Übungsblatt 1

Aufgabe 1. Bestimmen Sie die folgenden Mengen.

- (a) $2^{\{1,2,3\}} \setminus 2^{\{1,2\}}$
- (b) $\bigcap_{n\in\mathbb{N}} \{m\in\mathbb{N} \mid m\geq n\}$
- (c) $\bigcup_{a \in \{1,2,3,4,5\}} \{\frac{a}{2}, 1 + \frac{a}{2}\}$
- (d) $\bigcup_{n\in\mathbb{N}}\{n,2n\}$

Lösung zu Aufgabe 1.

(a)
$$2^{\{1,2,3\}} \setminus 2^{\{1,2\}} = \{\{3\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$$

Erklärung:

 2^M ist die Notation für die **Potenzmenge** von M, also der Menge aller Teilmengen von M.

$$2^{\{1,2,3\}} = \{\varnothing,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$$
 und $2^{\{1,2\}} = \{\varnothing,\{1\},\{2\},\{1,2\}\}.$

 $2^{\{1,2,3\}} \setminus 2^{\{1,2\}}$ enthält genau die Elemente, die in der Menge $2^{\{1,2,3\}}$ enthalten sind, aber nicht in der Menge $2^{\{1,2\}}$.

(b)
$$\bigcap_{n \in \mathbb{N}} \{ m \in \mathbb{N} \mid m \ge n \} = \emptyset$$

Formale Begründung: Angenommen, es existiert ein $x \in \mathbb{N}$, sodass $x \in \bigcap_{n \in \mathbb{N}} \{m \in \mathbb{N} \mid m \geq n\}$. Dann muss x für jedes $n \in \mathbb{N}$ in der Menge $\{m \in \mathbb{N} \mid m \geq n\}$ enthalten sein (nach Definition der Schnittmenge). Es ist allerdings $x \notin \{m \in \mathbb{N} \mid m \geq x+1\}$, somit erhalten wir einen Widerspruch zur unserer Annahme.

Intuition:

Wir bilden den Schnitt über die folgenden Mengen: $\{m \in \mathbb{N} \mid m \geq 0\} = \{0, 1, 2, 3, 4, 5, 6, 7, ...\}$

$$\{ m \in \mathbb{N} \mid m \ge 1 \} = \{ 1, 2, 3, 4, 5, 6, 7, 8, \ldots \}$$

$$\{ m \in \mathbb{N} \mid m \ge 2 \} = \{ 2, 3, 4, 5, 6, 7, 8, \ldots \}$$

$$\{ m \in \mathbb{N} \mid m \ge 3 \} = \{ 3, 4, 5, 6, 7, 8, 9 \ldots \}$$

$$\ldots$$

$$\{ m \in \mathbb{N} \mid m \ge n \} = \{ n, n + 1, n + 2, n + 3, \ldots \}$$

(für jedes $n \in \mathbb{N}$ eine Menge, wobei eine Menge $\{m \in \mathbb{N} \mid m \geq n\}$ alle natürlichen Zahlen ab der Zahl n enthält.)

Geht man zum Beispiel davon aus, dass in $\bigcap_{n\in\mathbb{N}}\{m\in\mathbb{N}\mid m\geq n\}$ die Zahl 0 enthalten ist, so müsste (nach Definition der Schnittmenge) 0 für jedes $n\in\mathbb{N}$ in der Menge $\{m\in\mathbb{N}\mid m\geq n\}$ enthalten sein. Aber bereits bei der Menge $\{1,2,3,4,\ldots\}$ ist dies nicht der Fall. Schaut man sich eine beliebige natürliche Zahl x an, so kann auch diese nicht in $\bigcap_{n\in\mathbb{N}}\{m\in\mathbb{N}\mid m\geq n\}$ liegen, da sie z.B. in der (x+2)-ten Menge $(\{x+1,x+2,x+3,x+4,\ldots\})$ nicht enhalten ist.

(c)

$$\bigcup_{a \in \{1,2,3,4,5\}} \left\{ \frac{a}{2}, 1 + \frac{a}{2} \right\} \\
= \left\{ \frac{1}{2}, 1 + \frac{1}{2} \right\} \cup \left\{ \frac{2}{2}, 1 + \frac{2}{2} \right\} \cup \left\{ \frac{3}{2}, 1 + \frac{3}{2} \right\} \cup \left\{ \frac{4}{2}, 1 + \frac{4}{2} \right\} \cup \left\{ \frac{5}{2}, 1 + \frac{5}{2} \right\} \\
= \left\{ \frac{1}{2}, \frac{3}{2} \right\} \cup \left\{ 1, 2 \right\} \cup \left\{ \frac{3}{2}, \frac{5}{2} \right\} \cup \left\{ 2, 3 \right\} \cup \left\{ \frac{5}{2}, \frac{7}{2} \right\} \\
= \left\{ \frac{1}{2}, 1, \frac{3}{2}, 2, \frac{5}{2}, 3, \frac{7}{2} \right\}.$$

