
Lecture Formal Languages and Automata

Markus Lohrey

University of Siegen

Sommersemester 2024

Markus Lohrey (Univ. Siegen) FSA SS 2023 1 / 356

Lecture Organization

Under
https://www.eti.uni-siegen.de/ti/lehre/sommer_2024/fsa/ you
can find

updated lecture slides,
exercise sheets,
announcements, etc.

Recommended Literature:

Uwe Schöning, Theoretical Computer Science – Briefly Summarized,
Spektrum Akademischer Verlag (5th Edition): The section on
computability closely follows this book in content.
Lutz Priese, Katrin Erk, Theoretische Informatik: Eine umfassende
Einführung. Springer: Available electronically through the university
library.
Alexander Asteroth, Christel Baier, Theoretische Informatik, Pearson
Studium: This book is structured somewhat differently from the
lecture but still provides a very good supplement.

Michael Figelius und Rahul Jain organize the Exercises.Markus Lohrey (Univ. Siegen) FSA SS 2023 2 / 356

https://www.eti.uni-siegen.de/ti/lehre/sommer_2024/fsa/

Set Theory Basics (Review from DMI)

Naive Definition (Sets, Elements, ∈, 6∈)

A set is the collection of certain distinct objects (the elements of the set)
into a new whole.

We write x ∈ M if the object x belongs to the set M.
We write x 6∈ M if the object x does not belong to the set M.

A set that consists of only a finite number of objects (a finite set) can be
specified by listing these elements explicitly.

Example: M = {2, 3, 5, 7}.

The order of listing does not matter: {2, 3, 5, 7} = {7, 5, 3, 2}.

Multiple listings do not matter either: {2, 3, 5, 7} = {2, 2, 2, 3, 3, 5, 7}.

Markus Lohrey (Univ. Siegen) FSA SS 2023 3 / 356

Set Theory Basics (Review from DMI)

A particularly important set is the empty set ∅ = {}, which contains no
elements.

In mathematics, one often deals with infinite sets (sets consisting of
infinitely many objects).

Such sets can be specified by stating a property that characterizes the
elements of the set.

Examples:

N = {0, 1, 2, 3, 4, 5, . . .} (set of natural numbers)

Z = {. . . ,−2,−1, 0, 1, 2, . . .} (set of integers)

P = {n ∈ N | n ≥ 2, n is only divisible by 1 and n}
(set of prime numbers)

Markus Lohrey (Univ. Siegen) FSA SS 2023 4 / 356

Set Theory Basics (Review from DMI)

Definition (⊆, Power Set, ∩, ∪, \, disjoint)

Let A and B be two sets.

A ⊆ B means that every element of A also belongs to B (A is a
subset of B); formally:

∀a : a ∈ A→ a ∈ B

2A = {B | B ⊆ A} (power set of A)

A ∩ B = {c | c ∈ A and c ∈ B} (intersection of A and B)

A ∪ B = {c | c ∈ A or c ∈ B} (union of A and B)

A \ B = {c ∈ A | c 6∈ B} (difference of A and B)

Two sets A and B are disjoint if A ∩ B = ∅ holds.

Markus Lohrey (Univ. Siegen) FSA SS 2023 5 / 356

Set Theory Basics (Review from DMI)

Definition (Arbitrary Union and Intersection)

Let I be a set, and for each i ∈ I , let Ai be a set. Then we define:⋃
i∈I

Ai = {a | ∃j ∈ I : a ∈ Aj}⋂
i∈I

Ai = {a | ∀j ∈ I : a ∈ Aj}

Examples: ⋃
a∈A
{a} = A for any set A⋂

n∈N
{m ∈ N | m ≥ n} = ∅

Markus Lohrey (Univ. Siegen) FSA SS 2023 6 / 356

Set Theory Basics

Definition (Cartesian Product)

For two sets A and B,

A× B = {(a, b) | a ∈ A and b ∈ B}

is the Cartesian product of A and B (the set of all pairs consisting of an
element from A and an element from B).

More generally, for sets A1, . . . ,An (n ≥ 2), let

n∏
i=1

Ai = A1 × A2 × · · · × An

= {(a1, . . . , an) | for all 1 ≤ i ≤ n, ai ∈ Ai}

If A1 = A2 = · · · = An = A, we also write An for this set.

Markus Lohrey (Univ. Siegen) FSA SS 2023 7 / 356

Set Theory Basics (Review from DMI)

Examples and Some Simple Statements:

{1, 2, 3} × {4, 5} = {(1, 4), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5)}
For all sets A, B, and C :

(A ∪ B)× C = (A× C) ∪ (B × C)

A× (B ∪ C) = (A× B) ∪ (A× C)

(A ∩ B)× C = (A× C) ∩ (B × C)

A× (B ∩ C) = (A× B) ∩ (A× C)

Markus Lohrey (Univ. Siegen) FSA SS 2023 8 / 356

Complete Induction (Review from DMI)

To prove a statement P(n) for each natural number n ∈ N, it suffices to
show the following:

1 P(0) holds (Base Case).

2 For every natural number n ∈ N, if P(n) holds, then P(n + 1) also
holds (Inductive Step).

This principle of proof is called the principle of complete induction.

Example: We prove by complete induction that for all natural numbers n:

n∑
i=1

i =
n(n + 1)

2
.

Markus Lohrey (Univ. Siegen) FSA SS 2023 9 / 356

Complete Induction (Review from DMI)

Base Case: We have
∑0

i=1 i = 0 = 0·1
2 .

Inductive Step: Assume that

n∑
i=1

i =
n(n + 1)

2
.

Then we also have

n+1∑
i=1

i =
(n∑
i=1

i
)

+ n + 1

=
n(n + 1)

2
+ n + 1

=
n(n + 1) + 2(n + 1)

2

=
(n + 1)(n + 2)

2

Markus Lohrey (Univ. Siegen) FSA SS 2023 10 / 356

Complete Induction (Review from DMI)

For base case (inductive step), we often write BC (IS) for short.

The principle of induction can also be used to define objects.

Suppose we want to define an object An for each natural number n ∈ N.

This can be done as follows:

1 Define A0.

2 Provide a general rule for constructing the object An+1 from the
(already constructed) objects A0,A1, . . . ,An.

Markus Lohrey (Univ. Siegen) FSA SS 2023 11 / 356

Words: Intuitive Understanding

The content from slides 12–44 can be found in Schöning’s book on pages
3–18.

A central data structure in computer science consists of finite sequences of
symbols, also known as words or strings.

Examples:

1 A byte is a sequence of 8 bits, e.g., 00110101.

2 A German or English text is a sequence consisting of the symbols
a, b, c , . . . , z ,A,B,C , . . . ,Z , 1, 2, . . . , 9, (blank) and punctuation
marks ., ! , ? as well as , .

3 A gene is a sequence of the symbols A, G, T, C (4 DNA bases).

Markus Lohrey (Univ. Siegen) FSA SS 2023 12 / 356

Words: Formal Definition

Definition (Alphabet, Words)

An alphabet is a finite, non-empty set.

A word over the alphabet Σ is a finite sequence of symbols in the form
a1a2 · · · an with ai ∈ Σ for 1 ≤ i ≤ n. The length of this word is n.

For a word w , we also write |w | to denote the length of the word w .

For n = 0, we obtain the empty word (the word of length 0), denoted by ε.

We use Σ∗ to denote the set of all words over the alphabet Σ.

The set of all non-empty words is Σ+ = Σ∗ \ {ε}.

Markus Lohrey (Univ. Siegen) FSA SS 2023 13 / 356

Words

Example 1: Let Σ = {a, b, c}. Then possible words from Σ∗ are:

ε, a, b, aa, ab, bc, bbbab, . . .

For the lengths, we have |ε| = 0, |a| = |b| = 1, |aa| = |ab| = |bc| = 2, and
|bbbab| = 5.

Example 2: A genome is a word over the alphabet {A,G ,T ,C}.

Remark: It is often asked what the empty word ε is used for.

The empty word will prove useful in many contexts. The empty word ε can
be compared to the number 0 ∈ N. In fact, it has similar properties to the
number 0.

Markus Lohrey (Univ. Siegen) FSA SS 2023 14 / 356

Words

Conventions: Words from Σ∗ are denoted with lowercase letters (from the
latter half of the alphabet): u, v , w , x , y , z , . . .

Definition (Concatenation of Words)

For words u = a1 · · · am and v = b1 · · · bn with a1, . . . , am, b1, . . . , bn ∈ Σ,
the word

u ◦ v = a1 · · · amb1 · · · bn
is the concatenation (or juxtaposition) of the words u and v .

Instead of u ◦ v , we usually write just uv .

Markus Lohrey (Univ. Siegen) FSA SS 2023 15 / 356

Words

It is clear that for all words u, v ,w ∈ Σ∗:

(u ◦ v) ◦w = u ◦ (v ◦w) or simply (uv)w = u(vw) (Associativity Law)

ε ◦ u = u = u ◦ ε

We also write (uv)w = u(vw) simply as uvw .

Reminder from DMI: (Σ∗, ◦) is a monoid, also called the free monoid
generated by Σ. The empty word ε is the identity element.

Note: For words u and v , in general, uv 6= vu.

For example, ab 6= ba for a, b ∈ Σ with a 6= b.

Concatenation of words is not commutative.

Markus Lohrey (Univ. Siegen) FSA SS 2023 16 / 356

Words

Assume that Σ is an alphabet with n symbols: |Σ| = n.

Then there are exactly nk words of length k over the alphabet Σ:

|{w ∈ Σ∗ | |w | = k}| = nk .

Justification: For the first symbol in a word, there are exactly n
possibilities, for the second symbol there are also n possibilities, and so on.
In total, there are

n · n · n · · · n︸ ︷︷ ︸
k times

= nk

possibilities.

For the set {w ∈ Σ∗ | |w | = k} (the set of all words of length k), we also
write Σk .

Markus Lohrey (Univ. Siegen) FSA SS 2023 17 / 356

Languages

In the context of natural languages (e.g., German or English), a language
can be defined as the set of all words over the alphabet from Example 2,
Slide 12, that form a correct sentence.

For example, the string Der Hund jagt die Katze. would be an element of
the German language.

Definition (Language)

Let Σ be an alphabet.
A (formal) language L over the alphabet Σ is any subset of Σ∗, i.e. L ⊆ Σ∗.

Example: Let Σ = {(,),+,−, ∗, /, a}. We can define the language EXPR
of correctly parenthesized expressions. For example:

(a− a) ∗ a + a/(a + a)− a ∈ EXPR

(((a))) ∈ EXPR

((a+)− a(6∈ EXPR

Markus Lohrey (Univ. Siegen) FSA SS 2023 18 / 356

Grammars (Introduction)

Grammars in computer science are similar to grammars for natural
languages and serve as a means to generate all syntactically correct
sentences (here: words) of a language.

Example: Grammar for generating elements from EXPR:

E → a

E → E + E

E → E − E

E → E ∗ E
E → E/E

E → (E)

Markus Lohrey (Univ. Siegen) FSA SS 2023 19 / 356

Grammars (Introduction)

Using this (finite) grammar, it is possible to derive elements from EXPR.

Example:

E → E ∗ E → (E) ∗ E → (E + E) ∗ E → (a + a) ∗ a

Clearly, with the grammar, one can generate infinitely many words.

This means that the language corresponding to the grammar (also called
the language generated by the grammar) is infinite.

Markus Lohrey (Univ. Siegen) FSA SS 2023 20 / 356

Grammars (Definition)

Grammars have productions of the form

left side → right side

Both the left and right sides can contain two types of symbols:

Non-terminals (the variables, from which further word components
are to be derived)

Terminals (the äctualßymbols)

In the previous example: the left side always contains exactly one
non-terminal; this is referred to as a context-free grammar.

However, there are also more general grammars.
There are even grammars that work with trees and graphs instead of
words. These are not covered in this lecture.

Markus Lohrey (Univ. Siegen) FSA SS 2023 21 / 356

Grammars (Definition)

Definition (Grammar, Sentence Form)

A Grammar G is a 4-tuple G = (V ,Σ,P,S), which satisfies the following
conditions:

V is an alphabet (set of non-terminals or variables).

Σ is an alphabet (set of terminal symbols) with V ∩ Σ = ∅, i.e., no
symbol is both terminal and non-terminal.

P ⊆ ((V ∪ Σ)+ \ Σ∗)× (V ∪ Σ)∗ is a finite set of productions.

S ∈ V is the start variable (axiom).

A word from (V ∪ Σ)∗ is also called a sentence form.

Markus Lohrey (Univ. Siegen) FSA SS 2023 22 / 356

Grammars (Definition)

A production from P is a pair (`, r) of words over V ∪ Σ, typically written
as `→ r . The following applies:

Both ` and r consist of variables and terminal symbols.

` must not consist solely of terminals. A rule must always replace at
least one non-terminal.

Conventions:

Variables (elements from V) are denoted by uppercase letters: A, B,
C , . . . , S , T , . . .

Terminal symbols (elements from Σ) are represented by lowercase
letters: a, b, c, . . .

Markus Lohrey (Univ. Siegen) FSA SS 2023 23 / 356

Grammars (Example)

Example Grammar

G = (V ,Σ,P, S) with

V = {S ,B,C}
Σ = {a, b, c}
P = {S → aSBC ,S → aBC ,CB → BC , aB → ab,

bB → bb, bC → bc, cC → cc}

Markus Lohrey (Univ. Siegen) FSA SS 2023 24 / 356

Grammars (Derivations)

How are the productions applied to generate words from the start variable
S?

Definition (Derivation Step)

Let G = (V ,Σ,P, S) be a grammar and let u, v ∈ (V ∪Σ)∗. It holds that:

u ⇒G v (u directly goes to v under G),

if there exists a production (`→ r) ∈ P and words x , y ∈ (V ∪ Σ)∗ such
that

u = x`y v = xry .

One can interpret ⇒G as a binary relation on (V ∪Σ)∗, i.e., as a subset of
(V ∪ Σ)∗ × (V ∪ Σ)∗:

⇒G= {(u, v) | ∃(`→ r) ∈ P ∃x , y ∈ (V ∪ Σ)∗ : u = x`y , v = xry}

Markus Lohrey (Univ. Siegen) FSA SS 2023 25 / 356

Grammars (Derivations)

Instead of u ⇒G v , one also writes u ⇒ v when it is clear which grammar
is being referred to.

Definition (Derivation)

A sequence of words w0,w1,w2, . . . ,wn with w0 = S and
w0 ⇒ w1 ⇒ w2 ⇒ · · · ⇒ wn

is called a derivation of wn (from S). Here, wn may contain both terminal
symbols and variables, thus it is a sentence form.

Here is a derivation of aabbcc from S using the grammar G from Slide 24:

S ⇒ aSBC ⇒ aaBCBC ⇒ aaBBCC ⇒ aabBCC

⇒ aabbCC ⇒ aabbcC ⇒ aabbcc

Markus Lohrey (Univ. Siegen) FSA SS 2023 26 / 356

Grammars and Languages

Definition (the language generated by a grammar)

The language generated (represented, defined) by a grammar
G = (V ,Σ,P, S) is

L(G) = {w ∈ Σ∗ | S ⇒∗G w}.

Here, ⇒∗G is the reflexive and transitive closure of ⇒G , i.e., u ⇒∗G v holds
if and only if n ≥ 0 and sentence forms u0, u1, . . . , un ∈ (V ∪ Σ)∗ exist
such that: u0 = u, un = v , and ui ⇒G ui+1 for all 0 ≤ i ≤ n − 1.

In other words: The language generated by G , L(G), consists exactly of
the sentence forms that can be derived from S in any number of steps,
and that consist solely of terminal symbols.

Markus Lohrey (Univ. Siegen) FSA SS 2023 27 / 356

Grammars and Languages

The previous example grammar G (Slide 24) generates the language

L(G) = {anbncn | n ≥ 1}.

Here, an = a . . . a︸ ︷︷ ︸
n times

.

The claim that G indeed generates this language is not immediately
obvious.

Markus Lohrey (Univ. Siegen) FSA SS 2023 28 / 356

Grammars and Languages

Remark: Derivation is not a deterministic, but a non-deterministic
process. For a u ∈ (V ∪Σ)∗, there may be no, one, or multiple v such that
u ⇒G v .

In other words: ⇒G is not a function.

This non-determinism can be caused by two different effects . . .

Markus Lohrey (Univ. Siegen) FSA SS 2023 29 / 356

Grammars and Languages

A rule can be applied in two different places.

Example grammar:

aaaSBBCCBC

aaaSBCBCBC
.6

(0
aaaSBCBBCC

Two different productions can be applied (either at the same place –
as shown below – or at different places):

Example grammar:
aSBC

S
19

%-
aBC

Markus Lohrey (Univ. Siegen) FSA SS 2023 30 / 356

Grammars and Languages

Further Remarks:

There can be arbitrarily long derivations that never lead to a word
made up of terminal symbols:

S ⇒ aSBC ⇒ aaSBCBC ⇒ aaaSBCBCBC ⇒ . . .

Sometimes, derivations may end in a dead end, i.e., although variables
still appear in a sentence form, no rule is applicable anymore.

S ⇒ aSBC ⇒ aaBCBC ⇒ aabCBC ⇒ aabcBC 6⇒

Markus Lohrey (Univ. Siegen) FSA SS 2023 31 / 356

Chomsky Hierarchy

Type 0 – Chomsky-0

Every grammar is of type 0 (no restriction on productions).

Type 1 – Chomsky-1

A grammar G = (V ,Σ,P, S) is of type 1 (or monotonic,
context-sensitive), if |`| ≤ |r | for all productions (`→ r) ∈ P.

Type 2 – Chomsky-2

A grammar G = (V ,Σ,P, S) is of type 2 (or context-free) if it is (i) of
type 1 and (ii) additionally, ` ∈ V for every production (`→ r) ∈ P.
In particular, it must hold that |r | ≥ |`| = 1.

Markus Lohrey (Univ. Siegen) FSA SS 2023 32 / 356

Chomsky Hierarchy

Type 3 – Chomsky-3

A grammar G = (V ,Σ,P, S) is of type 3 (or regular) if it is (i) of type 2
and (ii) additionally for all productions (A→ r) ∈ P, it holds that: r ∈ Σ
or r = aB with a ∈ Σ,B ∈ V .
That is, the right-hand sides of productions are either individual terminals
or a terminal followed by a variable.

Type-i Language

A language L ⊆ Σ∗ is of type i (i ∈ {0, 1, 2, 3}) if there exists a type-i
grammar G such that L(G) = L.

Such languages are also called semi-decidable or recursively enumerable
(type 0), context-sensitive (type 1), context-free (type 2), or regular (type
3).

Markus Lohrey (Univ. Siegen) FSA SS 2023 33 / 356

Chomsky Hierarchy

Remarks:

Where does the name “context-sensitive” come from?

In context-free grammars, there are only productions of the form
A→ x , where A ∈ V and x ∈ (Σ ∪ V)∗. This means: A can be
replaced by x independently of the context.

In the more powerful context-sensitive grammars, however,
productions of the form uAv → uxv are possible, with the meaning: A
can only be replaced by x in certain contexts.

Markus Lohrey (Univ. Siegen) FSA SS 2023 34 / 356

Chomsky Hierarchy

ε-Special Rule: In type-1 grammars (and thus also in regular and
context-free grammars), productions of the form `→ ε are initially
not allowed, due to |`| > 0 and |`| ≤ |r | for all (`→ r) ∈ P. This
means that the empty word ε cannot be derived!

Therefore, we slightly modify the grammar definition for type-1 (and
type-2, type-3) grammars and allow S → ε, if S is the start symbol
and does not appear on any right-hand side.

Markus Lohrey (Univ. Siegen) FSA SS 2023 35 / 356

Chomsky Hierarchy

Every type-i grammar is a
type-(i−1) grammar (for
i ∈ {1, 2, 3}) the
corresponding sets of languages
are nested.

Furthermore: the inclusions are
strict, i.e., for each i there exists
a type-(i−1) language that is not
a type-i language (e.g., a
context-free language that is not
regular). We will show this later.

Type 2 languages
context free languages

Type 3 languages
regular languages

context sensitive languages
Type 1 languages

semi-decidable languages
Type 0 languages

all languages

Markus Lohrey (Univ. Siegen) FSA SS 2023 36 / 356

Word Problem

Definition (Word Problem)

Let G = (V ,Σ,P,S) be a grammar (of any type). The word problem for
L(G) is the following decision problem:
INPUT: A word w ∈ Σ∗.
QUESTION: Is it true that w ∈ L(G)?

Theorem (Decidability of the Word Problem for Type 1)

There exists an algorithm that, given as input a type-1 grammar
G = (V ,Σ,P, S) and a word w ∈ Σ∗, outputs “Yes” (or “No”) in finite
time if w ∈ L(G) (or w /∈ L(G)) holds.

It is also said: The word problem is decidable for type-1 languages (a more
detailed definition will come later in the lecture).

Markus Lohrey (Univ. Siegen) FSA SS 2023 37 / 356

Word Problem

Proof:

If w = ε, we only need to check whether S → ε is a production.

If yes, then w ∈ L(G), otherwise w /∈ L(G).

Now, assume w 6= ε and let n = |w | ≥ 1.

We define a directed finite graph G as follows:

The set of nodes of G is the set

K := {u ∈ (V ∪ Σ)+ | |u| ≤ n}

of all sentence forms of length at most n.

For u, v ∈ K , there is an edge u → v if u ⇒G v holds.

Note: |K | =
∑n

i=1(|V |+ |Σ|)i .

Markus Lohrey (Univ. Siegen) FSA SS 2023 38 / 356

Word Problem

Since G is a Type-1 grammar, we have: w ∈ L(G) if and only if there is a
path in the graph G from the node S ∈ K to the node w ∈ K .

Justification: When deriving a word of length n ≥ 1 from the start symbol
using a Type-1 grammar, no sentence form of length greater than n
appears in the derivation (this is generally not true for Type-0 grammars).

One constructs the graph G by iterating through all nodes in K in a
for-loop, and for each node u ∈ K , generating the set {v | u ⇒G v} of all
direct successor nodes of u.

Using Depth-First Search (Algorithms & Data Structures lecture), one
can then test whether there is a path in the graph G from S to w .

Markus Lohrey (Univ. Siegen) FSA SS 2023 39 / 356

Word Problem

Remark: This algorithm is not very efficient, as the size of the constructed
graph grows exponentially with the length of the input word w (this is
referred to as an exponential-time algorithm).

However, it is believed that this is not avoidable:

The word problem for Type-1 grammars is a so-called PSPACE-complete
problem, see the lecture Complexity Theory I.

For PSPACE-complete problems, no algorithms with polynomial time
complexity are known.

Markus Lohrey (Univ. Siegen) FSA SS 2023 40 / 356

Syntax Trees and Uniqueness

We consider the following example grammar (a Type-2 grammar) for
generating correctly parenthesized arithmetic expressions:

G = ({E ,T ,F}, {(,), a,+, ∗},P,E)

with the following production set P (in abbreviated Backus-Naur Form):

E → T | E + T

T → F | T ∗ F
F → a | (E)

In Backus-Naur Form for Type-2 grammars, multiple productions are
written

A→ w1,A→ w2, . . . ,A→ wk (1)

in the form
A→ w1 | w2 | · · · | wk .

This is just an abbreviation for (1).
Markus Lohrey (Univ. Siegen) FSA SS 2023 41 / 356

Syntax Trees and Uniqueness

For most words of the language generated by G , there are multiple
possible derivations:

E ⇒ T ⇒ T ∗ F ⇒ F ∗ F ⇒ a ∗ F ⇒ a ∗ (E)

⇒ a ∗ (E + T)⇒ a ∗ (T + T)⇒ a ∗ (F + T)

⇒ a ∗ (a + T)⇒ a ∗ (a + F)⇒ a ∗ (a + a)

E ⇒ T ⇒ T ∗ F ⇒ T ∗ (E)⇒ T ∗ (E + T)

⇒ T ∗ (E + F)⇒ T ∗ (E + a)⇒ T ∗ (T + a)

⇒ T ∗ (F + a)⇒ T ∗ (a + a)⇒ F ∗ (a + a)⇒ a ∗ (a + a)

The first derivation is a left derivation (in each step, the leftmost
non-terminal is replaced), and the second one is a right derivation (in each
step, the rightmost non-terminal is replaced).

Markus Lohrey (Univ. Siegen) FSA SS 2023 42 / 356

Syntax Trees and Uniqueness

We now form the syntax tree from both derivations by:

Labeling the root of the tree with the start variable of the grammar.

For each application of a production A→ z , adding exactly |z |
children to A, labeled with the symbols from z .

Syntax trees can be constructed for all derivations of context-free
grammars.

Markus Lohrey (Univ. Siegen) FSA SS 2023 43 / 356

Syntax Trees and Uniqueness

In both cases, we obtain the same
syntax tree.

A grammar is called unambiguous if
for every word in the generated
language, there is exactly one syntax
tree
⇐⇒ there is exactly one left

derivation for every word
⇐⇒ there is exactly one right

derivation for every word.

F

a

F

a

T

F

a

T

T

E

T F

E()

∗

E +

Markus Lohrey (Univ. Siegen) FSA SS 2023 44 / 356

Finite Automata

The content of slides 44–88 can be found in Schöning’s book on pages
19–27.

In this section, we focus on regular languages, but from a different
perspective. Instead of Type-3 grammars, we consider state-based
automaton models, which can also be viewed as “language generators” or
“language acceptors.”

1 2

a

b

b
a

Markus Lohrey (Univ. Siegen) FSA SS 2023 45 / 356

Deterministic Finite Automata

Definition (Deterministic Finite Automaton)

A (deterministic) finite automaton M is a 5-tuple M = (Z ,Σ, δ, z0,E),
where:

Z is a finite set of states,

Σ is the finite input alphabet (with Z ∩ Σ = ∅),

z0 ∈ Z is the start state,

E ⊆ Z is the set of accepting states,

δ : Z × Σ→ Z is the transition function.

Abbreviation: DFA (deterministic finite automaton)

Markus Lohrey (Univ. Siegen) FSA SS 2023 46 / 356

Deterministic Finite Automata

graphical notation:

state: start state: accepting state:

transition δ(1, a) = 2: 2
a

1

Markus Lohrey (Univ. Siegen) FSA SS 2023 47 / 356

Deterministic Finite Automata

Where does the name finite automatoncome from?

Imagine a machine that can be in a finite number of states, reads an
input, and signals when the input is accepted.

� i n p u t �

automaton with
finitely
many states

signal for
accepting state

Markus Lohrey (Univ. Siegen) FSA SS 2023 48 / 356

Deterministic Finite Automata

Analogy to a Ticket Machine:

A ticket machine can be in the following states:

No input

Destination selected

Money entered

Ticket issued

Of course, this is only part of the truth, as a ticket machine needs to keep
track of how much money has been inserted. Modeling it with only finitely
many states is therefore a significant simplification.

Markus Lohrey (Univ. Siegen) FSA SS 2023 49 / 356

Deterministic Finite Automata

From a rather abstract standpoint, any real computer can be considered a
DFA:

The set of states is the set of all possible memory configurations.

If the entire memory of the computer consists of n bits, then there are
2n possible memory configurations (you can think of a memory
configuration as a word from {0, 1}n).

Example: A computer with 8 GB of RAM and 512 GB of hard drive
storage can store a total of 8 · 520 · 10003 = 4160000000000 bits and
thus corresponds to a DFA with 24160000000000 states!

The initial state is the memory configuration in the factory state.

Markus Lohrey (Univ. Siegen) FSA SS 2023 50 / 356

Deterministic Finite Automata

The transition function is determined by the behavior of the computer
in response to inputs.

Suppose your computer only receives inputs via the keyboard.

Then the input alphabet consists of the keys on the keyboard.

If the computer is in a particular memory state and a specific key is
pressed (input), the computer transitions to a new state.

Final states make less sense for a real computer, as computers are not
typically used to accept words.

This perspective is, of course, far too abstract and entirely impractical for
practical use, as seen by the 24160000000000 states. However, it is still
applied in smaller hardware components in the field of so-called hardware
verification (see the master’s course Model-Checking by Prof. Lochau).

Markus Lohrey (Univ. Siegen) FSA SS 2023 51 / 356

Deterministic Finite Automata

The previous transition function δ of a DFA reads only one symbol at a
time. We therefore generalize it to a transition function δ̂ that determines
transitions for entire words.

Definition (Multi-Step Transitions of a DFA)

For a given DFA M = (Z ,Σ, δ, z0,E), we define a function δ̂ : Z ×Σ∗ → Z
inductively as follows, where z ∈ Z , x ∈ Σ∗, and a ∈ Σ:

δ̂(z , ε) = z

δ̂(z , ax) = δ̂(δ(z , a), x)

Intuition: δ̂(z , a1a2 · · · an) is the state reached from state z by first
following the edge labeled with a1, then following the edge labeled with a2,
and so on:

z
a1−→ z1

a2−→ z2
a3−→ · · · an−→ zn = δ̂(z , a1a2 · · · an).

Markus Lohrey (Univ. Siegen) FSA SS 2023 52 / 356

Deterministic Finite Automata

Without always mentioning it explicitly, we often use the following easily
proven statement:

Lemma 1

For all words u, v ∈ Σ∗ and every state z ∈ Z , it holds that:

δ̂(z , uv) = δ̂(δ̂(z , u), v).

Definition (Language Accepted by a DFA)

The accepted language of a DFA M = (Z ,Σ, δ, z0,E) is

T (M) = {x ∈ Σ∗ | δ̂(z0, x) ∈ E}.

In other words:
The language can be obtained by following all paths from the start state
to an end state, collecting all symbols on the transitions.

Markus Lohrey (Univ. Siegen) FSA SS 2023 53 / 356

Deterministic Finite Automata

Example 1: We are looking for a DFA that accepts the following language
L:

L = {w ∈ {a, b}∗ | #a(w) is even}.

