
$$

Therefore, $(A \otimes B)^{2}=A \otimes B$, proving that $A \otimes B$ is a projector.

