Exercise 5

Task 1. Let $f: \{0,1\}^* \to \mathbb{Z}^{2 \times 2}$ be the homomorphism defined by

$$f(0) = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$
 and $f(1) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

We denote the *n*-th Fibonacci number by F_n , i.e., $F_0 = 0$, $F_1 = 1$, and $F_{i+1} = F_i + F_{i-1}$.

(a) Show that the entries of the matrix f(w) are bounded above by $F_{|w|+1}$.

(b) Find arbitrarily long words such that at least one entry of f(w) equals $F_{|w|+1}$.

Task 2. Let T = 001100 and P = 01. Compute the corresponding array MATCH $[1, \ldots, 6]$ using the probabilistic algorithm from the lecture (slides 108 and 109).

Task 3. In this task we will consider an alternative class of fingerprint functions. For a word $w = a_1 \dots a_n \in \{0, 1\}^*$ we define

$$h(a_1 \dots a_n) = \sum_{i=1}^n a_i 2^{n-i}.$$

Let $h_p(w) = h(w) \mod p$ be the *fingerprint* of w with respect to a prime p.

- (a) Construct a randomised pattern matching algorithm using the functions h_p .
- (b) What is the probability of an invalid match of your algorithm?