Here, #a(w) is the number of a’s in w .

b
a

a

b

g u
Meaning of the States:
g – even number of a’s
u – odd number of a’s

Markus Lohrey (Univ. Siegen) FSA SS 2023 54 / 356

Deterministic Finite Automata

Example 2: We are looking for a DFA M such that

T (M) = {w ∈ {a, b, c}∗ | the substring abc does not appear in w}.

a

a

ε fab

b c

a

b, c a a, b, c

c

b

Meaning of the States:

ε: no prefix of abc read
a: last read character was an a
ab: last read characters were ab
f : abc appeared in the word read so far
(trap state, error state)

Markus Lohrey (Univ. Siegen) FSA SS 2023 55 / 356

Deterministic Finite Automata

Theorem (DFAs → Regular Grammar)

Every language accepted by a DFA is regular.

Remark: The converse statement also holds: every regular language can
be accepted by a DFA (more on this later).

Markus Lohrey (Univ. Siegen) FSA SS 2023 56 / 356

Deterministic Finite Automata

Proof:

Let M = (Z ,Σ, δ, z0,E) be a DFA.

First, we modify M so that no edges lead into the initial state, i.e.,

δ(z , a) 6= z0

for all z ∈ Z and a ∈ Σ.

Idea: We introduce a copy z ′0 of the initial state z0 into the DFA, which
has the same outgoing edges as z0. Then we redirect all edges that lead to
state z0 to z ′0.

Formally: Let z ′0 6∈ Z be a new state, and let Z ′ = Z ∪ {z ′0}.

Markus Lohrey (Univ. Siegen) FSA SS 2023 57 / 356

Deterministic Finite Automata

Let M ′ = (Z ′,Σ, δ′, z0,E
′), where:

δ′(z , a) =

{
δ(z , a) if z ∈ Z and δ(z , a) 6= z0

z ′0 if z ∈ Z and δ(z , a) = z0

δ′(z ′0, a) =

{
δ(z0, a) if δ(z0, a) 6= z0

z ′0 if δ(z0, a) = z0

E ′ =

{
E if z0 6∈ E

E ∪ {z ′0} if z0 ∈ E

Then:

δ′(z , a) 6= z0 for all z ∈ Z ′ and a ∈ Σ, and

T (M ′) = T (M).

Markus Lohrey (Univ. Siegen) FSA SS 2023 58 / 356

Deterministic Finite Automata

We now revert to using Z , δ, E for Z ′, δ′, E ′.

We define a Type-3 grammar G = (V ,Σ,P,S) with L(G) = T (M) as
follows:

V = Z

S = z0

P = {z → a δ(z , a) | z ∈ Z , a ∈ Σ} ∪
{z → a | z ∈ Z , a ∈ Σ, δ(z , a) ∈ E} ∪
{z0 → ε} if z0 ∈ E

Note: The ε special condition is fulfilled.

Claim 1: For all z , z ′ ∈ Z and w ∈ Σ∗, it holds that:

z ⇒∗G wz ′ ⇐⇒ δ̂(z ,w) = z ′.

Markus Lohrey (Univ. Siegen) FSA SS 2023 59 / 356

Deterministic Finite Automata

Claim 1 is proven by induction over |w |.

Base Case: |w | = 0, i.e., w = ε. We have

z ⇒∗G z ′ ⇔ z = z ′ ⇔ δ̂(z , ε) = z ′

Inductive Step: Now let |w | = n + 1.

Then we can write w as w = av with |v | = n and a ∈ Σ.

Inductive Hypothesis: Claim 1 holds for v .

It follows that:

z ⇒∗G avz ′ ⇐⇒ ∃z ′′ ∈ Z : (z → az ′′) ∈ P and z ′′ ⇒∗G vz ′

⇐⇒ δ(z , a)⇒∗G vz ′

Ind. Hyp.⇐⇒ δ̂(δ(z , a), v) = z ′

⇐⇒ δ̂(z , av) = z ′

Markus Lohrey (Univ. Siegen) FSA SS 2023 60 / 356

Deterministic Finite Automata

Claim 2: For all w ∈ Σ∗, we have: w ∈ L(G)⇐⇒ w ∈ T (M).

Case 1: w = ε.

We have:

ε ∈ L(G) ⇐⇒ (z0 → ε) ∈ P ⇐⇒ z0 ∈ E ⇐⇒ ε ∈ T (M)

Case 2: w 6= ε.

Let w = va with a ∈ Σ and v ∈ Σ∗. Then:

va ∈ L(G) ⇐⇒ ∃z ∈ Z : z0 ⇒∗G vz ⇒G va

Claim 1⇐⇒ ∃z ∈ Z : δ̂(z0, v) = z , δ̂(z , a) ∈ E

⇐⇒ δ̂(z0, va) ∈ E

⇐⇒ va ∈ T (M)

Markus Lohrey (Univ. Siegen) FSA SS 2023 61 / 356

Deterministic Finite Automata

Example: Consider the DFA from Slide 54:

g u

b

a

b

a

The construction from Slides 57–58 results in the following DFA:

g u

g ′

b

a

a

b

a

b

Markus Lohrey (Univ. Siegen) FSA SS 2023 62 / 356

Deterministic Finite Automata

Example: Consider the DFA from Slide 54:

g u

b

a

b

a

The construction from Slides 57–58 results in the following DFA:

g u

g ′

b

a

a

b

a

b

Markus Lohrey (Univ. Siegen) FSA SS 2023 62 / 356

Deterministic Finite Automata

Example (Continuation): The construction from Slide 59 gives the
Type-3 grammar G = (V , {a, b},P,S) with:

V = {g , u, g ′},
S = g ,

P consists of the following productions:

g → ε u → a g ′ → b

g → b u → bu g ′ → au

g → au u → ag ′ g ′ → bg ′

g → bg ′

Markus Lohrey (Univ. Siegen) FSA SS 2023 63 / 356

Non-deterministic Finite Automata

In contrast to grammars, there are no non-deterministic effects in DFAs.
That is, once the next symbol is read, the next state is determined.

However: In many cases, it is more natural to allow non-deterministic
transitions. This often leads to smaller automata.

a

a

1

2

3

Markus Lohrey (Univ. Siegen) FSA SS 2023 64 / 356

Non-deterministic Finite Automata

Definition (Non-deterministic Finite Automaton)

A non-deterministic finite automaton M is a 5-tuple M = (Z ,Σ, δ,S ,E),
where:

Z is a finite set of states,

Σ is the finite input alphabet (with Z ∩ Σ = ∅),

S ⊆ Z is the set of start states,

E ⊆ Z is the set of end states, and

δ : Z × Σ→ 2Z is the transition function (or transition function).

Abbreviation: NFA (nondeterministic finite automaton)

Markus Lohrey (Univ. Siegen) FSA SS 2023 65 / 356

Non-deterministic Finite Automata

To recall: 2Z = {A | A ⊆ Z} is the power set of Z .

Example: δ(1, a) = {2, 3}

a

a

1

2

3

Markus Lohrey (Univ. Siegen) FSA SS 2023 66 / 356

Non-deterministic Finite Automata

The transition function δ can again be extended to a multi-step transition
function:

Definition (Multi-step transitions of an NFA)

For a given NFA M = (Z ,Σ, δ,S ,E), we define a function

δ̂ : 2Z × Σ∗ → 2Z

inductively as follows, where Y ⊆ Z , x ∈ Σ∗, and a ∈ Σ:

δ̂(Y , ε) = Y

δ̂(Y , ax) = δ̂

(⋃
z∈Y

δ(z , a), x

)

Markus Lohrey (Univ. Siegen) FSA SS 2023 67 / 356

Non-deterministic Finite Automata

Note: The set ⋃
z∈Y

δ(z , a) = {z ′ ∈ Z | ∃z ∈ Y : z ′ ∈ δ(z , a)}

contains all the states reachable from any state in Y by applying a.

Example: For the NFA

1 2 3 4

a, b, c

a b c

a, b, c

It holds that δ̂({1}, abca) = {1, 2, 4} and δ̂({2, 3}, abca) = ∅.

Markus Lohrey (Univ. Siegen) FSA SS 2023 68 / 356

Non-deterministic Finite Automata

Definition (Language Accepted by an NFA)

The language accepted by an NFA M = (Z ,Σ, δ,S ,E) is

T (M) = {x ∈ Σ∗ | δ̂(S , x) ∩ E 6= ∅}.

In other words: a word x is accepted if and only if there is a path from a
start state to an accepting state, with transitions marked by the symbols
of x (there may be multiple such paths).

Markus Lohrey (Univ. Siegen) FSA SS 2023 69 / 356

Non-deterministic Finite Automata

Example 1: In non-deterministic automata, it is also allowed that
δ(z , a) = ∅ for some a ∈ Σ, meaning that it is not required for each
alphabet symbol to always have a transition, and the dead state can be
omitted.

a

a

ε ab

b

a

a

c

b, c

b

Markus Lohrey (Univ. Siegen) FSA SS 2023 70 / 356

Non-deterministic Finite Automata

Example 2: We seek an NFA that accepts the language

L = {w ∈ {a, b, c}∗ | the substring abc occurs in w}.

ε a ab abc

a, b, c

a b c

a, b, c

This automaton non-deterministically decides at some point that the
substring abc is starting.

Markus Lohrey (Univ. Siegen) FSA SS 2023 71 / 356

Non-deterministic Finite Automata

Remark: Real computers are always deterministic: the next state is
uniquely determined by the current state and the input.

So why do we need non-determinism at all?

NFAs allow a smaller representation of regular languages in many
cases compared to DFAs. A concrete example will be shown on
slides 81–83.

NFAs can model systems where we do not have complete knowledge.

Non-deterministic systems often arise through abstraction from real
(deterministic) systems.

Non-determinism also plays an important role in complexity theory,
see the lecture Complexity Theory I.

Markus Lohrey (Univ. Siegen) FSA SS 2023 72 / 356

Non-deterministic Finite Automata

Another Interpretation of Non-determinism:

Each time a non-deterministic branch is possible, multiple parallel
universesäre created, in which different copies of the machine explore the
various possible paths.

The word is accepted if it is accepted in one of these parallel universes.

Markus Lohrey (Univ. Siegen) FSA SS 2023 73 / 356

Non-deterministic Finite Automata

There are also non-deterministic automata with so-called ε-edges
(spontaneous transitions where no alphabet symbol is read). These,
however, are generally not used in this lecture.

Example of an ε-edge:

21
ε

New transition function: δ : Z × (Σ ∪ {ε})→ 2Z

In the above example: δ(1, ε) = {2}.

Markus Lohrey (Univ. Siegen) FSA SS 2023 74 / 356

Non-deterministic Finite Automata

New Multi-step Transition Function: δ̂ : 2Z × Σ∗ → 2Z . Here, between
the reading of symbols, arbitrary numbers of ε-transitions are allowed.

1
ε a ε ε ε εb

2 3 4 5 6 7 8

δ̂({1}, ab) = {6, 7, 8}

Equivalence of NFAs with and without ε-Transitions

Every NFA with ε-transitions can be converted into an NFA without
ε-transitions, without changing the accepted language or increasing the
number of states.

(Without proof.)

Markus Lohrey (Univ. Siegen) FSA SS 2023 75 / 356

NFAs, DFAs, and Regular Grammars

Theorem (NFAs → DFAs; Rabin, Scott)

Every language accepted by an NFA can also be accepted by a DFA.

Proof:

Idea: We simulate the various “parallel universes” of an automaton. It
keeps track of the states it is currently in.

This means that the states of this automaton are sets of states from the
original NFA. This construction is therefore called the powerset
construction.

Markus Lohrey (Univ. Siegen) FSA SS 2023 76 / 356

NFAs, DFAs, and Regular Grammars

Let M = (Z ,Σ, δ,S ,E) be an NFA.

Define the DFA
M ′ = (2Z ,Σ, γ, S ,F)

where

γ(Y , a) =
⋃
z∈Y

δ(z , a) for Y ⊆ Z , a ∈ Σ

F = {Y ⊆ Z | Y ∩ E 6= ∅}

Intuition: γ(Y , a) is the set of all states z ′ ∈ Z that can be reached from
a state in Y by an a-transition.

By induction on the length of the word w ∈ Σ∗, we show for all Y ⊆ Z :

γ̂(Y ,w) = δ̂(Y ,w)

Markus Lohrey (Univ. Siegen) FSA SS 2023 77 / 356

NFAs, DFAs, and Regular Grammars

Base Case: γ̂(Y , ε) = Y = δ̂(Y , ε)

Inductive Step: Let w = ax with a ∈ Σ and x ∈ Σ∗. Then:

γ̂(Y , ax) = γ̂(γ(Y , a), x)
Ind. Hyp.

= δ̂(γ(Y , a), x)

= δ̂

(⋃
z∈Y

δ(z , a), x

)
= δ̂(Y , ax)

Therefore, for every word w ∈ Σ∗:

w ∈ T (M ′) ⇐⇒ γ̂(S ,w) ∈ F

⇐⇒ δ̂(S ,w) ∩ E 6= ∅
⇐⇒ w ∈ T (M)

Markus Lohrey (Univ. Siegen) FSA SS 2023 78 / 356

NFAs, DFAs, and Regular Grammars

Remark:

The power set construction transforms an NFA with n states into an
equivalent DFA with 2n states.

In many cases, not all of these 2n states are needed.

Therefore, it is advisable to only include the subsets of Z that are
actually needed in the DFA during the power set construction.

On the next slide, we will construct an equivalent DFA for the NFA from
Slide 71 step by step.

Only 6 of the 24 = 16 possible subsets will be needed.

The node ε, ab
abc

represents the subset {ε, ab, abc}, for example.

Markus Lohrey (Univ. Siegen) FSA SS 2023 79 / 356

NFAs, DFAs, and Regular Grammars

Example 1:

ε a ab abc

a, b, c

a b c

a, b, c

ε ε, a

b, c

a

ε, a

b, c

a

ε, ab

c

a

b

ε, ab

c

a

b

ε, abc

a

b

c
ε, abc

a

b

c ε, a
abc

a

b, c

ε, a
abc

a

b, c

ε, ab
abc

c

b

a

ε, ab
abc

c

b

a

a

b, c

a

b, c

Markus Lohrey (Univ. Siegen) FSA SS 2023 80 / 356

NFAs, DFAs, and Regular Grammars

Example 1:

ε a ab abc

a, b, c

a b c

a, b, c

ε

ε, a

b, c

a

ε, a

b, c

a

ε, ab

c

a

b

ε, ab

c

a

b

ε, abc

a

b

c
ε, abc

a

b

c ε, a
abc

a

b, c

ε, a
abc

a

b, c

ε, ab
abc

c

b

a

ε, ab
abc

c

b

a

a

b, c

a

b, c

Markus Lohrey (Univ. Siegen) FSA SS 2023 80 / 356

NFAs, DFAs, and Regular Grammars

Example 1:

ε a ab abc

a, b, c

a b c

a, b, c

ε ε, a

b, c

a

ε, a

b, c

a

ε, ab

c

a

b

ε, ab

c

a

b

ε, abc

a

b

c
ε, abc

a

b

c ε, a
abc

a

b, c

ε, a
abc

a

b, c

ε, ab
abc

c

b

a

ε, ab
abc

c

b

a

a

b, c

a

b, c

Markus Lohrey (Univ. Siegen) FSA SS 2023 80 / 356

NFAs, DFAs, and Regular Grammars

Example 1:

ε a ab abc

a, b, c

a b c

a, b, c

ε

ε, a

b, c

a

ε, a

b, c

a

ε, ab

c

a

b

ε, ab

c

a

b

ε, abc

a

b

c
ε, abc

a

b

c ε, a
abc

a

b, c

ε, a
abc

a

b, c

ε, ab
abc

c

b

a

ε, ab
abc

c

b

a

a

b, c

a

b, c

Markus Lohrey (Univ. Siegen) FSA SS 2023 80 / 356

NFAs, DFAs, and Regular Grammars

Example 1:

ε a ab abc

a, b, c

a b c

a, b, c

ε

ε, a

b, c

a

ε, a

b, c

a

ε, ab

c

a

b

ε, ab

c

a

b

ε, abc

a

b

c
ε, abc

a

b

c ε, a
abc

a

b, c

ε, a
abc

a

b, c

ε, ab
abc

c

b

a

ε, ab
abc

c

b

a

a

b, c

a

b, c

Markus Lohrey (Univ. Siegen) FSA SS 2023 80 / 356

NFAs, DFAs, and Regular Grammars

Example 1:

ε a ab abc

a, b, c

a b c

a, b, c

ε

ε, a

b, c

a

ε, a

b, c

a

ε, ab

c

a

b

ε, ab

c

a

b

ε, abc

a

b

c
ε, abc

a

b

c ε, a
abc

a

b, c

ε, a
abc

a

b, c

ε, ab
abc

c

b

a

ε, ab
abc

c

b

a

a

b, c

a

b, c

Markus Lohrey (Univ. Siegen) FSA SS 2023 80 / 356

NFAs, DFAs, and Regular Grammars

Example 1:

ε a ab abc

a, b, c

a b c

a, b, c

ε

ε, a

b, c

a

ε, a

b, c

a

ε, ab

c

a

b

ε, ab

c

a

b

ε, abc

a

b

c

ε, abc

a

b

c ε, a
abc

a

b, c

ε, a
abc

a

b, c

ε, ab
abc

c

b

a

ε, ab
abc

c

b

a

a

b, c

a

b, c

Markus Lohrey (Univ. Siegen) FSA SS 2023 80 / 356

NFAs, DFAs, and Regular Grammars

Example 1:

ε a ab abc

a, b, c

a b c

a, b, c

ε

ε, a

b, c

a

ε, a

b, c

a

ε, ab

c

a

b

ε, ab

c

a

b

ε, abc

a

b

c

ε, abc

a

b

c

ε, a
abc

a

b, c

ε, a
abc

a

b, c

ε, ab
abc

c

b

a

ε, ab
abc

c

b

a

a

b, c

a

b, c

Markus Lohrey (Univ. Siegen) FSA SS 2023 80 / 356

NFAs, DFAs, and Regular Grammars

Example 1:

ε a ab abc

a, b, c

a b c

a, b, c

ε

ε, a

b, c

a

ε, a

b, c

a

ε, ab

c

a

b

ε, ab

c

a

b

ε, abc

a

b

c

ε, abc

a

b

c ε, a
abc

a

b, c

ε, a
abc

a

b, c

ε, ab
abc

c

b

a

ε, ab
abc

c

b

a

a

b, c

a

b, c

Markus Lohrey (Univ. Siegen) FSA SS 2023 80 / 356

NFAs, DFAs, and Regular Grammars

Example 1:

ε a ab abc

a, b, c

a b c

a, b, c

ε

ε, a

b, c

a

ε, a

b, c

a

ε, ab

c

a

b

ε, ab

c

a

b

ε, abc

a

b

c

ε, abc

a

b

c

ε, a
abc

a

b, c

ε, a
abc

a

b, c

ε, ab
abc

c

b

a

ε, ab
abc

c

b

a

a

b, c

a

b, c

Markus Lohrey (Univ. Siegen) FSA SS 2023 80 / 356

NFAs, DFAs, and Regular Grammars

Example 1:

ε a ab abc

a, b, c

a b c

a, b, c

ε

ε, a

b, c

a

ε, a

b, c

a

ε, ab

c

a

b

ε, ab

c

a

b

ε, abc

a

b

c

ε, abc

a

b

c

ε, a
abc

a

b, c

ε, a
abc

a

b, c

ε, ab
abc

c

b

a

ε, ab
abc

c

b

a

a

b, c

a

b, c

Markus Lohrey (Univ. Siegen) FSA SS 2023 80 / 356

NFAs, DFAs, and Regular Grammars

Example 1:

ε a ab abc

a, b, c

a b c

a, b, c

ε

ε, a

b, c

a

ε, a

b, c

a

ε, ab

c

a

b

ε, ab

c

a

b

ε, abc

a

b

c

ε, abc

a

b

c

ε, a
abc

a

b, c

ε, a
abc

a

b, c

ε, ab
abc

c

b

a

ε, ab
abc

c

b

a

a

b, c

a

b, c

Markus Lohrey (Univ. Siegen) FSA SS 2023 80 / 356

NFAs, DFAs, and Regular Grammars

Example 1:

ε a ab abc

a, b, c

a b c

a, b, c

ε

ε, a

b, c

a

ε, a

b, c

a

ε, ab

c

a

b

ε, ab

c

a

b

ε, abc

a

b

c

ε, abc

a

b

c

ε, a
abc

a

b, c

ε, a
abc

a

b, c

ε, ab
abc

c

b

a

ε, ab
abc

c

b

a

a

b, c

a

b, c

Markus Lohrey (Univ. Siegen) FSA SS 2023 80 / 356

NFAs, DFAs, and Regular Grammars

Example 1:

ε a ab abc

a, b, c

a b c

a, b, c

ε

ε, a

b, c

a

ε, a

b, c

a

ε, ab

c

a

b

ε, ab

c

a

b

ε, abc

a

b

c

ε, abc

a

b

c

ε, a
abc

a

b, c

ε, a
abc

a

b, c

ε, ab
abc

c

b

a

ε, ab
abc

c

b

a

a

b, c

a

b, c

Markus Lohrey (Univ. Siegen) FSA SS 2023 80 / 356

NFAs, DFAs, and Regular Grammars

Example 2: For k ≥ 1, define

Lk = {w ∈ {0, 1}∗ | |w | ≥ k , the k-th last character of w is 0}.

(A) There exists an NFA M with k + 1 states such that T (M) = Lk :

z0 z1 z2 · · · zk−1 zk

0, 1

0 0, 1 0, 1

Markus Lohrey (Univ. Siegen) FSA SS 2023 81 / 356

NFAs, DFAs and Regular Grammars

(B) There is no DFA M with fewer than 2k states such that T (M) = Lk .

Proof of (B):

Assume that M = (Z , {0, 1}, δ, z0,E) is a DFA with fewer than 2k states
and T (M) = Lk .

Then, there exist words w1,w2 ∈ {0, 1}k with w1 6= w2 and
δ̂(z0,w1) = δ̂(z0,w2) (since there are 2k possible words in {0, 1}k).

Let i ∈ {1, . . . , k} be the first position where w1 and w2 differ.

Let w ∈ {0, 1}i−1 be arbitrary.

Markus Lohrey (Univ. Siegen) FSA SS 2023 82 / 356

NFAs, DFAs and Regular Grammars

Then, there exist words v , v ′ ∈ {0, 1}k−i and u ∈ {0, 1}i−1 such that
(without loss of generality)

w1w = u0vw and w2w = u1v ′w .

Since |vw | = |v ′w | = k − i + i − 1 = k − 1, it follows that

w1w ∈ Lk and w2w 6∈ Lk .

But:

δ̂(z0,w1w) = δ̂(δ̂(z0,w1),w) = δ̂(δ̂(z0,w2),w) = δ̂(z0,w2w),

meaning w1w ∈ Lk ⇔ w2w ∈ Lk . Contradiction!

Markus Lohrey (Univ. Siegen) FSA SS 2023 83 / 356

NFAs, DFAs and Regular Grammars

We can now

convert NFAs into DFAs, and

convert DFAs into regular grammars.

What remains is the direction “regular grammar → NFA”, and then we
will have shown the equivalence of all these formalisms.

regular
grammar

��

DFA

66

NFAoo

Markus Lohrey (Univ. Siegen) FSA SS 2023 84 / 356

NFAs, DFAs and Regular Grammars

Theorem (Regular Grammars → NFAs)

For every regular grammar G , there exists an NFA M such that
L(G) = T (M).

Proof:

Let G = (V ,Σ,P,S) be a regular grammar.

We define the NFA M = (V ∪ {X},Σ, δ, {S},E), where X /∈ V and

δ(A, a) = {B | (A→ aB) ∈ P} ∪ {X | (A→ a) ∈ P} for A ∈ V , a ∈ Σ

δ(X , a) = ∅ for a ∈ Σ

E =

{
{S ,X} if (S → ε) ∈ P

{X} if (S → ε) /∈ P

Markus Lohrey (Univ. Siegen) FSA SS 2023 85 / 356

NFAs, DFAs and Regular Grammars

Due to the construction, we have

ε ∈ L(G)⇐⇒ (S → ε) ∈ P ⇐⇒ {S} ∩ E 6= ∅ ⇐⇒ ε ∈ T (M).

Thus, we still need to show for all words w ∈ Σ+:

w ∈ L(G)⇐⇒ w ∈ T (M).

Claim: For all w ∈ Σ∗ and all A,B ∈ V , we have:

A⇒∗G wB ⇐⇒ B ∈ δ̂({A},w)

We prove this claim by induction on |w |.

Base case: w = ε. We have:

A⇒∗G B ⇐⇒ A = B ⇐⇒ B ∈ {A} = δ̂({A}, ε)

Markus Lohrey (Univ. Siegen) FSA SS 2023 86 / 356

NFAs, DFAs and Regular Grammars

Inductive step: Let w = av (a ∈ Σ, v ∈ Σ∗), and assume the claim holds
for the word v .

A⇒∗G avB ⇐⇒ ∃C ∈ V : (A→ aC) ∈ P and C ⇒∗G vB

⇐⇒ ∃C ∈ V : C ∈ δ(A, a) and B ∈ δ̂({C}, v)

⇐⇒ ∃C ∈ V ∪ {X} : C ∈ δ(A, a) and B ∈ δ̂({C}, v)

⇐⇒ B ∈ δ̂({A}, av)

This proves the claim.

Now let w ∈ Σ+, for example w = va with a ∈ Σ. Then we have:

va ∈ L(G) ⇐⇒ ∃A ∈ V : S ⇒∗G vA and (A→ a) ∈ P
Claim⇐⇒ ∃A ∈ V : A ∈ δ̂({S}, v) and X ∈ δ(A, a)

⇐⇒ ∃A ∈ V ∪ {X} : A ∈ δ̂({S}, v) and X ∈ δ(A, a)

⇐⇒ X ∈ δ̂({S}, va)

⇐⇒ va ∈ T (M)

Markus Lohrey (Univ. Siegen) FSA SS 2023 87 / 356

NFAs, DFAs und reguläre Grammatiken

Note for the last equivalence: Either

X is the only accepting state of M or

S is the second accepting state.

Then we have (S → ε) ∈ P.

Due to the ε-special rule, S will not appear on the right-hand side of
any production from P.

Therefore, we have S /∈ δ(A, a) for all A ∈ V ∪ {X}, a ∈ Σ.

This implies S /∈ δ̂({S}, va).

Markus Lohrey (Univ. Siegen) FSA SS 2023 88 / 356

NFAs, DFAs and Regular Grammars

Example: Let G be the regular grammar with the following productions
(we use Backus-Naur form, see slide 41):

S → ε | aA A→ aA | bB | a
B → aB | bB | bC C → cA | b

The construction from slide 85 gives the following NFA:

S A B C

X

a b b

c
a b

a a, b

Markus Lohrey (Univ. Siegen) FSA SS 2023 89 / 356

NFAs, DFAs and Regular Grammars

Summary

We have learned about different models for describing regular languages:

Regular Grammars: These connect to the Chomsky hierarchy. They
are used for generating languages. They are less suited for deciding if
a particular word belongs to the language.

NFAs: These often allow for compact representations of languages.
Due to their non-determinism, they are less suitable for solving the
word problem compared to grammars. However, they possess an
intuitive graphical notation.

DFAs: These can be exponentially larger than equivalent NFAs.
However, once a DFA is available, it allows for an efficient solution to
the word problem (simply follow the transitions of the automaton and
check if an accepting state is reached).

Markus Lohrey (Univ. Siegen) FSA SS 2023 90 / 356

Regular Expressions

All models, however, require relatively much writing effort and space for
notation. Therefore, we are looking for a more compact representation.
This is where regular expressions come in.

Definition (Regular Expressions)

The set Reg(Σ) of regular expressions over the alphabet Σ is the smallest
set with the following properties:

∅ ∈ Reg(Σ), ε ∈ Reg(Σ), Σ ⊆ Reg(Σ).

If α, β ∈ Reg(Σ), then also αβ, (α|β), (α)∗ ∈ Reg(Σ).

Remarks:

Instead of (α|β), (α + β) is often used.

We often omit unnecessary parentheses.
For example, (a|b)∗ instead of ((a|b))∗.

Markus Lohrey (Univ. Siegen) FSA SS 2023 91 / 356

Regular Expressions

To save parentheses, we use so-called operator precedence rules:

∗ binds more strongly than concatenation.

Concatenation binds more strongly than |.

Example: ab∗|c is read as (a(b)∗|c).

These are the same operator precedence rules known from arithmetic
operations like +, ·, and exponentiation.

xyn + z is read as ((x · (y)n) + z).

Markus Lohrey (Univ. Siegen) FSA SS 2023 92 / 356

Regular Expressions

After defining the syntax of regular expressions, we must also define their
meaning (semantics).

The semantics of a regular expression is a language:

Definition (Language of a regular expression)

L(∅) = ∅ (empty language), L(ε) = {ε}, L(a) = {a} for a ∈ Σ.

L(αβ) = L(α)L(β), where L1L2 = {w1w2 | w1 ∈ L1,w2 ∈ L2} for two
languages L1, L2 (concatenation of L1 and L2).

L(α|β) = L(α) ∪ L(β)

L((α)∗) = (L(α))∗, where L∗ = {w1 · · ·wn | n ≥ 0,w1, . . . ,wn ∈ L}
for a language L

Markus Lohrey (Univ. Siegen) FSA SS 2023 93 / 356

Regular Expressions

Example for concatenation of languages:

{a, b, ab}{c , ba} = {ac, bc, abc, aba, bba, abba}.

Remarks on the ∗-operator: L∗ = {w1 · · ·wn | n ∈ N,wi ∈ L}
For n = 0, we have w1 · · ·wn = ε.

L∗ always contains the empty word ε.
Special case: ∅∗ = {ε}.
The ∗ operator is often called the Kleene star. It is the only operator
capable of generating infinite languages.
More precisely: L∗ is infinite if and only if L ∩ Σ+ 6= ∅.
Example for the application of the ∗-operator:

Let L = {a, bb, cc}. Then

L∗ = {ε, a, bb, cc , aa, abb, acc , bba, bbbb, bbcc, cca, ccbb, cccc , . . . }

All combinations of any length are possible.
Markus Lohrey (Univ. Siegen) FSA SS 2023 94 / 356

Regular Expressions

Further Remarks:

Note: regular expressions are purely syntactical expressions.
Only through the definition on Slide 93 is a language assigned to a
regular expression.

