Übungsblatt 4

Aufgabe 1. Wir betrachten lineare Ordnungen auf Σ^* , wobei $\Sigma = \{a, b\}$. Definiere die *lexikographische Ordnung* $<_{\mathsf{lex}}$ durch

$$u<_{\mathsf{lex}} v\iff u$$
 ist echtes Präfix von v oder es existieren $x,y,z\in\Sigma^*$ mit $u=xay$ und $v=xbz$

und die *längen-lexikographische Ordnung* <_{llex} durch

$$u <_{\mathsf{llex}} v \iff |u| < |v| \text{ oder } (|u| = |v| \text{ und } u <_{\mathsf{lex}} v).$$

Zeigen Sie, dass die Relationen $<_{lex}$ und $<_{llex}$ synchron-rational sind.

Aufgabe 2. Sei $L \subseteq \Sigma^*$ regulär und $n \ge 1$. Zeigen Sie durch Konstruktion eines endlichen Automaten, dass die Sprache

$$\{w_1 \otimes \cdots \otimes w_n \mid w_1, \ldots, w_n \in L\} \subseteq (\Sigma_{\#}^n)^*$$

auch regulär ist.

Aufgabe 3. Beweisen oder widerlegen Sie!

- (a) (\mathbb{N}, \leq) ist automatisch präsentierbar.
- (b) Sei $M \subseteq \mathbb{N}$ (einstellige Relation), dann ist (\mathbb{N}, M) automatisch präsentierbar.
- (c) Wenn (\mathbb{N}, R_1) automatisch präsentierbar und (\mathbb{N}, R_2) automatisch präsentierbar, dann ist auch (\mathbb{N}, R_1, R_2) automatisch präsentierbar.

Hinweis für (c): Wieviele automatisch präsentierbare Strukturen gibt es insgesamt? Wieviele nicht-isomorphe Strukturen (\mathbb{N}, \leq, M) für $M \subseteq \mathbb{N}$ gibt es?