Exercise 4

Task 1

Let \mathcal{A} be a structure. Show that $\operatorname{Th}(\mathcal{A})$ is decidable if and only if $\operatorname{Th}(\mathcal{A}_{rel})$ is decidable.

Solution:

We have to show two directions:

The direction "If $Th(A_{rel})$ is decidable then Th(A) is decidable" was already shown in the lecture (slides 32-33).

It remains to show the other direction: "If $\operatorname{Th}(\mathcal{A})$ is decidable then $\operatorname{Th}(\mathcal{A}_{rel})$ is decidable". For this, we transform a formula F (such that \mathcal{A}_{rel} is suitable for F) into a formula F' (such that \mathcal{A} is suitable for F'), such that $\mathcal{A}_{rel} \models F$ holds if and only if $\mathcal{A} \models F'$. Under the assumption that $\operatorname{Th}(\mathcal{A})$ is decidable, we then obtain the following decision algorithm for $\operatorname{Th}(\mathcal{A}_{rel})$ which checks whether $F \in \operatorname{Th}(\mathcal{A}_{rel})$:

- (i) Construct the formula F' from F, such that $\mathcal{A}_{rel} \models F$ holds if and only if $\mathcal{A} \models F'$,
- (ii) Use the decision algorithm for Th(A) in order to check whether $F' \in Th(A)$,
- (iii) Output "yes", if $F' \in Th(A)$ and "no" otherwise.

Let F be a formula, such that \mathcal{A}_{rel} is suitable for F. Every atomic formula in F is of the form $R(x_1, \ldots, x_n)$, where x_1, \ldots, x_n are variables (as F does not contain any function symbols). If R corresponds to a predicate symbol in \mathcal{A} , then we leave $R(x_1, \ldots, x_n)$ in F' as it is. If R corresponds to a function symbol f in \mathcal{A} , then we replace $R(x_1, \ldots, x_n)$ in F' by $x_n = f(x_1, \ldots, x_{n-1})$. By definition of \mathcal{A}_{rel} , we find that $\mathcal{A}_{rel} \models F$ holds if and only if $\mathcal{A} \models F'$.

Task 2

Let $(\mathbb{N}, +, f)$ be a structure, where

- N denotes the universe of the structure,
- + denotes a binary function symbol interpreted as the addition of natural numbers, and
- f denotes a unary function symbol interpreted as the function $f: \mathbb{N} \to \mathbb{N}$ with $f(x) = x^2$.

Show that $Th(\mathbb{N}, +, f)$ is undecidable.

Solution:

Let F be a formula such that $(\mathbb{N}, +, \cdot)$ is suitable for F. We transform F into a formula F' such that $(\mathbb{N}, +, f)$ is suitable for F', and such that $F \in \text{Th}(\mathbb{N}, +, \cdot)$ if and only if $F' \in \text{Th}(\mathbb{N}, +, f)$. Let $\mathcal{A}_{rel} = (\mathbb{N}, P_1, P_2)$ denote the relational structure corresponding to $(\mathbb{N}, +, \cdot)$ with

$$P_1 = \{(a_1, a_2, a) \in \mathbb{N}^3 \mid a_1 + a_2 = a\}$$
 and $P_2 = \{(a_1, a_2, a) \in \mathbb{N}^3 \mid a_1 \cdot a_2 = a\}.$

Using the construction from the lecture (slide 33), we transform F into a formula F'', such that \mathcal{A}_{rel} is suitable for F'' and $F \in \text{Th}(\mathbb{N}, +, \cdot)$ if and only if $F'' \in \text{Th}(\mathcal{A}_{rel})$. Every atomic formula in F'' is of the form $P_1(x_1, x_2, x_3)$, $P_2(x_1, x_2, x_3)$ (or $x_1 = x_2$), where x_1, x_2, x_3 are variables. We find that $z = x \cdot y$ can be defined in $(\mathbb{N}, +, f)$ as

$$z = x \cdot y$$
 := $f(x) + f(y) + z + z = f(x + y)$.

In order to obtain F', replace every occurrence of $P_1(x_1, x_2, x)$ in F'' by $x_1 + x_2 = x$ and every occurrence of $P_2(x_1, x_2, x)$ in F'' by $f(x_1) + f(x_2) + x + x = f(x_1 + x_2)$: This yields a formula F', such that $(\mathbb{N}, +, f)$ is suitable for F' and such that $F \in \operatorname{Th}(\mathbb{N}, +, \cdot)$ if and only if $F' \in \operatorname{Th}(\mathbb{N}, +, f)$. If $\operatorname{Th}(\mathbb{N}, +, f)$ were decidable, we could obtain a decision algorithm for $\operatorname{Th}(\mathbb{N}, +, \cdot)$ by transforming a formula F (for which $(\mathbb{N}, +, \cdot)$ is suitable) into a formula F' (for which is $(\mathbb{N}, +, f)$ suitable), such that $F \in \operatorname{Th}(\mathbb{N}, +, \cdot)$ if and only if $F' \in \operatorname{Th}(\mathbb{N}, +, f)$, and then use the decision algorithm for $\operatorname{Th}(\mathbb{N}, +, f)$ to check whether $F' \in \operatorname{Th}(\mathbb{N}, +, f)$. As $\operatorname{Th}(\mathbb{N}, +, \cdot)$ is undecidable by Gödel's Theorem, $\operatorname{Th}(\mathbb{N}, +, f)$ is undecidable as well.

