
Logic II

Markus Lohrey

Universität Siegen

Summer 2017

Markus Lohrey (Universität Siegen) Logic II Summer 2017 1 / 34

Organizational matters

Information can be found at

http://www.eti.uni-siegen.de/ti/lehre/ss17/logikii/

e.g.,

◮ current version of the slides (german and english)

◮ exercise sheets for the tutorials

Literature recommendations:

◮ Schöning: Logik für Informatiker, Spektrum Akademischer Verlag

◮ Ebbinghaus, Flum, Thomas: Einführung in die mathematische Logik,
Spektrum Akademischer Verlag

The tutorials will be organized by Danny Hucke.

Markus Lohrey (Universität Siegen) Logic II Summer 2017 2 / 34

http://www.eti.uni-siegen.de/ti/lehre/ss17/logikii/

Recapitulation from the course GTI

Definition (semi-decidable)

A language L ⊆ Σ∗ is semi-decidable if there exists an algorithm with the
following properties:

For all x ∈ Σ∗:

◮ If x ∈ L, then the algorithm terminates on input x .

◮ If x 6∈ L, then the algorithm does not terminate on input x .

Equivalent notion: recursively enumerable.

Definition (recursively enumerable)

A language L ⊆ Σ∗ is recursively enumerable if there exists a computable
total function f : N → Σ∗ such that L = {f (i) | i ∈ N}.

Markus Lohrey (Universität Siegen) Logic II Summer 2017 3 / 34

Recapitulation from the course GTI

Definition (decidable and undecidable)

A language L ⊆ Σ∗ is decidable if there exists an algorithm with the
following properties for all x ∈ Σ∗:

◮ If x ∈ L, then the algorithm terminates on input x with output
“YES”.

◮ If x 6∈ L, then the algorithm terminates on input x with output “NO”.

A language L ⊆ Σ∗ is undecidable, if it is not decidable.

Theorem
A language L ⊆ Σ∗ is decidable if and only if L and Σ∗ \ L are both
semi-decidable.

Markus Lohrey (Universität Siegen) Logic II Summer 2017 4 / 34

Recapitulation from the course Logic I

A formula F of predicate logic is

◮ satisfiable, if there exists a suitable structure A for F with A |= F

(i.e., F is true in the structure A).

◮ valid, if A |= F for every suitable structure A for F .

Corollary from the theorem of Gilmore

The set of unsatisfiable formulas of predicate logic is semi-decidable.

Corollary

The set of valid formulas of predicate logic is semi-decidable.

Proof: F is valid if and only if ¬F is unsatisfiable.

Markus Lohrey (Universität Siegen) Logic II Summer 2017 5 / 34

Undecidability of predicate logic

In the next few hours, we will prove the following important theorem:

Church’s theorem
The set of valid formulas of predicate logic is undecidable.

Corollary

The set of satisfiable formulas of predicate logic is not semi-decidable.

Proof: The set of unsatisfiable formulas is semi-decidable.

If the set of satisfiable formulas would be semi-decidable too, then it would
be decidable.

Hence, the set of unsatisfiable formula and therefore also the set of valid
formulas would be decidable.

Markus Lohrey (Universität Siegen) Logic II Summer 2017 6 / 34

Register machines
We prove Church’s theorem by a reduction to the halting problem for
register machine programs.

Let R1,R2, . . . be names for registers.

Intuition: Every register stores a natural number.

A register machine program (RMP for short) P is a sequence of
instructions A1;A2; . . . ;Al , where Al is the STOP instruction, and for all
1 ≤ i ≤ l − 1 the instruction Ai has one of the following forms:

◮ Rj := Rj + 1 for a 1 ≤ j ≤ l

◮ Rj := Rj − 1 for a 1 ≤ j ≤ l

◮ IF Rj = 0 THEN k1 ELSE k2 for 1 ≤ j , k1, k2 ≤ l ,

A configuration of P is a tuple (i , n1, . . . , nl) ∈ N
l+1 with 1 ≤ i ≤ l .