The distinction between syntax and semantics can be found in many
areas of computer science (programming languages, logic, etc.)

In programming languages, we first define what syntactically correct
programs are. After that, the semantics of a program are defined
(what the program does).
This may be, for example, the function computed by a program.
Later, we will do the same for very simple programming languages
(GOTO-programs, while-programs).

Markus Lohrey (Univ. Siegen) FSA SS 2023 95 / 356

Regular Expressions

Formally, one should also distinguish between the regular expression ∅
and the regular language ∅ (empty language), but we do not want to
overdo it.

The languages ∅ and {ε} are often confused.
∅ is the empty language (has zero elements).
{ε} is a language that contains exactly one word (the empty word).

Markus Lohrey (Univ. Siegen) FSA SS 2023 96 / 356

Regular Expressions

Examples of regular expressions over the alphabet Σ = {a, b}.

Example 1: Language of all words that begin with a and end with bb

α = a(a|b)∗bb

Example 2: Language of all words that contain the substring aba.

α = (a|b)∗aba(a|b)∗

Example 3: Language of all words that contain an even number of a’s.

α = (b∗ab∗a)∗b∗ or α = (b|ab∗a)∗

Markus Lohrey (Univ. Siegen) FSA SS 2023 97 / 356

Regular Expressions

Theorem (Regular Expressions → NFAs)

For every regular expression γ, there is an NFA M such that L(γ) = T (M).

Proof: Induction on the structure of γ.

Base Case: For γ = ∅, γ = ε, γ = a (a ∈ Σ), corresponding NFAs clearly
exist.

Inductive Step: Suppose γ = αβ. Then there are NFAs

Mα = (Zα,Σ, δα,Sα,Eα)

Mβ = (Zβ,Σ, δβ,Sβ,Eβ)

with T (Mα) = L(α) and T (Mβ) = L(β).

We can assume that Zα ∩ Zβ = ∅.

Markus Lohrey (Univ. Siegen) FSA SS 2023 98 / 356

Regular Expressions

We now combine Mα and Mβ sequentially to form an NFA M:

M has the union of both state sets, the same start states as Mα and
the same end states as Mβ. If ε ∈ L(α), then the start states of Mβ

are also start states of M.

All transitions from Mα and Mβ are preserved. Any states that have
an arrow to an end state of Mα also receive similarly labeled arrows to
all start states of Mβ.

Formally: M = (Zα ∪ Zβ,Σ, δ,S ,Eβ), where

S =

{
Sα if ε 6∈ L(α)

Sα ∪ Sβ if ε ∈ L(α)

δ(z , a) =

δβ(z , a) for z ∈ Zβ

δα(z , a) for z ∈ Zα with δα(z , a) ∩ Eα = ∅
δα(z , a) ∪ Sβ for z ∈ Zα with δα(z , a) ∩ Eα 6= ∅

Markus Lohrey (Univ. Siegen) FSA SS 2023 99 / 356

Regular Expressions

Sα Eα Sβ Eβ

a a

a

new!
Mα Mβ

We have T (M) = T (Mα)T (Mβ) = L(α)L(β) = L(αβ) = L(γ)

Markus Lohrey (Univ. Siegen) FSA SS 2023 100 / 356

Regular Expressions

Let γ = (α | β). Then there exist NFAs

Mα = (Zα,Σ, δα,Sα,Eα)

Mβ = (Zβ,Σ, δβ,Sβ,Eβ)

with T (Mα) = L(α) and T (Mβ) = L(β).

We can assume that Zα ∩ Zβ = ∅.
We now construct a union NFA M from these two NFAs:

M has as states the union of both state sets. Similarly, the start
states are the union of the start state sets, and the end states are the
union of the end state sets.

All transitions from Mα and Mβ are preserved.

Formally: M = (Zα ∪ Zβ,Σ, δ,Sα ∪ Sβ,Eα ∪ Eβ), where

δ(z , a) =

{
δα(z , a) for z ∈ Zα

δβ(z , a) for z ∈ Zβ

Markus Lohrey (Univ. Siegen) FSA SS 2023 101 / 356

Regular Expressions

Sα Eα

Sβ Eβ

Mα

Mβ

It holds T (M) = T (Mα) ∪ T (Mβ)

= L(α) ∪ L(β)

= L(α | β)

= L(γ)

Markus Lohrey (Univ. Siegen) FSA SS 2023 102 / 356

Regular Expressions

Let γ = (α)∗. Then there is an NFA

Mα = (Zα,Σ, δα, Sα,Eα)

with T (Mα) = L(α).

We now construct an NFA M from this NFA as follows:

If ε 6∈ T (Mα), then an additional state is added, which is both a start
and an end state (so that the empty word is also recognized).

The other states, start and end states, and transitions are preserved.

All states that have a transition to an end state of Mα also receive
transitions to all start states of Mα (feedback loop).

Markus Lohrey (Univ. Siegen) FSA SS 2023 103 / 356

Regular Expressions

Formal: M = (Z ,Σ, δ,S ,E), where:

Z =

{
Zα if ε ∈ L(α)

Zα ∪ {s0} if ε 6∈ L(α)

S =

{
Sα if ε ∈ L(α)

Sα ∪ {s0} if ε 6∈ L(α)

E =

{
Eα if ε ∈ L(α)

Eα ∪ {s0} if ε 6∈ L(α)

δ(z , a) =

{
δα(z , a) for z ∈ Zα with δα(z , a) ∩ Eα = ∅
δα(z , a) ∪ Sα for z ∈ Zα with δα(z , a) ∩ Eα 6= ∅

Here, s0 6∈ Zα.

Markus Lohrey (Univ. Siegen) FSA SS 2023 104 / 356

Regular Expressions

possibly additional state

Sα Eα

aa

a

Mα

It holds T (M) = (T (Mα))∗ = (L(α))∗ = L(α∗) = L(γ).

Markus Lohrey (Univ. Siegen) FSA SS 2023 105 / 356

Regular Expressions

Example: We will construct step by step an NFA for the regular
expression (b | ab∗a)∗.

b

a b a

b

a b a

b

b

a b a

a

a

b

b

a b a

a

a

a

b

b

b

a b a

a

a

a

b

b

b

a b a

a

a

a

b

a

a

b

b

b

Markus Lohrey (Univ. Siegen) FSA SS 2023 106 / 356

Regular Expressions

Example: We will construct step by step an NFA for the regular
expression (b | ab∗a)∗.

We begin with the transitions for individual symbols.

b

a b a

b

a b a

b

b

a b a

a

a

b

b

a b a

a

a

a

b

b

b

a b a

a

a

a

b

b

b

a b a

a

a

a

b

a

a

b

b

b

Markus Lohrey (Univ. Siegen) FSA SS 2023 106 / 356

Regular Expressions

Example: We will construct step by step an NFA for the regular
expression (b | ab∗a)∗.

NFA for b∗

b

a b a

b

a b a

b

b

a b a

a

a

b

b

a b a

a

a

a

b

b

b

a b a

a

a

a

b

b

b

a b a

a

a

a

b

a

a

b

b

b

Markus Lohrey (Univ. Siegen) FSA SS 2023 106 / 356

Regular Expressions

Example: We will construct step by step an NFA for the regular
expression (b | ab∗a)∗.

NFA for ab∗

b

a b a

b

a b a

b

b

a b a

a

a

b

b

a b a

a

a

a

b

b

b

a b a

a

a

a

b

b

b

a b a

a

a

a

b

a

a

b

b

b

Markus Lohrey (Univ. Siegen) FSA SS 2023 106 / 356

Regular Expressions

Example: We will construct step by step an NFA for the regular
expression (b | ab∗a)∗.

NFA for ab∗a

b

a b a

b

a b a

b

b

a b a

a

a

b

b

a b a

a

a

a

b

b

b

a b a

a

a

a

b

b

b

a b a

a

a

a

b

a

a

b

b

b

Markus Lohrey (Univ. Siegen) FSA SS 2023 106 / 356

Regular Expressions

Example: We will construct step by step an NFA for the regular
expression (b | ab∗a)∗.

NFA for (b | ab∗a)

b

a b a

b

a b a

b

b

a b a

a

a

b

b

a b a

a

a

a

b

b

b

a b a

a

a

a

b

b

b

a b a

a

a

a

b

a

a

b

b

b

Markus Lohrey (Univ. Siegen) FSA SS 2023 106 / 356

Regular Expressions

Example: We will construct step by step an NFA for the regular
expression (b | ab∗a)∗.

NFA for (b | ab∗a)∗

b

a b a

b

a b a

b

b

a b a

a

a

b

b

a b a

a

a

a

b

b

b

a b a

a

a

a

b

b

b

a b a

a

a

a

b

a

a

b

b

b

Markus Lohrey (Univ. Siegen) FSA SS 2023 106 / 356

Regular Expressions

Example (continued): This NFA contains many redundant states and
can be simplified.

A much simpler NFA for (b | ab∗a)∗ is:

a

a

b b

Markus Lohrey (Univ. Siegen) FSA SS 2023 107 / 356

Regular Expressions

Theorem (DFAs → Regular Expressions)

For every DFA M, there is a regular expression γ such that T (M) = L(γ).

Proof: Let M = ({z1, . . . , zn},Σ, δ, z1,E) be a DFA.

We construct a regular expression γ with T (M) = L(γ).

For a word w ∈ Σ∗, define

Pref(w) = {u ∈ Σ∗ | ∃v : w = uv , ε 6= u 6= w}

as the set of all non-empty proper prefixes of w .

Example: Pref(abbca) = {a, ab, abb, abbc}

For i , j ∈ {1, . . . , n} and k ∈ {0, . . . , n}, define

Lki ,j = {w ∈ Σ∗ | δ̂(zi ,w) = zj ,∀u ∈ Pref(w) : δ̂(zi , u) ∈ {z1, . . . , zk}}.

Markus Lohrey (Univ. Siegen) FSA SS 2023 108 / 356

Regular Expressions

Intuition: A word w belongs to Lki ,j if and only if w transitions from state
zi to state zj , and during this transition, no intermediate state (other than
the start and end states) is from {zk+1, . . . , zn}.

Example: Consider the following DFA M:

b
a

a

b

z1 z2

For example, we have:

L0
1,1 = {ε, b}, L0

1,2 = {a}, L1
2,2 = {abna | n ≥ 0} ∪ {ε, b}

and L2
1,1 = T (M) = {w ∈ {a, b}∗ | w contains an even number of a’s}.

Markus Lohrey (Univ. Siegen) FSA SS 2023 109 / 356

Regular Expressions

We construct regular expressions γki ,j for all i , j ∈ {1, . . . , n} and

k ∈ {0, . . . , n} with L(γki ,j) = Lki ,j .

If E = {zi1 , zi2 , . . . , zim}, then we have:

L(γn1,i1 | γ
n
1,i2 | · · · | γ

n
1,im) = T (M).

Construction of γki ,j by induction over k ∈ {0, . . . , n}.

Base case: k = 0. We have:

L0
i ,j =

{
{ε} ∪ {a ∈ Σ | δ(zi , a) = zj} if i = j

{a ∈ Σ | δ(zi , a) = zj} if i 6= j

A regular expression γ0
i ,j with L(γ0

i ,j) = L0
i ,j can be easily provided.

Inductive step: Let 0 ≤ k < n and assume the regular expressions γkp,q
have already been constructed for all p, q ∈ {1, . . . , n}.

Markus Lohrey (Univ. Siegen) FSA SS 2023 110 / 356

Regular Expressions

Claim: For all i , j ∈ {1, . . . , n}, the following holds:

Lk+1
i ,j = Lki ,j ∪ Lki ,k+1(Lkk+1,k+1)∗Lkk+1,j . (2)

Justification:

⊆: Let w ∈ Lk+1
i ,j and suppose ` ≥ 0 such that the state zk+1 appears

exactly ` times as a genuine intermediate state on the unique path from zi
to zj labeled by w .

Case 1: ` = 0, i.e., zk+1 does not appear as a genuine intermediate state.

Then w ∈ Lki ,j , so we have w ∈ Lki ,j ∪ Lki ,k+1(Lkk+1,k+1)∗Lkk+1,j .

Case 2: ` > 0.

Then w can be written as w = w0w1 · · ·w`−1w`, where:

δ̂(zi ,w0) = zk+1

δ̂(zk+1,wp) = zk+1 for 1 ≤ p ≤ `− 1

δ̂(zk+1,w`) = zj

Markus Lohrey (Univ. Siegen) FSA SS 2023 111 / 356

Regular Expressions

It follows that w0 ∈ Lki ,k+1, w1, . . . ,w`−1 ∈ Lkk+1,k+1, w` ∈ Lkk+1,j , and
thus

w = w0(w1 · · ·w`−1)w` ∈ Lki ,k+1(Lkk+1,k+1)∗Lkk+1,j .

⊇: Lki ,j ⊆ Lk+1
i ,j is obvious.

If w ∈ Lki ,k+1(Lkk+1,k+1)∗Lkk+1,j , there exists an ` ≥ 1 and a factorization
w = w0w1 · · ·w`−1w` with

w0 ∈ Lki ,k+1, w1, . . . ,w`−1 ∈ Lkk+1,k+1, w` ∈ Lkk+1,j .

This easily shows that w ∈ Lk+1
i ,j . Thus, the claim is proved.

Since the regular expressions γki ,j , γ
k
i ,k+1, γ

k
k+1,k+1, γ

k
k+1,j have already been

constructed (inductive hypothesis), we can define the regular expression
γk+1
i ,j as follows:

γk+1
i ,j = γki ,j | γki ,k+1(γkk+1,k+1)∗γkk+1,j

Markus Lohrey (Univ. Siegen) FSA SS 2023 112 / 356

Regular Expressions

Lk+1
i ,j = Lki ,j ∪ Lki ,k+1(Lkk+1,k+1)∗Lkk+1,j

zi zk+1 zj

Lki,j

Lki,k+1 Lkk+1,j

Lkk+1,k+1Lkk+1,k+1

Lkk+1,k+1 Lkk+1,k+1

Markus Lohrey (Univ. Siegen) FSA SS 2023 113 / 356

Regular Expressions

Example: Consider the following DFA:

b
a

a

b

z1 z2

This results in (after performing obvious simplifications):

γ0
1,1 = ε|b γ0

1,2 = a γ0
2,1 = a γ0

2,2 = ε|b

γ1
1,1 = γ0

1,1 | γ0
1,1(γ0

1,1)∗γ0
1,1 = ε | b | (ε|b)(ε|b)∗(ε|b) = b∗

γ1
1,2 = γ0

1,2 | γ0
1,1(γ0

1,1)∗γ0
1,2 = a | (ε|b)(ε|b)∗a = b∗a

γ1
2,1 = γ0

2,1 | γ0
2,1(γ0

1,1)∗γ0
1,1 = a | a(ε|b)∗(ε|b) = ab∗

γ1
2,2 = γ0

2,2 | γ0
2,1(γ0

1,1)∗γ0
1,2 = ε | b | a(ε|b)∗a = ε | b | ab∗a

γ2
1,1 = γ1

1,1 | γ1
1,2(γ1

2,2)∗γ1
2,1 = b∗ | b∗a(ε|b|ab∗a)∗ab∗

Markus Lohrey (Univ. Siegen) FSA SS 2023 114 / 356

Regular Expressions

What are regular expressions useful for in practice?

Search and replace in editors (Try with vi, emacs, . . .)

Pattern matching and processing large texts and data sets, e.g., in
data mining (Tools: Stream editor sed, awk, . . .)

Translation of programming languages: Lexical analysis – converting a
sequence of characters (the program) into a sequence of tokens,
where keywords, identifiers, data, etc., are already identified.
(Tools: lex, flex, . . .), see the lecture on Compiler Construction
(where a more efficient version of the conversion from regular
expressions to NFAs is also discussed).

Markus Lohrey (Univ. Siegen) FSA SS 2023 115 / 356

Closure Properties

Definition (Closure)

Let M be a set and ⊗ : M ×M → M be a binary operator.
A set M ′ ⊆ M is said to be closed under ⊗ if for any two elements
m1,m2 ∈ M ′, we have: m1 ⊗m2 ∈ M ′.

We consider closure properties for the set of regular languages (i.e., we set
M as the set of all languages and M ′ as the set of all regular languages).

The interesting question is:

If L1, L2 are regular, are L1 ∪ L2, L1 ∩ L2, L1L2, L1 = Σ∗ \ L1

(complement), and L∗1 also regular?

Short answer: The regular languages are closed under all these operations.

Markus Lohrey (Univ. Siegen) FSA SS 2023 116 / 356

Closure Properties

Why are closure properties interesting?

They are particularly interesting when they can be constructed, that is,
when one can – given automata for L1 and L2 – also construct an
automaton for, say, the intersection of L1 and L2.

This way, one can have an automaton as a data structure for infinite
languages, which can be further processed by a machine.

Markus Lohrey (Univ. Siegen) FSA SS 2023 117 / 356

Closure Properties

Theorem (Closure under Union)

If L1 and L2 are regular languages, then L1 ∪ L2 is also regular.

Proof:

The automaton for L1 ∪ L2 can be constructed using the same method as
the automaton for L(α|β) when converting regular expressions to NFAs
(see slide 101).

Markus Lohrey (Univ. Siegen) FSA SS 2023 118 / 356

Closure Properties

Theorem (Closure under Complementation)

If L ⊆ Σ∗ is a regular language, then L = Σ∗\L is also regular.

Remark: When taking the complement, it must always be specified with
respect to which superset the complement is formed. Here, the superset is
Σ∗, the set of all words over the alphabet Σ being considered.

Proof:

From a DFA M = (Z ,Σ, δ, z0,E) for L, we can easily obtain a DFA M ′ for
L by swapping the accepting and non-accepting states. That is,
M ′ = (Z ,Σ, δ, z0,Z\E).

Then it holds that:
w ∈ L ⇐⇒ w /∈ T (M) ⇐⇒ δ̂(z0,w) /∈ E ⇐⇒ δ̂(z0,w) ∈ Z\E ⇐⇒
w ∈ T (M ′).

Markus Lohrey (Univ. Siegen) FSA SS 2023 119 / 356

Closure Properties

Caution: In the proof on the previous slide, it is important that M is a
DFA.

If we swap the accepting and non-accepting states in an NFA, we generally
do not obtain an NFA for the complement.

Example: Consider the following NFA for the language {a} ⊆ {a}∗.

a

a

By swapping the accepting and non-accepting states, we obtain an NFA
for {ε, a} 6= {a}∗ \ {a}:

a

a

Markus Lohrey (Univ. Siegen) FSA SS 2023 120 / 356

Closure Properties

If you want to complement an NFA M (i.e., construct an NFA for
Σ∗ \ T (M)), the essentially best method is as follows:

1 Construct a DFA M ′ using the powerset construction such that
T (M ′) = T (M).

2 Swapping the accepting and non-accepting states in M ′ gives a DFA
(and thus also an NFA) M ′′ with T (M ′′) = Σ∗ \T (M ′) = Σ∗ \T (M).

Markus Lohrey (Univ. Siegen) FSA SS 2023 121 / 356

Closure Properties

Theorem (Closure under Product/Concatenation)

If L1 and L2 are regular languages, then L1L2 is also regular.

Proof:

The automaton for L1L2 can be constructed in the same way as the
automaton for L(αβ) when converting regular expressions to NFAs (see
slide 100).

Markus Lohrey (Univ. Siegen) FSA SS 2023 122 / 356

Closure Properties

Theorem (Closure under the Star Operation)

If L is a regular language, then L∗ is also regular.

Proof:

The automaton for L∗ can be constructed in the same way as the
automaton for L((α)∗) when converting regular expressions to NFAs (see
slide 105).

Markus Lohrey (Univ. Siegen) FSA SS 2023 123 / 356

Closure Properties

Theorem (Closure under Intersection)

If L1 and L2 are regular languages, then L1 ∩ L2 is also regular.

Proof 1:

We have L1 ∩ L2 = L1 ∪ L2, and we already know that regular languages
are closed under complement and union.

In the above proof, complementing leads to a very large automaton for
L1 ∩ L2.

Markus Lohrey (Univ. Siegen) FSA SS 2023 124 / 356

Closure Properties

Proof 2:

There is another more direct construction. This involves synchronizing the
two automata for L1 and L2 and essentially running them “in parallel.”
This is achieved by forming the cross product.

Let M1 = (Z1,Σ, δ1,S1,E1) and M2 = (Z2,Σ, δ2, S2,E2) be NFAs with
T (M1) = L1 and T (M2) = L2. Then the following NFA M accepts the
language L1 ∩ L2:

M = (Z1 × Z2,Σ, δ, S1 × S2,E1 × E2),

where δ((z1, z2), a) = {(z ′1, z ′2) | z ′1 ∈ δ1(z1, a), z ′2 ∈ δ2(z2, a)}.

M accepts a word w if and only if both M1 and M2 accept the word w .

Markus Lohrey (Univ. Siegen) FSA SS 2023 125 / 356

Closure Properties

Example of a Cross Product:

Form the cross product of the following two automata:

g u
a

a

b b

1 2
b

a, b

g , 1 g , 2

u, 1 u, 2

a

b

b

a

b
b

Markus Lohrey (Univ. Siegen) FSA SS 2023 126 / 356

Closure Properties

Example of a Cross Product:

Form the cross product of the following two automata:

g u
a

a

b b

1 2
b

a, b

g , 1 g , 2

u, 1 u, 2

a

b

b

a

b
b

Markus Lohrey (Univ. Siegen) FSA SS 2023 126 / 356

Outlook

Further Important Questions

How can one prove that a language is not regular?

Example: The language {anbncn | n ≥ 1}, which appeared as an
example, seems not to be regular. How can this be demonstrated?

If a language is regular, how large is the smallest automaton that
accepts the language?

Does the smallest automaton even exist?

Markus Lohrey (Univ. Siegen) FSA SS 2023 127 / 356

The Pumping Lemma

How can one prove that a language L is not regular?

Idea: The goal is to exploit the fact that a regular language must be
accepted by an automaton with a finite number of states.

This also implies: if a word x ∈ L is sufficiently long, then at least one
state z is visited more than once during the traversal of the automaton.

Markus Lohrey (Univ. Siegen) FSA SS 2023 128 / 356

The Pumping Lemma

u

v

w
z

The resulting loop can then be traversed multiple times (or not at all),
thus “pumping” the word x = uvw . It follows that uw , uv2w , uv3w ,
. . . must also belong to L.

Remark: It holds that v i = v . . . v︸ ︷︷ ︸
i times

.

Markus Lohrey (Univ. Siegen) FSA SS 2023 129 / 356

The Pumping Lemma

Additionally, for u, v , w , the following properties can be required, where n
is the number of states of the automaton.

1 |v | ≥ 1: The loop is non-trivial, i.e., it contains at least one transition.

2 |uv | ≤ n = number of states of the NFA: After at most n alphabet
symbols, the state z is reached for the second time.

Markus Lohrey (Univ. Siegen) FSA SS 2023 130 / 356

The Pumping Lemma

Theorem (Pumping Lemma, uvw -Theorem)

Let L be a regular language. Then there exists a number n such that all
words x ∈ L with |x | ≥ n can be decomposed as x = uvw , satisfying the
following properties:

1 |v | ≥ 1,

2 |uv | ≤ n, and

3 for all i ≥ 0, uv iw ∈ L holds.

Here, n is the number of states of an automaton that recognizes L.

This lemma, however, does not speak about automata but only about the
properties of the language. Hence, it is suitable for making statements
about non-regularity.

Markus Lohrey (Univ. Siegen) FSA SS 2023 131 / 356

The Pumping Lemma

Proof of the Pumping Lemma:

Let L be a regular language.

Let M = (Z ,Σ, δ,S ,E) be an NFA with L = T (M), and let n = |Z |.
Now let x be an arbitrary word with x ∈ L = T (M) and |x | ≥ n, i.e.,
x = a1a2 · · · am with m ≥ n and a1, a2, . . . , am ∈ Σ.

Since x ∈ T (M), there exist states z0, z1, . . . , zm ∈ Z such that

z0 ∈ S , zj ∈ δ(zj−1, aj) for 1 ≤ j ≤ m, zm ∈ E .

Because |Z | = n, there exist 0 ≤ j < k ≤ n with zj = zk (pigeonhole
principle).

Let u = a1 · · · aj , v = aj+1 · · · ak , and w = ak+1 · · · am.

Then the following holds:

|v | = k − (j + 1) + 1 = k − j > 0 and |uv | = k ≤ n

for all i ≥ 0 : zm ∈ δ̂({z0}, uv iw) and thus uv iw ∈ T (M) = L,

Markus Lohrey (Univ. Siegen) FSA SS 2023 132 / 356

The Pumping Lemma

How can the Pumping Lemma be used to show that L is not regular?

Statement of the Pumping Lemma using logical operators:

L is regular
→
∃n : ∀x ∈ L with |x | ≥ n :

∃u, v ,w such that |v | ≥ 1, |uv | ≤ n, x = uvw and ∀i : uv iw ∈ L

This is logically equivalent to:

∀n : ∃x ∈ L with |x | ≥ n :
∀u, v ,w such that |v | ≥ 1, |uv | ≤ n and x = uvw :

∃i : uv iw 6∈ L
→ L is not regular

Note for this: A→ B ≡ ¬B → ¬A and ¬∀x∃yF ≡ ∃x∀y¬F
Markus Lohrey (Univ. Siegen) FSA SS 2023 133 / 356

Pumping Lemma

“Recipe” for Using the Pumping Lemma

Given a language L.

Example: {akbk | k ≥ 0}
We want to show that it is not regular.

1 Take an arbitrary number n. This number must not be chosen
specifically (it has to be arbitrary).

2 Choose a suitable word x ∈ L with |x | ≥ n. To ensure the word
actually has at least length n, it is advisable to include n (for
instance, as an exponent) in the word.

Example: x = anbn

Markus Lohrey (Univ. Siegen) FSA SS 2023 134 / 356

Pumping Lemma

“Recipe” for Using the Pumping Lemma

3 Now consider all possible decompositions x = uvw with the
restrictions |v | ≥ 1 and |uv | ≤ n.

Example: From uvw = anbn, |v | ≥ 1, and |uv | ≤ n, it follows that
j ≥ 0 and ` ≥ 1 exist with:
u = aj , v = a`, and w = ambn with j + `+ m = n

4 Choose for each of these decompositions a value of i (this can differ
for each case) such that uv iw 6∈ L.
In many cases, i = 0 and i = 2 are good choices.

Example: Choose i = 2, then uv2w = aj+2`+mbn 6∈ L, since
j + 2`+ m = n + ` 6= n because ` ≥ 1.

Markus Lohrey (Univ. Siegen) FSA SS 2023 135 / 356

Equivalence Relations and Minimal Automaton

We now address the following questions:

Does there always exist the smallest deterministic/non-deterministic
automaton for every language?

Can the number of states of the minimal automaton be directly
inferred from the language?

How can the minimal automaton be determined?

Markus Lohrey (Univ. Siegen) FSA SS 2023 136 / 356

Equivalence Relations and Minimal Automaton

Consider the following
DFA M:

Observation: For states 4 and 5, it holds that:

With a word containing an a, one always reaches state 6 (final state)
from either state.

With a word containing no a, one always reaches state 4 or 5
(non-final states) respectively.

From this, it follows that states 4 and 5 are recognition-equivalent and can
be merged into a single state.

Markus Lohrey (Univ. Siegen) FSA SS 2023 137 / 356

Equivalence Relations and Minimal Automaton

Similarly, states 2 and 3 are recognition-equivalent.

Resulting Automaton M ′:

Now, no states are recognition-equivalent anymore and therefore cannot
be merged further.

 The automaton M ′ is minimal for this language.

Markus Lohrey (Univ. Siegen) FSA SS 2023 138 / 356

Equivalence Relations and Minimal Automaton

Definition (Recognition-Equivalence)

Let M = (Z ,Σ, δ, q0,E) be a DFA.

Two states z1, z2 ∈ Z are called recognition-equivalent if and only if for
every word w ∈ Σ∗, the following holds:

δ̂(z1,w) ∈ E ⇐⇒ δ̂(z2,w) ∈ E .

The relation {(z1, z2) ∈ Z × Z | z1 and z2 are recognition-equivalent} is an
equivalence relation on the state set Z .

Markus Lohrey (Univ. Siegen) FSA SS 2023 139 / 356

Insert: Equivalence Relation

Equivalence relations are discussed in the module Discrete Mathematics
for Computer Scientists.

A binary relation R ⊆ A×A is an equivalence relation if the following hold:

R is reflexive: for all a ∈ A, (a, a) ∈ R.

R is symmetric: for all a, b ∈ A, if (a, b) ∈ R, then also (b, a) ∈ R.

R is transitive: for all a, b, c ∈ A, if (a, b) ∈ R and (b, c) ∈ R, then
also (a, c) ∈ R.

Often, a R b is written instead of (a, b) ∈ R (infix notation).

Markus Lohrey (Univ. Siegen) FSA SS 2023 140 / 356

Insert: Equivalence Relation

For x ∈ A, [x] = {y ∈ A | x R y} is the equivalence class of x .

Sometimes, [x]R is written to clarify that it refers to the equivalence class
with respect to the equivalence relation R.

However, when it is clear which equivalence relation R is meant, we simply
write [x].

Note:

It always holds that x ∈ [x].

x R y if and only if [x] = [y].

The equivalence classes of R form a partition of A, meaning every element
of A belongs to exactly one equivalence class.

Markus Lohrey (Univ. Siegen) FSA SS 2023 141 / 356

Equivalence Relations and Minimal Automaton

Each word x ∈ Σ∗ can be assigned a unique state z = δ̂(z0, x) in a DFA.
Therefore, the definition of recognition equivalence can be extended to
words from Σ∗ and languages (instead of automata).

Definition (Myhill-Nerode Equivalence)

Given a language L and words x , y ∈ Σ∗, we define an equivalence relation
RL with x RL y if and only if

∀w ∈ Σ∗ (xw ∈ L ⇐⇒ yw ∈ L).