(d) $\bigcup_{n\in\mathbb{N}} \{n,2n\} = \mathbb{N}$

Erklärung:

Sei $A_n := \{n, 2n\}$ und $A := \bigcup_{n \in \mathbb{N}} \{n, 2n\} = \bigcup_{n \in \mathbb{N}} A_n$. Um formal die Gleichheit der Mengen zu zeigen, zeigen wir die beiden Inklusionen $(A \subseteq \mathbb{N} \text{ und } \mathbb{N} \subseteq A)$.

 $A \subseteq \mathbb{N}$: Jede der Mengen A_n enthält nur natürliche Zahlen $(n, 2n \in \mathbb{N})$, somit auch die Vereinigung der Mengen $A = \bigcup_{n \in \mathbb{N}} A_n$.

 $\mathbb{N} \subseteq A$: Sei $n \in \mathbb{N}$. Dann ist $n \in A_n = \{n, 2n\}$, und somit in der Vereinigung der Mengen $A = \bigcup_{n \in \mathbb{N}} A_n$ enthalten. Da dies für jedes beliebige $n \in \mathbb{N}$ gilt, folgt $\mathbb{N} \subseteq A$.

Aufgabe 2. Seien A, B, C Mengen.

- (a) Angenommen $A \cap B \neq \emptyset$, $A \cap C \neq \emptyset$ und $B \cap C \neq \emptyset$. Gilt dann auch $A \cap B \cap C \neq \emptyset$?
- (b) Was ist mit der Rückrichtung?

Lösung zu Aufgabe 2.

(a) Nein. Gegenbeispiel:

$$A = \{1, 2\}, B = \{2, 3\}, C = \{3, 1\}$$

$$A \cap B = \{2\} \neq \emptyset, A \cap C = \{1\} \neq \emptyset, B \cap C = \{3\} \neq \emptyset$$

$$aber : A \cap B \cap C = \emptyset$$

(b) Ja, denn sei

$$x \in A \cap B \cap C \implies x \in A \land x \in B \land x \in C$$

$$x \in A \land x \in B \implies x \in A \cap B \implies A \cap B \neq \emptyset$$

$$x \in A \land x \in C \implies x \in A \cap C \implies A \cap C \neq \emptyset$$

$$x \in B \land x \in C \implies x \in B \cap C \implies B \cap C \neq \emptyset$$

Oder in Worten:

Sei x Element der Menge $A \cap B \cap C$, so muss x auch Element der Menge A sein (nach Definition der Schnittmenge). Ebenso muss x auch Element der Menge B sein. Damit ist x aber auch Element von $A \cap B$ (wieder nach Definition der Schnittmenge), also ist $A \cap B$ nicht leer. $A \cap C \neq \emptyset$ und $B \cap C \neq \emptyset$ werden analog gezeigt.

Aufgabe 3. Geben Sie an, ob die folgenden Aussagen wahr oder falsch sind. Begründen Sie Ihre Antwort.

- (a) Wenn $x \in A \cup B$, dann ist $x \in A$ und $x \in B$.
- (b) Wenn $x \in A \cap B$, dann ist $x \in A$ oder $x \in B$.
- (c) $|2^{A \times B}| = |2^A \times 2^B|$
- (d) Sei $A \subseteq B$. Dann ist $A \cap B = A$.

Lösung zu Aufgabe 3.

- (a) Falsch, z.B.: $A = \{1\}, B = \{2\}, A \cup B = \{1, 2\}$ $2 \in A \cup B \text{ und } 2 \in B \text{ aber } 2 \notin A$
- (b) Wahr, $x \in A \cap B \implies x \in A \land x \in B$, also auch $x \in A \cap B \implies x \in A \lor x \in B$.
- (c) Falsch, aus der Definition von \times folgt $|A \times B| = |A| \cdot |B|$ (wenn A, B endliche Mengen sind). Außerdem gilt $|2^A| = 2^{|A|}$.

Damit erhalten wir $|2^{A \times B}| = 2^{|A \times B|} = 2^{|A| \cdot |B|}$ aber $|2^A \times 2^B| = |2^A| \cdot |2^B| = 2^{|A|} \cdot 2^{|B|} = 2^{|A| + |B|}$.