Intuition: i is the index of the instruction that will be executed next and nj
is the current content of register Rj .
Markus Lohrey (Universität Siegen) Logic II Summer 2017 7 / 34

Register machines
For configurations (i , n1, . . . , nl) und (i ′, n′1, . . . , n

′
l) we write

(i , n1, . . . , nl) →P (i ′, n′1, . . . , n
′
l)

if and only if 1 ≤ i ≤ l − 1 and one of the following cases holds:

◮ Ai = (Rj := Rj + 1) for a 1 ≤ j ≤ l , i ′ = i + 1, n′j = nj + 1, n′k = nk
for k 6= j .

◮ Ai = (Rj := Rj − 1) for a 1 ≤ j ≤ l , i ′ = i + 1, nj = n′j = 0 or
(nj > 0, n′j = nj − 1), and n′k = nk for k 6= j .

◮ Ai = (IF Rj = 0 THEN k1 ELSE k2) for a 1 ≤ j , k1, k2 ≤ l , n′k = nk
for all 1 ≤ k ≤ l , i ′ = k1 if nj = 0, i ′ = k2 if nj > 0.

We define

HALT = {P | P = A1;A2; . . . ;Al is an RMP with l instructions,

(1, 0, . . . , 0) →∗
P (l , n1, . . . , nl) for n1, . . . , nl ≥ 0}

Markus Lohrey (Universität Siegen) Logic II Summer 2017 8 / 34

Proof of Church’s theorem

Register machine programs exactly correspond to the GOTO-programs
from the GTI course.

There, we proved that Turing machines can be simulated by
GOTO-programs (and vice versa).

Since the halting problem is undecidable for Turing machines started on
the empty tape (Does a Turing machine, when started with blanks on the
input tape, finally terminate?), we get:

Undecidability of the halting problem for RMPs

The set HALT is undecidable.

Remark: HALT is semi-decidable: Simulate the given RMP on the initial
configuration (1, 0, . . . , 0) and stop, if the RMP arrives at the
STOP-instruction.

Markus Lohrey (Universität Siegen) Logic II Summer 2017 9 / 34

Proof of Church’s theorem

We prove Church’s theorem, by constructing from a given RMP P a
sentence FP of predicate logic (formula without free variables) such that:

FP is valid ⇐⇒ P ∈ HALT

Let P = A1;A2; . . . ;Al be an RMP.

We fix the following symbols:

◮ <: binary predicate symbol

◮ c : constant

◮ f , g : unary function symbol

◮ R : (l + 2)-ary predicate symbol

Markus Lohrey (Universität Siegen) Logic II Summer 2017 10 / 34

Proof of Church’s theorem
We define a structure AP by the following case distinction:

Case 1: P 6∈ HALT:
◮ universe UAP

= N

◮ <AP= {(n,m) | n < m} (the ordinary linear order on N)
◮ cAP = 0
◮ f AP (n) = n + 1, gAP (n + 1) = n, gAP (0) = 0
◮ RAP = {(s, i , n1, . . . , nl) | (1, 0, . . . , 0) →

s
P (i , n1, . . . , nl)}

Case 2: P ∈ HALT:

Let t be such that (1, 0, . . . , 0) →t
P (l , n1, . . . , nl) and e = max{t, l}.

◮ universe UAP
= {0, 1, . . . , e}

◮ <AP= {(n,m) | n < m} (the ordinary linear order on {0, 1, . . . , e})
◮ cAP = 0
◮ f AP (n) = n + 1 for 0 ≤ n ≤ e − 1 and f AP (e) = e.
◮ gAP (n + 1) = n for 0 ≤ n ≤ e − 1 and gAP (0) = 0.
◮ RAP = {(s, i , n1, . . . , nl) | 0 ≤ s ≤ t, (1, 0, . . . , 0) →s

P (i , n1, . . . , nl)}

Markus Lohrey (Universität Siegen) Logic II Summer 2017 11 / 34

Proof of Church’s theorem
In the following, we use the abbreviation m for the term f m(c).

We define the sentence GP (in which the symbols <, c , f , g and R occur)
with the following properties:

(A) AP |= GP

(B) For every model A of GP the following holds:

if (1, 0, . . . , 0) →s
P (i , n1, . . . , nl), then:

A |= R(s, i , n1, . . . , nl) ∧

s−1
∧

q=0

q < q + 1.

