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Exercise 3

Task 1. Determine which of the following states are entangled and which
are unentangled.
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Task 2. (Slide 60)
Show that: |z) = €' |y) for some ¢ <= |z) (z| = |y) (y|

Task 3. There exists a geometrical representation where a unit vector inside
a bounding sphere describes the quantum state of a single qubit (a pure state
space of a two-level quantum mechanical system). Such a representation is
called the Bloch Sphere, where north pole and and south pole correspond to
the the pure states |0) and |1) respectively.
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Abbildung 1: Bloch Sphere picture of a qubit.

Show that an arbitrary pure state of a single qubit |1)) = «|0) + 3 |1) can be
written as follows:
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Task 4. Let be A and B unitary matrices corresponding to arbitrary 1—qubit
quantum gates. Then, we can define a quantum gate by using their direct
sum:
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Show that the controlled operation applied by this gate is as follows: The
operation A is applied to the second qubit if the first qubit is in state |0).
Conversely, if the first qubit is in the state |1) then it applies the operation
B to the second qubit. Draw the quantum circuit which represents this gate.

Hint: We can draw a gate that acts on a second qubit if the first qubit is in
the state |0) using an empty vertex in the target qubit (See slide 73 from the
lecture), for example:
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Task 5. Prove that the spectral norm of a matrix A € C%*¢ is preserved
under similarity transformations.




