Übungsblatt 2

Aufgabe 1. Geben Sie zu jeder der folgenden Sprachen eine Grammatik und einen endlichen Automaten an.

- (a) $L_1 = \{ w \in \{a, b\}^* \mid \text{Das Wort } w \text{ enthält mindestens ein } b. \}$
- (b) $L_2 = \{w \in \{a, b\}^* \mid \text{Die Anzahl der } a\text{'s ist durch 3 teilbar.}\}$
- (c) $L_3 = \{w \in \{a, b\}^+ \mid \text{Der erste und letzte Buchstabe in } w \text{ stimmen "überein.} \}$
- (d) $L_4 = \{ a^n b^m c^{\ell} \mid n \ge 0, m \ge 1, \ell \ge 2 \}$
- (e) $L_5 = \{ w \in \{a, b\}^* \mid |w| \le 3 \}$

Aufgabe 2. Geben Sie zu jeder der folgenden Sprachen einen deterministischen, endlichen Automaten an. Finden Sie einen nichtdeterministischen, endlichen Automaten, der weniger Zustände benötigt?

- (a) $L_1 = \{ w \in \{a, b\}^* \mid w \text{ enthält das Wort } bab. \}$
- (b) $L_2 = \{w \in \{a, b, c\}^* \mid w \text{ enthält höchstens zwei verschiedene Buchstaben.}\}$

Aufgabe 3. Gegeben sei der NFA $M = (\{1, 2, 3\}, \{a, b\}, \delta, \{1\}, \{3\}),$ wobei δ gegeben ist durch:

δ	a	b
1	$\{1, 3\}$	{2}
2	{2}	$\{2, 3\}$
3	Ø	{3}

- (a) Zeichnen Sie das zu M gehörige Automatendiagramm.
- (b) Geben Sie mittels Potenzmengenkonstruktion einen zu M äquivalenten DFA an. Es genügt den vom Startzustand erreichbaren Teil anzugeben.