We define

GP = G0 ∧ R(0, 1, 0, . . . , 0) ∧ G1 ∧ · · · ∧ Gl−1

where the sentences G0,G1, . . . ,Gl−1 is defined as follows (next slides):
Markus Lohrey (Universität Siegen) Logic II Summer 2017 12 / 34

Proof of Church’s theorem
G0 expresses

◮ < is a linear order with smallest element c ,
◮ x ≤ f (x) and g(x) ≤ x for all x ,
◮ for every x , which is not the largest element with respect to <, f (x)

is the direct successor of x , and
◮ for every x , which is not the smallest element c , g(x) is the direct

predecessor of x .

∀x , y , z (¬x < x) ∧ (x = y ∨ x < y ∨ y < x) ∧ ((x < y ∧ y < z) → x < z)

∧ (x = c ∨ c < x)

∧ (x = f (x) ∨ x < f (x))

∧ (x = g(x) ∨ g(x) < x)

∧
(

∃u(x < u) → (x < f (x) ∧ ∀u(x < u → (u = f (x) ∨ f (x) < u)))
)

∧
(

∃u(u < x) → (g(x) < x ∧ ∀u(u < x → (u = g(x) ∨ u < g(x))))
)

Markus Lohrey (Universität Siegen) Logic II Summer 2017 13 / 34

Proof of Church’s theorem

Remark: For every model A of G0 we have:

◮ A |= g(c) = c

◮ A |= ∀x (∃u(x < u) → g(f (x)) = x)

Markus Lohrey (Universität Siegen) Logic II Summer 2017 14 / 34

Proof of Church’s theorem

Gi for 1 ≤ i ≤ l − 1 describes the effect of the instruction Ai .

Case 1: Ai = (Rj := Rj + 1). Let

Gi = ∀x∀x1 · · · ∀xl

(

R(x , i , x1, . . . , xl) →

(x < f (x) ∧ R(f (x), i + 1, x1, . . . , xj−1, f (xj), xj+1, . . . , xl))

)

Case 2: Ai = (Rj := Rj − 1). Let

Gi = ∀x∀x1 · · · ∀xl

(

R(x , i , x1, . . . , xl) →

(x < f (x) ∧ R(f (x), i + 1, x1, . . . , xj−1, g(xj), xj+1, . . . , xl))

)

Markus Lohrey (Universität Siegen) Logic II Summer 2017 15 / 34

Proof of Church’s theorem

Case 3: Ai = (IF Rj = 0 THEN k1 ELSE k2) for 1 ≤ j , k1, k2 ≤ l .
Let

Gi = ∀x∀x1 · · · ∀xl

(

R(x , i , x1, . . . , xl) → (x < f (x) ∧

(xj = c ∧ R(f (x), k1, x1, . . . , xl)) ∨

(xj > c ∧ R(f (x), k2, x1, . . . , xl)))

)

Statement (A) follows immediately from the definition of AP and GP .

Property (B) is shown by induction on s.

Base case: s = 0. Assume that (1, 0, . . . , 0) →0
P (i , n1, . . . , nl), i.e., i = 1

and n1 = n2 = · · · = nl = 0.

A |= GP implies A |= R(0, 1, 0, . . . , 0), i.e., A |= R(s, i , n1, . . . , nl).

Markus Lohrey (Universität Siegen) Logic II Summer 2017 16 / 34

Proof of Church’s theorem
Induction step: Let s > 0 and assume that (B) holds for s − 1.

Let (1, 0, . . . , 0) →s
P (i , n1, . . . , nl).

Then, there exist j ,m1, . . . ,ml with

(1, 0, . . . , 0) →s−1
P (j ,m1, . . . ,ml) →P (i , n1, . . . , nl).

The induction hypothesis implies

A |= R(s − 1, j ,m1, . . . ,ml) ∧
s−2
∧

q=0

q < q + 1.

We make a case distinction concerning the instruction Aj . We only
consider the case that Aj has the form Rk := Rk − 1.

