Logic II

Markus Lohrey
Universität Siegen

Summer 2017

Organizational matters

Information can be found at
http://www.eti.uni-siegen.de/ti/lehre/ss17/logikii/
e.g.,

- current version of the slides (german and english)
- exercise sheets for the tutorials

Literature recommendations:

- Schöning: Logik für Informatiker, Spektrum Akademischer Verlag
- Ebbinghaus, Flum, Thomas: Einführung in die mathematische Logik, Spektrum Akademischer Verlag

The tutorials will be organized by Danny Hucke.

Recapitulation from the course GTI

Definition (semi-decidable)
A language $L \subseteq \Sigma^{*}$ is semi-decidable if there exists an algorithm with the following properties:

For all $x \in \Sigma^{*}$:

- If $x \in L$, then the algorithm terminates on input x.
- If $x \notin L$, then the algorithm does not terminate on input x.

Equivalent notion: recursively enumerable.
Definition (recursively enumerable)
A language $L \subseteq \Sigma^{*}$ is recursively enumerable if there exists a computable total function $f: \mathbb{N} \rightarrow \Sigma^{*}$ such that $L=\{f(i) \mid i \in \mathbb{N}\}$.

Recapitulation from the course GTI

Definition (decidable and undecidable)
A language $L \subseteq \Sigma^{*}$ is decidable if there exists an algorithm with the following properties for all $x \in \Sigma^{*}$:

- If $x \in L$, then the algorithm terminates on input x with output "YES".
- If $x \notin L$, then the algorithm terminates on input x with output "NO".

A language $L \subseteq \Sigma^{*}$ is undecidable, if it is not decidable.

Theorem
A language $L \subseteq \Sigma^{*}$ is decidable if and only if L and $\Sigma^{*} \backslash L$ are both semi-decidable.

Recapitulation from the course Logic I

A formula F of predicate logic is

- satisfiable, if there exists a suitable structure \mathcal{A} for F with $\mathcal{A} \models F$ (i.e., F is true in the structure \mathcal{A}).
- valid, if $\mathcal{A} \models F$ for every suitable structure \mathcal{A} for F.

Corollary from the theorem of Gilmore
The set of unsatisfiable formulas of predicate logic is semi-decidable.

Corollary
The set of valid formulas of predicate logic is semi-decidable.
Proof: F is valid if and only if $\neg F$ is unsatisfiable.

Undecidability of predicate logic

In the next few hours, we will prove the following important theorem:
Church's theorem
The set of valid formulas of predicate logic is undecidable.

Corollary
The set of satisfiable formulas of predicate logic is not semi-decidable.
Proof: The set of unsatisfiable formulas is semi-decidable.
If the set of satisfiable formulas would be semi-decidable too, then it would be decidable.

Hence, the set of unsatisfiable formula and therefore also the set of valid formulas would be decidable.

Register machines

We prove Church's theorem by a reduction to the halting problem for register machine programs.

Let R_{1}, R_{2}, \ldots be names for registers.
Intuition: Every register stores a natural number.
A register machine program (RMP for short) P is a sequence of instructions $A_{1} ; A_{2} ; \ldots ; A_{l}$, where A_{l} is the STOP instruction, and for all $1 \leq i \leq I-1$ the instruction A_{i} has one of the following forms:

- $R_{j}:=R_{j}+1$ for a $1 \leq j \leq 1$
- $R_{j}:=R_{j}-1$ for a $1 \leq j \leq 1$
- IF $R_{j}=0$ THEN k_{1} ELSE k_{2} for $1 \leq j, k_{1}, k_{2} \leq I$,

A configuration of P is a tuple $\left(i, n_{1}, \ldots, n_{l}\right) \in \mathbb{N}^{I+1}$ with $1 \leq i \leq I$.
Intuition: i is the index of the instruction that will be executed next and n_{j} is the current content of register R_{j}.