For a regular language L, the following relationship holds between the
Myhill-Nerode equivalence RL and the concept of recognition equivalence:

Markus Lohrey (Univ. Siegen) FSA SS 2023 142 / 356

Equivalence Relations and Minimal Automaton

Lemma 2

Let M = (Z ,Σ, δ, z0,E) be a DFA and L = T (M) ⊆ Σ∗. Then for all
words x , y ∈ Σ∗, we have:

x RL y ⇐⇒ the states δ̂(z0, x) and δ̂(z0, y) are recognition equivalent.

Proof: It holds that

x RL y ⇐⇒ ∀w ∈ Σ∗(xw ∈ L ⇐⇒ yw ∈ L)

⇐⇒ ∀w ∈ Σ∗(xw ∈ T (M) ⇐⇒ yw ∈ T (M))

⇐⇒ ∀w ∈ Σ∗(δ̂(z0, xw) ∈ E ⇐⇒ δ̂(z0, yw) ∈ E)

⇐⇒ ∀w ∈ Σ∗(δ̂(δ̂(z0, x),w) ∈ E ⇐⇒ δ̂(δ̂(z0, y),w) ∈ E)

⇐⇒ the states δ̂(z0, x) and δ̂(z0, y) are recognition equivalent.

Markus Lohrey (Univ. Siegen) FSA SS 2023 143 / 356

Equivalence Relations and Minimal Automaton

Remarks:

The Myhill-Nerode equivalence RL is defined for every language L,
not just for regular languages.

From x RL y , it follows that: x ∈ L ⇔ y ∈ L.
For each equivalence class [x], it thus holds that: [x] ⊆ L or
[x] ∩ L = ∅.

Common mistake: It is often thought that x RL y holds if and only if
∀w ∈ Σ∗(xw ∈ L and yw ∈ L).

But this is false!

The definition of RL can also be written as follows:
x RL y holds if and only if for all words w ∈ Σ∗:

(xw ∈ L and yw ∈ L) or

(xw /∈ L and yw /∈ L) holds.

Markus Lohrey (Univ. Siegen) FSA SS 2023 144 / 356

Equivalence Relations and Minimal Automaton

Example 1 for Myhill-Nerode equivalence: Given the language

L = {w ∈ {a, b}∗ | #a(w) is even}.

The following equivalence classes for RL exist:

[ε] = {w ∈ {a, b}∗ | #a(w) is even} = L
(Equivalence class of ε)

[a] = {w ∈ {a, b}∗ | #a(w) is odd} = {a, b}∗\L
(Equivalence class of a)

The words ε and aa are equivalent, because:

If a word with an even number of a’s is appended to both, they stay
in the language.

If a word with an odd number of a’s is appended to both, they fall
out of the language.

Markus Lohrey (Univ. Siegen) FSA SS 2023 145 / 356

Equivalence Relations and Minimal Automaton

DFA for {w ∈ {a, b}∗ | #a(w) is even}:

b
a

a

b

g u

Markus Lohrey (Univ. Siegen) FSA SS 2023 146 / 356

Equivalence Relations and Minimal Automaton

Example 2 for Myhill-Nerode equivalence: Given the language

L = {w ∈ {a, b, c}∗ | the substring abc does not appear in w}.

The following equivalence classes for RL exist:

[ε] = {w ∈ {a, b, c}∗ | w does not end with a or ab and does not
contain abc}
[a] = {w ∈ {a, b, c}∗ | w ends with a and does not contain abc}
[ab] = {w ∈ {a, b, c}∗ | w ends with ab and does not contain abc}
[abc] = {w ∈ {a, b, c}∗ | w contains abc} (Trap state)

The words a and ab are not equivalent, because if c is appended to both,
ac is still in L, but abc is not.

Markus Lohrey (Univ. Siegen) FSA SS 2023 147 / 356

Equivalence Relations and Minimal Automaton

DFA for {w ∈ {a, b, c}∗ | the substring abc does not appear in w}:

a

a

ε fab

b c

a

b, c a a, b, c

c

b

Markus Lohrey (Univ. Siegen) FSA SS 2023 148 / 356

Insertion on Equivalence Relations

Insertion on Equivalence Relations: Let R ⊆ A× A be an equivalence
relation on the set A.

The index index(R) of R is the number of equivalence classes of R (which
can be infinite):

index(R) = |{[x] | x ∈ A}| ∈ N ∪ {∞}.

Example: On the set of integers Z, for a natural number k ≥ 2, the
equivalence relation ≡k is defined by a ≡k b (a is congruent to b modulo
k) if and only if there exists a q ∈ Z such that a− b = q · k (see the DMI
lecture). Then, we have index(≡k) = k .

Markus Lohrey (Univ. Siegen) FSA SS 2023 149 / 356

Insertion on Equivalence Relations

Observation: Let R and S be equivalence relations on the same set A. If
R ⊆ S (i.e., if a R b implies a S b), then it follows that
index(S) ≤ index(R) (where x ≤ ∞ for x ∈ N ∪ {∞}).

Justification: Let [A]R ([A]S) denote the set of equivalence classes of R
(S).

We define a map f : [A]R → [A]S by the rule

f ([a]R) = [a]S .

Caution: Is f ([a]R) uniquely defined?

The value f ([a]R) must not depend on which representative we choose for
the equivalence class [a]R .

Specifically: We need to show [a]R = [b]R =⇒ [a]S = [b]S :

[a]R = [b]R ⇐⇒ a R b =⇒ a S b ⇐⇒ [a]S = [b]S .

Markus Lohrey (Univ. Siegen) FSA SS 2023 150 / 356

Equivalence Relations and Minimal Automaton

Naturally, f is also surjective: Every equivalence class [a]S is hit:
f ([a]R) = [a]S .

Now, for arbitrary sets X and Y : |X | ≥ |Y | if and only if there exists a
surjective map f : X → Y (this is, in fact, the definition of |X | ≥ |Y |).

So in our situation: index(R) = |[A]R | ≥ |[A]S | = index(S).

One of the most famous theorems in automata theory is the following
characterization of regular languages:

Myhill-Nerode Theorem

Let L be a language. L is regular if and only if index(RL) <∞.

Markus Lohrey (Univ. Siegen) FSA SS 2023 151 / 356

Equivalence Relations and Minimal Automaton

Proof:

=⇒: Let L be regular.

Let M = (Z ,Σ, δ, z0,E) be a DFA with T (M) = L.

Define an equivalence relation RM on Σ∗ as follows:

x RM y ⇐⇒ δ̂(z0, x) = δ̂(z0, y).

Note:

RM is indeed an equivalence relation.

index(RM) ≤ |Z |.
More precisely: index(RM) is the number of states that can be
reached from the initial state, i.e., index(RM) = |{δ̂(z0, x) | x ∈ Σ∗}|.

Markus Lohrey (Univ. Siegen) FSA SS 2023 152 / 356

Equivalence Relations and Minimal Automaton

Claim: ∀x , y ∈ Σ∗(x RM y =⇒ x RL y), i.e., RM ⊆ RL.

Proof of the claim:

x RM y ⇐⇒ δ̂(z0, x) = δ̂(z0, y)

⇐⇒ ∀w ∈ Σ∗ : δ̂(z0, xw) = δ̂(z0, yw)

=⇒ ∀w ∈ Σ∗ : xw ∈ T (M) = L⇔ yw ∈ T (M) = L

⇐⇒ x RL y

The remark on slide 150 shows that index(RL) ≤ index(RM) ≤ |Z | <∞.

Markus Lohrey (Univ. Siegen) FSA SS 2023 153 / 356

Equivalence Relations and Minimal Automaton

⇐=: Let index(RL) <∞.

Let [x1], . . . , [xn] be a listing of all equivalence classes of RL.

Note:

Σ∗ = [x1] ∪ · · · ∪ [xn].

If [x] = [y], then [xa] = [ya] for all a ∈ Σ:

[x] = [y] ⇐⇒ x RL y

⇐⇒ ∀w ∈ Σ∗ (xw ∈ L⇔ yw ∈ L)

=⇒ ∀w ∈ Σ+ (xw ∈ L⇔ yw ∈ L)

⇐⇒ ∀a ∈ Σ ∀w ∈ Σ∗(xaw ∈ L⇔ yaw ∈ L)

⇐⇒ ∀a ∈ Σ (xa RL ya)

⇐⇒ ∀a ∈ Σ [xa] = [ya]

Markus Lohrey (Univ. Siegen) FSA SS 2023 154 / 356

Equivalence Relations and Minimal Automaton

We now define the DFA (the so-called equivalence class automaton for L)

ML = ({[x1], . . . , [xn]},Σ, δL, [ε], {[w] | w ∈ L}),

where δL([xi], a) = [xia] for all 1 ≤ i ≤ n and a ∈ Σ.

Note:

The set of final states {[w] | w ∈ L} is a set of equivalence classes
and therefore a subset of the state set {[x1], . . . , [xn]} (the set of all
equivalence classes).

The transition function δL is well-defined due to the remark on the
previous slide.

For all x ∈ Σ∗, we have: δ̂L([ε], x) = [x].

Markus Lohrey (Univ. Siegen) FSA SS 2023 155 / 356

Equivalence Relations and Minimal Automaton

Claim: T (ML) = L (this shows that L is regular).

Proof of the claim:

x ∈ T (ML) ⇐⇒ δ̂L([ε], x) ∈ {[w] | w ∈ L}
⇐⇒ [x] ∈ {[w] | w ∈ L}
⇐⇒ ∃w ∈ L : [x] = [w]

⇐⇒ ∃w ∈ L : x RL w

⇐⇒ x ∈ L

Markus Lohrey (Univ. Siegen) FSA SS 2023 156 / 356

Equivalence Relations and Minimal Automaton

With the Myhill-Nerode theorem, one can also show that a language L is
not regular.

To do this, one needs to find infinitely many words from Σ∗ that lie in
different RL equivalence classes.

Example 3 for Myhill-Nerode equivalence:

Let L = {akbk | k ≥ 0}

Consider the words a, aa, aaa, . . . , ai , . . .

It holds: ¬(ai RL a
j) for i 6= j , since aibi ∈ L and ajbi 6∈ L.

Therefore, RL has infinitely many equivalence classes, and L is not regular.

Markus Lohrey (Univ. Siegen) FSA SS 2023 157 / 356

Equivalence Relations and Minimal Automaton

Let M be a DFA with n states. We say that M is a minimal DFA for the
regular language L if

T (M) = L, and

there is no DFA M ′ with T (M ′) = L and fewer than n states.

Let’s reconsider the DFA ML constructed on slide 155.

Theorem

Let L be regular.

1 ML is a minimal DFA for L.

2 Let M be a DFA with T (M) = L and all states being reachable from
the initial state. Then:
M is a minimal DFA for L if and only if RL = RM .

3 If M is a minimal DFA for L, then M can be obtained from ML by
renaming the states.

Markus Lohrey (Univ. Siegen) FSA SS 2023 158 / 356

Equivalence Relations and Minimal Automaton

Proof:

Let M = (Z ,Σ, δM , z0,E) be an arbitrary DFA with T (M) = L.

Let ML = ({[x1], . . . , [xn]},Σ, δL, [ε], {[w] | w ∈ L}) be the equivalence
class automaton.

For (1), we need to show that ML has at most as many states as M.

From slide 153, we have seen that index(RL) ≤ |Z |.

Furthermore, the number of states of ML is equal to index(RL).

This proves (1).

Markus Lohrey (Univ. Siegen) FSA SS 2023 159 / 356

Equivalence Relations and Minimal Automaton

Assume that all states in M are reachable from the initial state z0, but M
is still not minimal for L.

Then we have index(RL) < |Z | = index(RM)
(see the last remark on slide 152).

Therefore, RL 6= RM .

On the other hand, if M is minimal for L, then we have
|Z | = number of states of ML = index(RL).

Since |Z | = index(RL) ≤ index(RM) ≤ |Z | (see slide 153 below), it follows
that index(RL) = index(RM) <∞.

With RM ⊆ RL (see slide 153 above), we obtain RM = RL.

This proves (2).

Markus Lohrey (Univ. Siegen) FSA SS 2023 160 / 356

Equivalence Relations and Minimal Automaton

For (3), assume that M is minimal for L.

Then we have RM = RL = RML
and [x1], . . . , [xn] are exactly the

equivalence classes of RM = RL.

Define f : Z → {[x1], . . . , [xn]} by f (z) = {w ∈ Σ∗ | δ̂M(z0,w) = z}.

Then f is a bijection.

Furthermore, the following holds:

f (z0) = [ε] is the initial state of ML.

Let z ∈ Z and let w ∈ Σ∗ such that δ̂M(z0,w) = z and hence
f (z) = [w]. Then we have:

f (δM(z , a)) = f (δ̂M(z0,wa)) = [wa] = δL([w], a) = δL(f (z), a)

z ∈ E ⇐⇒ w ∈ L⇐⇒ f (z) = [w] is a final state of ML

Markus Lohrey (Univ. Siegen) FSA SS 2023 161 / 356

Equivalence Relations and Minimal Automaton

This means that we can form ML from M by renaming each state z ∈ Z
to f (z).

Or conversely: M is formed from the equivalence class automaton ML by
renaming each state [xi] to f −1([xi]).

Remark: Thus, for a regular language, there is exactly one minimal DFA
up to renaming of states.

The minimal DFA ML for a regular language is, so to speak, a unique
representative for L.

Next Goal: Construct the minimal automaton ML from a non-minimal
DFA M = (Z ,Σ, δ, z0,E) with T (M) = L.

First, we can assume that each state z ∈ Z is reachable from the initial
state z0, i.e., ∃x ∈ Σ∗ : δ̂(z0, x) = z .

Markus Lohrey (Univ. Siegen) FSA SS 2023 162 / 356

Equivalence Relations and Minimal Automaton

If a state z is not reachable from the initial state, we can remove z from
the DFA without changing the accepted language.
Note: If there is an edge from z ′ to z , then z ′ is also not reachable from z0.

It holds:

M is not minimal for L
Slide 158⇐⇒ RM (RL (i.e., RM ⊆ RL and RM 6= RL)

⇐⇒ ∃x , y ∈ Σ∗ : (x , y) ∈ RL ∧ (x , y) 6∈ RM

Slide 143⇐⇒ ∃x , y ∈ Σ∗ : δ̂(z0, x), δ̂(z0, y) are recognition-equivalent

∧ δ̂(z0, x) 6= δ̂(z0, y)

⇐⇒ ∃z1, z2 ∈ Z : z1 and z2 are recognition-equivalent and z1 6= z2

For the last equivalence, we use that for every state z ∈ Z , there exists an
x ∈ Σ∗ with δ̂(z0, x) = z .

Markus Lohrey (Univ. Siegen) FSA SS 2023 163 / 356

Equivalence Relations and Minimal Automata

Solution: In M, we merge all recognition-equivalent states.

To determine which states are recognition-equivalent, we mark all pairs of
states {z , z ′} that are not recognition-equivalent.

We write pairs as 2-element subsets {z , z ′} because the order does not
matter: {z , z ′} = {z ′, z}.

Initially, certainly all pairs {z , z ′} with z ∈ E and z ′ 6∈ E are not
recognition-equivalent, these pairs we mark at the beginning.

Suppose for a pair {z , z ′}, there exists an a ∈ Σ such that
{δ(z , a), δ(z ′, a)} are not recognition-equivalent.
Then, {z , z ′} is also not recognition-equivalent.

This observation allows us to mark additional pairs as not
recognition-equivalent.

Markus Lohrey (Univ. Siegen) FSA SS 2023 164 / 356

Equivalence Relations and Minimal Automata

Minimal Automaton Algorithm

Input: DFA M (states that are not reachable from the start state have
already been removed.)
Output: Sets of recognition-equivalent states

1 Create a table of all state pairs {z , z ′} with z 6= z ′.

2 Mark all pairs {z , z ′} with z ∈ E and z ′ 6∈ E .

3 For each unmarked pair {z , z ′} and each a ∈ Σ, test if
{δ(z , a), δ(z ′, a)} is already marked. If so, mark {z , z ′} as well.

4 Repeat the previous step until no changes occur in the table.

5 For all currently unmarked pairs {z , z ′}, the states z and z ′ are
recognition-equivalent.

Markus Lohrey (Univ. Siegen) FSA SS 2023 165 / 356

Equivalence Relations and Minimal Automata

Example for the execution of the minimization algorithm:

2 4

61

3 5

a

a

bb

a

a

a, b

b

b

b

a

2
3
4
5
6

1 2 3 4 5

Create a table of all state pairs.

Markus Lohrey (Univ. Siegen) FSA SS 2023 166 / 356

Equivalence Relations and Minimal Automata

Example for the execution of the minimization algorithm:

2 4

61

3 5

a

a

bb

a

a

a, b

b

b

b

a

2
3
4
5
6 1 1 1 1 1

1 2 3 4 5

(1) Mark pairs of accepting and non-accepting states.

Markus Lohrey (Univ. Siegen) FSA SS 2023 166 / 356

Equivalence Relations and Minimal Automata

Example for the execution of the minimization algorithm:

2 4

61

3 5

a

a

bb

a

a

a, b

b

b

b

a

2
3
4 2
5
6 1 1 1 1 1

1 2 3 4 5

(2) Mark {2, 4} because δ(2, a) = 1, δ(4, a) = 6, and {1, 6} is marked.

Markus Lohrey (Univ. Siegen) FSA SS 2023 166 / 356

Equivalence Relations and Minimal Automata

Example for the execution of the minimization algorithm:

2 4

61

3 5

a

a

bb

a

a

a, b

b

b

b

a

2
3
4 2
5 3
6 1 1 1 1 1

1 2 3 4 5

(3) Mark {3, 5} because δ(3, a) = 1, δ(5, a) = 6, and {1, 6} is marked.

Markus Lohrey (Univ. Siegen) FSA SS 2023 166 / 356

Equivalence Relations and Minimal Automata

Example for the execution of the minimization algorithm:

2 4

61

3 5

a

a

bb

a

a

a, b

b

b

b

a

2
3
4 2
5 4 3
6 1 1 1 1 1

1 2 3 4 5

(4) Mark {2, 5} because δ(2, a) = 1, δ(5, a) = 6, and {1, 6} is marked.

Markus Lohrey (Univ. Siegen) FSA SS 2023 166 / 356

Equivalence Relations and Minimal Automata

Example for the execution of the minimization algorithm:

2 4

61

3 5

a

a

bb

a

a

a, b

b

b

b

a

2
3
4 2 5
5 4 3
6 1 1 1 1 1

1 2 3 4 5

(5) Mark {3, 4} because δ(3, a) = 1, δ(4, a) = 6, and {1, 6} is marked.

Markus Lohrey (Univ. Siegen) FSA SS 2023 166 / 356

Equivalence Relations and Minimal Automata

Example for the execution of the minimization algorithm:

2 4

61

3 5

a

a

bb

a

a

a, b

b

b

b

a

2
3
4 2 5
5 6 4 3
6 1 1 1 1 1

1 2 3 4 5

(6) Mark {1, 5} because δ(1, a) = 3, δ(5, a) = 6, and {3, 6} is marked.

Markus Lohrey (Univ. Siegen) FSA SS 2023 166 / 356

Equivalence Relations and Minimal Automata

Example for the execution of the minimization algorithm:

2 4

61

3 5

a

a

bb

a

a

a, b

b

b

b

a

2
3
4 7 2 5
5 6 4 3
6 1 1 1 1 1

1 2 3 4 5

(7) Mark {1, 4} because δ(1, a) = 3, δ(4, a) = 6, and {3, 6} is marked.

Markus Lohrey (Univ. Siegen) FSA SS 2023 166 / 356

Equivalence Relations and Minimal Automata

Example for the execution of the minimization algorithm:

2 4

61

3 5

a

a

bb

a

a

a, b

b

b

b

a

2
3 8
4 7 2 5
5 6 4 3
6 1 1 1 1 1

1 2 3 4 5

(8) Mark {1, 3} because δ(1, b) = 2, δ(3, b) = 5, and {2, 5} is marked.

Markus Lohrey (Univ. Siegen) FSA SS 2023 166 / 356

Equivalence Relations and Minimal Automata

Example for the execution of the minimization algorithm:

2 4

61

3 5

a

a

bb

a

a

a, b

b

b

b

a

2 9
3 8
4 7 2 5
5 6 4 3
6 1 1 1 1 1

1 2 3 4 5

(9) Mark {1, 2} because δ(1, b) = 2, δ(2, b) = 4, and {2, 4} is marked.

Markus Lohrey (Univ. Siegen) FSA SS 2023 166 / 356

Equivalence Relations and Minimal Automata

Example for the execution of the minimization algorithm:

2 4

61

3 5

a

a

bb

a

a

a, b

b

b

b

a

2 9
3 8
4 7 2 5
5 6 4 3
6 1 1 1 1 1

1 2 3 4 5

The remaining state pairs {2, 3} and {4, 5} cannot be marked anymore.
They are recognition-equivalent.

Markus Lohrey (Univ. Siegen) FSA SS 2023 166 / 356

Equivalence Relations and Minimal Automaton

Theorem (Correctness of the Minimization Algorithm)

For a given DFA M = (Z ,Σ, δ, z0,E), the minimization algorithm marks a
pair {z , z ′} (z , z ′ ∈ Z , z 6= z ′) if and only if z and z ′ are not
recognition-equivalent.

Proof:

(A) If {z , z ′} is marked, then z and z ′ are not recognition-equivalent.

Proof by induction on the time at which {z , z ′} is marked.

Base case: {z , z ′} is marked at the beginning because z ∈ E and z ′ 6∈ E .

Then, z and z ′ are not recognition-equivalent.

Inductive step: {z , z ′} is eventually marked because there exists an a ∈ Σ
such that {δ(z , a), δ(z ′, a)} was marked at an earlier time.

Markus Lohrey (Univ. Siegen) FSA SS 2023 167 / 356

Equivalence Relations and Minimal Automaton

By the induction hypothesis, δ(z , a) and δ(z ′, a) are not
recognition-equivalent.

Thus, z and z ′ are also not recognition-equivalent.

(B) If z and z ′ are not recognition-equivalent, then {z , z ′} will eventually
be marked.

Let z and z ′ be not recognition-equivalent.

Let λ(z , z ′) be the length of a shortest word w such that δ̂(z ,w) ∈ E and
δ̂(z ′,w) 6∈ E (or vice versa).

We will show by induction on λ(z , z ′) that {z , z ′} will be marked.

Base case: λ(z , z ′) = 0

Then, z ∈ E and z ′ 6∈ E .

Thus, {z , z ′} will be marked at the beginning.

Markus Lohrey (Univ. Siegen) FSA SS 2023 168 / 356

Equivalence Relations and Minimal Automaton

Inductive step: Let λ(z , z ′) > 0.

Then there is a word au (a ∈ Σ and u ∈ Σ∗) with |au| = λ(z , z ′), such
that

δ̂(z , au) = δ̂(δ(z , a), u) ∈ E , δ̂(z ′, au) = δ̂(δ(z ′, a), u) 6∈ E

(or vice versa).

Then δ(z , a) and δ(z ′, a) are also not recognition-equivalent, and
λ(δ(z , a), δ(z ′, a)) ≤ |u| < λ(z , z ′).

By the induction hypothesis, {δ(z , a), δ(z ′, a)} will eventually be marked.

Thus, {z , z ′} will also eventually be marked.

Markus Lohrey (Univ. Siegen) FSA SS 2023 169 / 356

Equivalence Relations and Minimal Automaton

Hints for performing the minimization algorithm:

Set up the table in such a way that each pair appears only once! So,
for a state set {1, . . . , n}:
Write 2, . . . , n vertically and 1, . . . , n − 1 horizontally.

Please indicate which states were marked in which order and why!

In Schöning’s book, only asterisks (∗) are used, but in the correction,
the order and reasons for marking are not apparent.

Markus Lohrey (Univ. Siegen) FSA SS 2023 170 / 356

Equivalence Relations and Minimal Automaton

For non-deterministic automata, the following statements can be made:

There is not a minimal NFA, but there can be multiple minimal NFAs.

The following two minimal NFAs recognize L = ((0|1)∗1) and have
two states (it is not possible to recognize L with only one state).

1 2

0, 1

1

0

1 2

1

0

1

Given a DFA M, a minimal NFA that recognizes T (M) will always
have at most as many states as M, because M itself is already an
NFA.

Furthermore: the minimal NFA can be exponentially smaller than the
minimal DFA.
See Lk = {x ∈ {0, 1}∗ | |x | ≥ k, the k-th last symbol of x is 0}.

Markus Lohrey (Univ. Siegen) FSA SS 2023 171 / 356

Decidability

We now discuss whether there are methods to decide the following
questions or problems for regular languages. Here, we assume that regular
languages are given as DFAs, NFAs, grammars, or regular expressions.

Problems

Word Problem: Does w ∈ L hold for a given regular language L and
w ∈ Σ∗?

Emptiness Problem: Does L = ∅ hold for a given regular language L?

Finiteness Problem: Is a given regular language L finite?

Intersection Problem: Does L1 ∩ L2 = ∅ hold for given regular
languages L1, L2?

Inclusion Problem: Does L1 ⊆ L2 hold for given regular languages L1,
L2?

Equivalence Problem: Does L1 = L2 hold for given regular languages
L1, L2?

Markus Lohrey (Univ. Siegen) FSA SS 2023 172 / 356

Decidability

Word Problem:

Let L ⊆ Σ∗ be a regular language, given by a DFA M = (Z ,Σ, δ, z0,E)
with T (M) = L, and let w ∈ Σ∗.

Question: Is w ∈ L?

Solution:

Let w = a1a2 · · · an with ai ∈ Σ.

Follow the state transitions of M as determined by the symbols a1, . . . , an:

z := z0

for i := 1 to n do
z := δ(z , ai)

endfor
if z ∈ E then return(YES) else return(NO)

Markus Lohrey (Univ. Siegen) FSA SS 2023 173 / 356

Decidability

Emptiness Problem:

Let M = (Z ,Σ, δ,S ,E) be an NFA.

Question: Is T (M) 6= ∅?

Solution:

Let G = (Z ,→) be the directed graph with

z → z ′ ⇐⇒ ∃a ∈ Σ : z ′ ∈ δ(z , a).

Then, T (M) 6= ∅ if and only if there exists a (possibly empty) path in the
graph G from a node in S to a node in E .

This can be decided, for example, using depth-first or breadth-first search
(see the lecture Algorithms and Data Structures).

Markus Lohrey (Univ. Siegen) FSA SS 2023 174 / 356

Decidability

Example 1: Consider the following automaton M.

0 1 2 3

a

a b c

c
b

The automaton recognizes a non-empty language, as demonstrated by the
following path in the graph G :

0 1 2 3

Markus Lohrey (Univ. Siegen) FSA SS 2023 175 / 356

Decidability

Example 2: The following automaton accepts the empty language
because there is no path in the graph G from 0 to 3:

0 1 2 3

a

a b c

c
b

Markus Lohrey (Univ. Siegen) FSA SS 2023 176 / 356

Decidability

Finiteness Problem:

Let M = (Z ,Σ, δ,S ,E) be an NFA.

Question: Is T (M) finite?

Solution:

Let G be defined as on the previous slide.

Then: T (M) is infinite if and only if there exist states z0 ∈ S , z ∈ Z , and
z1 ∈ E such that:

z0 →∗ z (z is reachable from the initial state z0),

z →+ z (there is a path from z back to itself with at least one edge,
i.e., z lies on a cycle),

z →∗ z1 (from z , the final state z1 can be reached).

This can again be determined using depth-first or breadth-first search.

Markus Lohrey (Univ. Siegen) FSA SS 2023 177 / 356

Decidability

Example: Consider again the following automaton M.

0 1 2 3 4

a

a b c

c
b

b

The automaton recognizes an infinite language: The red circle is reachable
from state 0, and from the red circle, one can reach node 4 (the accepting
state of the NFA).

0 1 2 3 4

Markus Lohrey (Univ. Siegen) FSA SS 2023 178 / 356

Decidability

Intersection Problem:

Let M1 and M2 be NFAs.

Question: Does T (M1) ∩ T (M2) = ∅?

Solution:

Construct the product automaton M from M1 and M2

(T (M) = T (M1) ∩ T (M2)), see Slide 125.

Test if T (M) = ∅.

Markus Lohrey (Univ. Siegen) FSA SS 2023 179 / 356

Decidability

Inclusion Problem:

Let M1 and M2 be NFAs.

Question: Does T (M1) ⊆ T (M2)?

Solution: From M1 and M2, we can construct an NFA M with
T (M) = T (M2) ∩ T (M1).

It holds that T (M1) ⊆ T (M2) if and only if T (M) = ∅.

Markus Lohrey (Univ. Siegen) FSA SS 2023 180 / 356

Decidability

Equivalence Problem:

Let M1 and M2 be NFAs.

Question: Does T (M1) = T (M2)?

Solution 1:

It holds that T (M1) = T (M2) if and only if T (M1) ⊆ T (M2) and
T (M2) ⊆ T (M1).

Solution 2:

For each Mi (i ∈ {1, 2}), determine an equivalent minimal DFA Ni .

Then we have: T (M1) = T (M2) ⇔ T (N1) = T (N2) ⇔ N1 and N2 are
isomorphic (i.e., they can be transformed into each other by renaming the
states).

Markus Lohrey (Univ. Siegen) FSA SS 2023 181 / 356

Decidability

Efficiency Considerations:

Depending on the representation of a regular language L, the runtime of
the procedures described above can vary significantly.

Example: Equivalence Problem L1 = L2:

L1, L2 given as DFAs

 Runtime O(n2)

L1, L2 given as grammars, regular expressions, or NFAs

 Complexity NP-hard

This means, among other things, that it is not known whether this
problem can be solved in polynomial time.

More on the complexity class NP and related issues Master’s
course on Complexity Theory.

Markus Lohrey (Univ. Siegen) FSA SS 2023 182 / 356

Context-Free Languages

We now discuss context-free or Type-2-languages.

Review: Productions of Context-Free Grammars

In context-free grammars, all productions are of the form A→ w , where
A ∈ V (i.e., A is a variable) and w ∈ (V ∪ Σ)+.

