Exercise 6

Task 1

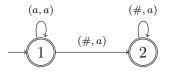
Which of the following statements are correct? Give reasons for your answer.

- (a) (\mathbb{N}, \leq) is automatically presentable.
- (b) Let $M \subseteq \mathbb{N}$ (unary relation), then (\mathbb{N}, M) is automatically presentable.

Solution:

(a) This statement is correct: Let $f: \mathbb{N} \to \{a\}^*$ be defined by $f(i) = a^i$. Let $(\{a\}^*, \leq_a)$ with $a^i \leq_a a^j$ if and only if $i \leq j$. Then (\mathbb{N}, \leq) and $(\{a\}^*, \leq_a)$ are isomorphic and f is the corresponding isomorphism, as $i \leq j$ if and only if $f(i) = a^i \leq a^j = f(j)$. Furthermore, f is bijective. Moreover, $(\{a\}^*, \leq_a)$ is automatic, as

is a finite automaton for $\{a\}^*$ and



is a 2-tape automaton for \leq_a .

(b) This statement is correct: If M or N \ M is finite, then let ({a}*, P) with P = {aⁱ | i ∈ M} and f(i) = aⁱ. We find that ({a}*, P) and (N, M) are isomorphic and f is the corresponding isomorphism. The automaton that accepts {a}* is shown in part (a). If M is finite, then P is finite and thus accepted by a finite automaton as finite languages are always regular (recall that P is a unary relation and a 1-tape automaton is a "standard" finite automaton).

If $\mathbb{N} \setminus M$ is finite, then the complement of P is finite and hence regular. As regular languages are closed under taking the complement, we find that P is regular and thus there is a finite automaton which accepts P. Thus, $(\{a\}^*, P)$ is automatic in this case.

If both M and $\mathbb{N} \setminus M$ are infinite, then let $M = \{a_0, a_1, a_2, ...\}$ and let $\mathbb{N} \setminus M = \{b_1, b_2, ...\}$ (note that both M and $\mathbb{N} \setminus M$ are countable as subsets of \mathbb{N}). We define $(\{a\}^* \cup \{b\}^*, P)$ by $P = \{a\}^*$ and $f : \mathbb{N} \to \{a\}^* \cup \{b\}^*$ by

$$f(i) = \begin{cases} a^j & \text{if } i \in M, a_j = i, \\ b^j & \text{if } i \notin M, b_j = i. \end{cases}$$

Then f is an isomorphism, as f is bijective and $f(i) \in P$ holds if and only if $i \in M$. Furthermore, we find that $(\{a\}^* \cup \{b\}^*, P)$ is automatic, as

is an automaton for $\{a\}^* \cup \{b\}^*$ and $P = \{a\}^*$ is accepted by the finite automaton in part (a).

Task 2

Are any two countable linear orders without a smallest and a largest element isomorphic?

Solution:

We find that (\mathbb{Z}, \leq) and (\mathbb{Q}, \leq) are countable linear orders without a smallest and a largest element, but they are not isomorphic: For example, we find that (\mathbb{Q}, \leq) is dense, but (\mathbb{Z}, \leq) is not dense. In order to show a contradiction, assume that there is a bijection $h : \mathbb{Z} \to \mathbb{Q}$, such that

$$a \leq b \quad \Longleftrightarrow \quad h(a) \leq h(b)$$

holds for all $a, b \in \mathbb{Z}$. Fix two elements $a, b \in \mathbb{Z}$ such that a + 1 = b. As \mathbb{Q} is dense, there is an element $q \in \mathbb{Q}$, such that h(a) < q < h(b). As h is a bijection, we have q = h(c) for an element $c \in \mathbb{Z}$. However, we either have c < a or b < c, as a + 1 = b. This yields a contradiction.

Task 3

Let $\Sigma = \{a, b\}$. Show that

(a) the *lexicographic order* \leq_{lex} defined by

 $u \leq_{\mathsf{lex}} v \iff u \text{ is a prefix of } v \text{ or}$ there are $x, y, z \in \Sigma^*$ such that u = xay and v = xbz,

(b) the *length-lexicographic order* \leq_{llex} defined by

 $u \leq_{\mathsf{llex}} v \iff |u| < |v| \text{ or } (|u| = |v| \text{ and } u \leq_{\mathsf{lex}} v).$

are linear orders.

