## Exercise 1 (Logic I)

Task 1. Give a model for each of the following formulas and also structures which evaluate the following formulas to false.
(a) $\exists x \forall y(f(f(y))=x)$
(b) $\exists x \exists y(P(x, y) \wedge \neg P(y, x))$
(c) $\forall x(f(g(f(x))) \neq g(f(g(x))))$
(d) $R(x) \wedge Q(y) \wedge \forall x(\neg R(x) \vee \neg Q(x))$

Task 2. Given a binary function symbol $f$ and a unary predicate symbol $R$ and the following structures:

- $\mathcal{A}_{1}=\left(\mathbb{N}, I_{\mathcal{A}_{1}}\right)$ with $f^{\mathcal{A}_{1}}(x, y)=x \cdot y, R^{\mathcal{A}_{1}}=\{n \in \mathbb{N} \mid n$ is a prime number $\}$
- $\mathcal{A}_{2}=\left(\mathbb{R}, I_{\mathcal{A}_{2}}\right)$ with $f^{\mathcal{A}_{2}}(x, y)=x-2 y, R^{\mathcal{A}_{2}}=\{x \in \mathbb{R} \mid x \leq 0\}$

Which of the following formulas are true, respectively false, under this structures?
(a) $\forall x(R(x) \vee R(f(x, x)))$
(b) $\forall x \exists y R(f(x, y))$
(c) $\forall x \forall y(f(x, y)=f(y, x))$

Task 3. Let $L \subseteq \Sigma^{*}$ be a language over the alphabet $\Sigma$.
(a) What is the complement of $L$ ?
(b) When is $L$ decidable?
(c) When is $L$ semi-decidable?
(d) When is $L$ recursively-enumerable?
(e) What are the connections between (b), (c) and (d)?
(f) If $L$ is the language of all satisfiable formulas in predicate logic, what is known for (b), (c) and (d)?