Exception (ε-special rule): If S → ε, the start symbol S must not appear
on the right-hand side of any production.

Considered example grammars:

A grammar that generates correctly parenthesized arithmetic
expressions

A grammar that generates sentences of natural language

Another example: the language L = {akbk | k ≥ 0} is context-free.

Productions: S → ε | T , T → ab | aTb

Markus Lohrey (Univ. Siegen) FSA SS 2023 183 / 356

Context-Free Languages

Applications of Context-Free Languages

Main application: Description of the syntax of programming languages

Many of the techniques discussed here are therefore of interest for use in
compiler construction.

Remark: A grammar that describes a natural language may not be
context-free, despite having some context-free components, because
natural language involves many subtle contextual dependencies that need
to be taken into account.

To date, no one has succeeded in creating a complete grammar for all
correct sentences in natural language.
Question: What exactly constitutes a correct sentence?

Markus Lohrey (Univ. Siegen) FSA SS 2023 184 / 356

Context-Free Languages

Content of the section “Context-Free Languages”

Normal Forms – To apply certain methods/techniques, it is important
to convert a grammar into a specific normal form.

Pumping Lemma for context-free languages

Closure Properties – Context-free languages do not behave as well as
regular languages in terms of closure properties.

Word Problem – and the algorithm to solve the word problem (CYK
algorithm)

Pushdown Automata – The automaton model for context-free
languages

Markus Lohrey (Univ. Siegen) FSA SS 2023 185 / 356

Normal Forms

We will first revisit the “ε special rule”:

The definition for context-free grammars (with the ε special rule) requires
that S must not appear on the right-hand side if S → ε is a production.
Moreover, no other productions of the form A→ ε are allowed.

What happens if these conditions are relaxed and arbitrary rules of the
form A→ ε are allowed? Can this lead to a non-context-free language?

Answer: No

Markus Lohrey (Univ. Siegen) FSA SS 2023 186 / 356

Normal Forms

Theorem (ε-free Grammars)

Given a grammar G = (V ,Σ,P, S), whose productions are all of the form
A→ w for A ∈ V , w ∈ (V ∪ Σ)∗.

Then there exists a context-free grammar G ′ = (V ,Σ,P ′,S) such that:

all productions in P ′ are of the form A→ w with A ∈ V ,
w ∈ (V ∪ Σ)+, and

L(G ′) = L(G) \ {ε}.

Hence, ε-productions can be freely used. They do not alter the expressive
power of context-free grammars.

Proof:

Let Vε = {A ∈ V | A⇒∗G ε} be the set of all variables from which the
empty word can be derived.

Markus Lohrey (Univ. Siegen) FSA SS 2023 187 / 356

Normal Forms

The set Vε can be computed using the following algorithm:

U := ∅
Vε := {A ∈ V | (A→ ε) ∈ P}
while U 6= Vε do

U := Vε
Vε := U ∪ {A ∈ V | ∃w ∈ U+ : (A→ w) ∈ P}

endwhile

Then the following holds:

If a variable A is eventually added to the set Vε, then A⇒∗G ε.

This is easily shown by induction on the time t when A is added to
the set Vε.

Markus Lohrey (Univ. Siegen) FSA SS 2023 188 / 356

Normal Forms

If A⇒∗G ε, then eventually A will be added to the set Vε.

This can be shown by induction on the length ` of the derivation
A⇒∗G ε:

If (A→ ε) ∈ P, then A is added to Vε at the very beginning.

Otherwise, there is a production (A→ A1A2 · · ·An) ∈ P with
Ai ⇒∗G ε for all 1 ≤ i ≤ n, where the derivation Ai ⇒∗G ε has length
< `.

By induction, each variable Ai (1 ≤ i ≤ n) will eventually be added to
Vε.

Thus, the same holds for A.

Markus Lohrey (Univ. Siegen) FSA SS 2023 189 / 356

Normal Forms

For a non-empty word w ∈ (V ∪ Σ)+, we define the set of words
F (w) ⊆ (V ∪ Σ)+ as follows:

Let w = w0A1w1A2 · · ·wn−1Anwn, where n ≥ 0, A1, . . . ,An ∈ Vε and no
variable from Vε appears in the word w0w1 · · ·wn. Then define

F (w) = {w0A
e1
1 w1A

e2
2 · · ·wn−1A

en
n wn | e1, . . . en ∈ {0, 1}} \ {ε},

where A0
i = ε and A1

i = Ai .

Intuitively: All words that can be formed from w by deleting some (but not
necessarily all) occurrences of variables from Vε, excluding the empty word.

We can now define the production set P ′ of the ε-free grammar G ′ as:

P ′ = {A→ w ′ | ∃w : (A→ w) ∈ P and w ′ ∈ F (w)}.

Markus Lohrey (Univ. Siegen) FSA SS 2023 190 / 356

Normal Forms

Claim: L(G ′) = L(G) \ {ε}

Proof of the Claim:

L(G ′) ⊆ L(G) \ {ε}: By the construction of G ′, we have ε 6∈ L(G ′).

Furthermore, for each production (A→ w ′) ∈ P ′ of G ′:

A⇒∗G w ′.

This implies L(G ′) ⊆ L(G) \ {ε}.

L(G) \ {ε} ⊆ L(G ′): By induction on the length of derivations, we
show for all nonterminals A ∈ V and words w ∈ Σ+:

A⇒∗G w implies A⇒∗G ′ w .

So suppose A⇒∗G w .

Markus Lohrey (Univ. Siegen) FSA SS 2023 191 / 356

Normal Forms

If (A→ w) ∈ P, then (A→ w) ∈ P ′ and thus A⇒∗G ′ w .

Suppose the derivation A⇒∗G w has length at least 2.

There must be a production (A→ w0A1w1A2w2 · · ·Anwn) ∈ P and shorter
derivations Ai ⇒∗G ui (1 ≤ i ≤ n) with w = w0u1w1u2w2 · · · unwn.

Let J = {i | 1 ≤ i ≤ n, ui = ε}.

Let w ′ be the word that results from w0A1w1A2w2 · · ·Anwn by replacing
all Ai with i ∈ J by ε (note: Ai ∈ Vε for all i ∈ J).

Since w 6= ε, it must also be that w ′ 6= ε.

By the definition of P ′, (A→ w ′) ∈ P ′.

Furthermore, by induction: Ai ⇒∗G ′ ui for all i ∈ {1, . . . , n} \ J.

Altogether, we obtain A⇒∗G ′ w .

Markus Lohrey (Univ. Siegen) FSA SS 2023 192 / 356

Normal Forms

The theorem just proven shows in particular:

Theorem

Let G = (V ,Σ,P,S) be a grammar whose productions are all of the form
A→ w for A ∈ V , w ∈ (V ∪ Σ)∗. Then L(G) is context-free.

Proof: Construct from G a context-free grammar G ′ such that
L(G ′) = L(G) \ {ε} and G ′ contains no productions of the form A→ ε.

If ε /∈ L(G), then L(G ′) = L(G).

Now, assume ε ∈ L(G).

Take a new start symbol S ′ and add the productions S ′ → ε | S to G ′.

The resulting grammar H is context-free (with ε-special rule), and we have
L(G) = L(G ′) ∪ {ε} = L(H).

Markus Lohrey (Univ. Siegen) FSA SS 2023 193 / 356

Normal Forms

Example: Consider the grammar G with the following productions:

S → aABC , A→ ε | AA, B → ε | BbA, C → ε | CAc

We have Vε = {A,B,C}.

For the (non-empty) right-hand sides of the grammar, we get:

F (aABC) = {aABC , aBC , aAC , aAB, aA, aB, aC , a}

F (AA) = {AA,A}

F (BbA) = {BbA, bA,Bb, b}

F (CAc) = {CAc ,Ac ,Cc , c}

Markus Lohrey (Univ. Siegen) FSA SS 2023 194 / 356

Normal Forms

Note: ε /∈ L(G). Therefore, the grammar G ′ with the following productions
satisfies L(G) = L(G ′):

S → aABC | aBC | aAC | aAB | aA | aB | aC | a
A → AA | A
B → BbA | bA | Bb | b
C → CAc | Ac | Cc | c

Remark: The set defined on slide 190 can contain up to 2n words. This
can cause the constructed grammar G ′ to become quite large.

Markus Lohrey (Univ. Siegen) FSA SS 2023 195 / 356

Normal Forms

We now consider another important normal form:

Definition (Chomsky Normal Form)

A context-free grammar G with ε /∈ L(G) is in Chomsky Normal Form
(CNF), if all productions have one of the following two forms:

A→ BC A→ a

where A,B,C ∈ V are variables and a ∈ Σ is a terminal symbol.

Theorem (Conversion to Chomsky Normal Form)

For every context-free grammar G with ε /∈ L(G), there exists a grammar
G ′ in Chomsky Normal Form with L(G) = L(G ′).

Markus Lohrey (Univ. Siegen) FSA SS 2023 196 / 356

Normal Forms

Proof:

Step 1:

Based on the theorem “ε-free grammars” (Slide 187), we can assume that
G has no productions of the form A→ ε.

Step 2:

For each terminal symbol a ∈ Σ, we introduce a new variable Aa /∈ V
along with the production Aa → a.

Then, we can replace each occurrence of a in a right-hand side 6= a by Aa.

After this, all productions will be of the form A→ a or A→ A1 · · ·An with
a ∈ Σ, n ≥ 1, and variables A1, . . . ,An.

Markus Lohrey (Univ. Siegen) FSA SS 2023 197 / 356

Normal Forms

Step 3: Elimination of chain rules.

We now eliminate all productions of the form A→ B for variables A,B
(chain rules) as follows:

For each variable A, we add the production A→ α if α is not a variable
and there exists a variable B such that A⇒∗ B → α.

Afterward, we can remove all chain rules.

All productions now have the form A→ a or A→ A1 · · ·An with a ∈ Σ,
n ≥ 2, and variables A1, . . . ,An.

Markus Lohrey (Univ. Siegen) FSA SS 2023 198 / 356

Normal Forms

Step 4: Elimination of productions of the form A→ A1 · · ·An with n ≥ 3.

Let A→ A1 · · ·An be a production with n ≥ 3.

We introduce new variables B2, . . . ,Bn−1 and replace the production
A→ A1 · · ·An with the following productions:

A→ A1B2, Bi → AiBi+1 (2 ≤ i ≤ n − 2), Bn−1 → An−1An

Markus Lohrey (Univ. Siegen) FSA SS 2023 199 / 356

Normal Forms

Example: Let
G = ({S ,A}, {a, b, c},P, S)

with the following production set P:

S → aAb

A → S | aaSc | ε

We transform G into CNF.

Step 1: We make G ε-free.

This results in the following productions:

S → aAb | ab
A → S | aaSc

Markus Lohrey (Univ. Siegen) FSA SS 2023 200 / 356

Normal Forms

Step 2: This results in the following productions:

S → AaAAb | AaAb

A → S | AaAaSAc

Aa → a

Ab → b

Ac → c

Markus Lohrey (Univ. Siegen) FSA SS 2023 201 / 356

Normal Forms

Step 3: Elimination of Chain Rules.

The only chain rule in our grammar is A→ S . Its elimination results in the
following productions:

S → AaAAb | AaAb

A → AaAAb | AaAb | AaAaSAc

Aa → a

Ab → b

Ac → c

Markus Lohrey (Univ. Siegen) FSA SS 2023 202 / 356

Normal Forms

Step 4: Elimination of rules of the form A→ A1 · · ·An with n ≥ 3.

S → AaB | AaAb

A → AaB | AaAb | AaC

B → AAb

C → AaSAc

Aa → a

Ab → b

Ac → c

Markus Lohrey (Univ. Siegen) FSA SS 2023 203 / 356

Normal Forms

Step 4: Elimination of rules of the form A→ A1 · · ·An with n ≥ 3.

S → AaB | AaAb

A → AaB | AaAb | AaC

B → AAb

C → AaD

D → SAc

Aa → a

Ab → b

Ac → c

Markus Lohrey (Univ. Siegen) FSA SS 2023 204 / 356

Normal Forms

Definition (Greibach Normal Form)

A context-free grammar G = (V ,Σ,P,S) with ε /∈ L(G) is in Greibach
Normal Form, if all productions in P have the following form:

A→ aB1B2 . . .Bk with k ≥ 0

Here, A,B1, . . . ,Bk ∈ V are variables and a ∈ Σ is an alphabet symbol.

The Greibach Normal Form guarantees that at every derivation step
exactly one alphabet symbol is produced.
It is useful to show that pushdown automata (i.e., automata for
context-free languages) do not require ε-transitions.

Theorem (Conversion to Greibach Normal Form)

For every context-free grammar G with ε /∈ L(G), there exists a grammar
G ′ in Greibach Normal Form such that L(G) = L(G ′).

Markus Lohrey (Univ. Siegen) FSA SS 2023 205 / 356

Normal Forms

Proof: Let G = (V ,Σ,P,S) be a context-free grammar with ε /∈ L(G).

Preliminary Consideration:

Suppose there are the following productions for a variable A in P:

A→ Aα1 | · · · | Aαk | β1 | · · · | β`.

Here, α1, . . . , αk , β1, . . . , β` ∈ (V ∪ Σ)∗ and β1, . . . , β` do not begin with
A.

Then, with these productions, the same sentence forms can be generated
as with

A→ β1 | · · · | β` | β1B | · · · | β`B
B → α1 | · · · | αk | α1B | · · · | αkB.

Both rule sets can generate all sentence forms from

(β1 | · · · | β`)(α1 | · · · | αk)∗

.
Markus Lohrey (Univ. Siegen) FSA SS 2023 206 / 356

Normal Forms

Let A1, . . . ,Am be an arbitrary enumeration of all the variables of G .

Step 1: Using the algorithm on the next slide, we transform G into an
equivalent context-free grammar in which all productions of the form
Ai → α satisfy:

α = aβ with a ∈ Σ, β ∈ V ∗ or α = Ajβ with j > i , β ∈ V ∗

Without loss of generality, we can assume that G is in Chomsky Normal
Form.

Markus Lohrey (Univ. Siegen) FSA SS 2023 207 / 356

Normal Forms

for i := 1 to m do
for j := 1 to i − 1 do

for all (Ai → Ajα) ∈ P do
Let Aj → β1 | · · · | βn be all rules with left-hand side = Aj .
P := (P ∪ {Ai → β1α | · · · | βnα}) \ {Ai → Ajα}

endfor
endfor
if there are productions of the form Ai → Aiα then

Apply the transformation from the preliminary consideration to Ai

(introducing a new variable Bi).
endif

endfor

Markus Lohrey (Univ. Siegen) FSA SS 2023 208 / 356

Normal Forms

After Step 1, all productions with left-hand side = Am are of the form
Am → aα with a ∈ Σ, α ∈ V ∗.

Step 2: The following algorithm ensures that all productions with left-hand
side Ai begin with a terminal symbol on the right-hand side.

for i := m − 1 downto 1 do
forall (Ai → Ajα) ∈ P with j > i do

Let Aj → β1 | · · · | βn be all rules with left-hand side = Aj .
P := (P ∪ {Ai → β1α | · · · | βnα}) \ {Ai → Ajα}

endfor
endfor

After Step 2, all productions with left-hand side = Ai (1 ≤ i ≤ m) are in
Greibach Normal Form.

However, the productions introduced for the new variables Bi in Step 1
may not be in Greibach Normal Form.

Markus Lohrey (Univ. Siegen) FSA SS 2023 209 / 356

Normal Forms

Let Bi → Ajα be a rule that violates the Greibach Normal Form.

Let Aj → β1 | · · · | βk be all productions with left-hand side = Aj .

Then β1, . . . , βk begin with terminal symbols.

Replace Bi → Ajα by Bi → β1α | · · · | βkα.

Now the grammar is in Greibach Normal Form.

Markus Lohrey (Univ. Siegen) FSA SS 2023 210 / 356

Normal Forms

Example: Let G be the grammar in CNF with the following productions:

A1 → A2A3

A2 → A3A1 | b
A3 → A1A2 | a.

In Step 1, only the production A3 → A1A2 in the iteration i = 3 is
replaced as follows:

For j = 1: A3 → A2A3A2

For j = 2: A3 → A3A1A3A2 | bA3A2

Now a new variable B3 is introduced, and the productions

A3 → A3A1A3A2 | bA3A2 | a

are replaced by

A3 → bA3A2B3 | aB3 | bA3A2 | a
B3 → A1A3A2B3 | A1A3A2.

Markus Lohrey (Univ. Siegen) FSA SS 2023 211 / 356

Normal Forms

We now have the following grammar after Step 1:

A1 → A2A3

A2 → A3A1 | b
A3 → bA3A2B3 | aB3 | bA3A2 | a
B3 → A1A3A2B3 | A1A3A2.

Note: All productions for A3 indeed begin with a terminal symbol on the
right-hand side.

After Step 2, iteration i = 2:

A1 → A2A3

A2 → bA3A2B3A1 | aB3A1 | bA3A2A1 | aA1 | b
A3 → bA3A2B3 | aB3 | bA3A2 | a
B3 → A1A3A2B3 | A1A3A2

Markus Lohrey (Univ. Siegen) FSA SS 2023 212 / 356

Normal Forms

After Step 2, iteration i = 1:

A1 → bA3A2B3A1A3 | aB3A1A3 | bA3A2A1A3 | aA1A3 | bA3

A2 → bA3A2B3A1 | aB3A1 | bA3A2A1 | aA1 | b
A3 → bA3A2B3 | aB3 | bA3A2 | a
B3 → A1A3A2B3 | A1A3A2

Now, in the right-hand sides of the B3 productions, A1 must be replaced
by the right-hand sides of A1:

Markus Lohrey (Univ. Siegen) FSA SS 2023 213 / 356

Normal Forms

A1 → bA3A2B3A1A3 | aB3A1A3 | bA3A2A1A3 | aA1A3 | bA3

A2 → bA3A2B3A1 | aB3A1 | bA3A2A1 | aA1 | b
A3 → bA3A2B3 | aB3 | bA3A2 | a
B3 → bA3A2B3A1A3A3A2B3 | aB3A1A3A3A2B3 | bA3A2A1A3A3A2B3 |

aA1A3A3A2B3 | bA3A3A2B3 | bA3A2B3A1A3A3A2 |
aB3A1A3A3A2 | bA3A2A1A3A3A2 | aA1A3A3A2 | bA3A3A2

Markus Lohrey (Univ. Siegen) FSA SS 2023 214 / 356

Normal Forms

Remark on the empty word ε: With grammars in Chomsky Normal Form
(CNF) or Greibach Normal Form (GNF), only context-free languages L
with ε 6∈ L can be generated.

Now, if you have a context-free grammar G with ε ∈ L(G), you can
proceed as follows:

Construct from G a context-free grammar G ′ with
L(G ′) = L(G) \ {ε} (see the theorem on slide 187).
Convert G ′ into a grammar G ′′ in Chomsky Normal Form or Greibach
Normal Form.

Let S be the start symbol of G ′′, and let S → α1 | · · · | αn be all
productions in G ′′ with left-hand side = S .
Take a new start symbol S ′ and add the productions
S ′ → ε | α1 | · · · | αn to G ′′.

For the resulting grammar H, it holds that L(G) = L(H), and all
productions in H are in Chomsky Normal Form or Greibach Normal
Form, except for the production S ′ → ε.

Markus Lohrey (Univ. Siegen) FSA SS 2023 215 / 356

Pumping Lemma

Analogous to regular languages, we can now prove a Pumping Lemma for
context-free languages.

The statement valid for regular languages and finite automata

Any sufficiently long word passes through a state of the automaton twice.

is replaced by

On a path of the syntax tree, which represents the derivation of a
sufficiently long word by a context-free grammar, a variable appears at
least twice.

Markus Lohrey (Univ. Siegen) FSA SS 2023 216 / 356

Pumping Lemma

What does “sufficiently long word” mean here?

The answer to this question depends on the form of the grammar.

We assume that the grammar is in Chomsky Normal Form.

Then, syntax trees are (except for the bottom layer of the leaves) always
binary trees (due to productions of the form A→ BC).

For binary trees, the following holds:

Lemma (Path length in binary trees)

Let B be a binary tree (i.e., each node in B has either zero or two
children) with at least 2k leaves.
Then, B has a path from the root to a leaf consisting of at least k edges
and k + 1 nodes.

Markus Lohrey (Univ. Siegen) FSA SS 2023 217 / 356

Pumping Lemma

Proof: Induction on k .

Base case: k = 0.

Let B be a binary tree with at least 20 = 1 leaf.

Then, B has a path that consists of at least one node (namely, the root).

Inductive step: k ≥ 0.

Let B be a binary tree with at least 2k+1 = 2k + 2k leaves.

Let v1 and v2 be the two children of the root, and let B1 and B2 be the
binary trees with roots v1 and v2, respectively:

v1 v2

B1 B2

Markus Lohrey (Univ. Siegen) FSA SS 2023 218 / 356

Pumping Lemma

Then, either B1 or B2 must have at least 2k leaves: If both B1 and B2 had
strictly fewer than 2k leaves, then the tree B would have strictly fewer
than 2k + 2k = 2k+1 leaves.

Without loss of generality, assume B1 has at least 2k leaves.

By the inductive hypothesis, there is a path in B1 from the root v1 to a
leaf with at least k edges and k + 1 nodes.

By adding the edge from the root to v1, we obtain a path in B from the
root to a leaf with at least k + 1 edges and k + 2 nodes.

Markus Lohrey (Univ. Siegen) FSA SS 2023 219 / 356

Pumping Lemma

Example: Let the context-free grammar G (in CNF) consist of the
following productions:

S → AT | CB, T → SB, A→ BC , B → b, C → c .

Consider the following syntax tree:

S

A

B

b

C

c

T

S

A

B

b

C

c

T

S

C

c

B

b

B

b

B

b

Markus Lohrey (Univ. Siegen) FSA SS 2023 220 / 356

Pumping Lemma

Example: Let the context-free grammar G (in CNF) consist of the
following productions:

S → AT | CB, T → SB, A→ BC , B → b, C → c .

Removing the leaves results in a binary tree:

S

A

B C

T

S

A

B C

T

S

C B

B

B

Markus Lohrey (Univ. Siegen) FSA SS 2023 220 / 356

Pumping Lemma

Example: Let the context-free grammar G (in CNF) consist of the
following productions:

S → AT | CB, T → SB, A→ BC , B → b, C → c .

Removing the leaves results in a binary tree:

S

A

B C

T

S

A

B C

T

S

C B

B

B

Markus Lohrey (Univ. Siegen) FSA SS 2023 220 / 356

Pumping Lemma

Let G = (V ,Σ,P,S) be a grammar in Chomsky Normal Form with
k = |V | variables.

Let z ∈ L(G).

If |z | ≥ 2k , then every syntax tree for z obviously has at least 2k

leaves.

Consider a syntax tree for z and remove the leaves labeled with
terminal symbols.
This results in a binary tree T .

Consider the longest path in T from the root to a leaf.

The lemma from slide 217 implies that this path has at least
k + 1 > |V | nodes.

Thus, some variable A appears at least twice on the path (we will
refer to this as a double occurrence in the following).

Markus Lohrey (Univ. Siegen) FSA SS 2023 221 / 356

Pumping Lemma

Syntax tree for a word z with |z | ≥ n = 2k

Here, n is the “constant of the pumping lemma”.

S

binary tree

word z

Level of the leaves
(last derivation step)

Markus Lohrey (Univ. Siegen) FSA SS 2023 222 / 356

Pumping Lemma
The longest path has at least k + 1 internal nodes.

S

word z

Markus Lohrey (Univ. Siegen) FSA SS 2023 222 / 356

Pumping Lemma
On this path, there is a variable that appears twice, such as A.

A

A

S

word z

Markus Lohrey (Univ. Siegen) FSA SS 2023 222 / 356

Pumping Lemma
The word z is now split into five substrings u, v , w , x , y :

w is derived from the lower A: A⇒∗ w
vwx is derived from the upper A: A⇒∗ vAx ⇒∗ vwx

u v w x y

S

A

A

Markus Lohrey (Univ. Siegen) FSA SS 2023 222 / 356

Pumping Lemma
This gives three nested sub-syntax trees, which can be reassembled.

u v w x y

S

A

A

Markus Lohrey (Univ. Siegen) FSA SS 2023 222 / 356

Pumping Lemma
By removing the middle subtree, we get a syntax tree for uwy . Thus, uwy ∈
L(G).

u y

w

S

A

Markus Lohrey (Univ. Siegen) FSA SS 2023 222 / 356

Pumping Lemma

By doubling the middle subtree, we get a syntax tree for uv2wx2y . Thus,
uv2wx2y ∈ L(G).

u y

v w x

v x

S

A

A

A

Markus Lohrey (Univ. Siegen) FSA SS 2023 222 / 356

Pumping-Lemma

Using the concrete example on slide 220:

S

A

B C

T

S

A

B C

T

S

C B

B

B

We get: u = bc, v = bc, w = cb, x = b, y = b

Markus Lohrey (Univ. Siegen) FSA SS 2023 223 / 356

Pumping Lemma

Additionally, the following properties can be required for v , w , and x :

|vwx | ≤ n = 2k :

We can assume that we have selected the deepest double occurrence of a
variable, i.e., the double occurrence with the greatest depth.
This can be achieved by following a path of maximal length from bottom
to top until a double occurrence is found.
Therefore, the distance from the upper A to the leaf level is at most k,
and the binary tree below it has at most 2k leaves.

u v w x y

S

A

A

Markus Lohrey (Univ. Siegen) FSA SS 2023 224 / 356

Pumping Lemma

|vx | ≥ 1:

Let B,C be the two children of the upper A. Then the lower A either
originates from B or C . The other variable must, since the grammar is in
Chomsky Normal Form, derive a non-empty word.
And this word is a subword of v or x .

u v w x y

S

A

A

Markus Lohrey (Univ. Siegen) FSA SS 2023 225 / 356

The Pumping Lemma

We have thus proven the following theorem:

Theorem (Pumping Lemma, uvwxy -Theorem)

Let L be a context-free language. Then there exists a number n such that
all words z ∈ L with |z | ≥ n can be decomposed as z = uvwxy , such that
the following properties hold:

1 |vx | ≥ 1,

2 |vwx | ≤ n,

3 for all i ≥ 0, uv iwx iy ∈ L.

Here, n = 2k is derived from the number k of variables in a context-free
grammar in CNF for L.

Markus Lohrey (Univ. Siegen) FSA SS 2023 226 / 356

Pumping Lemma

Application of the Pumping Lemma:

We will show that the language L = {ambmcm | m ≥ 1} is not
context-free.

1 We assume an arbitrary number n.

2 We choose a word z ∈ L with |z | ≥ n. In this case, z = anbncn is
suitable.

3 Now, we consider all possible decompositions of z = uvwxy with the
restrictions |vx | ≥ 1 and |vwx | ≤ n.

Since |vwx | ≤ n, it follows that vx cannot consist of a’s, b’s, and c ’s
because it cannot span across the entire b-block.

4 We choose i = 2 for all these possible decompositions and consider
uv2wx2y . Due to the above reasoning, one or two alphabet symbols
have been pumped, but at least one has not.

Thus, it is clear that uv2wx2y cannot be in L, because every word in
L has an equal number of a’s, b’s, and c ’s.

Markus Lohrey (Univ. Siegen) FSA SS 2023 227 / 356

Pumping Lemma

One can also show that the following languages are not context-free:

L1 = {ap | p is prime}
L2 = {an | n is a perfect square}
L3 = {a2n | n ≥ 0}

The languages L1, L2, L3 are all unary, meaning they are languages over a
one-letter alphabet: L1, L2, L3 ⊆ Σ∗ with |Σ| = 1.

For unary languages, the following theorem holds (without proof).

Theorem (Unary Context-Free Languages)

Every context-free language over a one-letter alphabet is already regular.

Markus Lohrey (Univ. Siegen) FSA SS 2023 228 / 356

Closure Properties

Closure

Context-free languages are closed under:

Union (L1, L2 context-free ⇒ L1 ∪ L2 context-free)

Product/Concatenation (L1, L2 context-free ⇒ L1L2 context-free)

Star operation (L context-free ⇒ L∗ context-free)

Context-free languages are not closed under:

Intersection

Complement

Markus Lohrey (Univ. Siegen) FSA SS 2023 229 / 356

Closure Properties

Closure under Union

If L1 and L2 are context-free languages, then L1 ∪ L2 is also context-free.

Reasoning: Let G1 = (V1,Σ,P1,S1) and G2 = (V2,Σ,P2, S2) be
context-free grammars.

Without loss of generality, assume that V1 ∩ V2 = ∅.

Let S /∈ V1 ∪ V2.

Then, G = (V1 ∪ V2 ∪ {S},Σ,P1 ∪ P2 ∪ {S → S1, S → S2},S) is a
context-free grammar with L(G) = L(G1) ∪ L(G2).

Markus Lohrey (Univ. Siegen) FSA SS 2023 230 / 356

Closure Properties

Closure under Product/Concatenation

If L1 and L2 are context-free languages, then L1L2 is also context-free.

Reasoning: Let

G1 = (V1,Σ,P1,S1), G2 = (V2,Σ,P2,S2)

be context-free grammars. Without loss of generality, assume that
V1 ∩ V2 = ∅.

Let S /∈ V1 ∪ V2.

Then,
G = (V1 ∪ V2 ∪ {S},Σ,P1 ∪ P2 ∪ {S → S1S2}, S)

is a context-free grammar with L(G) = L(G1)L(G2).

Markus Lohrey (Univ. Siegen) FSA SS 2023 231 / 356

Closure Properties

Closure under the Star Operation

If L is a context-free language, then L∗ is also context-free.

Reasoning: Let
G1 = (V1,Σ,P1, S1)

be a context-free grammar.

Let S /∈ V1.

Then,
G = (V1 ∪ {S},Σ,P1 ∪ {S → ε, S → S1S},S)

is a context-free grammar with L(G) = L(G1)∗.

Markus Lohrey (Univ. Siegen) FSA SS 2023 232 / 356

Closure Properties

No Closure under Intersection

There are context-free languages L1 and L2 such that L1 ∩ L2 is not
context-free.