Register machines

For configurations (i, n_{1}, \ldots, n_{l}) und ($i^{\prime}, n_{1}^{\prime}, \ldots, n_{l}^{\prime}$) we write

$$
\left(i, n_{1}, \ldots, n_{l}\right) \rightarrow_{P}\left(i^{\prime}, n_{1}^{\prime}, \ldots, n_{l}^{\prime}\right)
$$

if and only if $1 \leq i \leq I-1$ and one of the following cases holds:

- $A_{i}=\left(R_{j}:=R_{j}+1\right)$ for a $1 \leq j \leq I, i^{\prime}=i+1, n_{j}^{\prime}=n_{j}+1, n_{k}^{\prime}=n_{k}$ for $k \neq j$.
- $A_{i}=\left(R_{j}:=R_{j}-1\right)$ for a $1 \leq j \leq I, i^{\prime}=i+1, n_{j}=n_{j}^{\prime}=0$ or $\left(n_{j}>0, n_{j}^{\prime}=n_{j}-1\right)$, and $n_{k}^{\prime}=n_{k}$ for $k \neq j$.
- $A_{i}=\left(\right.$ IF $R_{j}=0$ THEN k_{1} ELSE k_{2}) for a $1 \leq j, k_{1}, k_{2} \leq I, n_{k}^{\prime}=n_{k}$ for all $1 \leq k \leq I, i^{\prime}=k_{1}$ if $n_{j}=0, i^{\prime}=k_{2}$ if $n_{j}>0$.

We define
HALT $=\left\{P \mid P=A_{1} ; A_{2} ; \ldots ; A_{l}\right.$ is an RMP with l instructions, $(1,0, \ldots, 0) \rightarrow_{P}^{*}\left(I, n_{1}, \ldots, n_{l}\right)$ for $\left.n_{1}, \ldots, n_{l} \geq 0\right\}$

Proof of Church's theorem

Register machine programs exactly correspond to the GOTO-programs from the GTI course.

There, we proved that Turing machines can be simulated by GOTO-programs (and vice versa).

Since the halting problem is undecidable for Turing machines started on the empty tape (Does a Turing machine, when started with blanks on the input tape, finally terminate?), we get:

Undecidability of the halting problem for RMPs
The set HALT is undecidable.
Remark: HALT is semi-decidable: Simulate the given RMP on the initial configuration $(1,0, \ldots, 0)$ and stop, if the RMP arrives at the STOP-instruction.

Proof of Church's theorem

We prove Church's theorem, by constructing from a given RMP P a sentence F_{P} of predicate logic (formula without free variables) such that:

$$
F_{P} \text { is valid } \Longleftrightarrow P \in \mathrm{HALT}
$$

Let $P=A_{1} ; A_{2} ; \ldots ; A_{l}$ be an RMP.
We fix the following symbols:

- < : binary predicate symbol
- c: constant
- f, g : unary function symbol
- $R:(I+2)$-ary predicate symbol

Proof of Church's theorem

We define a structure \mathcal{A}_{P} by the following case distinction:
Case 1: $P \notin$ HALT:

- universe $U_{\mathcal{A}_{P}}=\mathbb{N}$
- $<^{\mathcal{A}_{P}}=\{(n, m) \mid n<m\}$ (the ordinary linear order on \mathbb{N})
- $c^{\mathcal{A}_{P}}=0$
- $f^{\mathcal{A}_{P}}(n)=n+1, g^{\mathcal{A}_{P}}(n+1)=n, g^{\mathcal{A}_{P}}(0)=0$
- $R^{\mathcal{A}_{P}}=\left\{\left(s, i, n_{1}, \ldots, n_{l}\right) \mid(1,0, \ldots, 0) \rightarrow_{P}^{s}\left(i, n_{1}, \ldots, n_{l}\right)\right\}$

Case 2: $P \in$ HALT:
Let t be such that $(1,0, \ldots, 0) \rightarrow_{P}^{t}\left(I, n_{1}, \ldots, n_{l}\right)$ and $e=\max \{t, I\}$.