Thus, i = j + 1, n1 = m1, . . . , nk−1 = mk−1, nk+1 = mk+1, . . . , nl = ml ,
(nk = mk = 0 or mk > 0 and nk = mk − 1).

Markus Lohrey (Universität Siegen) Logic II Summer 2017 17 / 34

Proof of Church’s theorem

A |= Gj implies

A |= ∀y , y1, . . . , yl

(

R(y , j , y1, . . . , yl) →

(y < f (y) ∧ R(f (y), j + 1, y1, . . . , yk−1, g(yk), yk+1, . . . , yl))

)

.

Since A |= R(s − 1, j ,m1, . . . ,ml), we get

A |= s − 1 < f (s − 1) ∧

R(f (s − 1), j + 1,m1, . . . ,mk−1, g(mk),mk+1, . . . ,ml),

i.e.,

A |= s − 1 < s ∧ R(s, i , n1, . . . , nk−1, g(mk), nk+1, . . . , nl).

Markus Lohrey (Universität Siegen) Logic II Summer 2017 18 / 34

Proof of Church’s theorem

From A |= s − 1 < s we get

A |=
s−1
∧

q=0

q < q + 1.

Moreover, A |= G0 implies A |= g(mk) = nk .

Thus, we have A |= R(s, i , n1, . . . , nl).

We proved (A) and (B).

Proof of Church’s theorem:

Let FP = (GP → ∃x∃x1 · · · ∃xlR(x , l , x1, . . . , xl))

Claim: FP is valid ⇐⇒ P ∈ HALT.

Markus Lohrey (Universität Siegen) Logic II Summer 2017 19 / 34

Proof of Church’s theorem

If FP is valid, then AP |= FP .

From (A) we get AP |= ∃x∃x1 · · · ∃xlR(x , l , x1, . . . , xl).

Thus, there exist s, n1, . . . , nl ≥ 0 with (s, l , n1, . . . , nl) ∈ RAP .

We get P ∈ HALT.

Now assume that P ∈ HALT and (1, 0, . . . , 0) →s
P (l , n1, . . . , nl).

Let A be a structure with A |= GP .

From (B) we get A |= R(s, l , n1, . . . , nl).

Thus, FP valid.

Markus Lohrey (Universität Siegen) Logic II Summer 2017 20 / 34

Trachtenbrot’s theorem

A formula F is finitely satisfiable if and only if F has a finite model (a
model with a finite universe), otherwise, F is finitely unsatisfiable.

Lemma
The set of finitely satisfiable formulas is semi-decidable.

Proof:

Let A1,A2,A3, . . . be a systematic enumeration of all finite structures in
which only the finitely many predicate symbols and function symbols that
appear in F are interpreted.

The following algorithm terminates if and only if F is finitely satisfiable:

i := 1;
while true do

if Ai |= F then STOP else i := i + 1
end

Markus Lohrey (Universität Siegen) Logic II Summer 2017 21 / 34

Trachtenbrot’s theorem

A formula F is finitely valid if and only if every finite structure that is
suitable for F is a model of F .

Example: The formula

∀x∀y(f (x) = f (y) → x = y) ↔ ∀y∃x(f (x) = y)

is not valid but finitely valid.

Trachtenbrot’s theorem
The set of finitely satisfiable formulas is undecidable.

Corollary

The set of finitely unsatisfiable formulas and the set of finitely valid
formulas are not semi-decidable.

Markus Lohrey (Universität Siegen) Logic II Summer 2017 22 / 34

Trachtenbrot’s theorem

Proof of Trachtenbrot’s theorem:

We reuse the construction from the proof of Church’s theorem.

Claim: GP is finitely satisfiable ⇐⇒ P ∈ HALT.

(1) Assume that P ∈ HALT.

Then, AP is finite and (A) implies AP |= GP .

Hence, GP is finitely satisfiable.

Markus Lohrey (Universität Siegen) Logic II Summer 2017 23 / 34

Trachtenbrot’s theorem

(2) Assume that GP is finitely satisfiable.

Let A be a finite structure with A |= GP .

Assume that P 6∈ HALT.

Then, for every s ≥ 0 there exist i , n1, . . . , nl with
(1, 0, . . . , 0) →s

P (i , n1, . . . , nl).

