
Universität Siegen
Lehrstuhl Theoretische Informatik
Markus Lohrey

Logic II
SS 2021

Exercise 2

Task 1
Which of the following problems are decidable, and which of them are recursively enume-
rable?

(a) Checking whether a formula F of predicate logic is neither valid nor unsatisfiable,

(b) Checking whether a formula F of predicate logic which contains a single unary predicate
symbol, but no function symbols is satisfiable?

Solution:

(a) This problem is not recursively enumerable (and thus, not decidable). Let us assume
that this problem is recursively enumerable (to deduce a contradiction): That is, we
assume that there is an algorithm (algorithm 1) which outputs ’yes’ on input F , if F
is neither valid nor unsatisfiable, and does not terminate otherwise. Furthermore, we
already know that the set of valid formulas of predicate logic is recursively enumerable
(Corollary of Gilmore’s Theorem). That is, there is an algorithm (algorithm 2), which
outputs ’yes’ on input F , if F is valid, and does not terminate otherwise. Combining
these two algorithms gives us an algorithm (algorithm 3) to check whether a given
formula F of predicate logic is satisfiable: Run algorithm 1 and algorithm 2 in parallel
(both with input F ). If

• algorithm 2 terminates: The formula is valid and hence satisfiable. We output
’yes’

• algorithm 1 terminates: The formula is not unsatisfiable, and hence satisfible. We
output ’yes’.

Otherwise, if algorithm 1 and 2 do not terminate, F must be unsatisfiable and algorithm
3 does not terminate either. Hence, algorithm 3 terminates, if the input F is satisfiable,
and does not terminate otherwise. However, the set of satisfiable formulas of predicate
logic is not recursively enumerable (Corollary of Church’s theorem), a contradiction.

(b) This problem is decidable. Let P denote the unary predicate symbol which occurs in
F . We claim that if F is satisfiable, then there is a model A = (UA, IA) for F , such
that |UA| ≤ 2. The number of structures A = (UA, IA), for which |UA| ≤ 2 and which
interpret only a unary predicate symbol P is finite (except for isomorphisms): Hence,
we can test which of these structures are a model for F .
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To prove the claim, assume that F is in negation normal form, that is, the negati-
on operator ¬ is only applied directly to the atomic formula P (x). Every formula is
equivalent to a formula in negation normal form.

Let A = (UA, IA) be a model for F with IA(P ) = PA and xA
1 = a1, . . . , x

A
n = an

for free variables x1, . . . , xn occurring in F . We have to show that there is a model
A′ = (U ′

A, I ′A) for F , such that |U ′
A| ≤ 2.

We define a mapping ϕ : UA → {0, 1} by

ϕ(a) =

{
0 if a /∈ PA,

1 if a ∈ PA.

Moreover, we define a structure A′ = (U ′
A, I ′A) as follows: The universe U ′

A of A′ is
defined as U ′

A = ϕ(UA) = {ϕ(a) | a ∈ UA}. The interpretation function I ′A is defined
by

I ′A(P ) = PA′
=

{
{1} if 1 ∈ U ′

A,

∅ otherwise,

and xA′
1 = ϕ(a1), . . . , x

A′
n = ϕ(an). We show inductively in the composition of the

formula that A′ is a model for F :

• Let F = P (xi) with 1 ≤ i ≤ n. As A is a model for F , we have xA
i = ai ∈ PA.

Thus, ϕ(ai) = 1 and ϕ(ai) ∈ PA′
= {1}, and A′ is a model for F .

• Let F = ¬P (xi) with 1 ≤ i ≤ n. As A is a model for F , we have xA
i = ai /∈ PA.

Thus, ϕ(ai) = 0 and ϕ(ai) /∈ PA′
= ∅, and A′ is a model for F .

• Let F = G∧H. As A |= F , we have A |= G and A |= H. By induction hypothesis,
we have A′ |= G and A′ |= H, and hence A′ |= F .

• Let F = G ∨H. This case is analogous to the previous case.

• Let F = ∃xG. As A |= F , there exists a ∈ UA with A[x/a] |= G. By induction
hypothesis, we have A′

[x/ϕ(a)] |= G. As ϕ(a) ∈ U ′
A, we find that A′ |= F .

• Let F = ∀xG. As A |= F , we find that for all a ∈ UA, A[x/a] |= G. By induction
hypothesis, we find that A′

[x/ϕ(a)] |= G for all a ∈ UA, respectively, for all ϕ(a) ∈
ϕ(UA) = U ′

A (as ϕ is surjective). Thus, A′ |= ∀xG.

Task 2
Let (N,+, ·) be a structure, where

• N denotes the universe of the structure,

• + und · are binary function symbols, interpreted as the addition and multiplication
of natural numbers,
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• the binary relation =, which denotes equality of two natural numbers.

Find formulas of predicate logic for the following statements:

(a) x is a prime number (use a free variable x).

(b) z is the greatest common divisor of x and y (use free variables x, y, z).

(c) x and y are coprime (use free variables x and y).

(d) There is no largest prime number.

(e) Every number except for 1 is the product of a prime number and a natural number.

(f) Every prime number except for 2 is odd.

(g) Every even number which is greater than 2 is a sum of two prime numbers (Goldbach’s
conjecture).

(h) There are infinitely many prime numbers p, such that p+ 2 is a prime number as well.

Solution:

(a) First, we define x = 1 for a variable x as ∀y(x · y = y). Then

prim(x) := ¬(x = 1) ∧ ∀u∀v ((u · v = x)→ ((u = 1) ∨ (v = 1)))

(b) We define x ≤ y as ∃z(x + z = y). Furthermore, we define z|x, y (z divides x and y)
as ∃u∃v((x = u · z) ∧ (y = v · z)). Then

z = gcd(x, y) := (z|x, y) ∧ ∀u((u|x, y)→ (u ≤ z)).

(c) (z = 1) ∧ (z = gcd(x, y))

(d) First, we define x < y as (x ≤ y) ∧ ¬(x = y). Then

∀x(prim(x)→ ∃y(prim(y) ∧ (x < y))).

(e) ∀x(¬(x = 1)→ ∃y∃z(prim(y) ∧ (x = y · z)))

(f) We define odd(x) (x is odd) as ¬∃y(x = y + y). Furthermore, we define x = 2 as
∃y((y = 1) ∧ (x = y + y)). Then

∀x(¬(x = 2)→ (prim(x)→ odd(x)))

(g) We define even(x) = ¬odd(x) (x is even). Then

∀x((even(x) ∧ ∃y((y = 2) ∧ (y < x)))→ ∃p∃q(prim(p) ∧ prim(q) ∧ (x = p + q)))

(h) First, we define x = y + 2 as ∃w(w = 2 ∧ x = y + w). Then

∀x∃y(prim(y) ∧ (x < y) ∧ ∃z(prim(z) ∧ (z = y + 2))))
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