- universe $U_{\mathcal{A}_{P}}=\{0,1, \ldots, e\}$
- $<^{\mathcal{A}_{P}}=\{(n, m) \mid n<m\}$ (the ordinary linear order on $\{0,1, \ldots, e\}$)
- $c^{\mathcal{A}_{P}}=0$
- $f^{\mathcal{A}_{P}}(n)=n+1$ for $0 \leq n \leq e-1$ and $f^{\mathcal{A}_{P}}(e)=e$.
- $g^{\mathcal{A}_{P}}(n+1)=n$ for $0 \leq n \leq e-1$ and $g^{\mathcal{A}_{P}}(0)=0$.
- $R^{\mathcal{A}_{P}}=\left\{\left(s, i, n_{1}, \ldots, n_{l}\right) \mid 0 \leq s \leq t,(1,0, \ldots, 0) \rightarrow_{P}^{s}\left(i, n_{1}, \ldots, n_{l}\right)\right\}$

Proof of Church's theorem

In the following, we use the abbreviation \bar{m} for the term $f^{m}(c)$.
We define the sentence G_{P} (in which the symbols $<, c, f, g$ and R occur) with the following properties:
(A) $\mathcal{A}_{P} \models G_{P}$
(B) For every model \mathcal{A} of G_{P} the following holds:
if $(1,0, \ldots, 0) \rightarrow_{P}^{s}\left(i, n_{1}, \ldots, n_{l}\right)$, then:

$$
\mathcal{A} \models R\left(\bar{s}, \bar{i}, \overline{n_{1}}, \ldots, \overline{n_{l}}\right) \wedge \bigwedge_{q=0}^{s-1} \bar{q}<\overline{q+1} .
$$

We define

$$
G_{P}=G_{0} \wedge R(\overline{0}, \overline{1}, \overline{0}, \ldots, \overline{0}) \wedge G_{1} \wedge \cdots \wedge G_{l-1}
$$

where the sentences $G_{0}, G_{1}, \ldots, G_{l-1}$ is defined as follows (next slides):

Proof of Church's theorem

G_{0} expresses

- $<$ is a linear order with smallest element c,
- $x \leq f(x)$ and $g(x) \leq x$ for all x,
- for every x, which is not the largest element with respect to $<, f(x)$ is the direct successor of x, and
- for every x, which is not the smallest element $c, g(x)$ is the direct predecessor of x.

$$
\begin{aligned}
\forall x, y, z & (\neg x<x) \wedge(x=y \vee x<y \vee y<x) \wedge((x<y \wedge y<z) \rightarrow x<z) \\
& \wedge(x=c \vee c<x) \\
& \wedge(x=f(x) \vee x<f(x)) \\
& \wedge(x=g(x) \vee g(x)<x) \\
& \wedge(\exists u(x<u) \rightarrow(x<f(x) \wedge \forall u(x<u \rightarrow(u=f(x) \vee f(x)<u)))) \\
& \wedge(\exists u(u<x) \rightarrow(g(x)<x \wedge \forall u(u<x \rightarrow(u=g(x) \vee u<g(x)))))
\end{aligned}
$$

Proof of Church's theorem

Remark: For every model \mathcal{A} of G_{0} we have:

- $\mathcal{A} \models g(c)=c$
- $\mathcal{A} \models \forall x(\exists u(x<u) \rightarrow g(f(x))=x)$

Proof of Church's theorem

G_{i} for $1 \leq i \leq I-1$ describes the effect of the instruction A_{i}.
Case 1: $A_{i}=\left(R_{j}:=R_{j}+1\right)$. Let

$$
\begin{aligned}
G_{i}=\forall & x \forall x_{1} \cdots \forall x_{l}\left(R\left(x, \bar{i}, x_{1}, \ldots, x_{l}\right) \rightarrow\right. \\
& \left.\left(x<f(x) \wedge R\left(f(x), \overline{i+1}, x_{1}, \ldots, x_{j-1}, f\left(x_{j}\right), x_{j+1}, \ldots, x_{l}\right)\right)\right)
\end{aligned}
$$