Counterexample: The languages

L1 = {ajbkck | j ≥ 0, k ≥ 0}
L2 = {akbkc j | j ≥ 0, k ≥ 0}

are both context-free (for example, L1 is generated by a grammar with
productions S → aS | A, A→ ε | bAc).

However, their intersection is

L1 ∩ L2 = {akbkck | k ≥ 0},

and this language is not context-free, as shown using the Pumping Lemma.

Markus Lohrey (Univ. Siegen) FSA SS 2023 233 / 356

Closure Properties

No Closure under Complement

There exists a context-free language L such that L = Σ∗\L is not
context-free.

Reasoning:

Suppose context-free languages were closed under complement, and let L1

and L2 be context-free. By De Morgan’s law,

L1 ∩ L2 = L1 ∪ L2,

which would imply that L1 ∩ L2 is context-free.

This contradicts the counterexample on the previous slide.

Markus Lohrey (Univ. Siegen) FSA SS 2023 234 / 356

The CYK Algorithm

We already know a method for solving the word problem for G , where G
can be a Type-1, Type-2, or Type-3 grammar (Slide 37).
Essentially: listing all words up to a certain length.

However, since this method can have exponential runtime (in the length of
the word), we consider here a more efficient method for context-free
grammars: the CYK Algorithm (developed by Cocke, Younger, Kasami).

Prerequisite: The grammar is in Chomsky Normal Form, so all
productions have the form A→ a or A→ BC .

Markus Lohrey (Univ. Siegen) FSA SS 2023 235 / 356

The CYK Algorithm

Idea: Given a word x ∈ Σ∗. We want to determine which variables it can
be derived from.

Possibility 1: x = a ∈ Σ, i.e., x consists of a single alphabet symbol.

In this case, x can only be derived from variables A for which there is
a production A→ a.

Possibility 2: x = a1 · · · an with n ≥ 2.

In this case: First, a production A→ BC must be applied, then one
part a1 · · · ak of the word must be derived from B and the other part
ak+1 · · · an from C (1 ≤ k < n).

Markus Lohrey (Univ. Siegen) FSA SS 2023 236 / 356

The CYK Algorithm

Possibility 2 can be schematically represented as follows:

A

B C

a1 . . . ak ak+1 . . . an

Markus Lohrey (Univ. Siegen) FSA SS 2023 237 / 356

The CYK Algorithm

However, it is not clear where the word x should be split, i.e., what the
position k is!

Therefore: Try all possible k ’s. This means:

Given a word x = a1 · · · an.

For all k with 1 ≤ k < n, do the following:

Determine the set V1 of all variables from which a1 · · · ak can be
derived.

Determine the set V2 of all variables from which ak+1 · · · an can be
derived.

Check if there are variables A,B,C such that (A→ BC) ∈ P, B ∈ V1

and C ∈ V2.
In this case, x can be derived from A.

Markus Lohrey (Univ. Siegen) FSA SS 2023 238 / 356

The CYK Algorithm

To avoid unnecessary work, we use the method of dynamic programming,
i.e.:

First, calculate all the variables from which substrings of length 1 can
be derived.

Then, calculate all the variables from which substrings of length 2 can
be derived.
...

Finally, calculate all the variables from which x can be derived. If the
start variable S is among these variables, then x is in the language
generated by the grammar.

Markus Lohrey (Univ. Siegen) FSA SS 2023 239 / 356

The CYK Algorithm

Notation: We denote by xi ,j the substring of x that starts at position i
and has length j .

x = a1 · · · an =⇒ xi ,j = ai · · · ai+j−1

Thus, the above diagram looks as follows:

A

B C

x1,k xk+1,n−k

Markus Lohrey (Univ. Siegen) FSA SS 2023 240 / 356

The CYK Algorithm

We denote by Ti ,j the set of all variables from which xi ,j can be derived:

Ti ,j = {A ∈ V | A⇒∗G xi ,j}

Then the following holds:

Ti ,1 = {A ∈ V | (A→ ai) ∈ P}.

For j ≥ 2, Ti ,j can be determined from the sets T`,k with k < j as
follows:

Ti ,j = {A | ∃(A→ BC) ∈ P ∃1 ≤ k < j : B ∈ Ti ,k and C ∈ Ti+k,j−k}

Markus Lohrey (Univ. Siegen) FSA SS 2023 241 / 356

The CYK Algorithm

Practical execution of the CYK algorithm:

We enter the variable sets Ti ,j in the following table:

a1 a2 an−1 an

j = 1

j = n − 1

j = n

. . .

. . .

T1,n

T1,n−1T2,n−1

.

.

Tn−1,2.T2,2

T1,1 T2,1 Tn−1,1 Tn,1.

T1,2j = 2

Markus Lohrey (Univ. Siegen) FSA SS 2023 242 / 356

The CYK Algorithm

The following illustrates which variable set derives which substring:

j = 6

j = 5

j = 4

j = 3

j = 2

j = 1 T1,1

a1

T1,2 T2,2

T2,1

a2 a3

T3,1

T3,2 T4,2

T4,1

a4 a5

T5,2

T6,1

a6

T1,6

T5,1

T1,3 T2,3 T3,3 T4,3

T1,4 T2,4 T3,4

T1,5 T2,5

Markus Lohrey (Univ. Siegen) FSA SS 2023 243 / 356

The CYK Algorithm

a1 a2

j = 1

j = 2

j = 5

j = 6

j = 3

j = 4

a6a5a3 a4

T1,6

T1,5

T6,1

x = a1a2a3a4a5 |a6

(A→ BC) ∈ P,
B ∈ T1,5, C ∈ T6,1 ⇒ A ∈ T1,6

Markus Lohrey (Univ. Siegen) FSA SS 2023 244 / 356

The CYK Algorithm

a1 a2

j = 1

j = 2

j = 5

j = 6

j = 3

j = 4

a6a5a3 a4

T1,6

T1,4

T5,2 x = a1a2a3a4 |a5a6

(A→ BC) ∈ P,
B ∈ T1,4, C ∈ T5,2 ⇒ A ∈ T1,6

Markus Lohrey (Univ. Siegen) FSA SS 2023 244 / 356

The CYK Algorithm

a1 a2

j = 1

j = 2

j = 5

j = 6

j = 3

j = 4

a6a5a3 a4

T1,6

T1,3 T4,3

x = a1a2a3 |a4a5a6

(A→ BC) ∈ P,
B ∈ T1,3, C ∈ T4,3 ⇒ A ∈ T1,6

Markus Lohrey (Univ. Siegen) FSA SS 2023 244 / 356

The CYK Algorithm

a1 a2

j = 1

j = 2

j = 5

j = 6

j = 3

j = 4

a6a5a3 a4

T1,6

T1,2

T3,4

x = a1a2 |a3a4a5a6

(A→ BC) ∈ P,
B ∈ T1,2, C ∈ T3,4 ⇒ A ∈ T1,6

Markus Lohrey (Univ. Siegen) FSA SS 2023 244 / 356

The CYK Algorithm

a1 a2

j = 1

j = 2

j = 5

j = 6

j = 3

j = 4

a6a5a3 a4

T1,6

T1,1

T2,5

x = a1 |a2a3a4a5a6

(A→ BC) ∈ P,
B ∈ T1,1, C ∈ T2,5 ⇒ A ∈ T1,6

Markus Lohrey (Univ. Siegen) FSA SS 2023 244 / 356

The CYK Algorithm

Example 1: Consider a grammar for the language L = {akbkc j | k, j > 0}
with the following productions:

S → AB

A → ab | aAb
B → c | cB

We show using the CYK algorithm that aaabbbcc ∈ L holds.

First, we need to transform the grammar into Chomsky Normal Form.

This results in the grammar on the next slide.

Markus Lohrey (Univ. Siegen) FSA SS 2023 245 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1
j = 2
j = 3
j = 4
j = 5
j = 6
j = 7
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2
j = 3
j = 4
j = 5
j = 6
j = 7
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅
j = 3
j = 4
j = 5
j = 6
j = 7
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅
j = 3
j = 4
j = 5
j = 6
j = 7
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A
j = 3
j = 4
j = 5
j = 6
j = 7
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅
j = 3
j = 4
j = 5
j = 6
j = 7
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅
j = 3
j = 4
j = 5
j = 6
j = 7
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅
j = 3
j = 4
j = 5
j = 6
j = 7
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3
j = 4
j = 5
j = 6
j = 7
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅
j = 4
j = 5
j = 6
j = 7
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅
j = 4
j = 5
j = 6
j = 7
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅
j = 4
j = 5
j = 6
j = 7
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅
j = 4
j = 5
j = 6
j = 7
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C
j = 4
j = 5
j = 6
j = 7
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C
j = 4
j = 5
j = 6
j = 7
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅
j = 4
j = 5
j = 6
j = 7
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅
j = 4
j = 5
j = 6
j = 7
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅
j = 4
j = 5
j = 6
j = 7
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅
j = 4
j = 5
j = 6
j = 7
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅ ∅
j = 4
j = 5
j = 6
j = 7
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅ ∅
j = 4
j = 5
j = 6
j = 7
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅ ∅
j = 4 ∅
j = 5
j = 6
j = 7
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅ ∅
j = 4 ∅
j = 5
j = 6
j = 7
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅ ∅
j = 4 ∅
j = 5
j = 6
j = 7
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅ ∅
j = 4 ∅ ∅
j = 5
j = 6
j = 7
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅ ∅
j = 4 ∅ ∅
j = 5
j = 6
j = 7
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅ ∅
j = 4 ∅ A
j = 5
j = 6
j = 7
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅ ∅
j = 4 ∅ A ∅
j = 5
j = 6
j = 7
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅ ∅
j = 4 ∅ A ∅
j = 5
j = 6
j = 7
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅ ∅
j = 4 ∅ A ∅
j = 5
j = 6
j = 7
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅ ∅
j = 4 ∅ A ∅ ∅
j = 5
j = 6
j = 7
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅ ∅
j = 4 ∅ A ∅ ∅
j = 5
j = 6
j = 7
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅ ∅
j = 4 ∅ A ∅ ∅
j = 5
j = 6
j = 7
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅ ∅
j = 4 ∅ A ∅ ∅ ∅
j = 5
j = 6
j = 7
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅ ∅
j = 4 ∅ A ∅ ∅ ∅
j = 5
j = 6
j = 7
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅ ∅
j = 4 ∅ A ∅ ∅ ∅
j = 5
j = 6
j = 7
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅ ∅
j = 4 ∅ A ∅ ∅ ∅
j = 5 ∅
j = 6
j = 7
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅ ∅
j = 4 ∅ A ∅ ∅ ∅
j = 5 ∅
j = 6
j = 7
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅ ∅
j = 4 ∅ A ∅ ∅ ∅
j = 5 ∅
j = 6
j = 7
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅ ∅
j = 4 ∅ A ∅ ∅ ∅
j = 5 ∅
j = 6
j = 7
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅ ∅
j = 4 ∅ A ∅ ∅ ∅
j = 5 ∅ C
j = 6
j = 7
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅ ∅
j = 4 ∅ A ∅ ∅ ∅
j = 5 ∅ C
j = 6
j = 7
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅ ∅
j = 4 ∅ A ∅ ∅ ∅
j = 5 ∅ C
j = 6
j = 7
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅ ∅
j = 4 ∅ A ∅ ∅ ∅
j = 5 ∅ C
j = 6
j = 7
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅ ∅
j = 4 ∅ A ∅ ∅ ∅
j = 5 ∅ C ∅
j = 6
j = 7
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅ ∅
j = 4 ∅ A ∅ ∅ ∅
j = 5 ∅ C ∅
j = 6
j = 7
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅ ∅
j = 4 ∅ A ∅ ∅ ∅
j = 5 ∅ C ∅
j = 6
j = 7
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅ ∅
j = 4 ∅ A ∅ ∅ ∅
j = 5 ∅ C ∅
j = 6
j = 7
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅ ∅
j = 4 ∅ A ∅ ∅ ∅
j = 5 ∅ C ∅ ∅
j = 6
j = 7
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅ ∅
j = 4 ∅ A ∅ ∅ ∅
j = 5 ∅ C ∅ ∅
j = 6
j = 7
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅ ∅
j = 4 ∅ A ∅ ∅ ∅
j = 5 ∅ C ∅ ∅
j = 6
j = 7
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅ ∅
j = 4 ∅ A ∅ ∅ ∅
j = 5 ∅ C ∅ ∅
j = 6
j = 7
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅ ∅
j = 4 ∅ A ∅ ∅ ∅
j = 5 ∅ C ∅ ∅
j = 6 ∅
j = 7
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅ ∅
j = 4 ∅ A ∅ ∅ ∅
j = 5 ∅ C ∅ ∅
j = 6 ∅
j = 7
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅ ∅
j = 4 ∅ A ∅ ∅ ∅
j = 5 ∅ C ∅ ∅
j = 6 ∅
j = 7
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅ ∅
j = 4 ∅ A ∅ ∅ ∅
j = 5 ∅ C ∅ ∅
j = 6 ∅
j = 7
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅ ∅
j = 4 ∅ A ∅ ∅ ∅
j = 5 ∅ C ∅ ∅
j = 6 A
j = 7
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅ ∅
j = 4 ∅ A ∅ ∅ ∅
j = 5 ∅ C ∅ ∅
j = 6 A ∅
j = 7
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅ ∅
j = 4 ∅ A ∅ ∅ ∅
j = 5 ∅ C ∅ ∅
j = 6 A ∅
j = 7
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅ ∅
j = 4 ∅ A ∅ ∅ ∅
j = 5 ∅ C ∅ ∅
j = 6 A ∅
j = 7
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅ ∅
j = 4 ∅ A ∅ ∅ ∅
j = 5 ∅ C ∅ ∅
j = 6 A ∅
j = 7
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅ ∅
j = 4 ∅ A ∅ ∅ ∅
j = 5 ∅ C ∅ ∅
j = 6 A ∅
j = 7
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅ ∅
j = 4 ∅ A ∅ ∅ ∅
j = 5 ∅ C ∅ ∅
j = 6 A ∅ ∅
j = 7
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅ ∅
j = 4 ∅ A ∅ ∅ ∅
j = 5 ∅ C ∅ ∅
j = 6 A ∅ ∅
j = 7
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅ ∅
j = 4 ∅ A ∅ ∅ ∅
j = 5 ∅ C ∅ ∅
j = 6 A ∅ ∅
j = 7
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅ ∅
j = 4 ∅ A ∅ ∅ ∅
j = 5 ∅ C ∅ ∅
j = 6 A ∅ ∅
j = 7
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅ ∅
j = 4 ∅ A ∅ ∅ ∅
j = 5 ∅ C ∅ ∅
j = 6 A ∅ ∅
j = 7
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅ ∅
j = 4 ∅ A ∅ ∅ ∅
j = 5 ∅ C ∅ ∅
j = 6 A ∅ ∅
j = 7 S
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅ ∅
j = 4 ∅ A ∅ ∅ ∅
j = 5 ∅ C ∅ ∅
j = 6 A ∅ ∅
j = 7 S
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅ ∅
j = 4 ∅ A ∅ ∅ ∅
j = 5 ∅ C ∅ ∅
j = 6 A ∅ ∅
j = 7 S
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅ ∅
j = 4 ∅ A ∅ ∅ ∅
j = 5 ∅ C ∅ ∅
j = 6 A ∅ ∅
j = 7 S
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅ ∅
j = 4 ∅ A ∅ ∅ ∅
j = 5 ∅ C ∅ ∅
j = 6 A ∅ ∅
j = 7 S
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅ ∅
j = 4 ∅ A ∅ ∅ ∅
j = 5 ∅ C ∅ ∅
j = 6 A ∅ ∅
j = 7 S
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅ ∅
j = 4 ∅ A ∅ ∅ ∅
j = 5 ∅ C ∅ ∅
j = 6 A ∅ ∅
j = 7 S ∅
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅ ∅
j = 4 ∅ A ∅ ∅ ∅
j = 5 ∅ C ∅ ∅
j = 6 A ∅ ∅
j = 7 S ∅
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅ ∅
j = 4 ∅ A ∅ ∅ ∅
j = 5 ∅ C ∅ ∅
j = 6 A ∅ ∅
j = 7 S ∅
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅ ∅
j = 4 ∅ A ∅ ∅ ∅
j = 5 ∅ C ∅ ∅
j = 6 A ∅ ∅
j = 7 S ∅
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅ ∅
j = 4 ∅ A ∅ ∅ ∅
j = 5 ∅ C ∅ ∅
j = 6 A ∅ ∅
j = 7 S ∅
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅ ∅
j = 4 ∅ A ∅ ∅ ∅
j = 5 ∅ C ∅ ∅
j = 6 A ∅ ∅
j = 7 S ∅
j = 8

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅ ∅
j = 4 ∅ A ∅ ∅ ∅
j = 5 ∅ C ∅ ∅
j = 6 A ∅ ∅
j = 7 S ∅
j = 8 ∅

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅ ∅
j = 4 ∅ A ∅ ∅ ∅
j = 5 ∅ C ∅ ∅
j = 6 A ∅ ∅
j = 7 S ∅
j = 8 S

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅ ∅
j = 4 ∅ A ∅ ∅ ∅
j = 5 ∅ C ∅ ∅
j = 6 A ∅ ∅
j = 7 S ∅
j = 8 S

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅ ∅
j = 4 ∅ A ∅ ∅ ∅
j = 5 ∅ C ∅ ∅
j = 6 A ∅ ∅
j = 7 S ∅
j = 8 S

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅ ∅
j = 4 ∅ A ∅ ∅ ∅
j = 5 ∅ C ∅ ∅
j = 6 A ∅ ∅
j = 7 S ∅
j = 8 S

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅ ∅
j = 4 ∅ A ∅ ∅ ∅
j = 5 ∅ C ∅ ∅
j = 6 A ∅ ∅
j = 7 S ∅
j = 8 S

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

S → AB Aa → a

A→ AaAb | AaC Ab → b

C → AAb Ac → c

B → c | AcB

a a a b b b c c
j = 1 Aa Aa Aa Ab Ab Ab B,Ac B,Ac

j = 2 ∅ ∅ A ∅ ∅ ∅ B
j = 3 ∅ ∅ C ∅ ∅ ∅
j = 4 ∅ A ∅ ∅ ∅
j = 5 ∅ C ∅ ∅
j = 6 A ∅ ∅
j = 7 S ∅
j = 8 S

Markus Lohrey (Univ. Siegen) FSA SS 2023 246 / 356

The CYK Algorithm

Example 2: Consider a grammar with the following productions:

S → AD | FG
D → SE | BC
E → BC

F → AF | a
G → BG | CG | b
A → a

B → b

C → c

Question: Let x = aabcbc . Does x ∈ L?

Markus Lohrey (Univ. Siegen) FSA SS 2023 247 / 356

The CYK Algorithm

Here is the table resulting from the CYK algorithm:
(You should verify this):

a a b c b c
j = 1 A,F A,F B,G C B,G C
j = 2 F S D,E G D,E
j = 3 S S G
j = 4 S
j = 5 S D
j = 6 S

Markus Lohrey (Univ. Siegen) FSA SS 2023 248 / 356

The CYK Algorithm

Complexity of the CYK Algorithm

Let n = |x | be the length of the word being analyzed. The size of the
grammar is considered constant. Then:

O(n2) table entries need to be filled.

For filling each table entry, up to O(n) other entries must be
considered.

(For T1,n, for example, the entries T1,n−1,Tn,1 and T1,n−2,Tn−1,2

and . . . and T1,1,T2,n−1 must be considered. In total, n − 1 pairs of
entries.)

Hence, the overall time complexity is: O(n3).

The time complexity is still polynomial, but it is not well-suited for parsing
large programs.

Markus Lohrey (Univ. Siegen) FSA SS 2023 249 / 356

Pushdown Automata

What is a suitable automaton model for context-free languages?

Analogous to regular languages, we seek an automaton model for
context-free languages.

Answer: Pushdown automata, i.e., automata equipped with an additional
stack.

Utility of such an automaton model

Some constructions and procedures can be performed more effectively
using the automaton model (instead of grammars).

Word problem: We will discover that the word problem can, under
certain circumstances, be solved more efficiently than in O(n3) time.

Closure properties: The closure of context-free languages under
intersection with regular languages can be demonstrated effectively
using pushdown automata.

Markus Lohrey (Univ. Siegen) FSA SS 2023 250 / 356

Pushdown Automata

We consider the language

L = {a1a2 · · · an$an · · · a2a1 | ai ∈ ∆}

with Σ = ∆ ∪ {$}, $ /∈ ∆.

A finite automaton cannot recognize this language because it cannot
“remember” arbitrarily long words of the form a1a2 · · · an.

However, it would need to remember such words to verify the match with
the part of the word after $.

Markus Lohrey (Univ. Siegen) FSA SS 2023 251 / 356

Pushdown Automata

To define an automaton model for context-free languages:

We introduce a stack or pushdown storage where an arbitrarily long
sequence of symbols can be stored.

When reading a new symbol, the top symbol of the stack can be
accessed and modified as follows:

Either the stack remains unchanged, or
the top symbol of the stack is removed and replaced by a (possibly
empty) sequence of symbols.

At other times, the stack cannot be read or modified.

Markus Lohrey (Univ. Siegen) FSA SS 2023 252 / 356

Pushdown Automata

Schematic representation of a pushdown automaton:

� i n p u t �

A

B

C

#

stack

stack bottom marker

pushdown
automaton

Markus Lohrey (Univ. Siegen) FSA SS 2023 253 / 356

Pushdown Automata

Let ∆ = {a, b, c , d} and L = {a1a2 · · · an$an · · · a2a1 | ai ∈ ∆}.

A pushdown automaton recognizes this language as follows:

The word w is read from left to right.

As long as $ has not been reached, each symbol read is pushed onto
the stack as an uppercase letter (a A, b B, . . .).

When $ is read, the stack remains unchanged.

Subsequently, for each new symbol read, it is checked whether the
corresponding uppercase letter is on top of the stack. This letter is
then removed.

If at any point no match is found, the pushdown automaton halts.

If matches are always found, the stack bottom marker # is eventually
removed, and the automaton accepts with an empty stack.

Markus Lohrey (Univ. Siegen) FSA SS 2023 254 / 356

Pushdown Automata

Simulation

PDA
State 1

c a d $ d a c aa

#

Markus Lohrey (Univ. Siegen) FSA SS 2023 255 / 356

Pushdown Automata

Simulation

PDA
State 1

a d $ d a c a

#

a c

A

Markus Lohrey (Univ. Siegen) FSA SS 2023 255 / 356

Pushdown Automata

Simulation

PDA
State 1

d $ d a c a

#

a

A

c a

C

Markus Lohrey (Univ. Siegen) FSA SS 2023 255 / 356

Pushdown Automata

Simulation

PDA
State 1

$ d a c a

#

a

A

c da

C

A

Markus Lohrey (Univ. Siegen) FSA SS 2023 255 / 356

Pushdown Automata

Simulation

d a c a

#

a

A

c a

C

A

d $

PDA
State 1

D

Markus Lohrey (Univ. Siegen) FSA SS 2023 255 / 356

Pushdown Automata

Simulation

a c a

#

a

A

c a

C

A

d d$

PDA
State 2

D

Markus Lohrey (Univ. Siegen) FSA SS 2023 255 / 356

Pushdown Automata

Simulation

c a

#

a

A

c a

C

d $

PDA
State 2

ad

A

Markus Lohrey (Univ. Siegen) FSA SS 2023 255 / 356

Pushdown Automata

Simulation

a

#

a

A

c a d $

PDA
State 2

d a c

C

Markus Lohrey (Univ. Siegen) FSA SS 2023 255 / 356

Pushdown Automata

Simulation

#

a c a d $

PDA
State 2

d a

A

c a

Markus Lohrey (Univ. Siegen) FSA SS 2023 255 / 356

Pushdown Automata

Simulation

a c a d $

PDA
State 2

d a c

#

a

Markus Lohrey (Univ. Siegen) FSA SS 2023 255 / 356

Pushdown Automata

Simulation

a c a d $

PDA

d a c a

State 2

Markus Lohrey (Univ. Siegen) FSA SS 2023 255 / 356

Pushdown Automata

Definition (Pushdown Automaton)

A nondeterministic pushdown automaton M is a 6-tuple
M = (Z ,Σ, Γ, δ, z0,#), where

Z is the finite set of states,

Σ is the finite input alphabet (with Z ∩ Σ = ∅),

Γ is the finite stack alphabet,

z0 ∈ Z is the initial state,

∈ Γ is the bottom-of-stack symbol or stack base symbol, and

δ : Z × (Σ ∪ {ε})× Γ→ 2Z×Γ∗ is the transition function, where
δ(z , a,A) for all (z , a,A) ∈ Z × (Σ ∪ {ε})× Γ must be finite.

Abbreviation: KA or PDA (pushdown automaton).

Markus Lohrey (Univ. Siegen) FSA SS 2023 256 / 356

Pushdown Automata

We consider the transition function

δ : Z × (Σ ∪ {ε})× Γ→ 2Z×Γ∗ .

If (z ′,B1 · · ·Bk) ∈ δ(z , a,A), this means:

When in state z , if the input symbol a is read and the symbol A is on
top of the stack, then
A is removed from the stack and replaced with B1 · · ·Bk (B1 is on
top), and the automaton transitions to state z ′.

It is also possible for a = ε. In this case, no input symbol is read. We
refer to this as an ε-transition.

Markus Lohrey (Univ. Siegen) FSA SS 2023 257 / 356

Pushdown Automata

We consider different cases for the values of the transition function δ:

(z ′, ε) ∈ δ(z , a,A)

Symbol a is read.

State changes from z to z ′.

Symbol A is removed from the stack:

A

Markus Lohrey (Univ. Siegen) FSA SS 2023 258 / 356

Pushdown Automata

(z ′,B) ∈ δ(z , a,A)

Symbol a is read.

State changes from z to z ′.

Symbol A on the stack is repla-
ced with B:

A B

Markus Lohrey (Univ. Siegen) FSA SS 2023 259 / 356

Pushdown Automata

(z ′,A) ∈ δ(z , a,A)

Symbol a is read.

State changes from z to z ′.

Symbol A remains on the stack:

AA

Markus Lohrey (Univ. Siegen) FSA SS 2023 260 / 356

Pushdown Automata

(z ′,BA) ∈ δ(z , a,A)

Symbol a is read.

State changes from z to z ′.

Symbol B is newly pushed onto
the stack:

B

AA

Markus Lohrey (Univ. Siegen) FSA SS 2023 261 / 356

Pushdown Automata

(z ′,B1 · · ·Bk) ∈ δ(z , a,A)

Symbol a is read.

State changes from z to z ′.

Symbol A is replaced with mul-
tiple new symbols:

A

. . .

B1

Bk

Markus Lohrey (Univ. Siegen) FSA SS 2023 262 / 356

Pushdown Automata

At the start of every computation, the stack contains only the stack
bottom symbol #.

The stack is unbounded and can grow arbitrarily. There are infinitely
many possible stack contents, which distinguishes pushdown
automata from finite automata.

The pushdown automata we consider always accept with an empty
stack (in this case, no further transitions are possible). However, there
are other variants of pushdown automata that accept with an end
state.

Markus Lohrey (Univ. Siegen) FSA SS 2023 263 / 356

Pushdown Automata

Example:

PDA for L = {a1a2 · · · an$an · · · a2a1 | n ≥ 0, a1, . . . , an ∈ {a, b}}:

M = ({z1, z2}, {a, b, $}, {#,A,B}, δ, z1,#),

where δ is defined as follows (we write (z , a,A)→ (z ′, x) if
(z ′, x) ∈ δ(z , a,A)).

(z1, a,#) → (z1,A#) (z1, a,A) → (z1,AA) (z1, a,B) → (z1,AB)
(z1, b,#) → (z1,B#) (z1, b,A) → (z1,BA) (z1, b,B) → (z1,BB)
(z1, $,#) → (z2,#) (z1, $,A) → (z2,A) (z1, $,B) → (z2,B)
(z2, a,A) → (z2, ε) (z2, b,B) → (z2, ε) (z2, ε,#) → (z2, ε)

Markus Lohrey (Univ. Siegen) FSA SS 2023 264 / 356

Pushdown Automata

Definition (Configuration of a PDA)

A configuration of a PDA is a triple k ∈ Z × Σ∗ × Γ∗.

Meaning of the components of k = (z ,w , γ) ∈ Z × Σ∗ × Γ∗:

z ∈ Z is the current state of the PDA.

w ∈ Σ∗ is the remaining input to be read.

γ ∈ Γ∗ is the current stack content, with the top stack symbol at the
far left.

Markus Lohrey (Univ. Siegen) FSA SS 2023 265 / 356

Pushdown Automata

Transitions between configurations are derived from the transition function
δ:

Definition (Configuration transitions of a PDA)

It holds that
(z , aw ,Aγ) ` (z ′,w ,B1 · · ·Bkγ),

if (z ′,B1 · · ·Bk) ∈ δ(z , a,A), and

(z ,w ,Aγ) ` (z ′,w ,B1 · · ·Bkγ),

if (z ′,B1 · · ·Bk) ∈ δ(z , ε,A).

Here, γ ∈ Γ∗ is an arbitrary sequence of stack symbols, A,B1, . . . ,Bk ∈ Γ,
w ∈ Σ∗, a ∈ Σ, and z , z ′ ∈ Z .

In the first case, an input symbol is read, while in the second case, no
input is read.

Markus Lohrey (Univ. Siegen) FSA SS 2023 266 / 356

Pushdown Automata

We define `∗ as the reflexive and transitive closure of `.

Using this, the language accepted by a PDA can now be defined:

Definition (Accepted language of a PDA)

Let M = (Z ,Σ, Γ, δ, z0,#) be a PDA. Then the accepted language of M is:

N(M) = {x ∈ Σ∗ | (z0, x ,#) `∗ (z , ε, ε) for some z ∈ Z}.

This means the accepted language contains all words that allow the stack
to be completely emptied.

However, since pushdown automata are non-deterministic, there may also
be computations for this word that do not empty the stack.