(B) implies A |= i < i + 1 for all i ≥ 0.

Since <A is a linear order (since A |= G0) the set {A(i) | i ≥ 0} is infinite,
which is a contradiction.

Markus Lohrey (Universität Siegen) Logic II Summer 2017 24 / 34

(Un)decidable theories

Let A be a structure, where the domain of the interpretation function IA is
finite and does not contain any variables.

Let f1, . . . , fn,R1, . . . ,Rm be the domain of IA.

We identify A with the tuple (UA, f A1 , . . . , f An ,RA
1 , . . . ,RA

m), for which we
also write (UA, f1, . . . , fn,R1, . . . ,Rm).

Definition
The theorie of A is the set of formulas

Th(A) = {F | F is a sentence, A is suitable for F , A |= F}.

We are interested in the question, whether a structure has a decidable
theory.

Markus Lohrey (Universität Siegen) Logic II Summer 2017 25 / 34

(Un)decidable theories

Theorem
Let A be a structure. Then Th(A) is decidable if and only if Th(A) is
semi-decidable.

Proof: Let Th(A) be semi-decidable and let F be a suitable sentence.

We either have F ∈ Th(A) or ¬F ∈ Th(A).

Hence, we can run in parallel a semi-decision procedure for Th(A) on
input F and ¬F .

For either F or ¬F the algorithm has to terminate.

Markus Lohrey (Universität Siegen) Logic II Summer 2017 26 / 34

(Un)decidable theories

For the question, whether a structure has a decidable theory, we can
restrict to so called relational structures.

A structure A = (A, f1, . . . , fn,R1, . . . ,Rm) is relational, if n = 0.

For a structure A = (A, f1, . . . , fn,R1, . . . ,Rm) we define

Arel = (A,P1, . . . ,Pn,R1, . . . ,Rm)

where
Pi = {(a1, . . . , an, a) | fi (a1, . . . , an) = a}.

Lemma
Th(A) is decidable if and only if Th(Arel) is decidable.

Proof: Excercise.

Markus Lohrey (Universität Siegen) Logic II Summer 2017 27 / 34

Undecidability of arithmetic

(following Ebbinhaus,Flum,Thomas)

Theorem (Gödel 1931)

Th(N,+, ·) is undecidable.

Corollary

Th(N,+, ·) is not semi-decidable, i.e., not recursively enumerable.

For the proof we reduce the set HALT of terminating RMPs to Th(N,+, ·).

In order to simplify the technical details of the proof, we consider
Th(N,+, ·, s, 0) with s(n) = n + 1.

Excercise: Th(N,+, ·, s, 0) is undecidable if and only if Th(N,+, ·) is
undecidable .

Markus Lohrey (Universität Siegen) Logic II Summer 2017 28 / 34

Undecidability of arithmetic

Let P = A1;A2; · · · ;Al be a RMP, which contains the registers R1, . . . ,Rl .

We construct an arithmetical formula FP with the free variables
x , x1, . . . , xl , such that for all 1 ≤ i ≤ l and n1, . . . , nl ∈ N the following
two statements are equivalent:

◮ (N,+, ·, s, 0)[x/i , x1/n1,...,xl/nl] |= FP

◮ (1, 0, . . . , 0) →∗
P (i , n1, . . . , nl)

It then follows: P ∈ HALT ⇐⇒ (N,+, ·, s, 0) |= ∃x1 · · · ∃xl FP [x/s
l (0)].

Markus Lohrey (Universität Siegen) Logic II Summer 2017 29 / 34

Undecidability of arithmetic
Intuitively, the formula FP says:

There exist s ≥ 0 and configurations C0,C1, . . . ,Cs such that:

◮ C0 = (1, 0, . . . , 0)

◮ Cs = (x , x1, . . . , xl)

◮ Ci →P Ci+1 for all 0 ≤ i ≤ s − 1

We can encode the (l + 1)-tuple C0,C1, . . . ,Cs by a single
(s + 1)(l + 1)-tuple and have to express the following, where k = l + 1:

