Übungsblatt 3

Aufgabe 1

Postsches Korrespondenzproblem (PCP)

Gegeben: Eine Folge von Paaren $(s_1, t_1), \ldots, (s_k, t_k)$ mit $k \geq 0, s_i, t_i \in \{0, 1\}^*$ $(1 \leq i \leq k)$. Frage: Existieren Indizes $i_1, \ldots, i_m \in \{1, \ldots, k\}$ $(m \geq 1)$ mit $s_{i_1} \cdots s_{i_m} = t_{i_1} \cdots t_{i_m}$?

Seien e ein nullstelliges Funktionssymbol, f_0 und f_1 einstellige Funktionssymbole und P ein zweistelliges Relationssymbol. Zu einem String $z = c_1 \dots c_\ell \in \{0, 1\}^\ell$ ($\ell \geq 0$) und einem Term t schreiben wir $f_z(t)$ für den Term $f_{c_\ell}(\dots(f_{c_1}(t))\dots)$. Seien

$$\phi_1 = \bigwedge_{i=1}^k P(f_{s_i}(e), f_{t_i}(e)),$$

$$\phi_2 = \forall v \forall w (P(v, w) \to \bigwedge_{i=1}^k P(f_{s_i}(v), f_{t_i}(w))),$$

$$\phi_3 = \exists z (P(z, z))$$

und sei $\phi = \phi_1 \wedge \phi_2 \rightarrow \phi_3$. Zeigen Sie, dass ϕ genau dann allgemeingültig ist, wenn das Postsche Korrespondenzproblem eine Lösung hat.