Task 3

Let $(\mathbb{Z}, +, \cdot)$ be a structure, where

- Z denotes the universe of the structure,
- + denotes a binary function symbol interpreted as the addition of integers, and
- · denotes a binary function symbol interpreted as the multiplication of integers.

Show that $Th(\mathbb{Z}, +, \cdot)$ is undecidable.

Hint: Apply Lagrange's four-square theorem:

Theorem 1 (Lagrange's four-square theorem)

Every natural number can be represented as the sum of four integer squares, that is, for every $x \in \mathbb{N}$, there are integers $x_1, x_2, x_3, x_4 \in \mathbb{Z}$, such that $x = x_1^2 + x_2^2 + x_3^2 + x_4^2$.

Solution:

Note that Lagrange's four-square theorem does not hold for negative integers. Let F be a formula such that $(\mathbb{N}, +, \cdot)$ is suitable for F. We transform F into a formula F', such that

 $(\mathbb{Z}, +, \cdot)$ is suitable for F', and such that $F \in \text{Th}(\mathbb{N}, +, \cdot)$ if and only if $F' \in \text{Th}(\mathbb{Z}, +, \cdot)$. We define

$$natural(x) := \exists y_1 \exists y_2 \exists y_3 \exists y_4 (x = y_1 \cdot y_1 + y_2 \cdot y_2 + y_3 \cdot y_3 + y_4 \cdot y_4).$$

In order to obtain F', we replace every occurrence of a subformula $\exists x_i G$ by

$$\exists x_i (G \land \text{natural}(x_i))$$

and every occurrence of a subformula $\forall x_i G$ by

$$\forall x_i \, (\text{natural}(x_i) \to G) \, .$$

This yields a formula F', such that $(\mathbb{Z}, +, \cdot)$ is suitable for F' and such that $F \in \operatorname{Th}(\mathbb{N}, +, \cdot)$ if and only if $F' \in \operatorname{Th}(\mathbb{Z}, +, \cdot)$. By Gödel's Theorem, $\operatorname{Th}(\mathbb{N}, +, \cdot)$ is undecidable. Thus, $\operatorname{Th}(\mathbb{Z}, +, \cdot)$ is undecidable as well.

Task 4

Consider the structure $(\mathbb{N}, +, \cdot, s, 0)$. Use Gödel's β -function in order to formalize the following statements in predicate logic:

- (a) $x^y = z$ (use free variables x, y and z),
- (b) Fermat's Last Theorem,
- (c) Collatz conjecture.

Solution:

We give the main ideas:

- (a) We express $x^y = z$ as: There is a sequence $(a_1, \ldots, a_y, a_{y+1})$ with $a_1 = 1$, $a_{i+1} = a_i \cdot x$ for $1 \leq i \leq y$ and $a_{y+1} = z$. This holds if there are $t, p \in \mathbb{N}$ with $\beta(t, p, 1) = 1$, $\beta(t, p, i+1) = \beta(t, p, i) \cdot x$ for every $1 \leq i \leq y$ and $\beta(t, p, y+1) = z$.
- (b) Fermat's Last Theorem states the following: For all natural numbers $a, b, c \ge 1$ and $n \ge 3$ we have $a^n + b^n \ne c^n$. We already know how to formalize $x^y = z$. From Exercise 2, Task 2, we know how to formalize the numbers 1 and 2 and the relations \ge and > in $(\mathbb{N}, +, \cdot, s, 0)$. We can thus formalize: If $a, b, c \ge 1$ and n > 2 and $a^n = a'$, $b^n = b'$ and $c^n = c'$, then $a' + b' \ne c'$.
- (c) Let $f: \mathbb{N} \to \mathbb{N}$ be defined as f(2n) = n and f(2n+1) = 3(2n+1) + 1. Let C_n be the sequence $(n, f(n), f(f(n)), \dots)$. We write $C_n[i]$ for the *i*th element of the sequence. The Collatz conjecture is the following question: Is there for every n an integer j, such that $C_n[j] = 1$? The function f can be formalized by distinguishing between odd and even numbers and by defining the numbers 2 and 3 (Exercise 2, Task 2). Using the β -function, we can formalize the Collatz conjecture as follows: For every $n \in \mathbb{N}$ there are $t, p \in \mathbb{N}$, such that $\beta(t, p, 1) = n$, $\beta(t, p, i + 1) = f(\beta(t, p, i))$ and there is $j \in \mathbb{N}$ such that $\beta(t, p, j) = 1$.