Case 2: $A_{i}=\left(R_{j}:=R_{j}-1\right)$. Let

$$
\begin{aligned}
G_{i}=\forall & \forall \forall x_{1} \cdots \forall x_{l}\left(R\left(x, \bar{i}, x_{1}, \ldots, x_{l}\right) \rightarrow\right. \\
& \left.\left(x<f(x) \wedge R\left(f(x), \overline{i+1}, x_{1}, \ldots, x_{j-1}, g\left(x_{j}\right), x_{j+1}, \ldots, x_{l}\right)\right)\right)
\end{aligned}
$$

Proof of Church's theorem

Case 3: $A_{i}=\left(\right.$ IF $R_{j}=0$ THEN k_{1} ELSE k_{2}) for $1 \leq j, k_{1}, k_{2} \leq I$. Let

$$
\left.\left.\left.\left.\begin{array}{c}
G_{i}=\forall x \forall x_{1} \cdots \forall x_{l}\left(R\left(x, \bar{i}, x_{1}, \ldots, x_{l}\right) \rightarrow(x<f(x) \wedge\right. \\
\left(x_{j}=c \wedge R\left(f(x), \overline{k_{1}}, x_{1}, \ldots, x_{l}\right)\right) \vee \\
\left(x_{j}>c\right.
\end{array}\right) \wedge R\left(f(x), \overline{k_{2}}, x_{1}, \ldots, x_{l}\right)\right)\right)\right)
$$

Statement (A) follows immediately from the definition of \mathcal{A}_{P} and G_{P}.
Property (B) is shown by induction on s.
Base case: $s=0$. Assume that $(1,0, \ldots, 0) \rightarrow_{P}^{0}\left(i, n_{1}, \ldots, n_{l}\right)$, i.e., $i=1$ and $n_{1}=n_{2}=\cdots=n_{l}=0$.
$\mathcal{A} \models G_{P}$ implies $\mathcal{A} \models R(\overline{0}, \overline{1}, \overline{0}, \ldots, \overline{0})$, i.e., $\mathcal{A} \models R\left(\bar{s}, \bar{i}, \overline{n_{1}}, \ldots, \overline{n_{l}}\right)$.

Proof of Church's theorem

Induction step: Let $s>0$ and assume that (B) holds for $s-1$.
Let $(1,0, \ldots, 0) \rightarrow_{P}^{s}\left(i, n_{1}, \ldots, n_{l}\right)$.
Then, there exist j, m_{1}, \ldots, m_{l} with

$$
(1,0, \ldots, 0) \rightarrow_{P}^{s-1}\left(j, m_{1}, \ldots, m_{l}\right) \rightarrow_{P}\left(i, n_{1}, \ldots, n_{l}\right) .
$$

The induction hypothesis implies

$$
\mathcal{A} \models R\left(\overline{s-1}, \bar{j}, \overline{m_{1}}, \ldots, \overline{m_{l}}\right) \wedge \bigwedge_{q=0}^{s-2} \bar{q}<\overline{q+1} .
$$

We make a case distinction concerning the instruction A_{j}. We only consider the case that A_{j} has the form $R_{k}:=R_{k}-1$.

Thus, $i=j+1, n_{1}=m_{1}, \ldots, n_{k-1}=m_{k-1}, n_{k+1}=m_{k+1}, \ldots, n_{l}=m_{l}$, ($n_{k}=m_{k}=0$ or $m_{k}>0$ and $n_{k}=m_{k}-1$).