Wir finden leicht A und B mit $|A| \cdot |B| \neq |A| + |B|$, also gilt die Behauptung nicht.

Konkretes Gegenbeispiel

Sei $A=\varnothing, B=\{1\}$. Dann gilt $A\times B=\varnothing$, $2^A=\{\varnothing\}$ und $2^B=\{\varnothing,\{1\}\}$. Somit ergibt sich $2^{A\times B}=\{\varnothing\}$ und $2^A\times 2^B=\{(\varnothing,\varnothing),(\varnothing,\{1\})\}$, also $|2^{A\times B}|=1\neq 2=|2^A\times 2^B|$.

(d) Wahr. Die Gleichheit zweier Mengen M_1 , M_2 können wir durch beidseitige Inklusion zeigen, d.h. wir zeigen, dass jedes Element von M_1 Element von M_2 ist und dass jedes Element von M_2 auch Element von M_1 ist (formal: $M_1 = M_2 \iff M_1 \subseteq M_2 \land M_2 \subseteq M_1$).

Zur Erinnerung: $A \subseteq B \iff \forall x \in A : x \in B$

Richtung 1 ($A \subseteq A \cap B$):

Sei $x \in A$. Aus $x \in A$ folgt wegen $A \subseteq B$, dass auch $x \in B$. Damit gilt $x \in A \land x \in B$ und somit $x \in A \cap B$.

Richtung 2 $(A \cap B \subseteq A)$:

Sei $x \in A \cap B$, dann gilt:

$$x \in A \cap B \implies x \in A \land x \in B \implies x \in A$$

Aufgabe 4. Gegeben sei das Alphabet $\Sigma = \{a, b\}$. Zeigen Sie mittels vollständiger Induktion:

- (a) Es gibt in Σ^* genau 2^n Wörter der Länge n.
- (b) Es gibt in Σ^* genau $2^{n+1} 1$ Wörter der Länge höchstens n.

Lösung zu Aufgabe 4. (a) Sei W_n die Menge aller Wörter der Länge n.

Induktionsanfang: Sei n = 0. $W_0 = \{\varepsilon\}$, also $|W_0| = 1 = 2^0$

Induktionsvoraussetzung: Für ein $n \in \mathbb{N}$ gelte $|W_n| = 2^n$.

Induktionsschritt: $n \rightarrow n+1$

Sei w ein Wort der Länge n+1. Dann gilt w=vx, wobei v ein Wort der Länge n ist und $x \in \{a,b\}$. (Jedes Wort der Länge n+1 lässt sich eindeutig in ein Wort v der Länge n gefolgt von einem a oder b zerlegen.)

Also: $W_{n+1} = \bigcup_{v \in W_n} \{va, vb\}$, und daher $|W_{n+1}| = 2|W_n| = 2 \cdot 2^n = 2^{n+1}$

(b) Sei $Q_n = \bigcup_{i=0}^n W_i$ die Menge aller Wörter der Länge höchstens n.

Seien $k, m \in \mathbb{N}$ mit $k \neq m$. Dann gilt $W_k \cap W_m = \emptyset$.

Also ist $|Q_n| = \sum_{i=0}^n |W_i| = \sum_{i=0}^n 2^i$.

 $\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1$ können wir mittels vollständiger Induktion zeigen.

Induktionsanfang: Sei n = 0.

$$\sum_{i=0}^{0} 2^{i} = 2^{0} = 1 = 2^{1} - 1 = 2^{n+1} - 1 \qquad \checkmark$$

Induktionsvoraussetzung: Für ein $n \in \mathbb{N}$ gelte $\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1$.

Induktionsschritt: $n \rightarrow n+1$

$$\sum_{i=0}^{n+1} 2^i = \left(\sum_{i=0}^n 2^i\right) + 2^{n+1} \stackrel{(IV)}{=} \left(2^{n+1} - 1\right) + 2^{n+1} = 2 \cdot 2^{n+1} - 1$$
$$= 2^{(n+1)+1} - 1.$$

Aufgabe 5. Welche Sprachen erzeugen die folgenden Grammatiken?

(a)
$$G = (V, \Sigma, P, S)$$
, wobei $V = \{S, A, B\}, \Sigma = \{a, b\}$ und
$$P = \{S \to AB, A \to aA, B \to b\}$$

(b)
$$G = (V, \Sigma, P, S)$$
, wobei $V = \{S\}, \Sigma = \{a, b\}$ und
$$P = \{S \to \varepsilon, S \to SS, S \to ab\}$$

(c)
$$G = (V, \Sigma, P, S)$$
, wobei $V = \{S, B, C\}$, $\Sigma = \{a, b\}$ und
$$P = \{S \to aB, B \to bC, C \to Ba, C \to b\}$$

Lösung zu Aufgabe 5.

