## Übungsblatt 4

Aufgabe 1. Beweisen oder widerlegen Sie die folgenden Aussagen.

- Sei L eine Sprache. Ist  $L^*$  regulär, so ist L regulär.
- Sei L eine reguläre Sprache und  $L' \subseteq L$ . Dann ist L' auch regulär.

## Aufgabe 2.

Sei  $\Sigma$  ein Alphabet. Der *Shuffle* zweier Sprachen  $L_1, L_2 \subseteq \Sigma^*$  ist wie folgt definiert:

$$L_1 \odot L_2 = \{ v_1 u_1 v_2 u_2 \dots v_n u_n \mid v_1, u_1, \dots, v_n, u_n \in \Sigma^*, \\ (v_1 \dots v_n) \in L_1, (u_1 \dots u_n) \in L_2, n \ge 0 \}.$$

Beispielsweise ist der Shuffle von  $L_1 = a^*$  und  $L_2 = b^*$  gleich  $(a|b)^*$ .

- Beschreiben Sie den Shuffle der Sprachen  $L_1 = (01)^*$  und  $L_2 = (10)^*$ .
- Beweisen Sie, dass der Shuffle zweier regulärer Sprachen regulär ist.

## Aufgabe 3.

Gegeben sei die Sprache  $L = a^+ba(ab)^*$  über dem Alphabet  $\Sigma = \{a, b\}$ .

- $\bullet$  Geben Sie eine reguläre Grammatik an, die L erzeugt.
- Geben Sie einen endlichen Automaten an, der L akzeptiert.

## Aufgabe 4.

Sei L die Sprache über dem Alphabet  $\Sigma = \{0,1\}$ , die der Automat aus Abbildung 1 akzeptiert. Geben Sie eine reguläre Grammatik an, die L erzeugt.

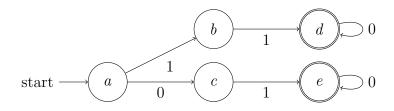



Abbildung 1: Ein endlicher Automat.