Proof of Church's theorem

$\mathcal{A} \models G_{j}$ implies
$\mathcal{A} \models \forall y, y_{1}, \ldots, y_{l}\left(R\left(y, \bar{j}, y_{1}, \ldots, y_{l}\right) \rightarrow\right.$

$$
\left.\left(y<f(y) \wedge R\left(f(y), \overline{j+1}, y_{1}, \ldots, y_{k-1}, g\left(y_{k}\right), y_{k+1}, \ldots, y_{l}\right)\right)\right) .
$$

Since $\mathcal{A} \vDash R\left(\overline{s-1}, \bar{j}, \overline{m_{1}}, \ldots, \overline{m_{l}}\right)$, we get

$$
\begin{aligned}
\mathcal{A} \vDash & \overline{s-1}<f(\overline{s-1}) \wedge \\
& R\left(f(\overline{s-1}), \overline{j+1}, \overline{m_{1}}, \ldots, \overline{m_{k-1}}, g\left(\overline{m_{k}}\right), \overline{m_{k+1}}, \ldots, \overline{m_{l}}\right),
\end{aligned}
$$

i.e.,

$$
\mathcal{A} \vDash \overline{s-1}<\bar{s} \wedge R\left(\bar{s}, \bar{i}, \overline{n_{1}}, \ldots, \overline{n_{k-1}}, g\left(\overline{m_{k}}\right), \overline{n_{k+1}}, \ldots, \overline{n_{l}}\right) .
$$

Proof of Church's theorem

From $\mathcal{A} \models \overline{s-1}<\bar{s}$ we get

$$
\mathcal{A} \models \bigwedge_{q=0}^{s-1} \bar{q}<\overline{q+1} .
$$

Moreover, $\mathcal{A} \models G_{0}$ implies $\mathcal{A} \models g\left(\overline{m_{k}}\right)=\overline{n_{k}}$.
Thus, we have $\mathcal{A} \vDash R\left(\bar{s}, \bar{i}, \overline{n_{1}}, \ldots, \overline{n_{l}}\right)$.
We proved (A) and (B).

Proof of Church's theorem:

Let $F_{P}=\left(G_{P} \rightarrow \exists x \exists x_{1} \cdots \exists x_{l} R\left(x, \bar{l}, x_{1}, \ldots, x_{l}\right)\right)$
Claim: F_{P} is valid $\Longleftrightarrow P \in$ HALT.

Proof of Church's theorem

If F_{P} is valid, then $\mathcal{A}_{P} \models F_{P}$.
From (A) we get $\mathcal{A}_{P} \models \exists x \exists x_{1} \cdots \exists x_{l} R\left(x, \bar{I}, x_{1}, \ldots, x_{l}\right)$.
Thus, there exist $s, n_{1}, \ldots, n_{l} \geq 0$ with $\left(s, l, n_{1}, \ldots, n_{l}\right) \in R^{\mathcal{A}_{P}}$.
We get $P \in$ HALT.
Now assume that $P \in \operatorname{HALT}$ and $(1,0, \ldots, 0) \rightarrow_{P}^{s}\left(I, n_{1}, \ldots, n_{l}\right)$.
Let \mathcal{A} be a structure with $\mathcal{A} \models G_{p}$.
From (B) we get $\mathcal{A} \models R\left(\bar{s}, \bar{l}, \overline{n_{1}}, \ldots, \overline{n_{l}}\right)$.
Thus, F_{P} valid.

Trachtenbrot's theorem

A formula F is finitely satisfiable if and only if F has a finite model (a model with a finite universe), otherwise, F is finitely unsatisfiable.

Lemma
The set of finitely satisfiable formulas is semi-decidable.

Proof:

Let $\mathcal{A}_{1}, \mathcal{A}_{2}, \mathcal{A}_{3}, \ldots$ be a systematic enumeration of all finite structures in which only the finitely many predicate symbols and function symbols that appear in F are interpreted.

The following algorithm terminates if and only if F is finitely satisfiable:
$i:=1$;
while true do
if $\mathcal{A}_{i} \models F$ then STOP else $i:=i+1$
end

Trachtenbrot's theorem

A formula F is finitely valid if and only if every finite structure that is suitable for F is a model of F.

Example: The formula

$$
\forall x \forall y(f(x)=f(y) \rightarrow x=y) \leftrightarrow \forall y \exists x(f(x)=y)
$$

is not valid but finitely valid.

Trachtenbrot's theorem

The set of finitely satisfiable formulas is undecidable.
Corollary
The set of finitely unsatisfiable formulas and the set of finitely valid formulas are not semi-decidable.

