Exercise 2

Task 1. Show that the following problems are in NC.

- (a) Given $x, y \in \mathbb{N}$ in binary representation, decide whether x < y.
- (b) Given $x, y \in \mathbb{N}$ in binary representation, compute $x \div y \coloneqq \max\{x y, 0\}$.

Hint: You can use two's complement representation for part (b).

Task 2. Show that, given a directed acylcic graph G = (V, E) by its adjacency matrix A as well as $s, t \in V$, computing the number of paths from s to t in G belongs to **NC**. *Hint:* What can you say about the coefficients of the matrix $A^* := \sum_{k=0}^{\infty} A^k$?

Recall that a *monoid* is a set M with an associative binary operation $-\cdot =: M \times M \to M$ possessing a neutral element $e \in M$, i.e., with $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ and $e \cdot x = x = x \cdot e$.

Task 3. Let (M, \cdot, e) be a monoid and let $f: X \to M$. Given a list $A = [a_1, \ldots, a_n] \in X^*$, we define MapReduce $(A) \coloneqq f(a_1) \cdot \ldots \cdot f(a_n)$ which, by convention, equals e if n = 0.

- (a) Explain how the computation of MapReduce(A) can be efficiently parallelized.
- (b) Give (M, \cdot, e) and $f: X \to M$ resulting in the following MapReduce functions.
 - Min(A) / Max(A) computing the minimum / maximum entry of A.
 - Frequencies(A) computing a frequency histogram of the entries of A.
 - Mean(A) computing the arithmetic mean of the entries of A.