Markus Lohrey (Univ. Siegen) FSA SS 2023 267 / 356

Pushdown Automata

The following sequence of configuration transitions demonstrates that the
pushdown automaton from Slide 264 accepts the word ab$ba:

(z1, ab$ba,#) ` (z1, b$ba,A#) due to (z1, a,#)→ (z1,A#)

` (z1, $ba,BA#) due to (z1, b,A)→ (z1,BA)

` (z2, ba,BA#) due to (z1, $,B)→ (z2,B)

` (z2, a,A#) due to (z2, b,B)→ (z2, ε)

` (z2, ε,#) due to (z2, a,A)→ (z2, ε)

` (z2, ε, ε) due to (z2, ε,#)→ (z2, ε)

Markus Lohrey (Univ. Siegen) FSA SS 2023 268 / 356

Pushdown Automata

Another example: a PDA for the language

L = {a1a2 · · · anan · · · a2a1 | n ≥ 0, a1, . . . , an ∈ {a, b}}.

Idea: Instead of waiting for the symbol $, the automaton can
non-deterministically decide to transition to state z2 (= clearing the stack)
as soon as the current symbol on the tape matches the symbol on the
stack (or if the stack is empty).

Markus Lohrey (Univ. Siegen) FSA SS 2023 269 / 356

Pushdown Automata

Modified transition function δ (3rd row is changed):

(z1, a,#) → (z1,A#) (z1, a,A) → (z1,AA) (z1, a,B) → (z1,AB)
(z1, b,#) → (z1,B#) (z1, b,A) → (z1,BA) (z1, b,B) → (z1,BB)
(z1, ε,#) → (z2,#) (z1, a,A) → (z2, ε) (z1, b,B) → (z2, ε)
(z2, a,A) → (z2, ε) (z2, b,B) → (z2, ε) (z2, ε,#) → (z2, ε)

Note: This pushdown automaton is (unlike the previous one)
non-deterministic, meaning a configuration can have multiple possible
successors. (Some configuration sequences may lead to dead ends and fail
to empty the stack.)

Example: The pushdown automaton receives the input aabbaa.

Markus Lohrey (Univ. Siegen) FSA SS 2023 270 / 356

Pushdown Automata

The following sequence of configuration transitions shows that this input is
accepted:

(z1, aabbaa,#) ` (z1, abbaa,A#) due to (z1, a,#)→ (z1,A#)

` (z1, bbaa,AA#) due to (z1, a,A)→ (z1,AA)

` (z1, baa,BAA#) due to (z1, b,A)→ (z1,BA)

` (z2, aa,AA#) due to (z1, b,B)→ (z2, ε)

` (z2, a,A#) due to (z2, a,A)→ (z2, ε)

` (z2, ε,#) due to (z2, a,A)→ (z2, ε)

` (z2, ε, ε) due to (z2, ε,#)→ (z2, ε)

Markus Lohrey (Univ. Siegen) FSA SS 2023 271 / 356

Pushdown Automata

Note: There are also many other possible computations where the stack is
not empty at the end, such as:

(z1, aabbaa,#) ` (z1, abbaa,A#) due to (z1, a,#)→ (z1,A#)

` (z1, bbaa,AA#) due to (z1, a,A)→ (z1,AA)

` (z1, baa,BAA#) due to (z1, b,A)→ (z1,BA)

` (z1, aa,BBAA#) due to (z1, b,B)→ (z1,BB)

` (z1, a,ABBAA#) due to (z1, a,B)→ (z1,AB)

` (z1, ε,AABBAA#) due to (z1, a,A)→ (z1,AA)

However, such computations do not change the fact that the word aabbaa
is accepted.

For this, the existence of the one computation on the previous slide, where
the stack is empty after reading the input, suffices.

Markus Lohrey (Univ. Siegen) FSA SS 2023 272 / 356

Pushdown Automata

We now need to show that pushdown automata indeed precisely accept
the context-free languages.

Theorem (Context-Free Grammars → Pushdown Automata)

For every context-free grammar G , there exists a PDA M such that
L(G) = N(M).

Markus Lohrey (Univ. Siegen) FSA SS 2023 273 / 356

Pushdown Automata

Proof Idea:

1 We can assume without loss of generality that G is in Greibach
Normal Form.

2 We simulate a derivation of G by using the stack to store variables
that still need to be derived.

3 A production A→ aA1 · · ·An is simulated as follows:

If a is the next input symbol and A is on top of the stack, A can be
replaced with A1 · · ·An.

4 When the entire input has been read and the stack is simultaneously
empty, a complete derivation for the input word has been successfully
simulated.

Markus Lohrey (Univ. Siegen) FSA SS 2023 274 / 356

Pushdown Automata

Formal: First, we assume that ε 6∈ L(G).

Then we can assume without loss of generality that G = (V ,Σ,P,S) is in
Greibach Normal Form.

We define the PDA
M = ({z},Σ,V , δ, z ,S)

with the following transition function: For A ∈ V and a ∈ Σ, let

δ(z , a,A) = {(z ,A1 · · ·Am) | (A→ aA1 · · ·Am) ∈ P}.

Note:

M has only one state (z).

M has no ε-transitions.

The start symbol S of G serves as the stack bottom marker.

Since G is in Greibach Normal Form, all productions in P are of the
form A→ aA1 · · ·Am with m ≥ 0, A,A1, . . . ,Am ∈ V , and a ∈ Σ.

Markus Lohrey (Univ. Siegen) FSA SS 2023 275 / 356

Pushdown Automata (PDA)

Claim: For all u ∈ Σ∗ and γ ∈ V ∗, the following holds:

(z , u, γ) `∗ (z , ε, ε) ⇐⇒ γ ⇒∗G u.

Proof: By induction on |u|.

Base Case: u = ε.

In this case:

(z , ε, γ) `∗ (z , ε, ε) ⇐⇒ γ = ε ⇐⇒ γ ⇒∗G ε.

Markus Lohrey (Univ. Siegen) FSA SS 2023 276 / 356

Pushdown Automata (PDA)

Inductive Step: Let u = av with a ∈ Σ, v ∈ Σ∗.

If γ = ε, neither γ ⇒∗G av nor (z , av , γ) `∗ (z , ε, ε) holds.

Now assume γ = Aγ′ with A ∈ V and γ′ ∈ V ∗.

Then:

Aγ′ ⇒∗G av

⇐⇒ ∃(A→ aA1 · · ·Am) ∈ P : A1 · · ·Amγ
′ ⇒∗G v

⇐⇒ ∃(A→ aA1 · · ·Am) ∈ P : (z , v ,A1 · · ·Amγ
′) `∗ (z , ε, ε)

⇐⇒ ∃(z ,A1 · · ·Am) ∈ δ(z , a,A) : (z , v ,A1 · · ·Amγ
′) `∗ (z , ε, ε)

⇐⇒ (z , av ,Aγ′) `∗ (z , ε, ε).

Markus Lohrey (Univ. Siegen) FSA SS 2023 277 / 356

Pushdown Automata

From the above claim, it follows:

w ∈ L(G) ⇐⇒ S ⇒∗G w ⇐⇒ (z ,w , S) `∗ (z , ε, ε) ⇐⇒ w ∈ N(M).

If ε ∈ L(G), we can assume without loss of generality that, except for the
production S → ε, all productions of G are in Greibach Normal Form, and
S does not appear on any right-hand side in G .

We then add to the PDA defined on Slide 275 δ(z , ε,S) = {(z , ε)} (the
only ε-transition).

This transition can only be applied at the very beginning of a computation
(z ,w ,S) `∗ (z , ε, ε) (which implies that w = ε).

Then it again holds as desired that L(G) = N(M).

Markus Lohrey (Univ. Siegen) FSA SS 2023 278 / 356

Pushdown Automata

Alternative Construction:

We can also directly construct a PDA M from any context-free grammar
G = (V ,Σ,P, S) such that L(G) = N(M).

Define the PDA M = ({z},Σ,V ∪ Σ, δ, z , S) with a single state z and
stack alphabet V ∪ Σ.

Transition function δ:

δ(z , ε,A) = {(z , α) | (A→ α) ∈ P} for A ∈ V

δ(z , a, a) = {(z , ε)} for a ∈ Σ

Productions of the first type simulate derivation steps on the stack
without reading the input.

Productions of the second type compare a symbol from the input with the
stack.

Note: M contains ε-productions.
Markus Lohrey (Univ. Siegen) FSA SS 2023 279 / 356

Pushdown Automata

We consider the following context-free grammar with the two-element
alphabet Σ = {[,]}, which generates correct bracket structures:

S → [S]S | ε
Task: Convert this grammar into a pushdown automaton and use it to
accept the word [[]] [].

We use the construction from Slide 279:

State set = {z}
Stack alphabet = {[,], S}
Stack bottom symbol = S
Transition function:

δ(z , ε,S) = {(z , ε), (z , [S]S)}
δ(z , a, a) = {(z , ε)} for a ∈ {[,]}

On the left is a derivation of the word [[]] [] using the grammar, and on
the right is the corresponding computation of the above pushdown
automaton:

Markus Lohrey (Univ. Siegen) FSA SS 2023 280 / 356

Pushdown Automata

S ⇒ [S]S (z , [[]] [],S) ` (z , [[]] [], [S]S)

` (z , []] [],S]S)

⇒ [[S]S]S ` (z , []] [], [S]S]S)

` (z ,]] [], S]S]S)

⇒ [[]S]S ` (z ,]] [],]S]S)

` (z ,] [],S]S)

⇒ [[]]S ` (z ,] [],]S)

` (z , [],S)

⇒ [[]] [S]S ` (z , [], [S]S)

` (z ,], S]S)

⇒ [[]] []S ` (z ,],]S)

` (z , ε,S)

⇒ [[]] [] ` (z , ε, ε)

Markus Lohrey (Univ. Siegen) FSA SS 2023 281 / 356

Pushdown Automata

Now, we aim to show that for every pushdown automaton, there is a
corresponding context-free grammar.

This is the more difficult direction.

Theorem (Pushdown Automata → Context-Free Grammars)

For every pushdown automaton M, there exists a context-free grammar G
such that N(M) = L(G).

Markus Lohrey (Univ. Siegen) FSA SS 2023 282 / 356

Pushdown Automata

Proof idea:

1 We want to describe which words can be accepted by reducing a
specific stack symbol. The language accepted by the automaton
consists of all words that can be generated by reducing #.

“Reducing” means: additional symbols can be pushed onto the stack
during the process, but ultimately, the stack must be shorter by
exactly one symbol.

2 The context-free grammar to be constructed will have variables of the
form (z1,A, z2), which means:

From (z1,A, z2), one can derive exactly the words that the pushdown
automaton reads when it starts in state z1, pops A from the stack,
and halts in state z2.

Markus Lohrey (Univ. Siegen) FSA SS 2023 283 / 356

Pushdown Automata

First fall below
the original
stack height
(PDA in state z2)

Read in
input symbols

from (z1,A, z2))
(can be derived

Read in partial word

(PDA in state z1)
on the stack

A lies

stack
height

In the process, A can be replaced by another symbol. However, the original
stack height will not be reduced.

Markus Lohrey (Univ. Siegen) FSA SS 2023 284 / 356

Pushdown Automata

Formal meaning of the symbols (z1,A, z2):

(z1,A, z2)⇒∗ x ⇐⇒ (z1, x ,A) `∗ (z2, ε, ε)

Let M = (Z ,Σ, Γ, δ, z0,#) be a pushdown automaton.

We define a grammar G = (V ,Σ,P, S) as follows
(see the next slide):

Markus Lohrey (Univ. Siegen) FSA SS 2023 285 / 356

Pushdown Automata

Variables: V = {S} ∪ Z × Γ× Z
(Own start variable and variables of the form (z1,A, z2))

Productions have the following form:

S → (z0,#, z) for all z ∈ Z

(Removing the stack bottom symbol)

(z ,A, z ′) → a if (z ′, ε) ∈ δ(z , a,A)

(Symbol A can – when reading

symbol a – be removed immediately)

(z ,A, z ′) → a (z1,B1, z2)(z2,B2, z3) · · · (zk ,Bk , z
′) for all

(z1,B1 · · ·Bk) ∈ δ(z , a,A), z2, . . . , zk ∈ Z , k ≥ 1

(Symbol A is replaced by B1 . . .Bk , these

must be removed via intermediate states z1, . . . , zk .)

Markus Lohrey (Univ. Siegen) FSA SS 2023 286 / 356

Pushdown Automata

Example: Consider the pushdown automaton

M = ({z1, z2}, {a, b}, {A,#}, δ, z1,#)

with the following transition function δ:

(z1, ε,#) → (z2, ε)

(z1, a,#) → (z1,AA)

(z1, a,A) → (z1,AAA)

(z1, b,A) → (z2, ε)

(z2, b,A) → (z2, ε)

It holds: N(M) = {anb2n | n ≥ 0}.

Task: Convert M into a context-free grammar.

Markus Lohrey (Univ. Siegen) FSA SS 2023 287 / 356

Pushdown Automata

S → (z1,#, z1)

S → (z1,#, z2)

(z1,#, z2) → ε

(z1,A, z2) → b

(z2,A, z2) → b

(z1,#, zi) → a(z1,A, zj)(zj ,A, zi)

(z1,A, zi) → a(z1,A, zj)(zj ,A, zk)(zk ,A, zi)

The last two productions are present for all i , j , k ∈ {1, 2}.

Overall, the grammar has 17 productions.

Markus Lohrey (Univ. Siegen) FSA SS 2023 288 / 356

Pushdown Automata

Remark on conversions
“Context-free Grammar ↔ Pushdown Automaton”:

For every pushdown automaton M, there is always an equivalent pushdown
automaton M ′ with only one state and without ε-transitions (if
ε 6∈ N(M)).

1 First, convert M into a context-free grammar G .

2 Then, convert G into a context-free grammar G ′ in Greibach normal
form.

3 Finally, convert G ′ into a pushdown automaton M ′.

It is used that when converting a grammar (in Greibach normal form) into
a pushdown automaton, only automata with one state and without
ε-transitions are constructed.

Markus Lohrey (Univ. Siegen) FSA SS 2023 289 / 356

Deterministic Context-Free Languages

We now consider a subclass of pushdown automata that can be used to
recognize languages deterministically and therefore efficiently.

Definition (Deterministic Pushdown Automaton)

A deterministic pushdown automaton M is a 7-tuple
M = (Z ,Σ, Γ, δ, z0,#,E), where

(Z ,Σ, Γ, δ, z0,#) is a pushdown automaton,

E ⊆ Z is a set of final states, and

the transition function δ : Z × (Σ ∪ {ε})× Γ→ 2Z×Γ∗ is deterministic
in the following sense:

For all z ∈ Z , a ∈ Σ, and A ∈ Γ:

|δ(z , a,A)|+ |δ(z , ε,A)| ≤ 1.

Markus Lohrey (Univ. Siegen) FSA SS 2023 290 / 356

Deterministic Context-Free Languages

Differences between pushdown automata and deterministic pushdown
automata:

Deterministic pushdown automata have a set of final states and
accept with a final state – not with an empty stack.

For deterministic pushdown automata, this distinction matters,
whereas for non-deterministic pushdown automata, both acceptance
modes are equivalent.

For each state z and each stack symbol A:

either there is at most one ε-transition,
or there is at most one transition for each alphabet symbol.

Markus Lohrey (Univ. Siegen) FSA SS 2023 291 / 356

Deterministic Context-Free Languages

Configurations and transitions between configurations remain defined the
same way.

Configuration sequences, however, become linear chains, i.e., there is
always at most one subsequent configuration.

This property is utilized for the efficient solution of the word problem.

Markus Lohrey (Univ. Siegen) FSA SS 2023 292 / 356

Deterministic Context-Free Languages

Definition (Accepted Language for Det. PDA)

Let M = (Z ,Σ, Γ, δ, z0,#,E) be a deterministic PDA. Then the accepted
language of M is:

D(M) = {x ∈ Σ∗ | (z0, x ,#) `∗ (z , ε, γ) for some z ∈ E , γ ∈ Γ∗}.

Compare this definition with that for non-deterministic pushdown
automata!

For deterministic pushdown automata, the following is different:

The reached state z must be a final state.

A stack content γ may remain.

Markus Lohrey (Univ. Siegen) FSA SS 2023 293 / 356

Deterministic Context-Free Languages

Definition (Deterministic Context-Free Languages)

A language is called deterministic context-free if and only if it is accepted
by a deterministic PDA.

Examples:

The language L = {a1a2 . . . an$an . . . a2a1 | ai ∈ ∆} is deterministic
context-free (see the corresponding PDA).

The language L = {a1a2 . . . anan . . . a2a1 | ai ∈ ∆} is not
deterministic context-free (without proof).

Markus Lohrey (Univ. Siegen) FSA SS 2023 294 / 356

Deterministic Context-Free Languages

Note: A priori, the definition of deterministic context-free languages does
not immediately imply that deterministic context-free languages are also
context-free (acceptance by final states versus empty stack).

However, this is the case: From a deterministic PDA
M = (Z ,Σ, Γ, δ, z0,#,E), we construct a (non-deterministic) PDA
M ′ = (Z ∪ {z ′0, zf },Σ, Γ ∪ {#′}, δ′, z ′0,#′), where:

δ′(z ′0, ε,#
′) = {(z0,##′)}

δ′(z , a,A) =

{
δ(z , a,A) if (z ∈ Z \ E or a ∈ Σ), A ∈ Γ

δ(z , a,A) ∪ {(zf , ε)} if z ∈ E , a = ε,A ∈ Γ

δ′(z , ε,#′) = {(zf , ε)} if z ∈ E

δ′(zf , ε,A) = {(zf , ε)} if A ∈ Γ ∪ {#′}

Then: N(M ′) = D(M).

Markus Lohrey (Univ. Siegen) FSA SS 2023 295 / 356

Deterministic Context-Free Languages

The construction on the previous slide also shows how to transform a
(non-deterministic) PDA that accepts by final states into a
(non-deterministic) PDA that accepts by empty stack.

Conversely, a (non-deterministic) PDA M = (Z ,Σ, Γ, δ, z0,#) that accepts
by empty stack can be transformed into a (non-deterministic) PDA that
accepts by final states as follows:

Let M ′ = (Z ∪ {z ′0, zf },Σ, Γ ∪ {#′}, δ′, z ′0,#′, {zf }), where:

δ′(z ′0, ε,#
′) = {(z0,##′)}

δ′(z , a,A) = δ(z , a,A) if z ∈ Z , a ∈ Σ ∪ {ε},A ∈ Γ

δ′(z , ε,#′) = {(zf , ε)} for all z ∈ Z

Then: N(M ′) = N(M).

Markus Lohrey (Univ. Siegen) FSA SS 2023 296 / 356

Deterministic Context-Free Languages

Additional Remarks:

Efficiency: Using deterministic pushdown automata provides a method
to solve the word problem with complexity O(n), where n is the
length of the input word.

The procedure involves simply running the automaton on the word
and checking whether it reaches a final state.

Deterministic Context-Free Grammars: Since the syntax of languages
can be more easily defined using grammars rather than automata, it is
necessary to define the corresponding class of deterministic
context-free grammars for deterministic pushdown automata.

As this is not straightforward, there are multiple approaches to it. The
most well-known are the LR(k) grammars (see compiler construction
and syntax analysis).

Markus Lohrey (Univ. Siegen) FSA SS 2023 297 / 356

Deterministic Context-Free Languages

The closure properties of deterministic context-free languages differ
somewhat from those of general context-free languages.

Theorem (Closure under Complement)

If L is a deterministic context-free language, then L = Σ∗\L is also
deterministic context-free.

We omit the rather technical proof here.

Markus Lohrey (Univ. Siegen) FSA SS 2023 298 / 356

Deterministic Context-Free Languages

No Closure under Intersection

There exist deterministic context-free languages L1 and L2 such that
L1 ∩ L2 is not deterministic context-free.

Justification:

The example languages used in the argument that context-free languages
are not closed under intersection are actually deterministic context-free,
but their intersection is not even context-free:

L1 = {ajbkck | j ≥ 0, k ≥ 0}
L2 = {akbkc j | j ≥ 0, k ≥ 0}

Markus Lohrey (Univ. Siegen) FSA SS 2023 299 / 356

Deterministic Context-Free Languages

No Closure under Union

There exist deterministic context-free languages L1 and L2 such that
L1 ∪ L2 is not deterministic context-free.

Justification:

Closure under union and complement would imply closure under

intersection (since L1 ∩ L2 = L1 ∪ L2).

Markus Lohrey (Univ. Siegen) FSA SS 2023 300 / 356

Deterministic Context-Free Languages

It is, however, true that there is closure under intersection with regular
languages:

Theorem (Closure under Intersection with Regular Languages)

Let L be a deterministic context-free language and R a regular language.
Then L ∩ R is a deterministic context-free language.

Proof Idea: (analogous to the cross-product construction for NFAs)

Let M = (Z1,Σ, Γ, δ1, z
1
0 ,#,E1) be a deterministic PDA for L.

Let A = (Z2,Σ, δ2, z
2
0 ,E2) be a DFA for R.

Construct a deterministic PDA M ′ for L ∩ R:

M ′ = (Z1 × Z2,Σ, Γ, δ
′, (z1

0 , z
2
0),#,E1 × E2).

Here, the transition function δ′ is defined as follows:
Markus Lohrey (Univ. Siegen) FSA SS 2023 301 / 356

Deterministic Context-Free Languages

δ′((z1, z2), a,A) = {((z ′1, z
′
2),B1 · · ·Bk) | (z ′1,B1 · · ·Bk) ∈ δ1(z1, a,A),

δ2(z2, a) = z ′2, a ∈ Σ}

δ′((z1, z2), ε,A) = {((z ′1, z2),B1 · · ·Bk) | (z ′1,B1 · · ·Bk) ∈ δ1(z1, ε,A)}

Note: The transition function thus defined satisfies the requirements of
the definition of deterministic PDAs.

Markus Lohrey (Univ. Siegen) FSA SS 2023 302 / 356

Revisiting Closure Properties

Using the same technique and leveraging the fact that for general
(non-deterministic) pushdown automata, acceptance by empty stack is
equivalent to acceptance by final state, the following can also be shown:

Theorem (Closure under Intersection with Regular Languages II)

Let L be a context-free language and R a regular language. Then L ∩ R is
a context-free language.

Markus Lohrey (Univ. Siegen) FSA SS 2023 303 / 356

Decidability

We now examine problems for context-free languages and determine
whether they are decidable, i.e., whether there are algorithms to solve
them.

Word Problem for a Context-Free Language L

Given w ∈ Σ∗.
Is w ∈ L?

If the context-free language L is defined by a context-free grammar in
Chomsky Normal Form, the word problem can be solved using the CYK
algorithm in O(|w |3) time.

If L is deterministic context-free and given by a deterministic PDA, the
word problem for L can be solved in O(n) time.

Markus Lohrey (Univ. Siegen) FSA SS 2023 304 / 356

Decidability

Emptiness Problem for Context-Free Languages

Given a context-free grammar G = (V ,Σ,P,S).
Is L(G) = ∅?

Determine the set

W = {A ∈ V | ∃w ∈ Σ∗ : A⇒∗G w}

of all productive variables (variables that can derive a terminal word):

W := {A ∈ V | ∃w ∈ Σ∗ : (A→ w) ∈ P}
W ′ := ∅
while W ′ 6= W do
W ′ := W
W := W ∪ {A ∈ V | ∃w ∈ (Σ ∪W)∗ : (A→ w) ∈ P}

endwhile

Then it holds: L(G) 6= ∅ ⇐⇒ S ∈W .
Markus Lohrey (Univ. Siegen) FSA SS 2023 305 / 356

Decidability

Finiteness Problem for Context-Free Languages

Given a context-free grammar G = (V ,Σ,P,S).
Is L(G) finite?

Without loss of generality, we can assume that G is in Chomsky Normal
Form.

We define a graph (W ,E) on the set W of productive variables (see
previous slide) with the following edge relation:

E = {(A,B) ∈W ×W | ∃C ∈W : (A→ BC) ∈ P or (A→ CB) ∈ P}

Claim: |L(G)| =∞ ⇐⇒ ∃A ∈W : (S ,A) ∈ E ∗ and (A,A) ∈ E+.

Note: (B,C) ∈ E ∗ (or (B,C) ∈ E+) means there is a path (or a
non-empty path, i.e., a path with at least one edge) from B to C in the
binary relation E . (B,B) ∈ E ∗ always holds!

Markus Lohrey (Univ. Siegen) FSA SS 2023 306 / 356

Decidability

“⇐”: Let A ∈W be such that (S ,A) ∈ E ∗ and (A,A) ∈ E+.

Then there exist derivations in G of the form:

S ⇒∗G uAy , A⇒+
G vAx , A⇒∗G w

with u, v ,w , x , y ∈ Σ∗.

Hence, S ⇒∗G uv iwx iy ∈ Σ∗ for all i ≥ 0.

Since in the derivation A⇒+
G vAx at least one derivation step is made,

and G is in Chomsky Normal Form, it must be the case that vx 6= ε.

Therefore, {uv iwx iy | i ≥ 0} is infinite, so L(G) is infinite.

Markus Lohrey (Univ. Siegen) FSA SS 2023 307 / 356

Decidability

“⇒”: Let L(G) be infinite.

Let n be the constant from the Pumping Lemma (= 2|V |) and let
z ∈ L(G) with |z | ≥ n (such a word z exists if L(G) is infinite!).

In the proof of the Pumping Lemma, we saw that there exists a variable A
with derivations S ⇒∗G uAy , A⇒+

G vAx , and A⇒∗G w , where z = uvwxy .

Hence, A is productive: A ∈W .

The derivations S ⇒∗ uAy and A⇒+ vAx (more precisely, the path in the
syntax tree from the root S to the second occurrence of A) show that
(S ,A) ∈ E ∗ and (A,A) ∈ E+ holds.

Markus Lohrey (Univ. Siegen) FSA SS 2023 308 / 356

Decidability

Example:

Let G be the grammar in Chomsky Normal Form with the productions

S → AC

A → BC

B → CA | b
C → a

In this case, W = {S ,A,B,C}, meaning all variables are productive: After
running i iterations through the while loop (Slide 305), we obtain

1 for i = 0: W = {B,C}
2 for i = 1: W = {A,B,C}
3 for i = 2: W = {S ,A,B,C}

Since S ∈W , it follows that L(G) 6= ∅.

Markus Lohrey (Univ. Siegen) FSA SS 2023 309 / 356

Decidability

Example (Continued):

The graph (W ,E) is then

S

A

C

B

The red path shows that L(G) is infinite.

Markus Lohrey (Univ. Siegen) FSA SS 2023 310 / 356

Decidability

Undecidability for Context-Free Languages

The following problems are undecidable for context-free languages, i.e., it
can be shown that there is no corresponding algorithm to solve them:

Equivalence Problem: Given two context-free languages L1, L2. Is
L1 = L2?

Intersection Problem: Given two context-free languages L1, L2. Is
L1 ∩ L2 = ∅?

Note: In the lecture Computability and Logic, we will see how such
undecidability results can be proven.

Markus Lohrey (Univ. Siegen) FSA SS 2023 311 / 356

Decidability

The Intersection Problem is, however, decidable when it is known that one
of the two languages L1, L2 is regular and given as a finite automaton.

Algorithm:

1 In this case, a pushdown automaton M can be constructed
(construction shown earlier), which accepts L1 ∩ L2.

2 The pushdown automaton M can then be transformed into a
context-free grammar G .

3 By determining the productive variables of G , it can be determined
whether S is non-productive and thus whether L1 ∩ L2 is empty.

Markus Lohrey (Univ. Siegen) FSA SS 2023 312 / 356

Decidability

Decidability for Deterministic Context-Free Languages

The following problems are decidable for deterministic context-free
languages (represented by a deterministic pushdown automaton):

Word Problem for a Deterministic Context-Free Language L: Given
w ∈ Σ∗. Is w ∈ L?

With a deterministic pushdown automaton in O(|w |) time.

Emptiness Problem: Given a deterministic context-free language L. Is
L = ∅?
See the corresponding decision procedure for context-free languages.

Markus Lohrey (Univ. Siegen) FSA SS 2023 313 / 356

Decidability

Decidability for Deterministic Context-Free Languages

Finiteness Problem: Given a deterministic context-free language L. Is
L finite?

See the corresponding decision procedure for context-free languages.

Equivalence Problem: Given two deterministic context-free languages
L1, L2. Is L1 = L2?

This was an open problem for a long time, and decidability was shown
by Gérard Sénizergues in 1997.

Markus Lohrey (Univ. Siegen) FSA SS 2023 314 / 356

Decidability

Undecidability for Deterministic Context-Free Languages

The following problems are undecidable for deterministic context-free
languages, i.e., it can be shown that there is no corresponding procedure:

Intersection Problem: Given two deterministic context-free languages
L1, L2. Is L1 ∩ L2 = ∅?

As with context-free languages, this problem is decidable when one of
the two languages is regular.

Inclusion Problem: Given two deterministic context-free languages L1,
L2. Is L1 ⊆ L2?

Markus Lohrey (Univ. Siegen) FSA SS 2023 315 / 356

Turing Machines

In the remainder of the lecture, we will introduce machine models for
Chomsky-0 and Chomsky-1 languages.

Chomsky-0 languages: Turing machines (named after Alan Turing,
1912-1954)

Chomsky-1 languages: Linear bounded automata (a restriction of
Turing machines)

Markus Lohrey (Univ. Siegen) FSA SS 2023 316 / 356

Turing Machines

Schematic representation of a Turing machine:

� i n p u t �

automaton
with finitely
many states

signal for
end state

and overwrite band symbols
head can move left and right

Markus Lohrey (Univ. Siegen) FSA SS 2023 317 / 356

Turing Machines

Properties of Turing machines:

Like finite automata, Turing machines have a finite number of states
and read an input from a tape, which is divided into cells (fields).

In each field of the tape, there is a symbol from a finite tape
alphabet. A read/write head moves over the tape.

Difference from finite automata: the read/write head can move left
and right and can also overwrite symbols.

If only symbols from the input word are overwritten, the Turing
machine is called linear bounded (machine model for Chomsky-1
languages).

If the read/write head can move beyond the left and right boundaries
of the input word and write there, the Turing machine is called general
with an unbounded tape (machine model for Chomsky-0 languages).

