Übungsblatt 10

Aufgabe 1. Gegeben ist die kontextfreie Grammatik $G = (V, \Sigma, P, S)$ in Chomsky-Normalform über $\Sigma = \{a, b\}$ mit $V = \{S, X, Y, A, B\}$, wobei P gegeben ist durch:

$$S \rightarrow a \mid b \mid AA \mid BB \mid XA \mid YB$$

$$X \rightarrow AS$$

$$Y \rightarrow BS$$

$$A \rightarrow a$$

$$B \rightarrow b$$

Überprüfen Sie mit dem Algorithmus aus der Vorlesung, ob L(G) endlich ist.

Aufgabe 2. Sei $M = (\{z_0, z_e\}, \{a, b\}, \{a, b, \Box\}, \delta, z_0, \Box, \{z_e\})$ eine Turingmaschine, wobei δ gegeben ist durch:

$$\delta(z_0, a) = (z_e, a, R)$$

$$\delta(z_0, b) = (z_0, b, R)$$

$$\delta(z_0, \square) = (z_0, \square, N)$$

Bei Eingabe welcher Wörter $w \in \{a, b\}^*$ gelangt M in einen Endzustand?

Aufgabe 3. Geben Sie eine Turingmaschine an, die bei Eingabe eines Wortes $w \in \{a, b, c\}^*$ genau dann in einen Endzustand gelangt, wenn $w \in \{a^n b^n c^n \mid n \in \mathbb{N}\}.$

Aufgabe 4. Geben Sie eine Turingmaschine an, die bei Eingabe eines Wortes $w \in \{a, b\}^*$ das Wort w^r auf das Band schreibt, den Kopf auf das erste Symbol von w^r bewegt und in einen Endzustand übergeht. (Die Definition von w^r finden Sie auf Übungsblatt 8.)

Aufgabe 5. Sei $M = (Z, \Sigma, \delta, z_0, F)$ ein deterministischer endlicher Automat. Geben Sie eine Turingmaschine an, die bei Eingabe eines Wortes $w \in \Sigma^*$ genau dann in einen Endzustand gelangt, wenn $w \in T(M)$.