Übungsblatt 2

Aufgabe 1 Sei Σ ein (endliches) Alphabet.

- Definieren Sie die Funktion leaves : $\mathcal{E}_{\Sigma} \to \mathbb{N}$, welche die Terminalzeichen eines regulären Ausdrucks zählt.
- Mit $\Sigma_n = \mathbb{N} \times \Sigma$ bezeichnen wir das (unendliche) Alphabet, das aus durchnummerierten Terminalzeichen besteht. Definieren Sie das Durchnummerieren num : $\mathcal{E}_{\Sigma} \to \mathcal{E}_{\Sigma_n}$ eines regulären Ausdrucks. Verwenden Sie hierzu eine Hilfsfunktion num' : $\mathbb{N} \to \mathcal{E}_{\Sigma} \to \mathcal{E}_{\Sigma_n}$, welche die Startnummerierung als Parameter erhält.
- Definieren Sie die Knoten nodes : $\mathcal{E}_{\Sigma_n} \to \mathcal{P}(\mathcal{E}_{\Sigma_n})$ eines durchnummerierten regulären Ausdrucks.

Aufgabe 2 Seien $e_1, e_2 \in \mathcal{E}_{\{a,b\}}$ gegeben durch

- $e_1 = a^* | (ba)$ und
- $e_2 = b^*(a|b)^*$.

Konstruieren Sie für jeden regulären Ausdruck den ϵ -NDEA aus der Vorlesung.

Aufgabe 3 Sei $e_n = (a|b)^* a((a|b)\{n,n\}) \in \mathcal{E}_{\{a,b\}}$ für $n \in \mathbb{N}$.

- Bestimmen Sie $[e_n]$.
- Konstruieren Sie NDEAs A_n mit $L(A_n) = [e_n]$.
- Zeigen Sie, dass jeder DEA B_n mit $L(B_n) = L(A_n)$ mindestens 2^n Zustände besitzen muss.

Hinweis: Betrachten Sie alle paarweise verschiedenen Wörter aus $\{a,b\}^n$ und verwenden Sie das Schubfachprinzip, um zu zeigen, dass der Automat jedes dieser Wörter unterscheiden muss.