Solution:

We have to show that the orders are *reflexive*, *anti-symmetric*, *transitive* and *linear*.

(a) The lexicographic order is a linear order:

reflexive: We have $u \leq_{\mathsf{lex}} u$ for every $u \in \Sigma^*$, as u is a prefix of itself.

anti-symmetric: Let $u \leq_{\mathsf{lex}} v$ and $v \leq_{\mathsf{lex}} u$ for $u, v \in \Sigma^*$. Then u must be a prefix of v and v must be a prefix of u. It follows that u = v.

transitive: Let $u \leq_{\mathsf{lex}} v$ and $v \leq_{\mathsf{lex}} w$ for $u, v, w \in \Sigma^*$. Several cases are possible:

- (i) u is a prefix of v and v is a prefix of w
- (ii) u is a prefix of v and v = xay, w = xbz for $x, y, z \in \Sigma^*$
- (iii) u = xay, v = xbz for $x, y, z \in \Sigma^*$ and v is a prefix of w

(iv) u = xay, v = xbz for $x, y, z \in \Sigma^*$ and v = paq, v = pbr for $p, q, r \in \Sigma^*$

In case (i), we find that u thus must be a prefix of w and hence $u \leq_{\mathsf{lex}} w$. In case (ii), as u is a prefix of v, it follows that u is a prefix of xay. If u is even a prefix of x, it follows that u is a prefix of w = xbz and hence $u \leq_{\mathsf{lex}} w$. Otherwise, u is of the form xay' for some $y' \in \Sigma^*$ and hence, $u \leq_{\mathsf{lex}} w$.

In case (iii), as v is a prefix of w, we find that w = xbzz' for some $z' \in \Sigma^*$. In particular, we have u = xay and v = xbzz', so $u \leq_{\mathsf{lex}} w$.

In case (iv), as v = xbz and v = paq, we either have that xb is a prefix of p or pa is a prefix of x. If pa is a prefix of x, we find that u is of the form u = pasy for some $s \in \Sigma^*$. Hence, $u \leq_{\mathsf{lex}} w$. The other case that xb is a prefix of p is symmetric.

linear: For all $u, v \in \Sigma^*$ it holds that $u \leq_{\mathsf{lex}} v$ or $v \leq_{\mathsf{lex}} u$.

(b) The length-lexicographic order is a linear order:

reflexive: We have |u| = |u| and $u \leq_{\mathsf{lex}} u$ for every $u \in \Sigma^*$.

anti-symmetric: Let $u \leq_{\text{llex}} v$ and $v \leq_{\text{llex}} u$ for $u, v \in \Sigma^*$. Then it must hold that |u| = |v| and $u \leq_{\text{lex}} v$ and $v \leq_{\text{lex}} u$. As in part (a), it follows that u = v.

transitive: Let $u \leq_{\mathsf{llex}} v$ and $v \leq_{\mathsf{llex}} w$ for $u, v, w \in \Sigma^*$. Again, several cases are possible:

(i) |u| < |v| and |v| < |w|

- (ii) $|u| = |v|, u \leq_{\mathsf{lex}} v$ and |v| < |w|
- (iii) |u| < |v| and $|v| = |w|, v \leq_{\mathsf{lex}} w$
- (iv) $|u| = |v|, u \leq_{\mathsf{lex}} v$ and $|v| = |w|, v \leq_{\mathsf{lex}} w$.

In cases (i), (ii) and (iii), it follows immediately that |u| < |w| and hence $u \leq_{\mathsf{llex}} v$. In case (iv), we have $u \leq_{\mathsf{lex}} v$ and $v \leq_{\mathsf{lex}} w$, so the statement follows from part (a).

linear: For all $u, v \in \Sigma^*$ it holds that $u \leq_{\mathsf{llex}} v$ or $v \leq_{\mathsf{llex}} u$.