(a)
$$L(G) = \emptyset$$

Jede Satzform, die aus S abgeleitet werden kann, enthält mindestens ein Nichtterminal: Die einzige Produktion mit S auf der linken Seite ist $S \to AB$ und diese enthält auf der rechten Seite das Nichtterminal A. Die einzige Produktion mit A auf der linken Seite ist $A \to aA$ und diese enthält wiederum das Nichtterminal A auf der rechten Seite. Somit kann aus S (und ebenso aus A) nie ein Wort über dem Alphabet Σ abgeleitet werden.

(b)
$$L(G) = \{(ab)^m \mid m \ge 0\}$$

Formal sind die beiden Inklusionen $L(G)\subseteq\{(ab)^m\mid m\geq 0\}$ und $\{(ab)^m\mid m\geq 0\}\subseteq L(G)$ zu zeigen:

 $\{(ab)^m \mid m \geq 0\} \subseteq L(G)$: Sei $w \in \{(ab)^m \mid m \geq 0\}$. Dann ist $w = (ab)^k$ für ein $k \geq 0$. Wir zeigen $w \in L(G)$, indem wir eine Ableitung für w aus S angeben: Wenn k = 0, wenden wir die Produktion $S \to \varepsilon$ an, um w abzuleiten. Wenn k = 1, leiten wir w = ab aus S in einem Schritt durch die Produktion $S \to ab$ an. Ist k > 1 können wir in k - 1 Schritten mit der Produktion $S \to SS$ die Satzform S^k aus S ableiten. Weiterhin können wir aus der Satzform S^k über die Produktion $S \to ab$ in weiteren k Schritten $w = (ab)^k$ ableiten. Damit gilt also $w \in L(G)$.

 $L(G) \subseteq \{(ab)^m \mid m \geq 0\}$: Jedes Wort $w \in \Sigma^*$, das aus S abgeleitet wird, ist eine Konkatenation der Terminalsymbole auf den rechten Seiten der Produktionen für S, d.h. aus den Wörtern ε und ab: Damit folgt $w \in \{(ab)^m \mid m \geq 0\}$ für jedes Wort w, das aus S abgeleitet wird.

(c)
$$L(G) = \{ab^{n+2}a^n \mid n \in \mathbb{N}\}\$$

Zum Verständnis kann es hilfreich sein die Grammatik umzuschreiben zu $P = \{S \to abC, C \to bCa, C \to b\}$ (dazu wird das B überall durch seine rechte Seite ersetzt).

Intuitiv: Aus dem Nichtterminal C werden Wörter $w \in \{b^n b a^n \mid n \in \mathbb{N}, n \geq 1\}$ abgeleitet, da man durch (wiederholtes) Anwenden der Produktion $C \to bCa$ gleich viele b's und a's erzeugt (jeweils zu Beginn und am Ende der Satzform) und in einem weiteren Schritt durch Anwenden der Produktion $C \to b$ das mittlere b erhält. Aus der einzigen Regel für $S(S \to abC)$ erhalten wir dann

$$L(G) = \{abb^n ba^n \mid n \in \mathbb{N}\} = \{ab^{n+2}a^n \mid n \in \mathbb{N}\}.$$

(Um formal die Gleichheit der Mengen zu zeigen, sind auch hier eigentlich wieder die beiden Inklusionen \subseteq und \supseteq zu zeigen).

Aufgabe 6. Otto steht im Treppenhaus des Hölderlingebäudes und läuft die Treppen hoch und runter. Jedes Mal, wenn er eine Stufe hinaufsteigt, notiert er sich ein \uparrow . Jedes Mal, wenn er eine Stufe hinuntersteigt, notiert er sich ein \downarrow . Geben Sie eine Grammatik an, die die Sprache aller Wörter über $\{\uparrow,\downarrow\}$ erzeugt, so dass Otto am Ende wieder an der Anfangsposition steht.

Lösung zu Aufgabe 6.

Damit Otto am Ende wieder an der Anfangsposition steht, muss die Anzahl der ↑ im Wort gleich der Anzahl der ↓ sein. Wir gehen davon aus, dass Otto beliebig viele Stockwerke hoch und runter gehen kann.

Eine mögliche Grammatik $G=(V,\Sigma,P,S)$ mit unendlich vielen Stockwerken ist definiert durch

- $V = \{S\}$
- $\Sigma = \{\uparrow, \downarrow\}$
- $P = \{S \to \uparrow S \downarrow S, S \to \downarrow S \uparrow S, S \to \varepsilon\}$.