Exercise 9

Task 1

Let $\Sigma = \{a, b, c\}$. Find MSO-formulas corresponding the following regular languages:

- (a) $L = \{ w \in \Sigma^+ \mid \text{The first and last letter of } w \text{ are identical} \}$
- (b) $L = \{a^n b^m c^{\ell} \mid n \ge 0, m \ge 1, \ell \ge 2\}$
- (c) $L = \{ w \in \Sigma^+ \mid w \text{ does not contain the word } bab \}$
- (d) $L = \{ w \in \Sigma^+ \mid w \text{ contains at most two distinct characters} \}$

Task 2

Which regular languages over $\Sigma = \{a, b, c\}$ correspond to the following MSO formulas?

(a)
$$\forall x \forall y (P_a(x) \land P_b(y) \land (x < y) \land (\forall z (x < z < y) \rightarrow \neg P_b(z)))$$

 $\rightarrow (\exists x_1 \exists x_2 (x < x_1 < x_2 < y) \land P_c(x_1) \land P_c(x_2))$

(b)
$$\exists X (\exists x \exists y (\forall u (x \leq u \leq y) \land x \in X \land y \in X) \land \forall x \forall y (y = x + 1 \rightarrow (x \in X \leftrightarrow \neg (y \in X))))$$

Task 3

A strategy to find a MSO-formula for a given regular language is given in the proof of Büchi's Theorem. Use this strategy to find a MSO-formula for the language

$$L = \{w \in \{a, b, c\}^+ \mid \text{The number of } a \text{'s in } w \text{ is odd}\}.$$