Trachtenbrot's theorem

Proof of Trachtenbrot's theorem:

We reuse the construction from the proof of Church's theorem.
Claim: G_{P} is finitely satisfiable $\Longleftrightarrow P \in$ HALT.
(1) Assume that $P \in$ HALT.

Then, \mathcal{A}_{P} is finite and (A) implies $\mathcal{A}_{P} \models G_{P}$.
Hence, G_{P} is finitely satisfiable.

Trachtenbrot's theorem

(2) Assume that G_{P} is finitely satisfiable.

Let \mathcal{A} be a finite structure with $\mathcal{A} \models G_{P}$.
Assume that $P \notin$ HALT.
Then, for every $s \geq 0$ there exist i, n_{1}, \ldots, n_{l} with $(1,0, \ldots, 0) \rightarrow_{P}^{s}\left(i, n_{1}, \ldots, n_{l}\right)$.
(B) implies $\mathcal{A} \models \bar{i}<\overline{i+1}$ for all $i \geq 0$.

Since $<^{\mathcal{A}}$ is a linear order (since $\mathcal{A} \models G_{0}$) the set $\{\mathcal{A}(\bar{i}) \mid i \geq 0\}$ is infinite, which is a contradiction.

(Un)decidable theories

Let \mathcal{A} be a structure, where the domain of the interpretation function $I_{\mathcal{A}}$ is finite and does not contain any variables.

Let $f_{1}, \ldots, f_{n}, R_{1}, \ldots, R_{m}$ be the domain of $I_{\mathcal{A}}$.
We identify \mathcal{A} with the tuple $\left(U^{\mathcal{A}}, f_{1}^{\mathcal{A}}, \ldots, f_{n}^{\mathcal{A}}, R_{1}^{\mathcal{A}}, \ldots, R_{m}^{\mathcal{A}}\right)$, for which we also write $\left(U^{\mathcal{A}}, f_{1}, \ldots, f_{n}, R_{1}, \ldots, R_{m}\right)$.

Definition

The theorie of \mathcal{A} is the set of formulas
$\operatorname{Th}(\mathcal{A})=\{F \mid F$ is a sentence, \mathcal{A} is suitable for $F, \mathcal{A} \models F\}$.

We are interested in the question, whether a structure has a decidable theory.

(Un)decidable theories

Theorem
Let \mathcal{A} be a structure. Then $\operatorname{Th}(\mathcal{A})$ is decidable if and only if $\operatorname{Th}(\mathcal{A})$ is semi-decidable.

Proof: Let $\operatorname{Th}(\mathcal{A})$ be semi-decidable and let F be a suitable sentence. We either have $F \in \operatorname{Th}(\mathcal{A})$ or $\neg F \in \operatorname{Th}(\mathcal{A})$.

Hence, we can run in parallel a semi-decision procedure for $\operatorname{Th}(\mathcal{A})$ on input F and $\neg F$.

For either F or $\neg F$ the algorithm has to terminate.

(Un)decidable theories

For the question, whether a structure has a decidable theory, we can restrict to so called relational structures.

A structure $\mathcal{A}=\left(A, f_{1}, \ldots, f_{n}, R_{1}, \ldots, R_{m}\right)$ is relational, if $n=0$.
For a structure $\mathcal{A}=\left(A, f_{1}, \ldots, f_{n}, R_{1}, \ldots, R_{m}\right)$ we define

$$
\mathcal{A}_{\text {rel }}=\left(A, P_{1}, \ldots, P_{n}, R_{1}, \ldots, R_{m}\right)
$$

where

$$
P_{i}=\left\{\left(a_{1}, \ldots, a_{n}, a\right) \mid f_{i}\left(a_{1}, \ldots, a_{n}\right)=a\right\} .
$$

Lemma
$\operatorname{Th}(\mathcal{A})$ is decidable if and only if $\operatorname{Th}\left(\mathcal{A}_{\text {rel }}\right)$ is decidable.
Proof: Excercise.