Markus Lohrey (Univ. Siegen) FSA SS 2023 318 / 356

Turing Machines

Turing Machines and Computers:

The concept of the Turing machine was invented by Alan Turing in
1936, even before the first real computers were built.

It is interesting not only for historical reasons but also because it
represents a very simple computational model.

When one wants to show that something is not computable, it is
much better to do this with a as simple as possible computational
model. (Of course, one should first ensure that this computational
model is equivalent to more complex models.)

Analogy to a modern computer:

Control with a finite number of states Program
(Input) Tape Memory

Markus Lohrey (Univ. Siegen) FSA SS 2023 319 / 356

Turing Machines

Example 1: Turing machine that increments a binary number on the tape
by one.

Idea:

The head of the Turing machine starts on the leftmost (most
significant) bit of the binary number.

Move the head to the right until a blank space is found.

Then move the head back to the left, replacing each 1 with 0 until a
0 or a blank space � (a special tape symbol) is encountered.

Replace this symbol with 1, then move to the beginning of the
number and transition to a final state.

Markus Lohrey (Univ. Siegen) FSA SS 2023 320 / 356

Turing Machines

Simulation (increment binary number 10111)

State:
find end of
number z0

� 1 �0 1 1 1

� = empty space

Markus Lohrey (Univ. Siegen) FSA SS 2023 321 / 356

Turing Machines

Simulation (increment binary number 10111)

State:
find end of
number z0

� 1 0 1 1 1 �

� = empty space

Markus Lohrey (Univ. Siegen) FSA SS 2023 321 / 356

Turing Machines

Simulation (increment binary number 10111)

State:
find end of
number z0

� 1 0 1 1 1 �

� = empty space

Markus Lohrey (Univ. Siegen) FSA SS 2023 321 / 356

Turing Machines

Simulation (increment binary number 10111)

State:
find end of
number z0

� 1 0 1 1 1 �

� = empty space

Markus Lohrey (Univ. Siegen) FSA SS 2023 321 / 356

Turing Machines

Simulation (increment binary number 10111)

State:
find end of
number z0

� 1 0 1 1 1 �

� = empty space

Markus Lohrey (Univ. Siegen) FSA SS 2023 321 / 356

Turing Machines

Simulation (increment binary number 10111)

� 1 0 1 1 1 �

State:
find end of
number z0

� = empty space

Markus Lohrey (Univ. Siegen) FSA SS 2023 321 / 356

Turing Machines

Simulation (increment binary number 10111)

State:
replace 1 by 0
z1

� 1 0 1 1 1 �

� = empty space

Markus Lohrey (Univ. Siegen) FSA SS 2023 321 / 356

Turing Machines

Simulation (increment binary number 10111)

State:
replace 1 by 0
z1

� 1 0 1 1 �0

� = empty space

Markus Lohrey (Univ. Siegen) FSA SS 2023 321 / 356

Turing Machines

Simulation (increment binary number 10111)

State:
replace 1 by 0
z1

� 1 0 1 �0 0

� = empty space

Markus Lohrey (Univ. Siegen) FSA SS 2023 321 / 356

Turing Machines

Simulation (increment binary number 10111)

� 1 0 �0 0 0

State:
replace 1 by 0
z1

� = empty space

Markus Lohrey (Univ. Siegen) FSA SS 2023 321 / 356

Turing Machines

Simulation (increment binary number 10111)

State: back to
MSD of number
z2

� 1 �1 0 0 0

� = empty space

Markus Lohrey (Univ. Siegen) FSA SS 2023 321 / 356

Turing Machines

Simulation (increment binary number 10111)

State: back to
MSD of number
z2

� 1 �1 0 0 0

� = empty space

Markus Lohrey (Univ. Siegen) FSA SS 2023 321 / 356

Turing Machines

Simulation (increment binary number 10111)

� 1 �1 0 0 0

State:
end state
ze

� = empty space

Markus Lohrey (Univ. Siegen) FSA SS 2023 321 / 356

Turing Machines

Turing Machine (Definition)

A deterministic Turing machine M is a 7-tuple M = (Z ,Σ, Γ, δ, z0,�,E),
where

Z is the finite set of states,

Σ is the finite input alphabet,

Γ with Γ ⊇ Σ is the finite working alphabet or tape alphabet (it
should hold that Γ ∩ Z = ∅),

z0 ∈ Z is the start state,

E ⊆ Z is the set of final states,

δ : (Z \ E)× Γ→ Z × Γ× {L,R,N} is the transition function, and

� ∈ Γ\Σ is the blank or blank space.

Abbreviation: TM

Markus Lohrey (Univ. Siegen) FSA SS 2023 322 / 356

Turing Machines

Meaning of the Transition Function:
Let δ(z , a) = (z ′, b, x) with z , z ′ ∈ Z , a, b ∈ Γ, and x ∈ {L,R,N}.

If the Turing machine is in state z and the tape symbol a is currently in
the cell where the (read-write) head is located, then

it transitions to state z ′,

overwrites the a in the current cell with b, and

performs the following head movement:

Move the head one cell to the left if x = L.
Keep the head in place if x = N.
Move the head one cell to the right if x = R.

Note: Since δ : (Z \ E)× Γ→ Z × Γ× {L,R,N} (i.e., δ is not defined for
pairs (z , a) with z ∈ E), the Turing machine halts exactly when the
current state is a final state from E .

Markus Lohrey (Univ. Siegen) FSA SS 2023 323 / 356

Turing Machines

In addition to deterministic Turing machines, there are also
non-deterministic Turing machines.

Transition function for non-deterministic Turing machines:

δ : (Z \ E)× Γ→ 2Z×Γ×{L,R,N}.

A (possibly empty) set of possible actions is assigned to each state and
tape symbol.

However, for now, we will focus on deterministic Turing machines.

Markus Lohrey (Univ. Siegen) FSA SS 2023 324 / 356

Turing Machines

Example: Turing machine for incrementing a binary number

M = ({z0, z1, z2, ze}, {0, 1}, {0, 1,�}, δ, z0,�, {ze}) with

Transition function: finding end of number

δ(z0, 0) = (z0, 0,R)

δ(z0, 1) = (z0, 1,R)

δ(z0,�) = (z1,�, L)

Transition function: replace 1 by 0

δ(z1, 0) = (z2, 1, L)

δ(z1, 1) = (z1, 0, L)

δ(z1,�) = (ze , 1,N)

Markus Lohrey (Univ. Siegen) FSA SS 2023 325 / 356

Turing Machines

Transition function: back to MSD of number (not so important)

δ(z2, 0) = (z2, 0, L)

δ(z2, 1) = (z2, 1, L)

δ(z2,�) = (ze ,�,R)

Markus Lohrey (Univ. Siegen) FSA SS 2023 326 / 356

Turing Machines

Example 2: Turing machines for language recognition

We are looking for a Turing machine that recognizes the language
L = {a2n | n ≥ 0} (not context-free!).

Idea:

The head initially stands at the leftmost end of the sequence of a’s.

Write the binary number 0 next to the sequence of a’s on the tape.

Replace the a’s one by one with another symbol (#). After each
replacement, move left to the counter and increment it by one.

Once all the a’s are gone (after the last # comes a �), check if the
counter has the form 10 · · · 0.

Note: A number n is a power of two if and only if its binary
representation has the form 10 · · · 0.

Markus Lohrey (Univ. Siegen) FSA SS 2023 327 / 356

Turing Machines

As with other machine models (e.g., pushdown automata), Turing
machines also have the concept of a configuration, i.e., a snapshot of a
Turing machine’s computation.

Configuration (Definition)

A configuration of a Turing machine is a word

k ∈ Γ∗ZΓ+.

Meaning: k = αzβ with z ∈ Z , α ∈ Γ∗, β ∈ Γ+ (so β is a non-empty
word)

To the left of the head, the tape contains the word · · ·�α
From the cell where the head is currently positioned, and to the right
of it, the tape contains the word β� · · · The head is positioned on
the first symbol of β (here, β 6= ε is important).

z ∈ Z is the current state.

Markus Lohrey (Univ. Siegen) FSA SS 2023 328 / 356

Turing Machines

· · ·� represents an infinite sequence of �’s extending to the left.

� · · · represents an infinite sequence of �’s extending to the right.

The tape is therefore unbounded to the left and right, but only a finite
section of the tape contains tape symbols from Γ \ {�}.

Note: The words αzβ and �αzβ� describe the same configuration (the
blanks at the beginning and end of �αzβ� are effectively redundant).

Example: A graphical representation of the configuration
a1a2a3a4 z a5a6a7

· · · � � � a1 a2 a3 a4 a5

z

a6 a7 � � � · · ·
?

Markus Lohrey (Univ. Siegen) FSA SS 2023 329 / 356

Turing Machines

Definition of a transition relation `M , which describes which configuration
transitions are possible.

No Movement

We have: a1 · · · amzb1b2 · · · bn `M a1 · · · amz′cb2 · · · bn,

if δ(z , b1) = (z′, c ,N) (m ≥ 0, n ≥ 1).

Markus Lohrey (Univ. Siegen) FSA SS 2023 330 / 356

Turing Machines

Definition of a transition relation `M , which describes which configuration
transitions are possible.

No Movement

We have: a1 · · · amzb1b2 · · · bn `M a1 · · · amz′cb2 · · · bn,

if δ(z , b1) = (z′, c ,N) (m ≥ 0, n ≥ 1).

State: z

. . .a1 am b2 . . . bnb1

Markus Lohrey (Univ. Siegen) FSA SS 2023 330 / 356

Turing Machines

Definition of a transition relation `M , which describes which configuration
transitions are possible.

No Movement

We have: a1 · · · amzb1b2 · · · bn `M a1 · · · amz′cb2 · · · bn,

if δ(z , b1) = (z′, c ,N) (m ≥ 0, n ≥ 1).

. . .a1 am b2 . . . bnc

State: z ′

Markus Lohrey (Univ. Siegen) FSA SS 2023 330 / 356

Turing Machines

Definition of a transition relation `M , which describes which configuration
transitions are possible.

Step to the Left

We have: a1 · · · am−1amzb1b2 · · · bn `M a1 · · · am−1z′amcb2 · · · bn,

if δ(z , b1) = (z′, c , L) (m ≥ 1, n ≥ 1).

Markus Lohrey (Univ. Siegen) FSA SS 2023 331 / 356

Turing Machines

Definition of a transition relation `M , which describes which configuration
transitions are possible.

Step to the Left

We have: a1 · · · am−1amzb1b2 · · · bn `M a1 · · · am−1z′amcb2 · · · bn,

if δ(z , b1) = (z′, c , L) (m ≥ 1, n ≥ 1).

State: z

am b2 . . . bnb1a1 . . . am−1

Markus Lohrey (Univ. Siegen) FSA SS 2023 331 / 356

Turing Machines

Definition of a transition relation `M , which describes which configuration
transitions are possible.

Step to the Left

We have: a1 · · · am−1amzb1b2 · · · bn `M a1 · · · am−1z′amcb2 · · · bn,

if δ(z , b1) = (z′, c , L) (m ≥ 1, n ≥ 1).

am b2 . . . bna1 . . . am−1

State: z ′

c

Markus Lohrey (Univ. Siegen) FSA SS 2023 331 / 356

Turing Machines

Definition of a transition relation `M , which describes which configuration
transitions are possible.

Step to the Right

We have: a1 · · · amzb1b2 · · · bn `M a1 · · · amcz′b2 · · · bn,

if δ(z , b1) = (z′, c ,R) (m ≥ 0, n ≥ 2).

Markus Lohrey (Univ. Siegen) FSA SS 2023 332 / 356

Turing Machines

Definition of a transition relation `M , which describes which configuration
transitions are possible.

Step to the Right

We have: a1 · · · amzb1b2 · · · bn `M a1 · · · amcz′b2 · · · bn,

if δ(z , b1) = (z′, c ,R) (m ≥ 0, n ≥ 2).

State: z

. . .a1 am b2 . . . bnb1

Markus Lohrey (Univ. Siegen) FSA SS 2023 332 / 356

Turing Machines

Definition of a transition relation `M , which describes which configuration
transitions are possible.

Step to the Right

We have: a1 · · · amzb1b2 · · · bn `M a1 · · · amcz′b2 · · · bn,

if δ(z , b1) = (z′, c ,R) (m ≥ 0, n ≥ 2).

. . .a1 am b2 . . . bn

State: z ′

c

Markus Lohrey (Univ. Siegen) FSA SS 2023 332 / 356

Turing Machines

Special Cases: Reaching the end of the tape additional blank must be
added

Left Tape End

It holds: zb1b2 · · · bn `M z′�cb2 · · · bn,

if δ(z , b1) = (z′, c , L).

Markus Lohrey (Univ. Siegen) FSA SS 2023 333 / 356

Turing Machines

Special Cases: Reaching the end of the tape additional blank must be
added

Left Tape End

It holds: zb1b2 · · · bn `M z′�cb2 · · · bn,

if δ(z , b1) = (z′, c , L).

State: z

b2 . . . bnb1

Markus Lohrey (Univ. Siegen) FSA SS 2023 333 / 356

Turing Machines

Special Cases: Reaching the end of the tape additional blank must be
added

Left Tape End

It holds: zb1b2 · · · bn `M z′�cb2 · · · bn,

if δ(z , b1) = (z′, c , L).

b2 . . . bn�

State: z ′

c

Markus Lohrey (Univ. Siegen) FSA SS 2023 333 / 356

Turing Machines

Special Cases: Reaching the end of the tape additional blank must be
added

Right Tape End

It holds: a1 · · · amzb1 `M a1 · · · amcz′�,

if δ(z , b1) = (z′, c ,R).

Markus Lohrey (Univ. Siegen) FSA SS 2023 334 / 356

Turing Machines

Special Cases: Reaching the end of the tape additional blank must be
added

Right Tape End

It holds: a1 · · · amzb1 `M a1 · · · amcz′�,

if δ(z , b1) = (z′, c ,R).

State: z

. . .a1 am b1

Markus Lohrey (Univ. Siegen) FSA SS 2023 334 / 356

Turing Machines

Special Cases: Reaching the end of the tape additional blank must be
added

Right Tape End

It holds: a1 · · · amzb1 `M a1 · · · amcz′�,

if δ(z , b1) = (z′, c ,R).

. . .a1 am c �

State: z ′

Markus Lohrey (Univ. Siegen) FSA SS 2023 334 / 356

Turing Machines

Accepted Language (Definition)

Let M = (Z ,Σ, Γ, δ, z0,�,E) be a Turing machine. Then, the accepted
language of M is:

T (M) = {x ∈ Σ∗ | ∃k ∈ Γ∗EΓ+ : z0x� `∗M k}.

Accepted Language: All input words for which the Turing machine can
reach an accepting state. The Turing machine starts in the initial state z0,
with the head positioned at the first symbol of the input word. If no input
exists (the input x is the empty word), the head reads a blank symbol �.

Example: The computation on the next slide corresponds to the
simulation on Slide 321 for the Turing machine of Slides 325–326.

Markus Lohrey (Univ. Siegen) FSA SS 2023 335 / 356

Turing Machines

z010111 `M 1z00111 because δ(z0, 1) = (z0, 1,R)

`M 10z0111 because δ(z0, 0) = (z0, 0,R)

`M 101z011 because δ(z0, 1) = (z0, 1,R)

`M 1011z01 because δ(z0, 1) = (z0, 1,R)

`M 10111z0� because δ(z0, 1) = (z0, 1,R)

`M 1011z11� because δ(z0,�) = (z1,�, L)

`M 101z110� because δ(z1, 1) = (z1, 0, L)

`M 10z1100� because δ(z1, 1) = (z1, 0, L)

`M 1z10000� because δ(z1, 1) = (z1, 0, L)

`M z211000� because δ(z1, 0) = (z2, 1, L)

`M z2�11000� because δ(z2, 1) = (z2, 1, L)

`M �ze11000� because δ(z2,�) = (ze ,�,R)

Markus Lohrey (Univ. Siegen) FSA SS 2023 336 / 356

Turing Machines

For non-deterministic Turing machines, the definitions must be
adjusted as follows:

If the Turing machine is in state z and the symbol b is on the tape,
all configuration transitions described by the set δ(z , b) are possible.

A word is accepted if there exists a possible sequence of configurations
leading to an accepting state, even if other sequences result in dead
ends or run infinitely without reaching an accepting state.

Markus Lohrey (Univ. Siegen) FSA SS 2023 337 / 356

Linearly Bounded Automata

We now define a machine model for Chomsky-1 languages (generated by
monotone grammars): linearly bounded automata, which must never work
outside the input.

Linearly Bounded Automata

A (non)deterministic linearly bounded automaton (LBA) is a tuple
A = (Z ,Σ, Γ, δ, z0,�,E), which satisfies the same properties as a
(non)deterministic Turing machine, except that (i) A cannot overwrite the
blank symbol � with a non-blank symbol, and (ii) A cannot overwrite a
non-blank symbol with �.

The relation `A is defined as for a Turing machine, except that the special
cases for the left and right tape ends (Slides 333 and 334) are omitted.

The accepted language of the LBA A is

T (A) = {w ∈ Σ∗ | ∃k ∈ Γ∗EΓ+ : z0w� `∗A k}

Markus Lohrey (Univ. Siegen) FSA SS 2023 338 / 356

Chomsky-1-Languages

Remark: The trailing blank symbol � allows A to detect the right tape
end. It serves as a right boundary symbol.

Theorem 3 (Kuroda)

A language L is recognized by a non-deterministic LBA if and only if there
exists a Type-1 grammar G such that L = L(G).

Proof:

Let G = (V ,Σ,P,S) be a Type-1 grammar, i.e., for all (`, r) ∈ P, we have
|`| ≤ |r | (the only exception is S → ε, see ε-special rule, Slide 35).

Let w ∈ Σ∗ be an input.

We now simulate a derivation S ⇒∗G w backwards using a
non-deterministic LBA A.

Markus Lohrey (Univ. Siegen) FSA SS 2023 339 / 356

Chomsky-1-Languages

B[i] is the i-th symbol on the tape of the LBA A.

�̃ is a new tape symbol, which functions as a copy of the blank symbol �.

The LBA A operates as follows:

1 A moves the head to the leftmost symbol on the tape,
non-deterministically selects a rule (`, r) ∈ P and remembers it in the
state.

2 Then, the head of A moves to the right to a non-deterministically
chosen position i .

3 If B[i] · · ·B[i + |r | − 1] = r holds, A writes the word ` over the tape
segment B[i] · · ·B[i + |`| − 1]. Otherwise, return to step (1).

Markus Lohrey (Univ. Siegen) FSA SS 2023 340 / 356

Chomsky-1-Languages

4 If |`| < |r |, the LBA must shift every symbol on the tape from
position i + |r | by exactly |r | − |`| positions to the left.

If this creates a sentential form of length < |w | on the tape, the LBA
fills the sentential form with symbols �̃ at the right end (note: A is
not allowed to overwrite non-blanks with the actual blank symbol �).

5 A accepts if the current tape starts with S� or S�̃; otherwise, return
to step (1).

If S → ε is a production in P (i.e., ε ∈ L(G)), A can transition directly
from the start state to an accept state upon reading �.

Markus Lohrey (Univ. Siegen) FSA SS 2023 341 / 356

Chomsky-1-Languages

For this LBA A, it holds that L(G) = T (A).

We now prove the other direction.

The following lemma will be helpful.

Lemma 4

Let G = (V ,Σ ∪ {r},P, S) be a Type-1 grammar with r 6∈ Σ and
L(G) ⊆ Σ∗ r . Then there exists a Type-1 grammar G ′ with

L(G ′) = {w ∈ Σ∗ | wr ∈ L(G)}.

Proof:

Without loss of generality, we can assume that:

For each production (u, v) ∈ P, it holds that 0 ≤ |v | − |u| ≤ 1

S does not appear on the right-hand side of any production.

Markus Lohrey (Univ. Siegen) FSA SS 2023 342 / 356

Chomsky-1-Languages

We define a new set of variables V ′ by

V ′ = V ∪ {r} ∪ {Aab | a, b ∈ V ∪ Σ ∪ {r}}.

Intuition: Aab is a nonterminal that combines the last two symbols ab in a
sentential form into one symbol.

The new production set P ′ of the grammar G ′ consists of the productions
on the next slide.

In all cases, a, b, c , d ∈ V ∪ Σ ∪ {r} and x , y ∈ (V ∪ Σ ∪ {r})∗.

Markus Lohrey (Univ. Siegen) FSA SS 2023 343 / 356

Chomsky-1-Languages

S → ε if r ∈ L(G),

S → Aab if S ⇒∗G ab

xAab → yAcd if (xab → ycd) ∈ P

xAab → yAcb if (xa→ yc) ∈ P

Aab → Aac if (b → c) ∈ P

Aab → aAcd if (b → cd) ∈ P

all productions from P

Aar → a if a ∈ Σ

Then G ′ = (V ′,Σ,P ′,S) is the required grammar.

Markus Lohrey (Univ. Siegen) FSA SS 2023 344 / 356

Chomsky-1-Languages

Analogously, we prove the following:

Lemma 5

Let G = (V ,Σ ∪ {`},P, S) be a Type-1 grammar with ` 6∈ Σ and
L(G) ⊆ `Σ∗. Then there exists a Type-1 grammar G ′ such that

L(G ′) = {w ∈ Σ∗ | `w ∈ L(G)}.

By applying both lemmas:

Lemma 6

Let G = (V ,Σ ∪ {`, r},P, S) be a Type-1 grammar with `, r 6∈ Σ and
L(G) ⊆ `Σ∗ r . Then there exists a Type-1 grammar G ′ such that

L(G ′) = {w ∈ Σ∗ | `wr ∈ L(G)}.

Markus Lohrey (Univ. Siegen) FSA SS 2023 345 / 356

Chomsky-1-Languages

Now, back to the proof of Theorem 3. Let A = (Z ,Σ, Γ, δ, z0,�,E) be an
LBA.

Based on Lemma 6, it is sufficient to provide a Type-1 grammar for the
language {$w� | w ∈ T (A)} (where $ is a new terminal symbol).

To do so, we simulate A backwards using the Type-1 grammar
G = (V ,Σ ∪ {$,�},P,S) with the variable set

V = {S ,B,C} ∪ (Γ \ (Σ ∪ {�})) ∪ (Z × Γ)

and the following production set P (Slides 346–348):

S → $B

B → aB | (z , a)C | (z ,�) for all a ∈ Γ \ {�}, z ∈ E

C → aC | � for all a ∈ Γ \ {�}

Markus Lohrey (Univ. Siegen) FSA SS 2023 346 / 356

Chomsky-1-Languages

With the rules for S , B, and C , one can generate any word of the form

$a1a2 · · · an(z , a)b1b2 · · · bm� or $a1a2 · · · an(z ,�)

with a1, . . . , an, a, b1, . . . , bm ∈ Γ \ {�} and z ∈ E .

These are exactly the configurations in which A accepts, except for the
detail that we combine the state z and the currently read tape symbol a
into a nonterminal (z , a) ∈ Z × Γ (which simplifies the rest of the
grammar).

The following productions simulate the LBA A backwards:

(z ′, a′) → (z , a) for all (z ′, a′,N) ∈ δ(z , a)

a′(z ′, b) → (z , a)b for all (z ′, a′,R) ∈ δ(z , a), b ∈ Γ

(z ′, b)a′ → b(z , a) for all (z ′, a′, L) ∈ δ(z , a), b ∈ Γ

Markus Lohrey (Univ. Siegen) FSA SS 2023 347 / 356

Chomsky-1-Languages

Using the productions from the previous slide, the initially generated
accepting configuration eventually derives into an initial configuration of
the form

$(z0, c1)c2 · · · cn� or $(z0,�)

(note: z0 is the initial state of the LBA A). Then, using the following
productions, the word $c1c2 · · · cn� or $� is derived:

$(z0, a) → $a for all a ∈ Σ

$(z0,�) → $�

Thus, we have L(G) = {$w� | w ∈ T (A)}.

Markus Lohrey (Univ. Siegen) FSA SS 2023 348 / 356

Chomsky-0-Languages

Satz 7 (Turing Machines and Chomsky-0-Languages)

A language L is recognized by a nondeterministic Turing machine if and
only if there exists a Type-0 grammar G such that L = L(G).

Proof Idea: By modifying the proof of Theorem 3:

Grammars → Turing Machines: In this case, when simulating the
grammar on the Turing machine tape, for reducing rules (the
left side is longer than the right side), the tape contents
must be shifted apart.

Turing Machines → Grammars: Here, it must be ensured that the
grammar can generate spaces on both sides when simulating
the Turing machine, and can also delete them after
successful computation.

Markus Lohrey (Univ. Siegen) FSA SS 2023 349 / 356

Chomsky-0-Languages

Formal: We simulate a Turing machine M = (Z ,Σ, Γ, δ, z0,�,E) using
the Type-0 grammar G = ({S ,B,C , $1, $2} ∪ (Γ \ Σ) ∪ (Z × Γ), Σ,P,S)
with the following production set P:

S → $1B

B → aB | (z , a)C for all a ∈ Γ, z ∈ E

C → aC | $2 for all a ∈ Γ

(z ′, a′) → (z , a) for all (z ′, a′,N) ∈ δ(z , a)

a′(z ′, b) → (z , a)b for all (z ′, a′,R) ∈ δ(z , a), b ∈ Γ

(z ′, b)a′ → b(z , a) for all (z ′, a′, L) ∈ δ(z , a), b ∈ Γ

$1� → $1

$1(z0, a) → a for all a ∈ Σ

�$2 → $2

a$2 → a for all a ∈ Σ

$1(z0,�)$2 → ε

Markus Lohrey (Univ. Siegen) FSA SS 2023 350 / 356

Chomsky-0-Languages

Again, the Turing machine M is simulated backwards.

The shortening rules $1�→ $1 and �$2 → $2 allow blank symbols at the
beginning and end of the configuration to be deleted.

This is important to derive, from an initial configuration obtained by
backward simulation of the TM, initially:

$1� · · ·�(z0, c1)c2 · · · cn� · · ·�$2 or $1� · · ·�(z0,�)� · · ·�$2

to:
$1(z0, c1)c2 · · · cn$2 or $1(z0,�)$2

Then, using the productions $1(z0, c1)→ c1 and cn$2 → cn or
$1(z0,�)$2 → ε, the input word c1c2 · · · cn or ε is derived.

Thus, L(G) = T (M).

Markus Lohrey (Univ. Siegen) FSA SS 2023 351 / 356

Results for Chomsky-1 and Chomsky-0 Languages

Satz 8 (Closure under Complement of Type-1 Languages, Immerman,
Szelepcsényi)

If L is a Type-1 language, then L = Σ∗\L is also a Type-1 language.

A proof will be presented in the lecture Structural Complexity Theory.

Satz 9 (Non-closure under Complement of Type-0 Languages)

There exists a Type-0 language L ⊆ Σ∗ such that L = Σ∗\L is not a
Type-0 language.

Justification and examples in the lecture Computability and Logic.

Markus Lohrey (Univ. Siegen) FSA SS 2023 352 / 356

Results for Chomsky-1 and Chomsky-0 Languages

Satz 10 (Determinism and Nondeterminism in Turing Machines)

For every nondeterministic Turing machine, there exists a deterministic
Turing machine that accepts the same language.

Proof:

Let M = (Z ,Σ, Γ, δ, z0,�,E) be a nondeterministic Turing machine, i.e.,

δ : (Z \ E)× Γ→ 2Z×Γ×{L,R,N}.

Idea: We construct a deterministic Turing machine that, given input
x ∈ Σ∗, systematically searches for a successful computation of M.

Let # /∈ Z ∪ Γ be a new symbol.

Markus Lohrey (Univ. Siegen) FSA SS 2023 353 / 356

Results for Chomsky-1 and Chomsky-0 Languages

A successful computation of M on input x is a word of the form

k0#k1# · · · km−1#km

with the following properties:

1 k0, k1, . . . , km ∈ Γ∗ZΓ+

2 k0 = z0x�.

3 ∀i ∈ {0, 1, . . .m − 1} : ki `M ki+1

4 km ∈ Γ∗EΓ+

Clearly, x ∈ T (M) if and only if a successful computation of M on input x
exists.

A deterministic Turing machine M ′ can, given input x and
w ∈ (Z ∪ Γ ∪ {#})∗, check whether w is a successful computation of
M on input x (this can even be done with a deterministic LBA).

To do this, M ′ only needs to check the four properties (1)–(4).
Markus Lohrey (Univ. Siegen) FSA SS 2023 354 / 356

Results for Chomsky-1 and Chomsky-0 Languages

Now, we just need to construct a deterministic Turing machine M ′′ that
systematically goes through all words w ∈ (Z ∪ Γ ∪ {#})∗ and, each time,
(using M ′) checks whether w is a successful computation of M on input x .

“Systematically in order” can be formally defined here using a
length-lexicographical order.

Let @ be any linear order on the alphabet Ω = Z ∪ Γ ∪ {#}.

The length-lexicographical order @lex on Ω∗ corresponding to @ is defined
as follows:

For u, v ∈ Ω∗, we have u @lex v if and only if

|u| < |v | (i.e., u is shorter than v), or

|u| = |v | and there exist x , y , z ∈ Ω∗, a, b ∈ Ω such that u = xay ,
v = xbz , and a @ b (i.e., at the first position where u and v differ, u
has the smaller symbol).

Markus Lohrey (Univ. Siegen) FSA SS 2023 355 / 356

Results for Chomsky-1 and Chomsky-0 Languages

General structure of the deterministic Turing machine M ′′:

1 Initialize a word w ∈ (Z ∪ Γ∪ {#})∗ with ε behind the input x on the
tape.

2 Check using M ′ whether w is a successful computation of M on input
x .
If yes, transition to an accepting state; otherwise, proceed to (3).

3 Increment w , i.e., overwrite w with the next word w ′ in the
length-lexicographical order (formally: w ′ is the smallest word with
respect to @lex such that w @lex w ′).

4 Go to (2).

Determinism and Nondeterminism for LBAs (First LBA Problem)

It is not known whether for every LBA A, there exists a deterministic LBA
A′ with T (A) = T (A′).

Markus Lohrey (Univ. Siegen) FSA SS 2023 356 / 356