There are s ≥ 0 and a tuple
(y0, y1, . . . , yk−1, yk , yk+1, . . . , y2k−1, . . . , ysk , ysk+1, . . . , y(s+1)k−1) with:

◮ y0 = 1, y1 = 0, . . . , yk−1 = 0

◮ ysk = x , ysk+1 = x1, . . . , y(s+1)k−1 = xl

◮ (yik , . . . , y(i+1)k−1) →P (y(i+1)k , . . . , y(i+2)k−1) for all 0 ≤ i ≤ s − 1

Markus Lohrey (Universität Siegen) Logic II Summer 2017 30 / 34

Undecidability of arithmetic
If one wants to express this directly by an arithmetical formula, then one
faces the problem that one cannot quantify over sequences of numbers
(∃y∃x1 · · · ∃xy is not allowed).

In order to simulate quantification over sequences of numbers (of arbitrary
length) by quantification over numbers, we use Gödel’s β-function.

Lemma
There is a function β : N3 → N such that:

◮ For every sequence (a0, . . . , ar) over N there are t, p ∈ N such that
β(t, p, i) = ai for all 0 ≤ i ≤ r .

◮ There is an arithmetical formula B with free variables v , x , y , z such
that for all t, p, i , a ∈ N the following holds:

(N,+, ·, s, 0)[v/t, x/p, y/i , z/a] |= B ⇐⇒ β(t, p, i) = a

In other words: β is arithmetically definable.

Markus Lohrey (Universität Siegen) Logic II Summer 2017 31 / 34

Undecidability of arithmetic
Proof of the lemma:

Let (a0, . . . , ar) be a sequence over N.

Let p be a prime number such that p > r + 1 and p > ai for all i .

Moreover let

t = 1p0+a0p
1+2p2+a1p

3+· · ·+(i+1)p2i+aip
2i+1+· · ·+(r+1)p2r+arp

2r+1.

Thus, (1, a0, 2, a1, . . . , (i + 1), ai , . . . , (r + 1), ar) is the base-p
representation of t.

Claim: For all a ∈ N and all 0 ≤ i ≤ r we have a = ai if and only if there
are b0, b1, b2 ∈ N with:

(a) t = b0 + b1((i + 1) + ap + b2p
2)

(b) a < p

(c) b0 < b1

(d) There is an m with b1 = p2m.

Markus Lohrey (Universität Siegen) Logic II Summer 2017 32 / 34

Undecidability of arithmetic
⇒: If a = ai , then we can choose b0, b1, b2 as follows:

b0 = 1p0 + a0p
1 + 2p2 + a1p

3 + · · ·+ ip2i−2 + ai−1p
2i−1

b1 = p2i

b2 = (i + 2) + ai+1p + · · · + arp
2(r−i)−1

⇐: Assume that (a)-(d) hold, i.e.,

t = b0 + b1((i + 1) + ap + b2p
2)

= b0 + (i + 1)p2m + ap2m+1 + p2m+2b2,

where b0 < b1 = p2m, a < p and (i + 1) < p.

Comparing this with

t = 1p0+a0p
1+2p2+a1p

3+· · ·+(i+1)p2i+aip
2i+1+· · ·+(r+1)p2r+arp

2r+1

yields m = i and a = ai .
Markus Lohrey (Universität Siegen) Logic II Summer 2017 33 / 34

Undecidability of arithmetic

Since p is a prime number, (d) is equivalent to: b1 is a square and p|d for
all d ≥ 2 with d |b1.

For all t, p, i ∈ N we define β(t, p, i) as the smallest number a such that
b0, b1, b2 ∈ N exist with:

(a) t = b0 + b1((i + 1) + ap + b2p
2),

(b) a < p,

(c) b0 < b1,

(d) b1 is a square and p|d for all d ≥ 2 with d |b1.

If such numbers b0, b1, b2 ∈ N do not exist, then we set β(t, p, i) = 0.

From the above claim we get: For every sequence (a0, . . . , ar) over N there
are t, p ∈ N such that β(t, p, i) = ai for all 0 ≤ i ≤ r .

Moreover, it is clear that β is arithmetically definable.

Markus Lohrey (Universität Siegen) Logic II Summer 2017 34 / 34