Undecidability of arithmetic (following Ebbinhaus,Flum,Thomas)

Theorem (Gödel 1931)
$\operatorname{Th}(\mathbb{N},+, \cdot)$ is undecidable.
Corollary
$\operatorname{Th}(\mathbb{N},+, \cdot)$ is not semi-decidable, i.e., not recursively enumerable.
For the proof we reduce the set HALT of terminating RMPs to $\operatorname{Th}(\mathbb{N},+, \cdot)$.
In order to simplify the technical details of the proof, we consider $\operatorname{Th}(\mathbb{N},+, \cdot, s, 0)$ with $s(n)=n+1$.

Excercise: $\operatorname{Th}(\mathbb{N},+, \cdot, s, 0)$ is undecidable if and only if $\operatorname{Th}(\mathbb{N},+, \cdot)$ is undecidable.

Undecidability of arithmetic

Let $P=A_{1} ; A_{2} ; \cdots ; A_{l}$ be a RMP, which contains the registers R_{1}, \ldots, R_{l}. We construct an arithmetical formula F_{P} with the free variables x, x_{1}, \ldots, x_{l}, such that for all $1 \leq i \leq I$ and $n_{1}, \ldots, n_{l} \in \mathbb{N}$ the following two statements are equivalent:

- $(\mathbb{N},+, \cdot, s, 0)_{\left[x / i, x_{1} / n_{1}, \ldots, x_{l} / n_{l}\right]} \models F_{P}$
- $(1,0, \ldots, 0) \rightarrow_{P}^{*}\left(i, n_{1}, \ldots, n_{l}\right)$

It then follows: $P \in \operatorname{HALT} \Longleftrightarrow(\mathbb{N},+, \cdot, s, 0) \models \exists x_{1} \cdots \exists x_{l} F_{P}\left[x / s^{\prime}(0)\right]$.

Undecidability of arithmetic

 Intuitively, the formula F_{P} says:There exist $s \geq 0$ and configurations $C_{0}, C_{1}, \ldots, C_{s}$ such that:

- $C_{0}=(1,0, \ldots, 0)$
- $C_{s}=\left(x, x_{1}, \ldots, x_{l}\right)$
- $C_{i} \rightarrow_{p} C_{i+1}$ for all $0 \leq i \leq s-1$

We can encode the $(I+1)$-tuple $C_{0}, C_{1}, \ldots, C_{s}$ by a single $(s+1)(I+1)$-tuple and have to express the following, where $k=I+1$:

There are $s \geq 0$ and a tuple $\left(y_{0}, y_{1}, \ldots, y_{k-1}, y_{k}, y_{k+1}, \ldots, y_{2 k-1}, \ldots, y_{s k}, y_{s k+1}, \ldots, y_{(s+1) k-1}\right)$ with:

- $y_{0}=1, y_{1}=0, \ldots, y_{k-1}=0$
- $y_{s k}=x, y_{s k+1}=x_{1}, \ldots, y_{(s+1) k-1}=x_{l}$
- $\left(y_{i k}, \ldots, y_{(i+1) k-1}\right) \rightarrow_{P}\left(y_{(i+1) k}, \ldots, y_{(i+2) k-1}\right)$ for all $0 \leq i \leq s-1$

Undecidability of arithmetic

If one wants to express this directly by an arithmetical formula, then one faces the problem that one cannot quantify over sequences of numbers ($\exists y \exists x_{1} \cdots \exists x_{y}$ is not allowed).

In order to simulate quantification over sequences of numbers (of arbitrary length) by quantification over numbers, we use Gödel's β-function.

Lemma

There is a function $\beta: \mathbb{N}^{3} \rightarrow \mathbb{N}$ such that:

- For every sequence $\left(a_{0}, \ldots, a_{r}\right)$ over \mathbb{N} there are $t, p \in \mathbb{N}$ such that $\beta(t, p, i)=a_{i}$ for all $0 \leq i \leq r$.
- There is an arithmetical formula B with free variables v, x, y, z such that for all $t, p, i, a \in \mathbb{N}$ the following holds:

$$
(\mathbb{N},+, \cdot, s, 0)_{[v / t, x / p, y / i, z / a]} \models B \Longleftrightarrow \beta(t, p, i)=a
$$

In other words: β is arithmetically definable.

Undecidability of arithmetic Proof of the lemma:

Let $\left(a_{0}, \ldots, a_{r}\right)$ be a sequence over \mathbb{N}.
Let p be a prime number such that $p>r+1$ and $p>a_{i}$ for all i.
Moreover let
$t=1 p^{0}+a_{0} p^{1}+2 p^{2}+a_{1} p^{3}+\cdots+(i+1) p^{2 i}+a_{i} p^{2 i+1}+\cdots+(r+1) p^{2 r}+a_{r} p^{2 r+1}$.
Thus, $\left(1, a_{0}, 2, a_{1}, \ldots,(i+1), a_{i}, \ldots,(r+1), a_{r}\right)$ is the base- p representation of t.

Claim: For all $a \in \mathbb{N}$ and all $0 \leq i \leq r$ we have $a=a_{i}$ if and only if there are $b_{0}, b_{1}, b_{2} \in \mathbb{N}$ with:
(a) $t=b_{0}+b_{1}\left((i+1)+a p+b_{2} p^{2}\right)$
(b) $a<p$
(c) $b_{0}<b_{1}$
(d) There is an m with $b_{1}=p^{2 m}$.

Undecidability of arithmetic

\Rightarrow : If $a=a_{i}$, then we can choose b_{0}, b_{1}, b_{2} as follows:

$$
\begin{aligned}
& b_{0}=1 p^{0}+a_{0} p^{1}+2 p^{2}+a_{1} p^{3}+\cdots+i p^{2 i-2}+a_{i-1} p^{2 i-1} \\
& b_{1}=p^{2 i} \\
& b_{2}=(i+2)+a_{i+1} p+\cdots+a_{r} p^{2(r-i)-1}
\end{aligned}
$$

\Leftarrow : Assume that (a)-(d) hold, i.e.,

$$
\begin{aligned}
t & =b_{0}+b_{1}\left((i+1)+a p+b_{2} p^{2}\right) \\
& =b_{0}+(i+1) p^{2 m}+a p^{2 m+1}+p^{2 m+2} b_{2}
\end{aligned}
$$

where $b_{0}<b_{1}=p^{2 m}, a<p$ and $(i+1)<p$.
Comparing this with
$t=1 p^{0}+a_{0} p^{1}+2 p^{2}+a_{1} p^{3}+\cdots+(i+1) p^{2 i}+a_{i} p^{2 i+1}+\cdots+(r+1) p^{2 r}+a_{r} p^{2 r+1}$
yields $m=i$ and $a=a_{i}$.

Undecidability of arithmetic

Since p is a prime number, (d) is equivalent to: b_{1} is a square and $p \mid d$ for all $d \geq 2$ with $d \mid b_{1}$.

For all $t, p, i \in \mathbb{N}$ we define $\beta(t, p, i)$ as the smallest number a such that $b_{0}, b_{1}, b_{2} \in \mathbb{N}$ exist with:
(a) $t=b_{0}+b_{1}\left((i+1)+a p+b_{2} p^{2}\right)$,
(b) $a<p$,
(c) $b_{0}<b_{1}$,
(d) b_{1} is a square and $p \mid d$ for all $d \geq 2$ with $d \mid b_{1}$.

If such numbers $b_{0}, b_{1}, b_{2} \in \mathbb{N}$ do not exist, then we set $\beta(t, p, i)=0$.
From the above claim we get: For every sequence $\left(a_{0}, \ldots, a_{r}\right)$ over \mathbb{N} there are $t, p \in \mathbb{N}$ such that $\beta(t, p, i)=a_{i}$ for all $0 \leq i \leq r$.

Moreover, it is clear that β is arithmetically definable.

